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1 Introduction

Much attention in the past few years has been dedicated to the study of the planar limit for

the scattering amplitudes in N = 4 SYM theory. It is believed that the hidden symmetries

responsible for integrability properties of N = 4 SYM completely fix the structure of the

amplitudes (the S-matrix of the theory) [1–3]. One of the possible views on this subject is

that the answers for the amplitudes are expressed in terms of the scalar integrals which are

pseudo-conformal invariant in momentum space [4, 5] which appear in the unitarity-based

calculation of the scattering amplitudes pioneered in papers [6, 7].

The (dual)conformal symmetry at weak coupling regime can be extended to N = 4

supersymmetric version and can be fused with the original N = 4 superconformal symmetry

to the so-called Yangian symmetry [8] which is governed by Yangian infinite dimensional

algebra. The Yangian like symmetries are common features of the integrable systems [1].

At strong coupling the computation of the amplitudes in N = 4 SYM can be reduced

via AdS/CFT to the computation of the open string scattering amplitudes in AdS5, with

– 1 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
3

strings ending on D3-brane positioned at some fixed value of the radial AdS5 coordinate z,

in the quasi-classical regime [9] which in turn can be formulated as the problem of finding

the minimal surface in AdS5 with special boundary condition (see [10] for review). This

problem has recently been reduced to that of solving the set of functional equations for

the conformal invariant cross ratios as functions of the spectral parameters– the so-called

Y -system [11]. The Y -systems usually appear in integrable systems [12] which is another

hint that the N = 4 amplitudes have some underling integrable structure.

In strong coupling regime the natural generalization of the Y -system for the amplitudes

is the Y -system for the form factors [13]: the matrix elements of the form

〈0|O|pλ1

1 . . . pλn

n 〉. (1.1)

where O is some gauge invariant operator which acts on vacuum and produces some state

|pλ1

1 . . . pλn

n 〉 with momenta p1 . . . pn and helicities λ1 . . . λn. In the dual string theory this

matrix element can be described via the open string scattering amplitudes, with strings

ending on D3-brane positioned at some fixed value of the radial AdS5 coordinate z, in the

presence of some closed string state [13].

One can wonder whether these objects at weak coupling possess similar features as the

amplitudes or in other words whether form factors are influenced by the Yangian symmetry

(or some analog of it) and whether they are fixed by it. Also the general structure of the

form factors at weak coupling should be understood.

Being inspired by the two-loop calculation of the form factor associated with the oper-

ator VX from the stress-tensor superconformal multiplet of N = 4 SYM theory performed

long ago by van Neerven [14] we would like to study systematically some types of form

factors in planar N = 4 SYM at weak coupling for half-BPS operators O
(n)
I and the

Konishi operator K. For the former type of operators there was recently an interest in

studying the correlation functions and their connection to the amplitudes and the Wilson

loops [15, 16]. A new kind of relation has been proposed between the logarithm for such

correlation functions and twice the logarithm of the MHV gluon scattering amplitudes.

The dual-conformal symmetry plays an important role in another remarkable property

of the N = 4 SYM — the Wilson loop/Amplitudes duality [5, 17–19]. In this duality (we re-

strict ourselves to the most studied case of the MHV amplitude1 sector) the dual-conformal

symmetry is understood as conformal symmetry of light-like Wilson loop constructed of

the segments which satisfy the following property:

xµ
i,i+1 = xµ

i − xµ
i+1 = pµ

i , (1.2)

where pµ
i are external momenta of the dual MHV amplitude. The dual-conformal symmetry

is broken on-shell for the amplitudes due to the presence of the IR divergences (these IR

divergences correspond to the UV divergences for dual Wilson loops); however, the violation

of the dual-conformal symmetry is controlled by the 1-loop exact anomaly, which in turn

can be used to make constraints for the finite part of the corresponding MHV amplitude,

1MHV (maximally helicity violating) amplitudes by definition are called the amplitudes with all particles

being treated as outgoing and the net helicity λΣ being equal to n − 4 where n is the number of particles.
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i.e. one can write the anomalous Ward identities allowing one to constrain the finite parts

(pioneered in [18, 20], see, for example, review [10] for details):

n∑

i=1

(2xν
i xi∂i − x2

i ∂
ν
i )Fin[logWn] = Γcusp

n∑

i=1

log
x2

i,i+2

x2
i−1,i+1

xν
i,i+1, (1.3)

where Γcusp is the so-called cusp anomalous dimension [21–23] known from a solution of

the integral equation [24, 25]. These identities can fix the finite part for a small number of

legs/cusps (namely, one can fix it for Wilson loops with n = 4 and n = 5 cusps) [10]. In

fact, the famous BDS conjecture was the simplest possible ansatz of these identities, which

is not precisely correct for a number of external legs > 5.

One may wonder if there is a similar duality for the form factors/Wilson loops and one

can use similar arguments to obtain information on the finite parts of the form factors. We

hope that our calculation sheds some light on the possibility of such duality.

The paper is organized as follows. In section 2, we present the general considerations of

the form factors in the N = 4 SYM theory and introduce the operators to be discussed later.

In section 3, we study the form factors for both protected and non-protected operators with

naive conformal dimension ∆0 = 2 and confirm the results obtained long time ago in [14]. In

section 4, we study the half-BPS operators O
(n)
I for arbitrary conformal dimension ∆0 = n

and present the one- and two-loop calculations of the corresponding form factors which

suggest the exponentiation of the IR divergences. Also, in the same section, we discuss the

collinear limit for which the finite parts take a simple form. In section 5, we discuss in more

detail the dual conformal invariance of the integrals contributing to the calculation of the

form factors. We conclude with some remarks concerning the form factors and Wilson loop

duality. In the appendices we give the details of our calculations. Appendix A contains the

Lagrangian of the N = 4 SYM theory together with the Feynman rules. In appendix B we

present the analytic expressions for the integrals entering into our calculations with their

ǫ-expansion. The results of our work have been reported at the international conference

devoted to the memory of A.N. Vasiliev held in Saint-Petersburg on 18-21 October 2010.

2 General considerations

2.1 Form factors in N = 4 SYM

Consider the Lagrangian LN=4(W) for the N = 4 SYM theory coupled to some external

classical current J through some gauge invariant local operator O[W] (for all the details

concerning the explicit expression for the Lagrangian together with Feynman rules we refer

to appendix A)

LN=4(W) → LN=4(W) + O[W]J, (2.1)

where we collectively refer to the whole N = 4 on-shell multiplet as W which consists of

the physical gluon Aµ states with positive and negative helicities, four gauginos λN
α with

positive and negative helicities and also six real scalar states φNM , where N and M are

the SU(4)R indices, which can also be re-arranged into 3 complex φI scalars, I is an index

of SU(3) subgroup of SU(4)R. By default we assume everywhere the planar limit.
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Figure 1. Feynman diagram for the matrix element of the operator O.

Then one can study the following processes where the operator O acts on the vacuum

and produces some state |pλ1

1 . . . pλn

n 〉 with momenta p1 . . . pn and helicities λ1 . . . λn

〈0|O|pλ1

1 . . . pλn

n 〉. (2.2)

Schematically, it is shown in figure 1.

This is a general situation in QFT and one can keep in mind, for example, γ∗ → jets

process [26] where we take into account all orders in αs but the first order in αem. In

perturbation theory the latter type of processes can be thought of as the matrix elements

of the following form:

〈0|jQCD
em |pλ1

1 . . . pλn

n 〉, (2.3)

where jQCD
em is the QCD quark electromagnetic current.

The matrix element 〈0|O|pλ1

1 . . . pλn

n 〉 in some sense can also be viewed as the general-

ization of the scattering amplitudes, which in ”all ingoing” notation can schematically be

written as 〈0|pλ1

1 . . . pλn

n 〉.

In the language of the dual string theory, in the N = 4 SYM case this process can be

described as an insertion of some close string state (which corresponds to O local operator)

on the worldsheet in addition to n open string states (which corresponds to |pλ1

1 . . . pλn

n 〉

state in the dual theory).

For the construction of particular examples of the objects discussed above we choose

the following set of the gauge invariant operators (we use the component notation of the

N = 4 SYM), the lowest stress tensor supermultiplet members:

CIJ = Tr(φIφJ),

VJ
I = Tr(φ̄JφI), (2.4)

with naive mass dimension ∆0 = 2 which coincides with the conformal dimension due to

the lack of quantum corrections. These operators can be viewed as the lowest members of

– 4 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
3

the stress-tensor multiplet

TAB = Tr

(

W AW B −
1

6
δABW CWC

)

, (2.5)

where A,B, . . . = 1, . . . , 6 are the SO(6)R ≃ SU(4)R indices, I, J, . . . = 1, 2, 3 are the

indices of SU(3) subgroup of SU(4)R, and W A is some constrained chiral superfield in

N = 4 superspace containing all components of the N = 4 supermultiplet.

Other objects are the so-called half-BPS operators

O
(n)
I = Tr(φn

I ), (2.6)

whose naive mass dimension coincides with conformal dimension ∆0 = n being protected

from the quantum corrections, and the lowest component of the Konishi supermultiplet

K =
3∑

I=1

Tr(φ̄IφI), (2.7)

with naive mass dimension ∆0 = 2 and has nonvanishing anomalous dimension due to the

presence of the UV divergences. The calculation of this anomalous dimension has been

intensively discussed during the last few years [27–29].

Since the Konishi operator is not protected, the corresponding form factors a priori do

contain the UV divergences and hence must be UV renormalized. It means that one has

to consider the renormalized form factor

〈0|KR|p
λ1

1 . . . pλn

n 〉, (2.8)

where

KR = Z−1
K KB . (2.9)

Here ZK is the renormalization constant which appears due to the UV divergences and

which should be calculated to the same order of perturbation theory as the form factors.

After such UV renormalization we are left only with the IR divergences. All the statements

concerning the Konishi operator are valid for the renormalized one.

We choose for simplicity the state |pλ1

1 . . . pλn

n 〉 produced by the operator O to consist

of scalars only and then we can write it as |p1 . . . pn〉 without helicities. We also restrict

ourselves to the states with the number of particles equal to the naive mass dimension of

the operator O, i.e. we consider the states consisting of ∆0 scalars.

2.2 Calculation strategy

For the calculation it is convenient to use the N = 1 formulation of N = 4 SYM and

perform an explicit computation in terms of the N = 1 superfields in momentum space.

Our computation is familiar, from a diagrammatic point of view, to perturbative computa-

tions of anomalous dimensions [29]. However, there is a significant difference: each of our

supergraphs is UV finite except for one. So all the divergences that appear throughout the

calculation have the IR nature.
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The operators O = {CIJ ,VJ
I ,K,O

(n)
I } can be considered as the lowest components of

the following N = 1 local operators:

CIJ = Tr(ΦIΦJ), I 6= J

VJ
I = Tr(e−gV Φ̄JegV ΦI), I 6= J

O
(n)
I = Tr (Φn

I ) ,

K =
∑

I

Tr(e−gV Φ̄IegV ΦI), (2.10)

where ΦI are chiral N = 1 superfields, and V is N = 1 real vector superfield (see ap-

pendix A for details). The operators CIJ , O
(n)
I are chiral and VJ

I , K are non-chiral from

the N = 1 supersymmetric point of view.

We use the following notation for the form factor of the corresponding operator

F(p1 . . . pn) = 〈p1 . . . pn|O(q)|0〉. (2.11)

We expect the following factorization property for F to hold:

F(p1 . . . pn) = Ftree(p1 . . . pn)(1 + loops), (2.12)

where Ftree stands for the tree level contribution, and ”loops” schematically denote the

contributions of the next orders of PT. It is convenient to consider the ratio

M =
F

Ftree
= (1 + loops) =

∑

l=0

λlM(l),

where λ ≡ g2Nc is the ’t Hooft coupling which stays fixed when Nc → ∞.

Consider first the chiral case. To calculate the form factor it is convenient to consider

the generating functional for the one-particle irreducible super diagrams Γ[Φcl, J ] in N = 1

superspace. It can be obtained from the generating functional

Z[j, J ] =

∫

D(ΦI , V, . . .) exp[SN=4 +

∫

d6zJ(z)O(z) +

∫

d6zTr(j(z)Φ(z))],

after Legendre transformation with respect to external chiral sources j (note that the source

J is untouched). After performing the D-algebra each supergraph gives a local contribution

in θ’s, and Γ[Φcl, J ] can be written as ( we imply the mass shell condition p2
i = 0 when

performing the D-algebra)

Γ[Φcl, J ] =
∑

l=0

λlΓ(l)[Φcl, J ]

=
∑

l=0

λl

∫

d4p1 . . . d4pn d6z J(−q, θ)Tr
(

Φcl(−p1, θ) . . . Φcl(−pn, θ)
)

M(l)(p1, . . . pn)

+O(J2) , (2.13)

where d6z = d4qd2θ, M(l) is given by the sum of scalar integrals. Thus,

M(l)(p1 . . . pn) =
δn+1Γ(l)

δΦcl . . . δΦclδJ

∣
∣
∣
p2

i
=0, θ=0,Φcl=0,J=0

. (2.14)

– 6 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
3

We stress that on-shell condition p2
i = 0 and momenta conservation q + p1 + . . . + pn = 0

are implemented to obtain the latter expression.

The situation is a bit more involved in the nonchiral case. All the integrals in

Γ[Φcl, Φ̄cl,J ] (J is a non-chiral source) are now in full N = 1 superspace
∫

d8z, where

d8z = d4qd4θ and the expression for Γ[Φcl, Φ̄cl,J ] contains extra terms

Γ[Φcl, Φ̄cl,J ] =
∑

l=0

λlΓ(l)[Φcl, Φ̄cl,J ] = (2.15)

=
∑

l=0

λl

∫

d4p1 . . . d4pn d8z J (−q, θ, θ̄)

×
[

Tr
(

Φ̄cl(−p1, θ̄) . . . Φcl(−pn, θ)
)

M(l)(p1, . . . pn)

+Tr
(

D̄β̇Φ̄cl(−p1, θ̄) . . . DαΦcl(−pn, θ)
)

M
(l)

β̇α
(p1, . . . pn)

+Tr
(

D̄2Φ̄cl(−p1, θ̄) . . . D2Φcl(−pn, θ)
)

M
(l)
2 (p1, . . . pn)

]

+ O(J 2) .

From the point of view of N = 1 superspace the additional terms correspond to the

operators of higher dimension and one actually has a mixing of several operators. However,

from the point of view of components, one can always consider a projection on a particular

component of a superfield and we choose the scalar component insofar. Then, the last

terms of eq. (2.15) are irrelevant for our calculation and can be dropped.

We perform all the calculations in the formalism of N = 1 superspace and at the end

take the projection to θ = θ̄ = 0. There are pluses and minuses of this approach. The big

advantage is the drastic reduction of the number of diagrams compared to the component

case together with the simplified form of the scalar integrals. Its disadvantage is that we

do not use the power of the on-shell N = 4 covariant methods used in perturbative studies

of the amplitudes [30, 31] (see also recent [32]). The application of this method for the

calculation of the form factors when some legs are off-shell requires some modification.

2.3 IR finite observables based on form factors

As the amplitudes, the form factors 〈0|O|pλ1

1 . . . pλn

n 〉 with on-shell momenta are, strictly

speaking, ill-defined in D = 4-dimensional space-time due to the presence of the IR diver-

gences, and, hence, some IR regulator must be introduced — in our case it is the parameter

µ coming from the dimensional regularization which also breaks the conformal symmetry.

In other words, one may say that 〈0|O|pλ1

1 . . . pλn

n 〉 are the intermediate objects, and the

true physical quantities are the IR safe observables constructed of 〈0|O|pλ1

1 . . . pλn

n 〉 and

which are free from the IR regulator (see, for example, the discussion of the IR finite ob-

servables for N = 4 SYM and N = 8 SUGRA in [33–35]). Indeed, as in QCD for γ∗ → jets

processes we are really interested in the total cross section σtot(γ
∗ → jets) or some differen-

tial distributions rather than in the matrix elements 〈0|jQCD
em |pλ1

1 . . . pλn

n 〉 themselves. This

kind of observables are IR finite due to the Kinoshita-Lee-Nauenberg (KLN) theorem which

states that it is not sufficient to consider only the processes with the fixed number of final

particles. To get the physical result, one has to include all the processes allowed by conser-

vation laws in the same order of perturbation theory with emission of extra soft quanta and
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integrate over their momenta. Practically, if the dimensional regularization is used (the

IR divergences manifest themselves through the appearance of the 1/ǫ poles), part of the

poles cancel between the loop integrals from the virtual contributions and the phase space

integrals from the real contributions coming from the processes with additional particles,

while others are absorbed in the functions describing probability distributions of the ini-

tial and final states (in [33–35] we call them initial-collinear and final-collinear divergences

which appear as a collinear configuration of initial and final particles).

Consider, for instance, the total cross section σtot for the process

J → anything from N = 4 supermultiplet

for classical current J coupled to N = 4 through some local gauge invariant operator O.

Due to the optical theorem

σtot(s) ∼
1

s
Ims

[∫

dDx exp(−iqx)〈O(x)O(0)〉

]

, q2 = −s, (2.16)

The two-point function for the operators O apart from the canonical mass dimension ∆0

can have anomalous dimension γ = γ(λ) being a function of the coupling constant

〈O(x)O(0)〉 ∼
1

(x2)(∆0(1−ǫ)+γ)
, (2.17)

After some calculation this gives the total cross-section

σtot(s) ∼
1

Γ(∆0 + γ)Γ(∆0 + γ − 1)

1

s3−∆0−γ
, (2.18)

and its asymptotic at weak and strong couplings can be studied (compare this with C.3

from [36]).

In N = 4 SYM, as in any conformal theory, if the operator O is protected, which

means that it does not receive quantum corrections, then γ = 0. Then the cross section

is independent of the coupling constant and behaves like ∼ C/s3−∆0. From the latter

expression it might seem that we get violation of unitarity since we can get increasing cross

sections for protected operators with conformal dimension greater than 3. But it is not the

case since the statement about the unitarity holds only for the operators which give rise to

renormalizable interactions, i.e. with conformal dimension less than 3.

If one is interested not in σtot but in some differential distributions, then the optical

theorem is not very useful any more, and direct computations must be done. The form fac-

tors discussed here can be viewed as the building blocks in the same sense as the amplitudes

for the inclusive cross sections.

3 Form factors with ∆0 = 2

In the following two sections we give explicit results for the direct diagrammatic compu-

tation of the form factors of the operators introduced above in the planar limit.2 More

2g → 0 and Nc → ∞ so that λ = g2Nc =fixed.
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B1C1 B2C0

Figure 2. The relevant supergraphs. The internal black lines correspond to chiral propagators

〈Φ̄a

I
Φb

J
〉, wavy lines correspond to vector 〈V aV b〉 propagator (see appendix A). C0 is the tree

level diagram, and the rest are one-loop ones. External lines are Φ or Φ̄, and the lower bold line

represents the insertion of the corresponding operator in modern notation. For the chiral operator

CIJ only the diagrams C0 and C1 contribute, while for non-chiral operators VJ

I
and K the other

two (B1 and B2) are also relevant.

concretely we present the results for non-chiral operators VJ
I , K in the leading order in

λ and for the chiral operators CIJ , O
(n)
I in the next-to-leading order. The dimensional

regularization (dimensional reduction to be precise) with D = 4 − 2ǫ is used. All the

divergences except for the specially mentioned cases have the IR (both soft and collinear)

nature. The Feynman rules for the supergraphs are given in appendix A. The complete

list of all the necessary scalar integrals is given in appendix B. The results for CIJ , VJ
I co-

incides with those presented in [14] because VX which in N = 1 superspace notations takes

the form 2TrΦ1Φ1 −TrΦ2Φ2 −TrΦ3Φ3 and CIJ , VJ
I lie in the same N = 4 supermultiplet.

3.1 CIJ , VJ
I and K form factors at 1-loop

The corresponding tree level and one-loop Feynman diagrams are shown in figure 2.

For the chiral operator CIJ , after performing the D-algebra for the supergraph C1, the

resulting expression is

C1 = Tr
(

Φcl
I Φcl

J

)

2s12 G1(s12), (3.1)

where sij = (pi + pj)
2, so that

M(1) = 2s12 G1(s12), (3.2)

where the scalar integral G1(s12) is given in appendix B Hereafter we will suppress index

cl in Φ and Φ̄.

For the non-chiral operator VJ
I after performing the D-algebra one has

C1 = 2
(
(−G0(p

2
1) − G0(p

2
2) + G0(s12) + (s12 − p2

1 − p2
2)G1(s12)) Tr

(
Φ̄JΦI

)

−Gαβ̇
1 (s12) Tr

(

D̄β̇Φ̄JDαΦI

)

+ G1(s12) Tr
(
D̄2Φ̄JD2ΦI

))

,

B1 = 2G0(p
2
i ) Tr

(
Φ̄JΦI

)
, (3.3)

B2 = 2
(

−G0(s12)Tr
(
Φ̄JΦI

)
+Gαβ̇

1 (s12)Tr
(

D̄β̇Φ̄JDαΦI

)

+G1(s12)Tr
(
D̄2Φ̄JD2ΦI

))

,
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where all the scalar integrals are also given in appendix B. So keeping only the terms that

are relevant for our discussion, which are proportional to Tr
(
Φ̄JΦI

)
, one gets

M(1) = C1(s12, p
2
1, p

2
2) + B1(p2

1) + B1(p2
2) + B2(s12) = 2(s12 − p2

1 − p2
2)G1(s12), (3.4)

The integral G1 is UV finite which reflects the fact that VJ
I is a protected operator.

For the non-chiral Konishi operator K, after performing the D-algebra one has

C1 = 6

(

(−G0(p
2
1) − G0(p

2
2) + G0(s12) + (s12 − p2

1 − p2
2)G1(s12))

3∑

I

Tr
(
Φ̄IΦI

)

−Gαβ̇
1 (s12)

3∑

I

Tr
(

D̄β̇Φ̄IDαΦI

)

+ G1(s12)
3∑

I

Tr
(
D̄2Φ̄ID2ΦI

)

)

,

B1 = 6G0(p
2
i )

3∑

I

Tr
(
Φ̄IΦI

)
, (3.5)

B2 = 6

(

−G0(s12)
3∑

I

Tr
(
Φ̄IΦI

)
+ Gαβ̇

1 (s12)
3∑

I

Tr
(

D̄β̇Φ̄IDαΦI

)

+G1(s12)

3∑

I

Tr
(
D̄2Φ̄ID2ΦI

)

)

,

and again selecting the proper structures, prior to the application of the on-shell conditions,

gives

M(1) =C1(s12, p
2
1, p

2
2) + B1(p2

1) + B1(p2
2) + 2B2(s12)=6(s12 − p2

1 − p2
2)G1(s12)− 6G0(s12),

(3.6)

The UV divergent part of the answer is given by 6G0 and extracting the coefficient of

the 1/ǫ pole, which is the first coefficient in the anomalous dimension expansion γK(λ) =

γ
(1)
K λ + . . . , we obtain the well-known result

γ
(1)
K =

3

8π2
. (3.7)

We see that up to one loop all the form factors for the operators CIJ ,VJ
I ,K,O

(n)
I are

proportional to G1, the scalar triangle function (see appendix B).

3.2 CIJ form factors at 2-loops

We see that the form factors associated with CIJ and VJ
I are equal to each other at the

one-loop level. This is because CIJ and VJ
I are different components of the N = 4 conserved

stress tensor. In what follows we compute the λ2 contribution to M for CIJ since for the

chiral operator the D-algebra is essentially simpler. The corresponding diagrams are shown

in figure 3.

Their contribution to the form factor are summarized in table 1. All the relevant

integrals are given in appendix B.
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C5 C6 C7 C8

C4C3C2C1

Figure 3. The relevant supergraphs in the chiral case. C1 is the one-loop diagram, and the rest

are two-loop ones. For the chiral operator CIJ with two legs the last two diagrams C7 and C8 do

not exist, they are only relevant for the operator On with n ≥ 3. A grey circle is the one-loop

effective vertex.

N CIJ O
(n)
I

C1 2s12G1(s12) sii+1G1(sii+1)

C2 4s2
12G2(s12) s2

ii+1G2(sii+1)

C3 2s12G3(s12) + 2s12G4(s12) sii+1G3(sii+1) + sii+1G4(sii+1)

C4 −6s12G3(s12) −2sii+1G3(sii+1)

C5 2Ga
5(s12) 0

C6 2Gb
5(s12) 0

C7 0 (sii+1 + si+1i+2 + sii+2)G6(sii+1, si+1i+2, sii+2)

C8 0 si+1i+2G7(sii+1, si+1i+2, sii+2)

Table 1. The contributions to the form factors from the individual diagrams.

Adding all together and combining with the leading order one gets

M(2) = C2 + C3 + C4 + C5 + C6 = 2Ga
5 + 2Gb

5 − 4s12G3 + 2s12G4 + 4s2
12G2. (3.8)

Using the identity

Ga
5 + Gb

5 = 2s12G3 − s12G4 +
s2
12

2
G5

one can reduce it to 4s2
12 G2 + s2

12 G5 and finally get

M = 1 + λ(2s12 G1) + λ2(4s2
12 G2 + s2

12 G5),+O(λ3). (3.9)
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The general structure of form factors M ”with two external legs” in the gauge theory

with zero beta-function has the following form:3

log(M) =
1

2

2∑

i=1

(

M̂(si,i+1/µ
2)
)

+ O(ǫ). (3.10)

Here we introduced

M̂(si,i+1/µ
2) = −

1

2

∑

l

(
λ

16π2

)l
(

Γ
(l)
cusp

(lǫ)2
+

G(l)

lǫ
+ C(l)

)(
si,i+1

µ2

)lǫ

, (3.11)

where Γ
(l)
cusp are the coefficients of perturbative expansion of the cusp anomalous dimen-

sion Γcusp(λ) =
∑

l Γ
(l)
cuspλl which is a universal quantity that governs the IR behavior of

gauge theory amplitudes and the UV behavior of the Wilson loops, and some local gauge

invariant operators. G(l) are the coefficients of perturbative expansion of the so-called

collinear anomalous dimension G(λ) =
∑

l G
(l)λl and C(l) are some constants. The quan-

tities G(l) and C(l) are regularization and scheme dependent. Performing the expansion of

the integrals G1, G2, G5 in ǫ (see appendix B) and introducing the notation

a =
λ

16π2
e−ǫγE , (3.12)

where γE is the Euler-Mascheroni constant we get the same result as in [14]

log(M) = a

(
s12

µ2

)−ǫ(−2

ǫ2
+ ζ2

)

+ a2

(
s12

µ2

)−2ǫ(ζ2

ǫ2
+

ζ3

ǫ

)

+ O(a3) (3.13)

where ζn are the Riemannian zeta functions

ζn =

∞∑

k=1

1

kn
.

From this answer and comparing with eq. (3.11) we can extract the first two terms of

perturbative expansion over a for the cusp and the collinear anomalous dimensions and

the finite terms

Γ(1)
cusp = 4, Γ(2)

cusp = −8ζ2, (3.14)

G(1) = 0, G(2) = −ζ3, (3.15)

C(1) = −ζ2, C(2) = 0. (3.16)

Note that the maximal transcendentality principle [55] holds which in our case means

that if we attach to each logarithm and π the level of transcendentality equal to 1 and

to polylogarithms Lin(x) and ζn the level of transcendentality equal to n, then at the

given order of perturbation theory the coefficient for the n-th pole 1/ǫn has the overall

transcendentality equal to 2l − n, where l is the number of loops. For a product of several

factors it is given by the sum of transcendentalities of each factor.

3The IR exponentiation for two-leg form factors in QCD was established earlier in [37, 38].
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Figure 4. The tree contribution to O
(n)
I

.

The leading IR behavior of M in this case can also be captured by considering the

Wilson line with one cusp [39, 40] . So in this sense the dual description in terms of Wilson

loops for such form factors is well known.

One can see that the finite part for the form factor is given only in one loop and

vanishes at two loops. However, this is a scheme dependent result, and, for example, if we

choose a different scheme and replace exp(lǫγE) for the l-th loop by Γ(1 − ǫ)l, we obtain

in this scheme:

C̃(1) = 0, C̃(2) = −ζ2
2 , (3.17)

while the first two coefficients in the perturbation theory for the cusp anomalous dimension

Γ
(1)
cusp and Γ

(2)
cusp remain the same, which reflects the fact that they are scheme independent.

The same result is true, and should coincide with [14] for the form factor of a slightly

different operator VX , because it belong to the same stress-tensor superconformal multiplet.

4 Form factors with ∆0 = n, n > 2

Here we present the results of calculation of the form factors of the chiral half-BPS operators

O
(n)
I introduced earlier. The tree-level contribution for the form factor is presented on

figure 4. In the first order of perturbation theory, similar to the form factors of operators

with conformal dimension 2, the contribution is given by the triangle type diagram and

the corresponding form factor, after performing the D-algebra and the color algebra, is

M(1) =
n∑

i=1

si,i+1 G1, (4.1)

where we assume hereafter sn+i,n+i+1 = si,i+1.

– 13 –



J
H
E
P
0
2
(
2
0
1
1
)
0
6
3

4.1 O
(n)
I , n = 3 form factors at 2-loops

At the second order of perturbation theory the corresponding diagrams are shown in figure 3

and their contributions are summarized in table 1.

M(2) =
n∑

i=1

(
s2
ii+1G2(sii+1) − sii+1G3(sii+1) + sii+1G4(sii+1)

)

+
n∑

i=1

(si+1i+2G7(sii+1, si+1i+2, sii+2) + sii+1G7(si+1i+2, sii+1, sii+2))

+

n∑

i=1

(sii+1 + si+1i+2 + sii+2) G6(sii+1, si+1i+2, sii+2) (4.2)

The next step is to establish the factorization property (3.10), (3.11). Expanding the

relevant scalar integrals in ǫ (see appendix B), we obtain for log(M):

log(M)=
3∑

i=1

a

(
sii+1

µ2

)−ǫ(

−
1

ǫ2
+

ζ2

2

)

+
3∑

i=1

a2

(
sii+1

µ2

)−2ǫ( ζ2

2ǫ2
+

7ζ3

2ǫ

)

+ fin.part. (4.3)

As in the case of the form factors of the operators with conformal dimension 2, we can

extract the first two terms for the cusp and collinear anomalous dimensions. This gives

Γ(1)
cusp = 4, Γ(2)

cusp = −8ζ2, (4.4)

G(1) = 0, G(2) = −7ζ3. (4.5)

Notice that the values of the cusp anomalous dimension Γ(l) are universal and coincide

with (3.14), while those of the collinear anomalous dimension depend on the form factor

at hand.

We would like to emphasize the highly nontrivial cancelations between the polylog-

arithms that occurred for log(M) for the whole set of scalar integrals (the individual

contributions to the poles from the scalar integrals are usually complicated polynomials of

logarithms and polylogarithms of different weight, see, for example, the expansions in ǫ of

G6 and G7 in appendix B).

We see that the IR factorization property holds for the form factors like for the

amplitudes.
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4.2 O
(n)
I form factors for n > 3 at 2-loops

The corresponding contribution to the form factor up to λ2 is similar to the case of n = 3

but has an additional term coming from the factorized diagrams

M(2) =
n∑

i=1

(
s2
ii+1G2(sii+1) − sii+1G3(sii+1) + sii+1G4(sii+1)

)

+

n∑

i=1

(si+1i+2G7(sii+1, si+1i+2, sii+2) + sii+1G7(si+1i+2, sii+1, sii+2))

+

n∑

i=1

(sii+1 + si+1i+2 + sii+2) G6(sii+1, si+1i+2, sii+2)

+
n∑

i=1

n∑

j=1

sii+1G1(sii+1)sjj+1G1(sjj+1) (4.6)

Performing the expansion over ǫ we obtain the logarithm of the form factor up to the

second order of perturbation theory log(M)

log(M)=
n∑

i=1

a

(
sii+1

µ2

)−ǫ(

−
1

ǫ2
+

ζ2

2

)

+
n∑

i=1

a2

(
sii+1

µ2

)−2ǫ( ζ2

2ǫ2
+

7ζ3

2ǫ

)

+ Fin.part. (4.7)

The first two coefficients for the cusp and collinear anomalous dimension which we

can extract from the above expression coincide with the coefficients obtained earlier for

n = 3, (4.4) and (4.5), respectively. As for the finite part

Fin.part. = λF (1)(s12, . . . , sn1) + λ2F (2)(s12, . . . , sn1) + O(λ3), (4.8)

at one loop it is trivial F (1) = 0, and the two loop expression F (2), contrary to the previ-

ous case, is a complicated function containing logarithms, polylogarithms and generalized

Goncharov polylogarithms [46–48] of several variables. All the relevant expressions can

be found in appendix B. Using the notation from appendix B one can write F (2) in the

following schematic way:

F (2) =

n∑

i=1

(si+1i+2 (G7)fin (sii+1, si+1i+2, sii+2) + sii+1 (G7)fin (si+1i+2, sii+1, sii+2))

+
n∑

i=1

(sii+1 + si+1i+2 + sii+2) (G6)fin (sii+1, si+1i+2, sii+2) + Cn, (4.9)

where Cn is some kinematical independent constant. For example for n = 2k we have

Cn = −ζ2
2k(k 21/2 + 227/20) Note, the result is still much simpler than in the non-

supersymmetric case [45].

4.3 Collinear limit

Here we restrict ourselves to the three-leg form factors for which we can study the simplified

kinematics and express the finite part in terms of logarithms only without polylogarithms
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or Goncharov generalized polylogarithms. The most difficult part which appears in our

calculation comes from the diagram involving the interaction of three external fields. It

reduces to the integral G7 which is expressed in terms of the Appell function of two variables

F1(1; 2ǫ, 1; 2 + ǫ|x, y)

and after the ǫ-expansion one obtains the generalized Goncharov polylogarithms [46–48].

One can see from integral representation of the Appell function

F1(a; b1, b2; c|x, y) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

ua−1(1 − u)c−a−1

(1 − ux)b1(1 − uy)b2
du,Rea,Re(c − a) > 0 (4.10)

that the only way to achieve the desired simplification is to have one of the arguments

equal to 0 or to 1. In the first case one gets

F1(a; b1, b2; c|x, 0) = 2F1(a, b1; c|x), (4.11)

and similarly in the second case

F1(a; b1, b2; c|x, 1) =
Γ(c)Γ(c − a − b2)

Γ(c − a)Γ(c − b2)
2F1(a, b1; c − b2|x). (4.12)

Such a simplification can occur in two-dimensional kinematics when one of the kine-

matical variables s12, s13 or s23 equals 0. The other motivation for this kinematics is the

recent strong coupling calculations which have been performed for the AdS3 sub-manifold

of AdS5 which corresponds to the degenerate 1 + 1 kinematics in a dual theory [13].

The 1 + 1 dimensional kinematics necessarily contains a collinear configuration of the

space components ~pi of momenta pi. For massless gauge theory it is known that in such

collinear limit the factorization of the IR divergencies fails. For the partial color ordered

amplitudes in collinear limit when two momentums pi and pi+1 are replaced by zp and

(1− z)p the deviation from the factorized form is governed by the so-called ”loop splitting

functions” r
(l)
s (ǫ, z, p2), l being the number of loops. In the N = 4 SYM theory r

(l)
s (ǫ, z, p2)

have an iterative structure, so one can write the following relation valid in collinear limit

(see, for example, the discussion in [73])

log(Mn) →
1

2
M̂n−1 +

∑

l

λlΓ(l)
cuspr(l)

s (lǫ, z, p2) +
∑

l

λlF
(l), coll
n−1 + O(ǫ)

r(l)
s (lǫ, z, p2) ∼

1

ǫ2

(
p2

µ2

)ǫ
(

−
πǫ

sin(πǫ)

(
1 − z

z

)ǫ

+ 2
∑

k=0

ǫ2k+1Li2k+1

(
−z

1 − z

))

We expect that similar violation of the IR factorization happens in the case of the form

factors. Indeed, in the s23 → 0 limit we have, up to λ2

log(M) =
2∑

i=1

a

(
sii+1

µ2

)−ǫ(

−
1

ǫ2
+

ζ2

2

)

+
2∑

i=1

a2

(
sii+1

µ2

)−2ǫ( ζ2

2ǫ2
+

ζ3

2ǫ

)

+

2∑

i=1

a2

(
sii+1

µ2

)−2ǫ
(

−6ζ2 + 3 log2 s12

s13

96ǫ2
+

19ζ3

8ǫ

)

−
a2

2880

(

75 log4 s12

s13
+ 120π2 log2 s12

s13
− 317π4

)

. (4.13)
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We would like to point out that the maximal transcendentality principle holds for

this expression.

5 Dual conformal invariance

Here we would like to discuss the property of dual conformal invariance of the integrals

which appear in calculation of the amplitudes. The off-shell amplitudes in N = 4 SYM

obey the dual (super) conformal symmetry as has been pointed out in [4, 5]. When going

on-shell, this symmetry is broken due to the presence of the IR regulator but the breaking

is controlled by the one-loop anomaly. In the MHV case this symmetry still can be used

to constraint the finite parts of the amplitudes due to the anomalous Ward identities.

The non-MHV case is sufficiently less studied, but it seems that properly understood dual

(super)conformal symmetry can be still used to restrict finite parts [2, 3].

The reflection of the dual (super)conformal symmetry of the amplitudes in N = 4 SYM

is that scalar integrals appearing in the calculation are pseudo-conformal in momentum

space [49], i.e., if one considers these integrals with off-shell external legs p2
i = m2 (which

can be understood as some kind of IR regularization) they are well defined in D = 4

and are conformal invariant in dual momentum space. It is remarkable that all the scalar

integrals appearing in our computation of formfactors for the half-BPS operators O
(n)
I

can be obtained from the pseudo-conformal integrals which are present in the amplitudes

with the help of some special limiting procedure. This might be some hint that the dual

(super)conformal symmetry can also restrict the finite parts of the formfactors similar to

the amplitudes.4

Consider several examples. At one loop there is a single triangle diagram contributing

to all the form factors. The one-loop triangle is the first in a chain of the ladder type

diagrams [51, 52] and has the property of dual conformal invariance [53, 54]. This diagram

is connected to the box diagram, which is dual conformal, in the following way. Consider

the one-loop off-shell box diagram in momentum space which is given by the integral

D1−loop(p1, p2, p3, p4) =

∫
d4k

(2π)4
1

k2(k − p1)2(k + p2)2(k + p2 + p3)2
, (5.1)

where all external momenta p2
i , i = 1, 2, 3, 4 are off-shell, i.e. p2

i 6= 0. Introducing the dual

coordinates xi as

p1 = x12, p2 = x23, p3 = x34, p4 = x41, k = x5,

one can rewrite the initial integral in the following form

D1−loop(x1, x2, x3, x4) =

∫
d4x5

x2
15x

2
25x

2
35x

2
45

=
1

x2
13x

2
24

Φ(X,Y ), (5.2)

4Additional hint in this direction is that the formfactors have the dual description in terms of Wilson

loops like the amplitudes [74].
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where we introduced the notation xij = xi−xj and Φ(X,Y ) is the function given in [51, 52],

X and Y are the conformal cross-ratios

X =
x2

12x
2
34

x2
13x

2
24

, Y =
x2

14x
2
23

x2
13x

2
24

.

To show that the one-loop box diagram is dual conformal invariant [53, 54] perform

the inversion of the argument

xµ →
xµ

x2
,

so that the distance between two points and the measure of integration tranform as

x2
ij →

x2
ij

x2
i x

2
j

, d4x5 →
d4x5

x8
5

.

It is easy to see that the integral (5.1) is dual conformal invariant. Here we would like to

point out that this is only true in four-dimensional space-time.

If we now multiply (5.1) by x2
12 and take the limit x2 → ∞ we obtain the one-loop

triangle diagram [54] (see also [51, 52] )

C1−loop = lim
x2→∞

x2
12

∫
d4x5

x2
15x

2
25x

2
35x

2
45

=

∫
d4x5

x2
15x

2
35x

2
45

=
1

x2
34

Φ(x, y), (5.3)

with

x =
x2

34

x2
13

, y =
x2

14

x2
13

.

To justify the limit one can divide the integration region into two parts: x5 < x2 and

x5 > x2. In the first region we can neglect x5 in comparison to x2 and the integral simplifies

as

lim
x2→∞

x2
12

∫ x2

0

d4x5

x2
15x

2
25x

2
35x

2
45

∼

∫ ∞

0

d4x5

x2
15x

2
35x

2
45

,

while in the second region we can neglect x2 in comparison to x5 and by näıve power

counting arguments we get

x2
2

∫ ∞

x2

d4x5

(x2
5)

4
∼

1

x2
2

,

which vanishes in the limit x2 → ∞. Summing up the two contributions we get (5.3). The

same argument works for more complicated cases discussed further.

Schematically, the described procedure of obtaining the one-loop triangle diagram from

the one-loop box diagram is represented in figure 5.

On the left hand side one has the one-loop box diagram together with the dual grid, the

black lines represent the denominator terms appearing in the integral in x-space. Taking

the limit x2 → ∞ in (5.3) is equivalent to removing the grid line x25 from the dual

graph and shrinking the crossed line to a point in the initial graph. The resulting initial

graph corresponds to the triangle diagram, as is shown on the right hand side. This way
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Figure 5. The one-loop triangle diagram from the one-loop box diagram. The red dot should

be taken to infinity, and the blue line (propagator in momentum space) should be contracted to a

point.

the triangle diagram can be obtained from the box one and inherit its property of dual

conformal invariance.

In the same manner one can show how the other diagrams which appear in our cal-

culation can be obtained from the corresponding diagrams entering into the amplitude

calculations. Schematically, we present this procedure in figure 6.

For the vertical box diagram one has to take the limit x3 → ∞. As in the previous case

this corresponds to removing the grid line x36 (and shrinking the corresponding crossed

line) which results in the diagram shown on the right hand side. This is exactly the ladder

integral that appears in two-loop calculation of the form factor with n ≥ 2 legs.

For the horizontal box diagram one should take the combined limit x2, x3 → ∞ which

is schematically shown on the right hand side. This is the new type of integrals which

appears only in the case when n > 2.

The same procedure is expected to work at higher levels of perturbation theory. Our

conjecture is that the integrals appearing at any order of perturbation theory in calcula-

tion of form factors for the operators with mass dimension greater than two are obtained

from dual conformal invariant diagrams by contraction of n propagators at the n-th loop

order. For the crossed ladder type diagrams the above procedure does not work since these

diagrams are non-planar and the dual graphs do not exist, but they appear only for the

operators of dimension 2.

6 Discussion

In this paper we continue the perturbative study of the form factors at weak coupling for

the N = 4 SYM theory which was initiated in [14] where the author considered the form

factor for the operator VX of conformal dimension 2. The original calculation has been

performed in components and the form factor was computed up to the second order of

perturbation theory. In our paper, we started with the operators belonging to the stress-

tensor superconformal multiplet, namely, with VJ
I = Tr

(
φ̄JφI

)
and CIJ = Tr (φIφJ) and
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corresponds to the presence of a numerator.

calculated them up to the first and second order of perturbation theory, respectively. We

obtained the same results as in [14] as it was expected.

Then we considered the Konishi operator K =
∑

I Tr
(
φ̄IφI

)
with classical conformal

dimension 2 in the one loop approximation. Not being protected by supersymmetry this

operator has the UV divergences which have to be renormalized.

The main result of our paper is the calculation of the two-loop form factors for the

half-BPS operators O
(n)
I = Tr (φn

I ) , n > 2. At the one loop level the answer for the form

factor is very simple given by triangle diagram while at two-loops it is essentially more

complicated. The analytical expressions for the two-loop results are given in terms of the

Gauss hypergeometric functions and the Appell function of two variables. Their expansion

over ǫ up to O(ǫ) leads to logarithms, polylogarithms and, because of the Appell function,

generalized Goncharov polylogarithms of several variables. However, all of them have the

same transcendentality [24, 25, 55].

In the simplified kinematics the answers become much more simple. Thus, in two-
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dimensional (or 1+1-dimensional) kinematics for the form factors of the half-BPS operators

O
(3)
I it is possible to get rid of the Appell functions and after expanding over ǫ to get the

result in terms of the ordinary logarithms.

For all the considered form factors we observe the factorization of the IR divergences

up to the second order of perturbation theory. This allows us to derive the first two terms of

expansion for the cusp anomalous dimension in coincidence with the other calculations and

for the collinear anomalous dimension, where we obtained the first nontrivial coefficient at

two loops G(2) = −7ζ3. It differs from the collinear anomalous dimension coming from the

amplitude calculation but coincides with collinear anomalous dimension for the light-like

Wilson loop [10, 39, 40].

The remarkable part of our calculation besides factorization is the fact that the one- and

two-loop integrals contributing to the form factors of the operators O
(n)
I , n > 2 are related

to the dual conformal invariant integrals appearing in the calculation of the amplitudes.

One has to look at the ”parent” integral which appears while considering the amplitudes

and shrink n propagators at the n-th order of perturbation theory. This dual conformal

invariance together with the original conformal invariance might lead to a wider algebra

eventually constraining the form of the answer and reveal the integrability property of a

theory. It is important whether the powerful N = 4 covariant on-shell methods such as

recurrence relations (see recent [32] for example) can be generalized for the form-factors

studied in our paper.

Note added: while finishing writing the paper we became aware of the paper which is

closely connected to the subject studied here [74].
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A Feynman rules in N = 1 superspace

We want to present here the essential elements of N = 1 superspace technique relevant to

our computations.

In terms of N = 1 superfields the N = 4 SYM action can be rewritten as (hereafter we

use the notation of [56], see recent examples of application of the same technique in [57–60])

SN=4 =

∫

d8zTr
(
e−gV Φ̄IegV ΦI

)
+

1

2g2

∫

d6zTr(W αWα) + ig

∫

d6zTr (Φ1[Φ2,Φ3]) + c.c.,

(A.1)

where the superfield strength tensor Wα = D̄2(e−gV DαegV ), V = V aTa is the real N = 1

vector superfield and ΦI = Φa
ITa with I = 1, 2, 3 are the three chiral superfields (I is the
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index of the SU(3) subgroup of SU(4)R), Ta are the generators of the gauge group SU(Nc) in

adjoint representation. For performing SU(Nc) T -matrix manipulations we used FeynCalc

package for Mathematica [61]. The following normalization for T a is used in which the

quadratic Casimir operator

Tr(T aT b) = k2δ
ab, k2 = 1/2. (A.2)

The relevant Feynman rules for the propagators and vertices are

〈V aV b〉 = −
1

k2
δab δ12

p2
,

〈Φ̄a
IΦ

b
J〉 =

1

k2
δabδIJ

δ12

p2
,

V (Φ̄V Φ) = igk2fabcδ
IJ Φ̄a

IV
bΦc

J , (A.3)

V (ΦΦΦ) =
−g

3!
ǫIJKfabcΦ

a
IΦ

b
JΦc

K ,

V (Φ̄Φ̄Φ̄) =
−g

3!
ǫIJKfabcΦ̄

a
I Φ̄

b
JΦ̄c

K ,

V (Φ̄V V Φ) =
g2

2
k2δ

IJfadmfbcmV aΦd
IV

bΦ̄c
J .

where δ12 = δ4(θ1 − θ2) is the Grassmannian delta function.

The effective one-loop triple vertex is given by

V (Φ̄V Φ)1−loop = ig
λ

4
k2fabcΦ̄

a
I(−q)Φb

J(−p)D̂V c(p+q)

∫
dDk

(2π)D
1

k2(k − q)2(k + p)2
, (A.4)

where

D̂ = 4DαD̄2Dα + (p − q)αα̇[Dα, D̄α̇]. (A.5)

As usual, the vertex with n chiral (anti-chiral) lines requires additional n − 1 D̄2 (for

anti-chiral D2) acting on chiral (anti-chiral) lines (or n − 1 − m D̄2 (for anti-chiral D2) if

m lines are external). We used SusyMath package for Mathematica [62, 63] for performing

D-algebra for supergraphs.

Traces in this case are taken over σ matrices and are evaluated in D = 4 because

dimensional reduction is used. The following set of identities is useful:

σm = (σm)
αβ̇

σ̄m = (σ̄m)αβ̇

pαβ̇ = pm(σm)αβ̇ p̄αβ̇ = pm(σ̄m)αβ̇

1 = δα
β , 1̄ = δα̇

β̇

Tr[1] = Tr[1̄] =
D

2
, (A.6)

where D/2 = 2 in dimensional reduction and also we have

σmσ̄n + σnσ̄m = −ηmn1,

σ̄mσn + σ̄nσm = −ηmn1̄. (A.7)
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B Scalar integrals and their ǫ expansion

Here we present the list of scalar integrals which we encountered in our computation shown

in figure 7. All the integrals are evaluated in D = 4 − 2ǫ dimensions. For each loop the

factor eǫγE is added in the integration measure, we also do not write 4π which always

appear with µ2.

G0 =

∫
dDk

(2π)D
1

k2(k + p)2
=

(

e−ǫγE

16π2

(
p2

µ2

)−ǫ
)(

1

ǫ
+ 2 + O(ǫ)

)

, (B.1)

G1 =

∫
dDk

(2π)D
1

k2(k + p1)2(k + p2)2
(B.2)

= −

(

e−ǫγE

16π2

(
s12

µ2

)−ǫ
)

1

s12

(
1

ǫ2
−

ζ2

2
−

7ζ3

3
ǫ −

47π4

1440
ǫ2 + O(ǫ3)

)

,

G2 =

∫
dDk

(2π)D
dDl

(2π)D
1

k2l2(k − p1)2(k + p2)2(k + l − p2)2(k + l − p1)2
(B.3)

=

(

e−ǫγE

16π2

(
s12

µ2

)−ǫ
)2

1

s2
12

(

−
1

4ǫ4
−

5π2

24ǫ2
−

29ζ3

6ǫ
−

3π4

32
+ O(ǫ)

)

,

G3 =

∫
dDk

(2π)D
dDl

(2π)D
1

k2l2(k − l)2(k + l − p1)2(k + l + p2)2(p2 + l)2
(B.4)

=

(

e−ǫγE

16π2

(
s12

µ2

)−ǫ
)2

1

s12

(

−
1

2ǫ4
+

29ζ3

6ǫ
+

49π4

720
+ O(ǫ)

)

,

G4 =

∫
dDk

(2π)D
dDl

(2π)D
1

k2l2(l + p1)2(k + p2)2(k − l + p2)2(l − p2)2
(B.5)

=

(

e−ǫγE

16π2

(
s12

µ2

)−ǫ
)2

1

s12

(
1

4ǫ4
−

π2

24ǫ2
−

8ζ3

3ǫ
−

19π4

480
+ O(ǫ)

)

,

G5 =

∫
dDk

(2π)D
dDl

(2π)D
1

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
(B.6)

=

(

e−ǫγE

16π2

(
s12

µ2

)−ǫ
)2

1

s2
12

(

−
1

ǫ4
+

π2

ǫ2
+

83ζ3

3ǫ
+

59π4

120
+ O(ǫ)

)

.

The other integrals entering into the calculations are

Ga
5 =

∫
dDk

(2π)D
dDl

(2π)D
s12k

2 − Tr(p̄1p2l̄k) + Tr(p̄1kl̄p2)

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
, (B.7)

Gb
5 =

∫
dDk

(2π)D
dDl

(2π)D
s12k

2 − Tr(p̄1p2k̄l)

k2l2(k − l)2(k − p2)2(k − l − p1)2(l − p2 − p1)2
, (B.8)

Gαβ̇
1 =

∫
dDk

(2π)D
kαβ̇

k2(k + p1)2(k + p2)2
. (B.9)

G0 is the scalar bubble integral, G1 is the scalar triangle integral. G2, G3 G4 can

be computed by means of the MB representation as series in ǫ or to all orders in ǫ by
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Figure 7. The set of scalar integrals. The arc line in G7 corresponds to the presence of the

numerator (k − p)2. Thick black line corresponds to off-shell leg with momentum q. All the other

outer legs are on-shell.

means of the differential equation technique.5 G5 can be computed by means of the MB

representation as series in ǫ, the answer to all orders in ǫ is given in [66]. G6 and G7

can be computed by direct evaluation of integrals over the Feynman parameters in terms

of the hypergeometric function 2F1 and the Appell function F1. The formulas from [67]

and [68] were useful in verification of our computation. G6 can also be evaluated by means

of the differential equation technique [64, 65], the result coincides with ours after the

rearrangement of hypergeometric functions. Using the notation s12 = s, s14 = t, s13 = u

the answers for G6 can be written as:

cΓ =
Γ3(1 − ǫ)Γ(1 + 2ǫ)

Γ(1 − 3ǫ)

G6 =

∫
dDk

(2π)D
dDl

(2π)D
1

l2(l − k)2(l − p1)2(k + p2)2 (k + p2 + p3)2

=
e−2ǫγEcΓ

(16π2)2
1

2ǫ3

1

(1 − 2ǫ)
{(

µ2

t

)2ǫ
1

s
2F1

(

1, 1 − 2ǫ, 2 − 2ǫ,−
u

s

)

+

(
µ2

s

)2ǫ
1

t
2F1

(

1, 1 − 2ǫ, 2 − 2ǫ,−
u

t

)

−

(
µ2

s + t + u

)2ǫ
s + t + u

ts
2F1

(

1, 1 − 2ǫ, 2 − 2ǫ,−
u(s + t + u)

st

)}

. (B.10)

5This integrals can be reduced to the set of master topologies presented in [64, 65].
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where the hypergeometric function is given by the following expansion:(we used the Nested

Sums computational tool [69, 70] and HypExp package for Mathematica [71, 72])

2F1 (1 − 2ǫ, 1 − 2ǫ; 2 − 2ǫ;x) =
3∑

n=0

ǫn an(x) + O(ǫ4) (B.11)

a0(x) = −
log(1 − x)

x

a1(x) = +
(2Li2(x) − (log(1 − x) − 2) log(1 − x))

x

a2(x) = −
2

3x

(

log3(1 − x) − 3 log(x) log2(1 − x) − 3 log2(1 − x) + π2 log(1 − x)

−6(log(1 − x) − 1)Li2(x) − 6Li3(1 − x) − 6Li3(x) + 6ζ(3)
)

a3(x) = −
2

3x

(

log4(1−x) − 6 log(x) log3(1−x) − 2 log3(1 − x) + 6 log(x) log2(1−x)

+ 2π2 log2(1−x) − 6(log(1−x) − 2)Li2(x) log(1−x) − 12Li3(x) log(1−x)

+ 12ζ(3) log(1 − x) − 2π2 log(1−x)−12(log(1−x)−1)Li3(1−x) + 12Li3(x)

+ 12Li4

(
x

x − 1

)

− 12ζ(3)

)

The finite part of G6 is then given by the following expression:

(G6)fin =
1

(16π2)2
1

2

{
t

s
a3

(

−
u

s

)

+ a3

(

−
u

t

)

−
s + t + u

s
a3

(

−
u(s + t + u)

st

)}

.

In the case of ”1+ 1” dimensional kinematics the following limiting expressions for G6

are used:

G6|t=0 = 0,

G6|s=0 =
e−2ǫγEcΓ

(16π2)2
1

4ǫ4

{
1

(t + u)2ǫ
−

1

t2ǫ

}

G6|u=0 =
e−2ǫγEcΓ

(16π2)2
−1

2ǫ3

1

1 − 2ǫ

{
t + s

s

1

(t + s)2ǫ
−

t

s

1

t2ǫ
−

1

s2ǫ

}

For G7 one has

G7 =

∫
dDk

(2π)D
dDl

(2π)D
(k − p1)

2

k2l2(l − k)2(l − p1)2(k + p2)2 (k + p2 + p3)2
= G6 +

+
e−2ǫγEcΓ

(16π2)2
1

2ǫ4

1

t

{(
µ2

s

)2ǫ

F21

(

1,−ǫ, 1−ǫ,−
u

t

)

+

(
µ2

t

)2ǫ(

−1+F21

(

ǫ, 2ǫ, 1+ǫ,−
s+u

t

))

−

(
µ2

s + t + u

)2ǫ
ǫ

1 + ǫ

u

t + u
F1

(

1, 2ǫ, 1, 2 + ǫ,
s + u

s + t + u
,

u

t + u

)}

(B.12)

2F1(1,−ǫ, 1 − ǫ, x) =

4∑

n=0

ǫn bn(x) + O(ǫ5), (B.13)
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where

b0(x) = 1

b1(x) = log(1 − x)

b2(x) = −Li2(x)

b3(x) = −Li3(x)

b4(x) = −Li4(x).

and

2F1(ǫ, 2ǫ, 1 + ǫ, x) =

4∑

n=0

ǫn cn(x) + O(ǫ5), (B.14)

where

c0(x) = 1

c1(x) = 0

c2(x) = +2Li2(x)

c3(x) =

(
2π2

3
log(1 − x) − 2 log2(1 − x) log(x) − 4 log(1 − x)Li2(x) − 4Li3(1 − x)

−2Li3(x) + 4ζ3

)

,

c4(x) =
1

90

(

4π4 − 90π2 log(1 − x)2 − 15 log(1 − x)4 + 300 log3(1 − x) log(x)

+360 log2(1 − x)Li2(x) + log(1 − x)( − 360ζ3 + 720Li3(1 − x) + 360Li3(x))

−360Li4(1 − x) − 180Li4(x) − 360Li4

( x

x − 1

))

.

In the integral G7 there is the Appell function of the first kind defined by the following

integral representation:

F1(α, β, β′, γ;x, y) =
Γ(γ)

Γ(α)Γ(γ−α)

∫ 1

0
duuα−1(1 − u)γ−α−1(1−ux)−β(1−uy)−β′

, (B.15)

which in our case gives us the one-parametric integral

F1(1, 2ǫ, 1, 2 + ǫ;x, y) = (1 + ǫ)

∫ 1

0
du(1 − u)ǫ(1 − ux)−2ǫ(1 − uy)−1. (B.16)

Expanding the integrand over ǫ and then performing the integration one gets

F1(1, 2ǫ, 1, 2 + ǫ;x, y) = (1 + ǫ)

∫ 1

0
du

(

1 +
(
log(1 − u) − 2 log(1 − ux)

)
ǫ

+

(
1

2
log2(1 − u) − 2 log(1 − ux) log(1 − u) + 2 log2(1 − ux)

)

ǫ2

)

+
1

6

(
log3(1 − u) − 6 log(1 − ux) log2(1 − u) + 12 log2(1 − ux) log(1 − u)

− 8 log3(1 − ux)ǫ3
)

+ O(ǫ4).
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Up to the second order in ǫ it is possible to evaluate the integrals in terms of logarithms

and polylogarithms; however, in higher orders new functions appear.

Consider, for example, the integral

I1 =

∫ 1

0
du

log2(1 − u) log(1 − ux)

1 − uy
, (B.17)

where the parameters satisfy the condition 0 < x < y < 1 . To evaluate this integral we

use the integral representation for one of the logarithms and get

∫ 1

0
du

∫ 1

0
da

−ux log2(1 − u)

(1 − uy)(1 − uxa)
. (B.18)

Now taking the integral over u one has

I1 = −
2

y
log

y − x

y
Li3

−y

1 − y
+ 2

∫ 1

0

Li3
ax

ax−1

a(ax − y)
da. (B.19)

To find the integral
∫ 1

0

Li3
ax

ax−1

a(ax − y)
da (B.20)

it is useful to introduce a new variable

b =
ax

ax − 1

then
∫ 1

0

Li3
ax

ax−1

a(ax − y)
da = −

1

y

∫ x

x−1

0

Li3b

b
(
1 + 1−y

y
b
)db (B.21)

and using the identity
1

b
(
1 + 1−y

y
b
) =

1

b
−

1 − y

y
(
1 + 1−y

y
b
)

one comes to the integral

−
1

y

(
∫ − x

1−x

0

Li3b

b
db −

1 − y

y

∫ − x

1−x

0

Li3b

1 + 1−y
y

b
db

)

. (B.22)

The first integral is straightforward and for the second integral one can expand the poly-

logarithm in power series and get the answer in terms of the function

Lim,n(x, y) =
∑

j>i>0

yj

jn

xi

im
. (B.23)

As a result one gets

∫ 1

0

Li3
ax

ax−1

a(ax − y)
da = −

1

y

(

Li4

(

−
x

1 − x

)

+ Li3,1

(

−
y

1 − y
,
x(1 − y)

y(1 − x)

))

. (B.24)

Finally putting everything together we obtain

I1 = −
2

y
log

y−x

y
Li3

−y

1−y
−

2

y

(

Li4

(

−
x

1−x

)

+Li3,1

(

−
y

1−y
,
x(1−y)

y(1−x)

))

. (B.25)
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Another possibility to expand the Appell function is to use the Nested Sums computa-

tional tool [69, 70] which represents the Appell function as some combination of generalized

polylogarithms. The ǫ-expansion for the Appell function then takes the form

F1(1, 2ǫ, 1, 2 + ǫ;x, y) = −
log(1−y)

y
+

1

y

(

− log2(1−x) + 2 log(1−y) log(1−x) (B.26)

−
1

2
log2(1 − y) − log(1 − y) − 2Li2(x) − 2Li2

(
x − y

x − 1

)

+ Li2(y)

)

ǫ

+
1

y

(

−
1

6
log3(1 − y) +

1

2
(− log(y) + 2 log(y − x) − 1) log2(1 − y) −

1

6
π2 log(1 − y)

+ log2(1 − x)(log(x) − log(y) + log(y − x) − 1) − 2Li2(x) − 2Li2

(
x − y

x − 1

)

+ log(1 − x)

(

log(1 − y)(2 − 2 log(y − x)) +
1

3

(

6Li2(x) + 6Li2

(

1 −
x

y

)

− ζ(3)

+ 6Li2

(
x − y

x − 1

)

− 6Li2(y) + π2

))

+ Li2(y)+2Li3(x)−2Li3

(

1 −
x

y

)

−Li3(1−y)

+ 2Li3

(
x−y

x−1

)

+2Li3

(
y−1

x−1

)

+2Li3

(
x − y

(x−1)y

)

−Li3(y)

)

ǫ2+Fin(x, y) ǫ3+O(ǫ4),

where

Fin(x, y)=
1

y

(

−2Li1,1,1,1

(

1,
x

y
, 1, y

)

+ 2Li1,2,1

(x

y
, 1, y

)

− 2Li1,2

(x

y
, y
)

+ 2Li3,1

(x

y
, y
)

+S0,3(y)+Li3(y)−S0,4(y)−H2,2(y)−2Li2,1,1

(

1,
x

y
, y
)

−H1,3(y)+2Li1,1,1,1

(x

y
, 1, 1, y

)

−H1,2,1(y) − S2,2(y) − 2Li1,1,2

(

1,
x

y
, y
)

+ 2Li1,1,2

(x

y
, 1, y

)

+ 2Li2,2

(x

y
, y
)

+ H1,2(y)

+2Li1,3

(x

y
, y
)

− S1,3(y) + 2Li1,1,1,

(x

y
, y
)

+ 2Li2,1,1

(x

y
, 1, y

)

− Li4(y) − 2Li2,1

(x

y
, y
)

+S1,2(y)−2Li1,1,1

(x

y
, 1, y

)

+2Li1,1,1,1

(

1, 1,
x

y
, y
)

−H1,1,2(y)−2Li1,2,1

(

1,
x

y
, y
))

. (B.27)

Here we use the following definition of the generalized Goncharov polyloga-

rithms [46–48]

Lim1,...,mk
(x1, . . . , xk) =

∑

i1>i2>...>ik>0

xi1
1

im1

1

. . .
xik

k

imk

k

. (B.28)

Apart from these functions we have in expansion the so-called Nielsen generalized polylog-

arithms

Sn,p = Lin+1,1,...,1(x, 1, . . . , 1
︸ ︷︷ ︸

p−1

) (B.29)

and also the harmonic polylogarithms

Hm1,...,mk
(x) = Lim1,...,mk

(x, 1, . . . , 1
︸ ︷︷ ︸

k−1

). (B.30)
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In the case of ”1 + 1” dimensional kinematics the expression for the integral G7 is

simplified and the following limiting cases can be used:

G7 = G”1+1”
6 +

e−2ǫγEcΓ

(16π2)2
1

2ǫ4

{

−2ǫ2J −
1

t2ǫ

}

, (B.31)

where J is the integral

J =

∫ 1

0
dxdy

tyǫ−1

(tx + sy + uxy)1+2ǫ
(B.32)

J |t=0 = 0, (B.33)

J |s=0 = −
1

2ǫ

∫ 1

0
dy

tyǫ−1

(t + uy)1+2ǫ
= −

1

2ǫ2

1

t2ǫ 2F1

(

ǫ, 1 + 2ǫ, 1 + ǫ,−
u

t

)

(B.34)

J |u=0 = −
1

2ǫ

{∫ 1

0
dy

yǫ−1

(t + sy)2ǫ
−

∫ 1

0
dy

yǫ−1

(sy)2ǫ

}

= −
1

2ǫ2

1

s2ǫ
−

1

2ǫ2

1

t2ǫ 2F1

(

ǫ, 2ǫ, 1 + ǫ,−
s

t

)

(B.35)

The finite part of G7 is given by the following expression:

(G7)fin =(G6)fin +
1

(16π2)2
1

2t

{

−1 + b4

(

−
u

t

)

+c4

(

−
s + u

t

)

−
u

t+u
Fin

(
s + u

s+t+u
,

u

t+u

)}

.

(B.36)
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