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1 Introduction

In the past several years there have been enormous progress in unraveling the structure of

scattering amplitudes in gauge theory and gravity, such as generalized unitary-cut method

at loop level [1, 2], and Britto-Cachazo-Feng-Witten (BCFW) recursion relations at tree

level, for Yang-Mills theory [3, 4] and for gravity [5–7]. A particularly important exam-

ple is the structure of amplitudes in N = 4 super Yang-Mills theory (SYM), which has

remarkable simplicities obscured by the usual local formulation and Feynman-diagram cal-

culations. On the other hand, Arkani-Hamed et al. have proposed the idea that N = 8

supergravity (SUGRA) may be the quantum field theory with the simplest amplitudes [8],

and there is strong evidence for it: recently there have been intensive studies on both the

hidden symmetries (e.g. E7(7) symmetry, see [9–12]), and the ultraviolet behavior of the

theory (see [13–21] and references therein).

However, we do not need to go beyond the tree level to see the simplicity. As shown

in [8], gravity tree amplitudes satisfy non-trivial relations, or “bonus relations”, which are

absent in SYM color-ordered amplitudes. These bonus relations have been applied to MHV

amplitudes in [22] to show the equivalence of various MHV formulae in the literature [5, 23–

26], especially to simplify formulae with (n − 2)! permutations to those with (n − 3)!

permutations. The full strength of these relations, however, can only be demonstrated

when applied to general, non-MHV amplitudes, and the purpose of the present note is to

use bonus relations to simplify explicit formulae of SUGRA tree amplitudes, which are

obtained by solving BCFW recursion relations. Before proceeding, let us elaborate on

BCFW recursion relations and bonus relations of SUGRA amplitudes.
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Supersymmetric BCFW recursion relations [27, 28] hold in both SYM and SUGRA

because their amplitudes vanish when two supermomenta are taken to infinity in a com-

plex superdirection [8, 28]. More specifically, under the supersymmetric BCFW shifts of

momenta and SU(N ) Grassmannian variables,

λb1(z) = λ1 + zλn,

λ̃n(z) = λ̃n − zλ̃1,

ηbn(z) = ηn − zη1, (1.1)

SYM and SUGRA amplitudes have at least 1/z falloff at large z, thus the contour integral∮
dz
z

M(z) can be rewritten as a sum over residues without boundary contributions,

Mn =
∑

L,R

∫
d4N ηML(1̂, L, {−P̂ (zP ), η})

1

P 2
MR({P̂ (zP ), η}, R, n), (1.2)

where the poles z = zP are determined by putting the internal momenta P̂ (zP ) =
∑

i∈L Pi+

Pb1 on shell. By solving the recursion relations, explicit formulae for up to N3MHV ampli-

tudes, and an algorithm to calculate all tree amplitudes in SUGRA was proposed in [29].

The result can be written as a summation over (n − 2)! “ordered gravity subamplitudes”

with different permutations of particles 2, . . . , n − 1. In contrast to SYM color-ordered

amplitudes, the SUGRA amplitudes actually have a faster, 1/z2, falloff and the contour

integral
∮

dzM(z) gives the bonus relations,

0 =
∑

L,R

∫
d8ηML(1̂, L, {−P̂ (zP ), η})

zP

P 2
MR({P̂ (zP ), η}, R, n). (1.3)

Similar to the MHV case [22], we shall see that these relations can further simplify the

explicit formulae for non-MHV amplitudes by reducing the (n − 2)!-permutation sum to a

new (n − 3)!-permutation one.

Another important method that has been widely used to calculate gravity tree am-

plitudes are Kawai-Lewellen-Tye (KLT) relations, first derived in string theory [30] which

express (super)gravity tree amplitudes as sums of products of two copies of (super)Yang-

Mills amplitudes in the field-theory limit. Recently KLT relations have been proved in

gravity [31–33] and in SUGRA [34] using BCFW recursion relations, without resorting to

string theory. While the well-known KLT relations have a form of (n−3)! permutations [35]

(see also [32, 33]), in the proof it is natural to use the newly proposed (n − 2)! form suit-

able for BCFW recursion relations [31], and a direct link between these two forms has

been derived in [36]. In a related approach, the so-called square relations between gravity

and Yang-Mills amplitudes, which can be viewed as a reformulation of KLT relations, have

been proposed and proved in [37, 38]. These relations also possess a freedom of going from

(n − 2)!-permutation form to the simpler (n − 3)! form, which, similar to the freedom in

KLT relations, reflects the Bern-Carrasco-Johansson (BCJ) relations between Yang-Mills

amplitudes [37, 38]. For SUGRA amplitudes, the advantage of having solved BCFW rela-

tions to some extent will enable us to go beyond this implicit freedom following from BCJ

relations, and show the simplification of gravity amplitudes directly in their explicit forms.
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The note is organized as following. In section 2 we briefly review tree amplitudes in

SUGRA and their bonus relations, especially the simplification of MHV amplitudes when

using these relations. Then we apply these relations to some examples beyond MHV ampli-

tudes, including the NMHV and N2MHV amplitudes, and prove these simplified formulae in

section 3. The generalization to all tree-level SUGRA amplitudes are presented in section 4.

2 A brief review of tree amplitudes in SUGRA and bonus relations

2.1 Tree amplitudes in SUGRA from BCFW recursion relations

By solving eq. (1.2), all color-ordered SYM tree amplitudes have been obtained and can

be written schematically as [39],

An(1, . . . , n) = AMHV(1, . . . , n)
∑

α

Rα(1, . . . , n), (2.1)

where

AMHV(1, . . . , n) =
δ4(

∑
λλ̃)δ8(

∑
λη)

〈12〉〈23〉 · · · 〈n1〉
(2.2)

is the MHV superamplitudes, and Rα are the so-called dual superconformal invariants,

which, for NkMHV amplitudes, are products of k basic invariants of the form,

Rn;a1b1;a2b2;...;arbr ;ab =
〈aa − 1〉〈bb − 1〉 δ(4)(〈ξ|xbraxab|θbbr

〉 + 〈ξ|xbrbxba|θabr
〉)

x2
ab〈ξ|xbraxab|b〉〈ξ|xbraxab|b − 1〉〈ξ|xbrbxba|a〉〈ξ|xbrbxba|a − 1〉

,

(2.3)

where the chiral spinor ξ is given by

〈ξ| = 〈n|xna1
xa1b1xb1a2

xa2b2 . . . xarbr
, (2.4)

and dual (super)coordinates are defined as

xij = pi + pi+1 + · · · + pj−1 ,

θij = λiηi + · · · + λj−1ηj−1 . (2.5)

There is only one invariant R = 1 for MHV case, while we have a sum of Rn;a1b1 with

1 < a1 < b1 < n for NMHV case. Furthermore, for N2MHV case we have Rn;a1b1R
b1a1

n;a1b1,a2b2

with 1 < a1 < a2 < b2 ≤ b1 < n and Rn;a1b1R
a1b1
n;a2b2

with 1 < a1 < b1 ≤ a2 < b2 < n, where

superscripts denote boundary modifications of these invariants [39].

Generally the summation variables α, and boundary modifications, can be represented

by a rooted tree diagram [29, 39] (see figure 1 and figure 2). For NkMHV amplitudes,

there are Ck = (2k)!
k!(k+1)! (Catalan number) types of terms labeled by α’s corresponding to a

path from the root to the k-th level in figure 1, and each type can be written as a list of k

pairs of labels with a particular order between them, α ≡ {n; a1, b1; . . . ; ak, bk}. Not only

does the summation over α include all types of terms, but it also sums over all possible

1 < ai, bi < n in the corresponding order.

– 3 –
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1

a1b1

a2b2

a3b3 a3b3

a1b1; a2b2

a2b2; a3b3a1b1; a3b3a1b1; a2b2; a3b3

2 n

n

nn

a1

a2a2 b1

b1

b2b2

Figure 1. A rooted tree diagram for tree-level SYM amplitudes. The figure is the same as the

tree diagram presented in [29].

u1v1; . . . urvr; ap−1bp−1

u1v1; . . . urvr; ap−1bp−1; apbp u1v1; . . . urvr; apbp apbp

ap−1 bp−1 vr v1 n. . .

. . .

Figure 2. The rule for going from line p − 1 to line p (for p > 1) in figure 1. For every vertex in

line p− 1 of the form given at the top of the diagram, there are r + 2 vertices in the lower line (line

p). The labels in these vertices start with u1v1; . . . urvr; ap−1bp−1; apbp and they get sequentially

shorter, with each step to the right removing the pair of labels adjacent to the last pair ap, bp until

only the last pair is left. The summation limits between each line are also derived from the labels

of the vertex above. The left superscripts which appear on the associated R-invariants start with

u1v1 . . . urvrbp−1ap−1 for the left-most vertex. The next vertex to the right has the superscript

u1v1 . . . urvrap−1bp−1, i.e. the same as the first but with the final pair in alphabetical order. The

next vertex has the superscript u1v1 . . . urvr and thereafter the pairs are sequentially deleted from

the right.

In [29], solving eq. (1.2) for SUGRA is simplified by using ordered gravity subampli-

tude M(1, . . . , n), which satisfy the ordered BCFW recursion relations similar to Yang-Mills

theory,

M(1, . . . , n) ≡
n−1∑

i=3

∫
d8η

P 2
M(1̂, 2, . . . , i − 1, P̂ )M(−P̂ , i, . . . , n − 1, n) , (2.6)

and the sum of (n − 2)! permutations of ordered gravity subamplitudes gives the full am-

plitude,

Mn =
∑

P(2,3,...,n−1)

M(1, . . . , n). (2.7)
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Figure 3. All factorizations contributing to (2.11) for the MHV amplitude.

A solution for M(1, . . . , n) is obtained in [29],

M(1, . . . , n) = [AMHV(1, . . . , n)]2
∑

α

GαR2
α(1, . . . , n), (2.8)

where the invariants Rα are exactly the same as those in SYM (including boundary mod-

ifications), namely products of basic invariants (2.3), with the same set of summation

variables α as given in figure 1 and figure 2, and the ‘dressing factors’, Gα, are independent

of the Grassmannian variables ηi, and they break dual conformal invariance of the SYM

solution. These factors have been calculated explicitly for up to N3MHV amplitudes, for

example MHV case,

GMHV(1, . . . , n) = x2
13

n−3∏

s=2

〈s|xs,s+2xs+2,n|n〉

〈sn〉
, (2.9)

and there is an algorithm to calculate them in general cases, but we do not need their

expressions in this note. In addition, tree-level amplitudes of n-graviton scattering can be

obtained from SUGRA superamplitudes (2.7), by choosing fermionic coordinates η = 0 for

positive-helicity gravitons, and integrating over d8η for negative-helicity ones. Details of

the solution can be found in [29].

Therefore, SUGRA tree amplitude can be written as a summation of (n − 2)! ordered

gravity subamplitudes, and each of them has a structure similar to SYM ordered amplitude.

In the following we shall use bonus relations to reduce this form to a simpler, (n−3)! form,

and first we recall the simplest MHV case.

2.2 Applying bonus relations to MHV amplitudes

Applying bonus relation to MHV SUGRA tree-level amplitudes was well understood in [22].

From eq. (2.9), we have the MHV amplitudes as a summation of (n − 2)! terms,

MMHV
n = GMHV(1, . . . n)[AMHV(1, . . . , n)]2 + P(2, 3, . . . , n − 1). (2.10)

From figure 3, we see that there are (n−2) BCFW factorizations and thus the formula

can be expressed as,

MMHV
n = M2 + M3 + · · · + Mn−1, (2.11)

– 5 –
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where each Mi is a BCFW term from MHV(1̂, i, P̂ (zi)) × MHVn−1 with zi = − 〈1i〉
〈ni〉 . Now

since the amplitude has 1/z2 fall off, we have a bonus relation which is simple in the MHV

case,

0 = z2M2 + z3M3 + · · · + zn−1Mn−1. (2.12)

Using this relation, we can express the last diagram Mn−1 in terms of the other n − 3

diagrams, and a simple manipulation gives us a (n − 3)!-term formula,

MMHV
n =BMHVGMHV(1, 2, . . . , n)[AMHV(1, 2, . . . , n)]2

+ P(2, 3, . . . , n − 2).
(2.13)

where we have defined the MHV bonus coefficient BMHV = 〈1 n〉〈n−1 n−2〉
〈1 n−1〉〈n n−2〉 . Beyond MHV,

we have many more types of BCFW diagrams with complicated structures and the ap-

plication of bonus relations becomes trickier. In the next section, we shall work out the

NMHV and N2MHV cases, and then move on to general amplitudes in section 4.

3 Applying bonus relations to non-MHV gravity tree amplitudes

3.1 General strategy

Before moving on to examples, we first explain the general strategy for applying bonus

relations to non-MHV gravity tree amplitudes. For a NkMHV amplitude, inhomogeneous

contributions of the form NpMHV × NqMHV are needed (p+q+1 = k).1 Naively one would

like to use “bonus-simplified”2 lower-point amplitudes for both ML and MR in eq. (1.2),

but this is not compatible with the fact that we can only delete one diagram (not two) by

applying the bonus relations (1.3), if we want to preserve the structure of ordered BCFW

recursion relations.

To keep the advantages of the ordered BCFW recursion relations, which are crucial

to solve for all tree-level amplitudes, instead we shall apply bonus relations selectively.

The idea is illustrated in figure 4. Similar to the MHV case, we shall delete figure 4d by

using bonus relations (1.3). To compute the inhomogeneous parts of the amplitudes, we

shall use the bonus-simplified amplitude only on one side of a BCFW diagram, namely the

lower-point amplitude with the leg (n− 1) in it, as indicated in figure 4a and figure 4b. In

this way, the amplitude splits into two types, one type coming from the diagrams of the

form as in figure 4a, which has the leg (n − 1) adjacent to the leg n and will be called the

normal, or type I contributions, and the other one coming from those having the form as

in figure 4b, which has the leg (n − 1) exchanged with another leg (b1 − 1), and will be

called the exchanged, or type II contributions,

Mn =
[
AMHV

n

]2
( ∑

α

B(1,m1)
α GαR2

α +
∑

β

B
(2,m2)
β [GβR2

β(b1 − 1 ↔ n − 1)]

)

+ P(2, 3, . . . , n − 2),

(3.1)

1We follow the notations of reference [39] to call the contributions from diagrams of type figure 4a or

figure 4b as inhomogeneous contributions, while those from figure 4c as homogeneous ones.
2Here “bonus-simplified” means that these lower-point amplitudes used in the BCFW diagrams are

simplified by using bonus relations.
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(a) Inhomogeneous diagram type I (b) Inhomogeneous diagram type II

(c) Homogeneous diagram (d) Diagram deleted by bonus rela-

tions

Figure 4. Different types of diagrams for a general NkMHV amplitude, where k = p + q + 1. We

use a dashed line −−−− connecting three legs to denote a bonus-simplified lower-point amplitude,

in which these three legs are kept fixed. For lower-point amplitudes without dashed lines, we use

the usual (n − 2)! form.

where (b1 − 1 ↔ n − 1) denotes the exchanges of momenta (pb1−1 ↔ pn−1) as well as the

fermionic coordinates (ηb1−1 ↔ ηn−1), and we have used square bracket to indicate that the

exchanges act only on the expression inside the bracket. The superscript (i,mi) in B
(i,mi)
α

is used to show the type of this contribution, which will become clear in the examples.

Thus we have seen that, by using bonus relations, any amplitude can be written as

a summation of (n − 3)! permutations with the coefficients B
(i,mi)
α , which will be called

bonus coefficients. In this section, we shall calculate all bonus coefficients for NMHV and

N2MHV cases, and generalize the pattern observed in these examples to general NkMHV

amplitudes in the next section. Once bonus coefficients are calculated, we obtain explicitly

all simplified SUGRA tree amplitudes.

3.2 NMHV amplitudes

Here we use bonus relations to simplify the (n − 2)! form of NMHV amplitudes. First we

shall state the general simplified form of NMHV amplitudes, and then prove it by induction.

– 7 –
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(a) Inhomogeneous diagram type I (b) Inhomogeneous diagram type II (c) Homogeneous diagram

Figure 5. Diagrams for NMHV amplitudes.

To be concise, we abbreviate the combinations

{n; a1b1} ≡ Gn;a1b1

[
Rn;a1b1A

MHV(1, 2, . . . , n)
]2

(3.2)

and similar notations will be used in the following sections.

As mentioned above generally, we delete the contributions corresponding to figure 4d

by using the bonus relation (1.3). It is straightforward to compute the inhomogeneous con-

tributions from the two MHV × MHV diagrams, figure 5a and figure 5b. Firstly, let us con-

sider the contribution from figure 5a, which corresponds to terms with a1 = 2, and we have

M1 = B
(1)
n;2b1

{n; 2b1}, with 4 ≤ b1 ≤ n − 1, (3.3)

where B
(1)
n;2b1

are the special cases of the general bonus coefficients B
(1)
n;a1b1

. We have used

the superscript (1) to indicate that this is the contribution coming from type-I diagram,

and similar notations will be used below.

When b1 6= n − 1, the bonus coefficients are given by,

B
(1)
n;a1b1

= BMHV 〈n − 1|xb1a1
xb1n|n〉

〈n − 1|xb1a1
xa1n|n〉

. (3.4)

Here we note that we can get the above coefficients from the previous ones, namely the

bonus coefficients of MHV amplitude, multiplied by the factor
〈n−1|xb1a1

xb1n|n〉

〈n−1|xb1a1
xa1n|n〉

. It is a gen-

eral feature of this type of coefficients, for NkMHV case they are given by Nk−1MHV coef-

ficients multiplied by the same factor, as we shall see explicitly again in the N2MHV case.

However when b1 = n−1, no bonus relation can be used for the right-hand-side 3-point

MHV amplitude in figure 5a, and we find

B
(1)
n;a1n−1 =

〈1 n〉

〈1 n − 1〉

〈n − 1|xn−1a1
|n − 1]

〈n|xna1
|n − 1]

. (3.5)

For the exchanged diagrams, figure 5b, the contribution can be similarly obtained

M2 = B
(2)
n;2b1

[{n; 2a1}(b1 − 1 ↔ n − 1)], with 4 ≤ b1 ≤ n − 1, (3.6)

– 8 –



J
H
E
P
0
2
(
2
0
1
1
)
0
0
5

(a) 5-point diagram deleted by

bonus relation

(b) 5-point diagram (c) 6-point diagram calculat-

ing the boundary contribu-

tion

Figure 6. Diagrams for 5-point NMHV amplitude and the boundary term of 6-point NMHV

amplitude. Figure 6(a) and figure 6(b) are used to calculate the bonus-simplified, 5-point, right-

hand-side amplitude of figure 6(c).

where the bonus coefficients B
(2)
n;a1b1

are given by

B
(2)
n;a1b1

=
〈1 n〉

〈1 n − 1〉

〈n − 1 b1 − 2〉(x′
a1b1

)2

〈n|xna1
x′

a1b1
|b1 − 2〉

, (3.7)

and we have defined x′
aibi

as,

x′
aibi

≡ xaibi−1 + xn−1n

= xaibi
(pbi−1 ↔ pn−1). (3.8)

All the above calculations do not include the boundary case a1 = n − 3, b1 = n − 1,

which needs special treatment. This boundary case is special because it recursively reduces

to the special 5-point NMHV (MHV) amplitude. It does not have the diagram of the type

MHV3× NMHV, and one has to treat it separately. We apply the bonus relations to this

case in the following way: we use eq. (1.3) to delete the contribution from figure 6a, and

compute figure 6b, and we find

M5 = −
[24][34][51]

[23][45][41]

[
{5; 24}(3 ↔ 4)

]
+ P(2, 3). (3.9)

By plugging the above 5-point result in figure 6c, we get the boundary term of the 6-point

NMHV amplitude

M
(boundary)
6 =

〈16〉〈25〉[35][45]x2
36

〈15〉[34]〈2|1 + 6|5]〈6|1 + 2|5]

[
{6; 35}(4 ↔ 5)

]
. (3.10)

A generic form for the boundary term of the n-point NMHV amplitudes can be obtained

as a straightforward generalization of (3.9) and (3.10),

M (boundary)
n = B

(boundary)
n;n−3 n−1

[
{n;n − 3 n − 1}(n − 2 ↔ n − 1)

]
, (3.11)

– 9 –
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where B
(boundary)
n;n−3 n−1 is given by,

B
(boundary)
n;n−3 n−1 =

〈1n〉〈n − 4 n − 1〉[n − 3 n − 1][n − 2 n − 1]x2
n−3n

〈1 n − 1〉[n − 3 n − 2]〈n − 4|xn−3 n−1|n − 1]〈n|xn−1 n−3|n − 1]
. (3.12)

Put everything together, and we obtain the general formula for NMHV amplitude and

as promised, the amplitude indeed can be written as a sum of (n − 3)! permutations

MNMHV
n =

n−4∑

a1=2

n−1∑

b1=a1+2

(
B

(1)
n;a1b1

{n; a1b1} + B
(2)
n;a1b1

[{n; a1b1}(b1 − 1 ↔ n − 1)]
)

+M (boundary)
n + P(2, 3, . . . , n − 2). (3.13)

3.2.1 Proof by induction

Here we shall give an inductive proof for the simplified NMHV formula. For a1 = 2, as we

explained above, the formula follows directly from figure 5a and figure 5b. Therefore we

shall focus on the cases when a1 ≥ 3, which correspond to the homogeneous contributions

from figure 5c. We shall prove that the formula satisfies the BCFW recursion relations.

First note that we have deleted one diagram of the form MMHV
L (1̂, n − 1, P̂ )× MMHV

R

by using bonus relations, this results in a multiplicative prefactor for the overall amplitude,

which is given by, (
1 −

z2

zn−1

)
=

〈1n〉〈n − 1 2〉

〈n2〉〈1n − 1〉
. (3.14)

Let us consider the bonus coefficient B
(1)
n;a1b1

, other coefficients B
(2)
n;a1b1

and B
(boundary)
n;n−3 n−1

can be treated similarly. By plugging formula (3.4) into the (n − 1)-point amplitude

M(−P̂ , 3, 4, . . . , n − 1, n̄) in figure 5c, it is straightforward to check that the second piece

of B
(1)
n;a1b1

,
〈n−1|xb1a1

xb1n|n〉

〈n−1|xb1a1
xa1n|n〉

, is transformed back to itself under the recursion relations.

For the first piece BMHV = 〈n−1 n−2〉〈1 n〉
〈n n−2〉〈1 n−1〉 of B

(1)
n;a1b1

, which is the MHV bonus coeffi-

cient, the proof is essentially the same as in the MHV case. Taking into account the factor

in (3.14) coming from bonus relations, we have

〈n − 1 n − 2〉〈p̂ n〉

〈n n − 2〉〈p̂ n − 1〉
×

〈1 n〉〈n − 1 2〉

〈1 n − 1〉〈n 2〉
=

〈n − 1 n − 2〉〈1 n〉

〈n n − 2〉〈1 n − 1〉
. (3.15)

Thus the contribution with B
(1)
n;a1b1

indeed satisfies the recursion relations.

A final remark is in order. We have used in the proof that {n; a1b1} satisfy the ordered

BCFW recursion relations by themselves.

3.3 N2MHV amplitudes

In this subsection we consider N2MHV amplitudes as one more example to show the general

features of bonus-simplified gravity amplitudes. Similar to NMHV case, let us denote the

ordered gravity solutions in the following way

H
(1)
n;a1b1,a2b2

[
Rn;a1b1R

b1a1

n;a1b1,a2b2
AMHV(1, 2, . . . , n)

]2
≡ {n; a1b1, a2b2}1,

H
(2)
n;a1b1,a2b2

[
Rn;a1b1R

a1b1
n;a2b2

AMHV(1, 2, . . . , n)
]2

≡ {n; a1b1, a2b2}2.
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There are four relevant types of diagrams (and a boundary case) which contribute to the

general N2MHV amplitudes. The general structure of N2MHV is given in figure 7 and the

corresponding contributions from each of the four diagrams can be calculated separately.

First we consider the contributions from the diagrams in figure 7b, which are of the

form MHV× NMHV. We use bonus-simplified amplitude for the right-hand-side NMHV

amplitude and we obtain,3

MI =
∑

2≤a1,b1≤n−1

∑

b1≤a2,b2<n

(
B

(1,1)
n;a1b1;a2b2

{n; a1b1; a2b2}2

+ B
(1,2)
n;a1b1;a2b2

[{n; a1b1; a2b2}2(b2 − 1 ↔ n − 1)]
)

+
∑

2≤a1,b1≤n−1

B
(1,boundary)
n;a1b1;n−3n−1[{n; a1b1;n − 3n − 1}2(n − 2 ↔ n − 1)], (3.16)

where in the first sum a2 ≤ n − 4 because of the range of summation of the first term in

eq. (3.13). Here the bonus coefficients are given by

B
(1,1)
n;a1b1;a2b2

=
〈1n〉〈n − 1 n − 2〉〈n − 1|xa2b2xb2n|n〉

〈1n − 1〉〈n n − 2〉〈n − 1|xa2b2xa2n|n〉

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉

B
(1,1)
n;a1b1;a2b2

=
〈1n〉〈n − 1|xn−1a2

|n − 1]

〈1n − 1〉〈n|xna2
|n − 1]

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉
(b2 = n − 1)

B
(1,2)
n;a1b1;a2b2

=
〈1n〉〈n − 1 b2 − 2〉(x′

a2b2
)2

〈1n − 1〉〈n|xna2
x′

a2b2
|b2 − 2〉

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉

B
(1,boundary)
n;a1b1;n−3n−1 = B

(boundary)
n;n−3 n−1

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉
, (3.17)

where the last term B
(1,boundary)
n;a1b1;n−3n−1 comes from eq. (3.12). Again the superscripts are used

to show the types of the contributions. For instance, in the superscript (1, 1) of B
(1,1)
n;a1b1;a2b2

,

the first “1 ” means that it is the type-I contribution, while the second “1 ” implies that

it is a descendant from the NMHV case. A generalization to the NkMHV case will be

B
(m)
n;a1b1;...;akbk

, where m is a string composed of three kinds of labels, “1” “2” and “bound-

ary”.

As we have mentioned in the NMHV case, and we want to stress it here again that the

bonus coefficients of figure 7b are simply given as the previous ones, namely the coefficients

of NMHV amplitudes, with replacements (a1 → a2, b1 → b2) and multiplied by the same

factor
〈n−1|xa1b1

xb1n|n〉

〈n−1|xa1b1
xa1n|n〉

.

Next, we calculate the contributions from the diagrams in figure 7c which are of the

form NMHV× MHV and we get

MII =
∑

2≤a1,b1≤n−1

∑

a1≤a2,b2<b1

(
B

(2,1)
n;a1b1;a2b2

{n; a1b1; a2b2}1(n − 1 ↔ b1 − 1)

+ B
(2,2)
n;a1b1;a2b2

[{n; a1b1; a2b2}1(b2 − 1 ↔ b1 − 1)]
)

+
∑

2≤a1≤n−3

B
(2,boundary)
n;a1n−1;n−4n−2[{n; a1n − 1;n − 3n − 1}1(n − 2 ↔ n − 1)].

(3.18)

3Here and in the following calculations we have included the corresponding homogeneous terms, for the

case we consider the contributions are from figure 7a.
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(a) Homogeneous diagram (b) Inhomogeneous diagram

type I

(c) Inhomogeneous diagram type II

(d) Inhomogeneous diagram type II (e) Inhomogeneous diagram type I

Figure 7. Diagrams for N2MHV amplitudes.

In the above sum we do not include the boundary case (a1, b1, a2, b2) = (n − 4, n − 1, n −

4, n − 2), which we shall study separately. The coefficients are given by

B
(2,1)
n;a1b1;a2b2

=
〈1n〉〈n − 1 b1 − 2〉〈n − 1|xb2a2

x′
b2b1

x′
a1b1

xa1n|n〉(x
′
a1b1

)2

〈1n − 1〉〈b1 − 2|x′
a1b1

xa1n|n〉〈n − 1|xb2a2
x′

a2b1
x′

a1b1
xa1n|n〉

B
(2,1)
n;a1b1;a2b2

=
〈1n〉〈n − 1|xn−1a2

|n − 1](x′
a1b1

)2

〈1n − 1〉〈n|xna1
x′

a1b1
x′

b1a2
|n − 1]

(b2 = n − 2)

B
(2,2)
n;a1b1;a2b2

=
〈1n〉〈n − 1 b2 − 2〉(x′

a2b2
)2(x′

a1b1
)2

〈1n − 1〉〈n|xna1
x′

a1b1
x′

b1a2
x′

a2b2
|b2 − 2〉

B
(2,boundary)
n;a1b1;n−4n−2 =

〈1n〉〈b1 − 4 n − 1〉[b1 − 3 n − 1][b1 − 2 n − 1](x′
b1−3b1

)2(x′
a1b1

)2

〈1 n−1〉[b1−3 b1−2]〈b1−4|xb1−4 b1−1|n−1]〈n|xna1
x′

a1b1
xb1−1b1−3|n−1]

.

(3.19)

By comparing the results with those of NMHV, now we are ready to see the patterns.

For this type of diagrams figure 7c, the bonus coefficients can be obtained from the re-

sults of NMHV by doing the following replacements on the indices of region momenta x’s:

n → b1, a1 → a2, b1 → b2, and x → x′ when x has the index n with it. Furthermore one

should apply the changes on 〈n| and 〈n−i|, which correspondingly read 〈n| → 〈n|xna1
x′

a1b1
,

and 〈n − i|(or [n − i|) → 〈b1 − i|(or [b1 − i|) for i > 1. Finally we multiply the obtained

answers by a factor (x′
a1b1

)2.
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(a) 6-point diagram deleted by bonus

relations

(b) 6-point diagram

Figure 8. Diagrams for 6-point N2MHV amplitude.

The bonus coefficients of the contributions from other diagrams are actually the same

as those of the NMHV case. For the sake of completeness, let us write down these contri-

butions: for the contribution from figure 7d, we have

MIII =
∑

2≤a1,b1≤n−1

∑

b1≤a2,b2<n

B
(2)
n;a1b1;a2b2

[{n; a1b1; a2b2}2(b1 − 1 ↔ n − 1)], (3.20)

where the bonus coefficients B
(2)
n;a1b1;a2b2

are given by eq. (3.7); for the other contribution

coming from figure 7e, we get

MIV =
∑

2≤a1,b1≤n−1

∑

a1≤a2,b2<b1

B
(1)
n;a1b1;a2b2

{n; a1b1; a2b2}1, (3.21)

and similarly the coefficients are given by eq. (3.4) and eq. (3.5).

Again as in the case of eq. (3.18), this formula does not include the boundary case,

{n; a1b1; a2b2}1 = {n;n − 4n − 1;n − 4n − 2}1, which should be considered separately, as

we shall do below.

Similar to 5-point NMHV amplitude, the 6-point N2MHV amplitude is special which

only receives contributions from diagrams of NMHV × MHV type and we must treat it sepa-

rately. We can delete figure 8a by bonus relations, and the contribution from figure 8b gives,

M6 = −
[16][25][45]

[15][24][56]
[{6; 25, 24}1(3 ↔ 5)] + P(2, 3, 4). (3.22)

As the NMHV case (3.11), 6-point N2MHV amplitude (3.22) can also be similarly gener-

alized, and we obtain the boundary term of the full n-point N2MHV amplitudes,

M (boundary)
n = B

(boundary)
n;n−4 n−1;n−4 n−2[{n;n − 4 n − 1;n − 4 n − 2}1(n − 3 ↔ n − 1)], (3.23)

where the bonus coefficients are given as

B
(boundary)
n;n−4 n−1;n−4 n−2 =

〈1n〉〈n − 5 n − 1〉[n − 4 n − 1][n − 2 n − 1]x2
n−4n

〈1n−1〉[n−4 n−2]〈n−5|xn−4 n−1|n−1]〈n|xn−1 n−4|n−1]
. (3.24)
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Therefore we have calculated all the contributions for N2MHV amplitudes and as in

the NMHV case, it can also be written as a sum of (n − 3)! permutations,

MN2MHV
n = MI + MII + MIII + MIV + M (boundary)

n + P(2, 3, . . . , n − 2). (3.25)

The result can be proved very similarly by induction as in the NMHV case.

4 Generalization to all gravity tree amplitudes

Now we have all the ingredients for generalizing our results and stating the patterns for

all tree-level gravity amplitudes. Our way of using bonus relations gives the simplified

tree-level NkMHV superamplitude as a sum of (n − 3)! permutations, and each of them

contains normal and exchanged contributions,

MNkMHV
n =

[
AMHV

n

]2
(∑

α

B(1,m1)
α GαR2

α +
∑

β

B
(2,m2)
β [GβR2

β(b1 − 1 ↔ n − 1)]

)

+P(2, 3, . . . , n − 2). (4.1)

For both the contributions we have k types of terms from k BCFW channels, namely

NpMHV × NqMHV, for p+ q +1 = k with 0 ≤ p, q < k by reducing the homogeneous term

recursively. As we have stressed repeatedly, to respect the ordered structure, we have only

used bonus relations on one lower-point amplitude, namely the right-hand-side NqMHV

for normal contribution, and the left-hand-side NpMHV for exchanged contribution.

Before presenting all the bonus coefficients for general tree amplitudes, we pause to

show by induction that bonus relations roughly reduce the number of terms from (n−2)! in

the original solution to (k+1)(n−3)! in the simplified one. To get the previous counting we

note that in the NpMHV× NqMHV channel of the normal contribution, by applying bonus

relations to the NqMHV lower-point amplitude we can reduce the number of terms from

(n−2)!/k to (q+1)(n−3)!/k. Taking into account all channels gives us (1+2+ · · ·+k)(n−

3)!/k terms, with the same number from the exchanged contribution, thus the simplified

form has only (k + 1)(n − 3)! terms. By parity, one only needs NkMHV amplitudes with

n > 2k+2 legs and thus the bonus relations can be used to delete at least half of the terms

in tree amplitudes. The simplification becomes more significant when n ≫ k.

Now we generalize the pattern found in the NMHV and N2MHV cases to write down all

the bonus coefficients for general tree amplitudes. As we have learned from the examples,

once the bonus coefficients of Nk−1MHV amplitudes are calculated, then for the NkMHV

amplitudes, one only needs to compute two types of new contributions for NkMHV ampli-

tudes, namely the normal contribution from MHV × Nk−1MHV channel (q = k − 1) and

the exchanged contribution from Nk−1MHV×MHV channel (p = k− 1) (see figure 9). All

other bonus coefficients B
(m)
α of NpMHV × NqMHV with q < k − 1 and p < k − 1, are the

same as those computed previously, namely the results from Nk−1MHV amplitudes. Since

the summation variables of NkMHV amplitude can be obtained by adding a pair of new

labels ak, bk to the previous one, α′, α = {α′; ak, bk}, the result can be written as

B(m)
α = B

(m)
α′ , (4.2)
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(a) MHV × Nk−1MHV (b) Nk−1MHV × MHV

Figure 9. Two relevant diagrams for computing new bonus coefficients for n-point NkMHV

amplitude. The rest of the bonus coefficients can be obtained recursively from the Nk−1MHV case.

for both normal contributions with q < k − 1 and exchanged ones with p < k − 1.

Thus we only need to calculate two new contributions from figure 9a and figure 9b.

It is straightforward to confirm that all the observations we have made for the cases of

NMHV and N2MHV can be directly generalized to all tree-level amplitudes. First we shall

state the rules and then justify them. Firstly, just like eq. (3.4) and eq. (3.17) for NMHV

and N2MHV cases, the bonus coefficients of figure 9a, B
(1,m1)
α , can be similarly obtained

by the replacements on the indices of the region momenta x’s, ai → ai+1, bi → bi+1, for

B
(m1)
α′ of Nk−1MHV amplitudes, then multiplying with a simple common factor of the form

〈n−1|xa1b1
xb1n|n〉

〈n−1|xa1b1
xa1n|n〉

, which are the same for all tree-level amplitudes,

B(1,m1)
α =

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉
B

(m1)
α′ (ai → ai+1, bi → bi+1). (4.3)

Secondly, the bonus coefficients for the new exchanged contributions figure 9b, B
(2,m2)
β ,

can be obtained by taking B
(m2)
β′ of Nk−1MHV amplitudes, and performing the following

replacements on the indices of region momenta x’s, namely n → b1, ai → ai+1, bi → bi+1,

and x → x′ when x has index n with it. And for the spinors, we have 〈n| → 〈n|xna1
x′

a1b1

as well as |n − i〉(or |n − i]) → |b1 − i〉(or |b1 − i]) for i > 1. In addition, the obtained

answers are further multiplied by a factor (x′
a1b1

)2,

B
(2,m2)
β = (x′

a1b1
)2B

(m2)
β′ , (4.4)

where the arguments of B
(m2)
β′ should be changed under the rules we described above.

All these rules can be understood in a simple way. For the rules of the normal contri-

butions, the common factor is obtained in the following way,

(
1 −

zi

zn−1

)
〈n1〉

〈n − 11〉
→

(
1 −

zi

zn−1

)
〈nP̂ 〉

〈n − 1P̂ 〉
→

〈n − 1|xa1b1xb1n|n〉

〈n − 1|xa1b1xa1n|n〉
, (4.5)
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where (1 − zi

zn−1
) comes from the fact that we delete one diagram using bonus relations,

and 〈n1〉
〈n−11〉 is a factor that always appears in every bonus coefficient.

While for the rules of the exchanged contributions, we find that the factor (x′
a1b1

)2

appears because

〈n1〉 → 〈P̂ 1̂〉 → [P̂ 1̂]〈P̂ 1̂〉 → (x′
a1b1

)2, (4.6)

and 〈n| changes in the following way under the recursion relations,

〈n| → 〈P̂ | → 〈n1〉[1P̂ ]〈P̂ | → 〈n|xna1
x′

a1b1
. (4.7)

Besides, the transformation rule of xnγi
follows as

xnγi
→ x bPγi+1

→ x′
b1γi+1

, (4.8)

where γ can be a or b and we have used the fact that p bP
= pb1 + · · · + pn−2 + pb1−1 + pbn.

So in this way, we have a complete understanding of the rules we have proposed.

Finally, as shown in the examples a boundary contribution has to be considered sep-

arately because the special case (k + 4)-point NkMHV amplitude only has diagrams of

Nk−1MHV × MHV type. For this special contribution, it is straightforward to obtain a

general form,

M (boundary)
n = B

(boundary)
β0

[(
AMHV

n

)2
Gβ0

R2
β0

(n − k − 1 ↔ n − 1)
]
, (4.9)

where β0 = {n;n − k − 2 n − 1;n − k − 2 n − 2; . . . ;n − k − 2 n − k}, and the coefficients

can be written as

B
(boundary)
β0

=
〈1n〉〈n − k − 3 n − 1〉[n − k − 2 n − 1][n − k n − 1]x2

n−k−2 n

〈1n−1〉[n−k−2 n−2]〈n−k−3|xn−k−3 n−1|n−1]〈n|xn−1 n−k−2|n−1]
. (4.10)

Therefore, we have found a set of explicit rules to write down all the bonus coefficients for

all tree amplitude in N = 8 supergravity.

5 Conclusion and outlook

In this note, we simplified tree-level amplitudes in N = 8 SUGRA, from the BCFW form

as a sum of (n − 2)! permutations to a new form as a sum of (n − 3)! permutations. This

is achieved by using the bonus relations, which are relations between tree amplitudes in

theories without color ordering. In contrast to the MHV case, a naive use of the bonus

relations ruins the structure of the non-MHV ordered tree-level solution, thus we proposed

an improved application of the relations, which respects the ordered structure. The key

point here is to apply the bonus relations to only one of two lower-point amplitudes in any

BCFW diagram, which indeed brings SUGRA amplitudes to a simplified form having a

(n− 3)!-permutation sum with some bonus coefficients. To illustrate the method, we have

explicitly calculated simplified amplitudes for the NMHV and N2MHV cases. We have

also argued that the pattern generalizes to NkMHV cases, and presented a simple way for
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writing down the bonus coefficients of all amplitudes, thus one can recursively obtain the

simplified form for general SUGRA tree amplitudes.

The simplification is based on an explicit solution from BCFW recursion relations of

SUGRA tree amplitudes of [29], which is in spirit similar to but in details different from KLT

relations. From a computational point of view, any gravity amplitude obtained from (n−3)!

(or the newly proposed (n − 2)!) form of KLT relations is a sum of (n− 3)!2 (or (n− 2)!2)

terms; at least in the special case of N = 8 SUGRA, an explicit solution with only (n− 2)!

terms was found in [29], which is a significant simplification.4 Furthermore, in this note we

have used the bonus relations to reduce it to a sum with only (k + 1)(n − 3)! terms. This

is an important simplification for practical computations, especially for cases with small k.

Further simplifications of gravity tree amplitudes are certainly worth investigating.

Apart from the computational advantages, the simplification is also conceptually in-

teresting. The relations between gravity and gauge theories have been reexamined from

various perspectives recently [31–33, 37, 38] (see also [40]). A common feature, of these

“gravity”=“gauge theory”2 methods, is the freedom of rewriting (n − 2)! forms of gravity

tree amplitudes as (n − 3)! forms, essentially by using BCJ relations on the gauge theory

side. Our result confirms this freedom at an explicit level by directly using it to simplify

SUGRA amplitudes, which also suggests that bonus relations may be regarded as explicit

gravity relations induced by Yang-Mills BCJ relations. It may be fruitful to understand

the exact connections between our method, general forms of KLT relations, and the square

relations. In particular, it would be nice to go beyond SUGRA and see if similar simplifi-

cations occur generally, given that both BCFW recursion relations and bonus relations are

valid in more general gravity theories.

Bonus relations and simplifications we obtained at tree level can also have implications

for loop amplitudes. Through the generalized unitarity-cut method, our new form of tree

amplitudes can be used in calculations of loop amplitudes. In addition, the square relations

have been conjectured to hold at loop level [41], thus we may expect similar simplifications

directly for the SUGRA loop amplitudes.
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