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a b s t r a c t

It is known that one can characterize the decoherence strength of aMarkovian environment
by the product of its temperature and induced damping, and order the decoherence
strength of multiple environments by this quantity. By deriving the non-Markovian
dissipator of the completely-positive semi-group theorem for a general system with weak
coupling to its environment, we show that for non-Markovian environments there also
exists a natural (albeit partial) ordering of environment-induced irreversibility within a
perturbative treatment. This measure can be applied to both low-temperature and non-
equilibrium environments.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Environment-induced decoherence is an essential process for a quantum system to acquire classical attributes [1–3]. To
characterize how strong an environment can induce decoherence in an open quantum system it is desirable to come upwith
a measure of the ‘‘decoherence strength’’ of each environment acting on the system. For a Markovian environment, which for
quantum Brownian motion refers to high temperatures and ohmic spectral density, such a measure can be constructed by
the product of its temperature and damping rate. However, such a measure may not exist for a general environment (with
non-ohmic spectral density functions and under low-temperature conditions; see Refs. [4–6]) or, even more challenging,
for nonequilibrium environments, where the notion of temperature loses meaning.

We show in this paper that at least perturbatively for weak coupling between the system and these environments, low-
temperature and non-equilibrium environments can be partially ordered. The object of comparison is, in fact, the correlation
function of the collective coupling operators of the environment. As with matrices and kernels, quantum correlations can
only be partially ordered. However, this does not rule out nontrivial comparisons: in Section 6 we explicitly detail how one
can compare decoherence strengths for combinations of thermal reservoirs (see Fig. 1) without resorting to the concocted
notion of an effective temperature, since in general it does not exist. Our general relation includes some recently reported
results [7] as special cases.

It should be noted that strictly speaking it is the ordering of environment-induced irreversibility (in the sense of
contraction of the system’s state–space volume under time evolution) which will be established here. This involves the
phenomena of decoherence, typically dominated by information flow to the environment, as well as thermalization (or
equilibration), where energy flow also plays a crucial role. There are many interesting situations (especially when the
system–environment coupling is not very strong) in which both phenomena correspond to rather different timescales and
one can focus on decoherence as the source of irreversibility at short times.

Throughout the paper we use units with h̄ = 1.
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Fig. 1. Consider, for instance, a system of nano-mechanical resonators SM interacting with a system of optical modes SO [8–10], wherein the optical
modes experience dissipation and thermal noise TO from the cavity field yet the resonators experience dissipation and thermal noise TM from a phonon
environment. The combined environment is out of equilibrium and cannot be described by a single spectral-density function and temperature since it does
not obey the fluctuation–dissipation relation. Therefore, the decoherence of this multipartite system cannot be characterized in terms of a temperature
and a dissipation coefficient.

2. Background

Consider a quantum systemweakly interacting with an environment and with the interaction Hamiltonian expanded as
a sum of tensor products of system and environment operators:

HI =


n

Ln ⊗ ln, (1)

where Ln and ln are system and environment operators respectively. [The interaction Hamiltonian as well as the set of
operators Ln and ln in Eq. (1) are in the Schrödinger picture, but they can in general be time dependent.]

The environment coupling operators ln will typically be collective observables of the environment, with dependence
upon very many modes. The system–environment interaction will be treated perturbatively, so that the central ingredient
is the (multivariate) correlation function of the environment:

αnm(t, τ ) =

ln(t) lm(τ )


E , (2)

where ln(t) represents the time-evolving ln in the interaction (Dirac) picture. In the influence functional formalism [11] for
the quantum Brownian model with bilinear couplings between the system and its environment [12,4,5] the correlation
function appears as the kernel in the exponent of a Gaussian influence functional, called the influence kernel ζ in
Refs. [13,14]. Alternatively, in quantum state diffusion [15] this kernel takes the explicit role of a correlator for complex
Gaussian noise. The influence kernel, or equivalently, the complex correlation function, can be written as a sum of two real
parts corresponding to the noise and dissipation kernels [13,14]:

α(t, τ )  
complex noise

= ν(t, τ )  
noise

+ı µ(t, τ )  
dissipation

. (3)

The noise kernel ν appears within the influence functional formalism as the correlation of an ordinary real stochastic source,
whereas the dissipation kernelµ alonewould produce a purely homogeneous (though not necessarily positivity preserving)
evolution. These same roles can also be inferred from the Heisenberg equations of motion for the system operators after
integrating the environment dynamics, producing the so-called quantum Langevin equation [16]. In the simplest case, for
a harmonic oscillator bi-linearly coupled to an environment of harmonic oscillators, the Wigner-function representation
admits a classical-like unraveling [17] with Langevin equation:

mẍ(t) + 2
 t

0
dτ µ(t, τ ) x(τ )  
dissipation

+mω2x(t) = ξ(t)
noise

, (4)

and similarly for multiple oscillators [18]. The dissipation kernel is responsible for non-local damping and a renormalization
of the system frequency,whereas the noise kernel is the two-time correlation of theGaussian stochastic process ξ(t). Finally,
it should benoted that, in addition to damping, the dissipation kernel canprovide for environmentally-mediated interactions
in the system, such as the magnetostatic interactions in non-relativistic electrodynamics [19]. Some additional properties
of these two kernels are detailed in Ref. [20].
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For weak coupling one can treat the system–environment interaction perturbatively. This form of perturbation is
typically thought of as an expansion in the coupling constants present in the interaction or in the influence kernels.
Phenomenologically, the expansion parameter is, to lowest order, the ratio of relaxation rates to coherent frequencies of
the system. Using the notation of Ref. [21], the second-order master equation [22–24] for the reduced density matrix ρ of
the system can be represented in terms of the noise correlation as

ρ̇ = L{ρ}, (5)
L{ρ} = [−ıH, ρ] + L2{ρ} + · · · , (6)

with the second-order contribution to the time-translation generator (Liouville operator) L given by

L2{ρ} ≡


nm


Ln, ρ (Anm � Lm)Ď − (Anm � Lm) ρ


, (7)

where the A operators and � product define the second-order operators

(Anm � Lm)(t) ≡

 t

0
dτ αnm(t, τ )


G0(t, τ ) Lm(τ )


, (8)

with Lm(τ ) in the Schrödinger picture and the superoperator G0(t, τ ) being the free system propagator, which for a time-
independent Hamiltonian simply corresponds to

G0(t, τ ) ρ(τ ) = e−ı(t−τ)H ρ(τ ) eı(t−τ)H. (9)

Because of the nonlocal character of the noise correlation, the time-translation generator in Eq. (7) is not generally of Lindblad
form. The theorem by Lindblad [25] and Gorini et al. (GKS) [26] specifically characterizes the algebraic generators Φ for all
completely-positive maps G = eη Φ, where η > 0 parameterizes the semi-group [25,26]. All such completely-positive
generators take the form

Φ ρ = −ı [Θ, ρ]  
unitary

+


I,J

∆IJ


eI ρ eĎJ −

1
2


eĎJ eI , ρ


  

decoherent

, (10)

where eI = |i⟩

i′
 for some basis {|i⟩} of the system’s Hilbert space and with I ≡ i i′ labeling all possible pairs of

indices. Such generators and the dynamics they engender when the master equation has the Lindblad form have been
extensively studied [27–37]. The (algebraic) dissipator matrix ∆IJ is a Hermitian and positive-definite matrix of master-
equation coefficients with indices I, J .

Note that the ‘‘dissipation’’ generated by the dissipator is that of states, including decoherence. In fact, this notion of
‘‘state dissipation’’ can be given a more precise geometrical meaning as follows. For any distance D on the space of density
operatorswhich is constructed fromamonotonicmetric (e.g. trace distance or Bures distance), completely-positive evolution
cannot cause any Hilbert-space distances to expand [38]:

D

G(t)ρ1, G(t)ρ2


≤ D[ρ1, ρ2]. (11)

From this result it is then easy to prove that positive-definite dissipators contract the state–space volume,whereas negative-
definite dissipators expand the state–space volume (since they appear to be time-reversed contractions).

In the Markovian regime with time-independent Hamiltonian, the semi-group parameter η can be identified with the
time t and the algebraic generator Φ can be identified with the time-translation generator L appearing in the master
equation. In general, η is a more abstract quantity and the algebraic generator Φ is not immediately determined from the
master equation, but instead one has the relation

L(t) =

 1

0
dη e+ηΦ(t) Φ̇(t) e−ηΦ(t). (12)

Regardless of any time dependence in the Hamiltonian, the time-translation generator will still contain a positive dissipator
in the Markovian regime. On the other hand, in the non-Markovian regime the two generators do not share the same
mathematical structure. The Liouville operator can always be represented in the pseudo-Lindblad form

L ρ = −ı [H + V, ρ] +


I,J

DIJ


eI ρ eĎJ −

1
2


eĎJ eI , ρ


, (13)

with the Hermitian dissipator coefficient matrix D. However, at any single instant of time, the dissipator of the time-
translation generator may not be positive definite (see Fig. 2). Thus, for non-Markovian dynamics there can be momentary
instances of recoherence, anti-diffusion, etc., as determined by D, whereas the total accumulated evolution is decoherent,
diffusive, etc., as determined by ∆. In contrast, this lack of correspondence does not exist for Markovian systems. In
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Fig. 2. Comparison of dynamic and algebraic dissipators in the Markovian and non-Markovian regime.

particular, it is trivially true for closed systems: in that case both generators are anti-Hermitian, since H in Eq. (6) and Θ in
Eq. (10) are both Hermitian operators, and both dissipators vanish.

Finally, we note that there are constraints on valid time-translation generators, but in general they are not instantaneous
constraints, as reflected for instance by Eq. (12). To second order in the system–environment interaction Hamiltonian, we
will show that the master-equation dissipator D(t) must be positive only after transforming to the interaction picture,
D(t), and then integrating from the initial time t = 0 when the system and environment were coupled: t

0
dτ D(τ ) > 0, (14)

where the boldface denotes here a matrix with indices I, J . Our analysis can also generate higher-order constraints upon
master equations associated with non-Markovian dynamics and which are not directly beholden to the Lindblad–GKS
theorem.

3. Geometric comparison of state dissipation

Let us detail how one can compare the amount of state dissipation induced by different environments upon identical
systems. We consider a pair of otherwise identical and closed systems with Liouville operator L0, coupled separately to
environments (+) and (−) whereby they evolve according to the completely-positive maps G+(t) and G−(t). To resolve
the question of whether environment (+) induces more state dissipation than (−), in the geometric sense of Eq. (11), we
inspect the difference map

G−(t)−1 G+(t), (15)

and determine if this map is completely positive with a non-vanishing dissipator. Mathematically, one can think of (15)
as a transformation of the map G+(t) into the already-dissipative frame of (−), analogous to the interaction (Dirac)
picture. If the difference map is dissipative, then environment (+) must be contracting more state–space volume than
environment (−).

In general the differencemap is a difficult object to calculate, but to second order in the system–environment interaction
the dissipator of the difference map can be straight-forwardly shown to be the arithmetic difference to the individual
dissipators in the interaction picture. First we express each propagator G±(t) in terms of the free propagator G0(t) and
interaction-picture propagator G

±
(t).

G±(t) = G0(t) G
±
(t). (16)

Next we express the interaction-picture propagator in terms of its algebraic generator Φ
±
(t).

G
±
(t) = eΦ±(t). (17)

The interaction-picture generator may be considered perturbatively, and it is at least of second order in the
system–environment interaction. Combining this expression with (15), the difference map can be represented

G−(t)−1 G+(t) = eΦ+(t)−Φ−(t)+···, (18)

to second order in the interaction. Therefore, if we can order the two algebraic dissipators in the interaction picture
∆

+
(t) > ∆

−
(t) then we have proven that environment (+) always induces more state dissipation upon the system than

environment (−) to second order in the system–environment interaction.

4. Non-Markovian dissipators

As mentioned in Section 2, application of the Lindblad–GKS theorem in the non-Markovian regime requires, not the
time-translation generator, but the algebraic generator. To obtain the non-Markovian dissipator quickly, we will first begin
with the von Neumann equation for the density-matrix propagator of the closed combined system C , consisting of system
+ environment, in the interaction (Dirac) picture:

d
dt

G
C
(t) = LI(t) G

C
(t), (19)
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where G
C
(t) is the interaction-picture propagator and LI(t) is the interaction-picture Liouvillian, defined as

G
C
(t) = G−1

F (t) GC (t), (20)

LI(t) = G−1
F (t) LI(t) GF (t), (21)

in terms of the free (non-interacting) system + environment propagatorGF (t). Note thatGC
(t) are superoperators, which act

on usual Hilbert-space operators as G
C
(t)A = U(t, 0)A U−1(t, 0), and similarly for GF (t) and its inverse. The interaction

Liouvillian is furthermore defined in terms of the interaction Hamiltonian HI(t) as

LI(t) ρ = −ı [HI(t), ρ] . (22)

For simplicity we consider factorized initial states of the system and environment so that we can solve Eq. (19) with
a Neumann series and then trace out the environment more easily. (Properly correlated initial states of the system and
environment within this formalism are considered in Ref. [39].) The Neumann series produces a perturbative expansion of
the open-system propagator:

G(t) =


T exp

 t

0
dτ LI(τ )


E

= 1 +

∞
k=1

G
k
(t), (23)

G
k
(t) =


k

i=1

 τi−1

0
dτi LI(τi)


E

, (24)

also in the interaction picture and where τ0 = t . This series can be contracted into the single exponential

G(t) = eΦ(t), (25)

G(t) = G0(t) e
Φ(t), (26)

where G0(t) is the free propagator for the system. For symmetric noise (with vanishing odd cumulants), such as Gaussian
with vanishing mean, the perturbative generators can then be found to be

Φ2(t) = G
2
(t), (27)

Φ4(t) = G
4
(t) −

1
2

G2
2
(t). (28)

This is equivalent to solving the master equation via Magnus series [40] in the interaction picture. It should be noted that
Magnus-series solutions are slightly secular in time, since in general theMagnus series has a finite radius of convergence [41].
In this context the second-order Magnus-series solution will accurately match the correct solution to second order at early
times, and then only match the correct solution in the limit of vanishing interaction [42,43] at later times, wherein it
converges to the RWA solution [44]. For some aspects of the solution this accuracy can be improved with a less-secular
integrator. However, a careful analysis of the master equation and its solutions has shown that, due to unavoidable
degeneracy, the second-order master equation is fundamentally incapable of providing the full second-order solutions [45].
Therefore, we would not promote these solutions as the second-order solutions, but they contain the most information
pertaining to the non-Markovian dissipation that one can extract from the second-order master equation.

The Magnus-series solution to the second-order master equation gives rise to the second-order algebraic generator

Φ(t) =

 t

0
dτ

 τ

0
dτ ′


LI(τ ) LI(τ

′)

E + O(L4

I ), (29)

in the interaction picture. In terms of the interaction Hamiltonian, the Lindblad coefficients of the algebraic generator Φ(t)
are then

∆IJ(t) =

 t

0
dτ

 t

0
dτ ′


⟨i|HI(τ )

i′ j′HI(τ
′) |j⟩


E, (30)

given the representation in Eq. (10). With the interaction Hamiltonian expanded as a sum of tensor products of system and
environment operators, as per Eq. (1), the coefficients evaluate to

n,m

 t

0
dτ

 t

0
dτ ′

⟨i| Lm(τ )
i′ αnm(τ ′, τ ) ⟨j| Ln(τ ′) |j′⟩, (31)

in terms of the environment correlation function. Taking into account the positivity of α, which will be shown in the next
section, it follows that both forms are positive-definite quadratic forms. This implies that the second-order master equation
must generate completely-positive maps to second order. Furthermore, it also implies that the second-order Magnus-series
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solutionG(t) = G0(t) e
Φ2(t) is actually completely positive exactly (rather than just through secondorder). Finally, inequality

(14) follows by comparing the algebraic generator in (29) to the second-order master equation, e.g., as derived in Ref. [21].
Therefore, one can see that the correlation function α(t, τ ) is not only the influence kernel and complex noise kernel, but

also a decoherence kernel which determines the magnitude of the non-Markovian dissipator, at least in the weak-coupling
limit. Note that in this derivation the correlation function may describe multivariate noise arising from an environment
completely out of equilibrium.

5. Decoherence strength

As derived in Section 4, the second-order algebraic dissipator ∆IJ(t) evaluates to
nm

 t

0
dτ

 t

0
dτ ′

⟨i| Lm(τ )
i′ αnm(τ ′, τ )⟨j| Ln(τ ′) |j′⟩, (32)

in the interaction (Dirac) picture. Expression (32) will be shown to be a positive-definite quadratic form for all
microscopically derivednoise correlations, thus agreeingwith the Lindblad–GKS theorem in asmuch as is required. Although
the Markovian generators which appear in the Lindblad equation are well known, to the best of our knowledge these non-
Markovian generators (which are strictly algebraic and do not appear in the master equation) are a novel discovery.

The key to accomplishing our stated goal rests in the comparison of perturbative dissipators. We first note that from its
microscopic origins, Eq. (2), the environment correlation function is Hermitian in the sense of

α(t, τ ) = αĎ(τ , t), (33)

where the boldface notation denotes a matrix with respect to the indices n,m in Eq. (2). It is also positive definite in the
sense of t

0
dτ1

 t

0
dτ2 fĎ(τ1) α(τ1, τ2) f(τ2) ≥ 0, (34)

for all vector functions f(t) indexed by the environment correlator. This implies the positivity of the quadratic form in
Eq. (32).

Therefore, all quantum correlations give rise to accumulated decoherence since the corresponding algebraic dissipator,
given by expression (32), is necessarily positive definite. Accumulated decoherence only implies that there is more net
decoherent evolution than recoherent evolution. In general the stricter property of instantaneous decoherent evolution,
∆̇(t) > 0, can only be satisfied by environments with local correlation function (Markovian processes) and would always
produce a Lindblad master equation. However, some very restricted classes of system–environment interactions, such as
the interaction Hamiltonian in the rotating-wave approximation (RWA) [46], can be constrained by the particular form
of their coupling to be instantaneously decoherent. This characterizes the class of systems with non-Markovian dynamics
(nonlocal environment correlation function) whose master equation is, nevertheless, naturally of Lindblad form, though
not necessarily at all times. In general, the RWA does not produce a positive dissipator in the master equation at finite
times, which is a reason why the stationary late-time limit limt→∞ L(t) is always taken, whereas the algebraic dissipator
is necessarily positive for all times, in keeping with the Lindblad–GKS theorem.

The key result of this work is showing that the environment correlation function itself provides a natural comparison
of state dissipation or decoherence strength. If two correlation functions are ordered α+(t, τ ) > α−(t, τ ) in the sense of
positivity (34), then their corresponding second-order dissipators are also ordered ∆+(t) > ∆−(t), and we can, therefore,
say that one environment generates more state dissipation than the other, regardless of the system. For instance, the set of
univariate Markov processes is totally ordered by the scalar magnitude of the respective delta correlations, e.g. 2 δ(t − τ) >
1 δ(t − τ). In general, the set of all quantum correlations is only partially ordered, but nontrivial orderings do exist. We
illustrate this principle with several examples below.

6. Thermal correlations

6.1. Individual reservoirs

Time-independent coupling to a thermal reservoir will always produce time-translation-invariant environment
correlations which can be expressed in the Fourier domain as

α̃(ω) = γ̃(ω)

κ̃T (ω) − ω


, (35)

κ̃T (ω) ≡ ω coth
 ω

2T


, (36)

in terms of the damping kernel γ̃(ω) (anti-derivative of the dissipation kernel) and fluctuation–dissipation kernel κ̃T (ω). This
can be derived directly from first principles in Eq. (2), by demanding a coupling-invariant fluctuation–dissipation relation
(FDR), or by demanding coupling-invariant detailed balance in the master equation [21].
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Note that a Markovian quantum regime (complex white noise) necessarily implies a local damping kernel and high
temperature (local FDR kernel). The Markovian regime is reached when the system time scales are much slower than those
of the environment, so that we can take the zero-frequency approximation

lim
ω→0

α̃(ω) = γ̃(0) 2T . (37)

Markovian processes can, therefore, be ordered in their decoherence strength by the product of their damping and
temperature, a result which is well known. If one inquires as to the temperature of an unknown Markovian process, the
FDR kernel (or noise-to-damping ratio) will always reveal this.

In general, nonlocal correlations (e.g. for finite temperature), and thus decoherence strengths, are not totally ordered.
For a fixed temperature thermal correlations can be ordered by damping. On the other hand we have the inequality

κ̃hot(ω) > κ̃cold(ω) ≥ |ω|, (38)

and so for fixed damping, correlations can also be ordered by their temperature. Therefore, finite-temperature thermal
correlations are partially ordered by damping and temperature.

γ̃ strong(ω)

κ̃hot(ω) − ω


> γ̃weak(ω)


κ̃cold(ω) − ω


, (39)

and so it immediately follows that

α̃hot
strong(ω) > α̃cold

weak(ω). (40)

If one environment hasweaker damping but a sufficiently higher temperature, then the two correlations cannot be ordered—
the implication is that different systems would decohere faster or slower for each environment, but not in a manner which
can be strictly ordered.

From Eq. (39) we can now compare environments of low temperature and nonlocal damping. For fixed damping, the
monotonic ordering of temperature is no surprise. While for fixed temperature, the ordering of damping is more subtle
though also not surprising. The damping can be increased by an overall rescaling, say γ̃(ω) → 2 γ̃(ω), or multiplying it by
a frequency-dependent function g(ω) such that g(ω) ≥ 1, ∀ω.

6.2. Multiple environments

Here we wish to recover and generalize the work of Beer & Lutz [7] wherein they compared the decoherence rates of
collective environments with different temperatures and ohmic cutoff frequencies, specifically for linear coupling to an
oscillator and with both reservoirs at a relatively high temperature. For multiple environments we can make the same
comparison by using the naturalmeasure of decoherence strength from the dissipator and environment correlation function.
First we note that for coupling to one reservoir, the individual thermal correlations can be expressed via Eq. (35). Next we
note that for any monotonic cutoff regulator, with fixed local limit γ̃ (0) and variable cutoff Λ, then

γ̃high(ω) ≥ γ̃ low(ω), (41)

where Λhigh > Λlow (referred to as ‘‘fast’’ and ‘‘slow’’ in Ref. [7]). We can also compare the individual FDR kernels as per
Eq. (38). Finally we can use the above relations to construct the mathematical inequality

[γ̃high(ω) − γ̃ low(ω)]{[κ̃hot(ω) − ω] − [κ̃cold(ω) − ω]} > 0, (42)

which can then be rearranged to show that

α̃hot
high(ω) + α̃cold

low (ω) > α̃hot
low(ω) + α̃cold

high(ω), (43)

which is consistent with the results of Ref. [7], when we interpret the left and right-hand sides of Eq. (43) as comparing the
decoherence strengths of two different collective (non-equilibrium) environments. Note that as the individual reservoirs
are Gaussian and independent, one may simply add their correlations in determining the collective correlation. Our result
applies more generally than that of Ref. [7], in terms of coupling and temperature, though we do not calculate a specific
decoherence time. Their work relied upon what is essentially the exact FDR kernel, but which has been referred to as an
effective temperature [47] in the classical regime. We would rather avoid this nomenclature given that such environments
will lead to an asymptotic stationary state which is not thermal in general (sufficiently simple systems can reach a thermal
state, but the corresponding temperature will be different for different systems).
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7. Discussion

In this work we have motivated a general notion of decoherence strength as that generated by the quantum correlations
of the environment, which in turn determine the magnitude of the algebraic dissipator and thus ‘‘state dissipation’’ itself
(see Section 3 for its precise meaning). The ordering of decoherence strengths in this formalism is only partial, although
when it occurs it is independent of the initial state of the system and of the particular operators Ln which characterize the
system coupling to the environment. However, this is not to say that comparison of environment correlations is not useful
when there is no strict ordering.

State-dependent decoherence is of particular interest in the search for decoherence-free states and how they emerge
in certain classes of environments. If for two environments α̃+(ω) − α̃−(ω) is indefinite, then there could be states
corresponding to the vectors f in Eq. (34) which exploit this. As an explicit example, the well-known phenomena of sub-
radiant and super-radiant spontaneous emission of atoms in the electromagnetic field vacuumcan be viewed in thismanner.
A detailed analysis can be found in Ref. [48], which is formulated most directly in terms of the electromagnetic field
correlation function. A well-known result covered there is that for a pair of two-level atoms very close together there is
a joint state which decoheres rapidly (super-radiance) and another joint state which decoheres very slowly (sub-radiance),
as compared to the decoherence rate of an isolated atom. This is possible becausewhen two atoms are brought close together
in the electromagnetic field, their multivariate correlation α̃near(ω) cannot be totally ordered with respect to the factorized
correlations present in the far-distance limit, α̃far(ω).

As mentioned in the introduction and defined precisely in Section 2, strictly speaking the ordering that we have
established is for environment-induced irreversibility (in terms of ‘‘state dissipation’’). For weak coupling, one expects that
in most situations of interest decoherence will dominate over thermalization at short times in such an irreversible process.
In fact, if one considers timesmuch shorter than the relaxation timescale(s) and the real part of the α(t, τ ) can be neglected,
the decoherence strength for an environment in equilibrium is characterized by γ̃(ω)κ̃T (ω). Furthermore, from Eqs. (39)
and (42) one can immediately see that the same inequalities as in Eqs. (40) and (43) also hold for γ̃(ω)κ̃T (ω).
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