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recognition processes
Design choices and evaluation*
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Computational modelling has proven to be a valuable approach in developing 
theories of spoken-word processing. In this paper, we focus on a particular class 
of theories in which it is assumed that the spoken-word recognition process 
consists of two consecutive stages, with an ‘abstract’ discrete symbolic represen-
tation at the interface between the stages. In evaluating computational models, it 
is important to bring in independent arguments for the cognitive plausibility of 
the algorithms that are selected to compute the processes in a theory. This paper 
discusses the relation between behavioural studies, theories, and computational 
models of spoken-word recognition. We explain how computational models can 
be assessed in terms of the goodness of fit with the behavioural data and the cog-
nitive plausibility of the algorithms. An in-depth analysis of several models pro-
vides insights into how computational modelling has led to improved theories 
and to a better understanding of the human spoken-word recognition process.

Keywords: cognitive plausibility, computational modelling, computational 
model evaluation, modular architectures, theories of spoken-word recognition

1. Introduction

Due to the fact that the underlying neural processes are not directly accessible, the-
ories of spoken-word processing (e.g., Johnson 1997; Gaskell and Marslen-Wilson 
1997; Goldinger 1998; Klatt 1979, 1989; Luce et al. 2000; McClelland and Elman 
1986; Norris 1994) tend to be quite abstract. Moreover, theories tend to focus on 
only particular aspects of the spoken-word recognition process, such as acoustic 
variability (e.g., Elman and McClelland 1986), the lexical segmentation problem 
(e.g., Norris et al. 1997), multiple activation of words (e.g., Allopenna et al. 1998; 
Gow and Gordon 1995), the lexical embedding problem (e.g., Davis et al. 2002; 
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Gow and Gordon 1995; Salverda et al. 2003; Salverda et al. 2007), and the flow 
of information (e.g., McClelland and Elman 1986; Norris et al. 2000). Building a 
computational model1 forces theorists to be explicit about the details of the theory. 
Moreover, when computational models are used to combine and integrate partial 
theories to obtain a more comprehensive account of the processes, the represen-
tations at the interfaces between independently proposed modules must match. 
This increase in specificity and coverage is regarded as a significant contribution 
of computational modelling to theory building (Morse and Ziemke 2008; Newell 
1973), also because without this there is the risk that theories lack detail (and thus 
can claim to predict anything; see Norris 2005). Therefore, it is unsurprising that 
computational modelling has proven to be a valuable line of research in the field 
of spoken-word processing in the past decades.2

Computational models of spoken-word processing may aim to test the ad-
equacy of a particular theory with respect to behavioural data (Morse and Ziemke 
2008) or to resolve debates on whether a theory really predicts what it claims to 
predict (Norris 2005). Computational models can also be used to investigate the 
influence of specific factors on spoken-word recognition, which are difficult or im-
possible to control in human listeners. An example of such a factor is the familiar-
ity of a word (sequence), e.g., for some listeners the word sequence computational 
modelling might be well-known, while others do not know the meaning of the 
phrase. As one knows exactly what representations, processes, and parameters are 
present in a computational model, they are easier to control, and their role during 
word recognition can (more) easily be investigated. Finally, computational models 
can be used to make predictions about spoken-word recognition. Computational 
models can produce output phenomena that have not been described in existing 
literature; behavioural studies can then be designed to test these predictions of the 
computational model.3

The contribution of computational models in advancing theories of some 
process is all but straightforward. In this paper, we analyse the relation between 
models and theories in terms of Marr’s (1982) three levels of complex information 
processing systems. The top level is what Marr refers to as ‘abstract computational 
theory’. This level deals with what functions an information processing system 
must compute, and why those computations are required to achieve the goals of 
the system. The second is the algorithmic level, which addresses the question how 
the necessary functions are performed. In particular, this level specifies the input 
and output representations and the algorithms that must transform the input into 
the output. The third level is concerned with the hardware device in which the 
representations and algorithms are to be realised physically.

Computational models, as defined in the current paper, actually operate on 
the representations hypothesised in a theory and perform the computational 
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processes hypothesised by a theory. This should result in a better understanding of 
the representations and the processes that form the heart of a theory.

Most spoken-word recognition processes hypothesised at the computational 
level (see Section 2.1) can be computed with several different algorithms; for in-
stance, the ‘best’ interpretation of a speech signal in terms of a sequence of words 
can be computed using interactive-activation networks or using a kind of beam 
search (see Section 3.1.2). In turn, most algorithms can be implemented in several 
different ways. This means that when implementing a computational model, one 
is confronted with two types of design choices (or modelling assumptions). First, 
it is necessary to turn the functional specifications at Marr’s computational level 
into specifications of representations and algorithms. More often than not there 
are multiple different representations that seem to be compatible with the theory. 
Once global specifications of representations and algorithms are in place, these 
must be converted into a complete technical specification. Also at this stage there 
may be several competing options. Because the behaviour of a model will depend 
on the design choices, the failure of a specific model need not invalidate the the-
ory. On the other hand, the implementation of a computational model does not 
prove a theory to be correct either; instead, it shows that certain computational 
principles implemented in a certain way can account for the data. Computational 
models thus can only provide support for a theory. For that purpose, it is not suf-
ficient that a computational model be able to reproduce behavioural data from one 
or two experiments. Almost invariably, individual data sets can be reproduced in 
many different ways, with many different algorithms. The task of the modeller is 
thus not only to simulate behavioural data, but also to explain why this particu-
lar choice of algorithm and its implementation might be (more) plausible (than 
others). Furthermore, a computational model becomes more convincing if it can 
reproduce multiple independent sets of behavioural data with the same parameter 
settings, and when it can accurately predict not-yet-observed behavioural data. 
Such a computational model provides a ‘proof of principle’ that the implementa-
tion of processes is sufficient for producing the observed data.

As there is hardly ever a straightforward mapping between theory and com-
putational model, assessing the contribution of a particular computational model 
to the advancement of a certain theory is not trivial. The explanatory power of 
computational models of cognitive processes hinges on the credibility of the de-
sign choices. Therefore, it is important to bring in independent arguments for the 
cognitive plausibility of the representations and algorithms chosen to compute the 
processes in a theory as well as for the design choices that must be made in the 
implementations of a specific algorithm. Only if the design is cognitively plausible 
can the capability of some model to reproduce behavioural data be taken as sup-
port for the underlying theory.
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In this paper, we show how computational modelling has contributed to 
improving a particular class of theories of the human spoken-word recognition 
process. We do this through an in-depth analysis of the evolution of the theory 
resulting from experiments with several computational models. To that end, this 
paper first discusses the relation between behavioural studies and global aspects 
of the theory (Section 2). We then analyse the relations between the theory and 
the design choices that need to be made in order to simulate behavioural data col-
lected in experiments on spoken-word recognition (Section 3). Then we explain 
how different computational models of that theory can be assessed in terms of 
the goodness of fit with the behavioural data and the cognitive plausibility of the 
algorithms (Section 4). While doing so, we will show how the need to be explicit 
about the representation of behavioural data has spawned a new experimental 
paradigm that allows measuring the underlying processes more accurately. We 
conclude with identifying theoretical issues that have not yet been resolved by 
means of computational modelling and we suggest directions for further research 
(Section 5). It is hoped that our analysis of how computational modelling was able 
to advance one specific theory of one specific cognitive process, i.e., spoken-word 
recognition, can help researchers in other fields to analyse and understand the role 
of computational models.

2. From behavioural study to theory

It is impossible to directly investigate what happens in the brain of a person when 
recognising spoken words.4 Therefore, psycholinguists rely instead on overt be-
haviour observed in experiments. The data obtained in these experiments usually 
consists of response times (RTs) or proportions of eye fixations, perhaps in com-
bination with error rates. An example of behavioural data consisting of response 
times are the results of a series of cross-model lexical priming experiments that in-
vestigated which word meanings listeners accessed when confronted with lexically 
ambiguous sequences, which could either be interpreted as a single longer word 
or as two shorter words (Gow and Gordon 1995). Listeners heard sentences like 
“She placed her two lips on his cheek” that contained sequences of two short words 
— here two lips, which could be combined to form a single longer word, tulips. At 
the offset of the priming sequence two lips, a lexical decision probe appeared on a 
screen and the listeners had to determine whether the probe was a word or a non-
word. Four types of probes were used: a word semantically related to the single 
longer word, here flower; a semantically unrelated word, here grammar; a non-
word; and crucially, the single longer word itself, here tulips. They found faster 
lexical decision response times to the lexical decision probe (tulips) when subjects 
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were presented with a sequence of short words (two lips) that comprises the same 
phoneme sequence as the decision probe. On the basis of the behavioural data in 
these experiments they concluded that listeners may simultaneously access words 
associated with several parses of ambiguous sequences, as well as other words than 
those intended by the speaker (ibid.: 352).

In general, faster response times are assumed to be associated with stronger 
lexical hypotheses, and thus with stronger word activations, than for competing 
lexical interpretations. Conversely, slower response times indicate an increase in 
the difficulty of recognising the word(-initial cohort), which in turn corresponds 
to a smaller difference between the lexical strength of the word(-initial) cohort 
and its competitors. Likewise, higher error rates indicate an increased difficulty of 
the recognition of the word(-initial cohort), and thus also corresponds to smaller 
differences of lexical strength, and vice versa.

Another example of behavioural data obtained in spoken-word understand-
ing experiments are proportions of eye fixations obtained using the visual world 
eye-tracking paradigm. In this paradigm, subjects are asked to follow instructions 
to look at, pick up, or move one of a set objects presented in a well-defined visual 
workspace (Tanenhaus and Spivey-Knowlton 1996), usually on a computer screen, 
instead of making explicit meta-linguistic decisions about the speech stimuli. Us-
ing the visual world paradigm makes it possible to monitor the speech compre-
hension process over time. It has been demonstrated (e.g., Allopenna et al. 1998; 
Dahan et al. 2001a; Dahan et al. 2001b; Tanenhaus 2000) that the timing and pat-
tern of the eye fixations to possible referents in the visual workspace provide a 
sensitive measure of the time course of lexical activation in continuous speech, 
and that a simple ‘linking hypothesis’ provides a good mapping of pattern and 
timing of eye fixations onto the underlying lexical activation. In general, the word 
corresponding to the picture that attracts most eye fixations is assumed to be the 
strongest lexical hypothesis.

Using the visual world paradigm it could be shown that listeners can make the 
distinction between the two interpretations of an ambiguous sequence in the case 
of initially embedded words, such as ‘ham’ in ‘hamster’, even before the acoustic 
end of the first syllable ham (Davis et al. 2002; Salverda et al. 2003, 2007). Sal-
verda et al. (2003) showed that a picture of the embedded word attracted more eye 
fixations in an eye-tracking experiment when the ambiguous sequence ‘ham’ was 
cross-spliced from a monosyllabic word than when it was cross-spliced from the 
first syllable of another recording of the longer word in which it was embedded. 
They concluded that a phoneme sequence with a longer duration tends to be in-
terpreted as a monosyllabic word more often than a shorter one; it follows that the 
word activation of the monosyllabic word ‘ham’ is higher than the word activation 
of the polysyllabic word ‘hamster’.
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2.1 Theory of spoken-word processing

Speech is highly variable. Two acoustic realisations of the same word are never 
identical, not even when they are spoken by the same person. This variability in 
the speech signal is due to factors such as speaker characteristics (e.g., gender, age, 
emotional state), speaking style and rate, phonetic context (e.g., sounds appear-
ing at different places within a syllable or word or in different phonemic contexts 
can be pronounced differently), and prosody (Benzeghiba et al. 2007). Humans 
are thus faced with the task of mapping a highly variable speech signal onto some 
kind of invariant meaning, most likely by virtue of some kind of invariant lexical 
representations.

There are two largely antagonistic theories of spoken-word processing: the 
‘episodic’ and the ‘abstract’ theory of spoken-word processing. The episodic theory 
assumes that each lexical unit is associated with a possibly large number of stored 
acoustic representations (e.g., Johnson 1997; Goldinger 1998; Klatt 1979, 1989). 
There are, however, very few computational models based on this theory (Johnson 
1997; and models based on or derived from MINERVA2, a computational mul-
tiple-trace memory model (Hintzman 1986), e.g., Maier and Moore 2005, 2007; 
Wade, et al. 2002). In this paper, we focus on the ‘abstract’ theory, because there is a 
much larger number of computational models and papers which makes it possible 
to analyse the role of computational modelling in the development of this theory.

The abstract theory of spoken-word recognition (e.g., Gaskell and Marslen-
Wilson 1997; Luce et al. 2000; McClelland and Elman 1986; Norris 1994) assumes 
that the speech recognition process consists of two stages. This two-step process 
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Figure 1. Graphical illustration of the abstract theory of spoken-word recognition.
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is illustrated in Figure 1. First, listeners map the incoming acoustic signal onto 
a limited set of abstract so-called prelexical representations at the prelexical lev-
el. The details of the prelexical representations are so far unknown, and so is the 
process that converts continuous audio signals into discrete prelexical units. At 
the lexical level, all lexical representations are stored in the form of sequences of 
prelexical units. The core problem solved at the lexical level is the matching of the 
prelexical representations with the lexical representations in the lexicon. There is 
now considerable evidence that multiple candidate words that match the input 
to a sufficient degree are ‘activated’ simultaneously during spoken-word recogni-
tion and are processed in the lexical phase (e.g., Allopenna et al. 1998; Gow and 
Gordon 1995). Therefore, the abstract theory maintains that there must be pro-
cesses that resolve the matching of the prelexical representations with the lexical 
representations by using several kinds of information that can be represented by 
the prelexical units. We refer to this as the ‘disambiguation process’. Since word 
hypotheses can start and end at any time, word hypotheses that overlap in time 
‘compete’ with each other. An example: take the phonemic representation of the 
phrase ‘ship inquiry’ /ʃɪpɪŋkwɑɪǝri/. This phoneme sequence contains many em-
bedded words, such as ‘ink’ and ‘choir’ in ‘inquiry’, but also words that straddle the 
word boundary such as ‘shipping’ and ‘pink’. While the speech signal unfolds over 
time, all these possible words will become activated and will be evaluated, and the 
best matching word candidate (sequence) is selected (we will come back to this in 
Section 3.1.2). This activation and selection is influenced by a large set of partially 
constraining cues (including acoustic, prosodic, statistical, and lexical cues). The 
result is a sequence of non-overlapping words, usually identical to the sequence 
of words actually produced by the speaker. The spoken-word recognition process 
thus resolves the temporary ambiguity of overlapping words, and results in the 
optimal segmentation of the input.

The account of the abstract theory given in the preceding paragraph only de-
scribes the representations and processes involved in spoken-word recognition 
that are present (in some way or another) in all versions of the theory. A contro-
versial issue is the flow of information, which is only bottom-up in the scheme 
depicted in Figure 1. We return to this issue in Section 5.

3. From theory to computational model

Computational models should be able to reproduce observed behavioural data by 
simulating the processes stipulated by the theories. In addition, the computational 
model should be able to make accurate predictions of aspects of the speech recog-
nition process that do not directly follow from the observed data or the literature 
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(Norris 2005; Tuller 2003). If the model indeed is able to reproduce the observed 
as well as predict not-yet-observed behavioural data, the computational model 
provides a proof of principle of the underlying theory. The predictions the model 
makes can be used for the design of new behavioural studies. The data obtained 
with these new behavioural studies can then be used to test these predictions. The 
outcome of this test may lead to a redefinition or adaptation of the original theory 
on which the computational model was based. Furthermore, the results of the sim-
ulations may warrant a redefinition of the theory. Figure 2 illustrates the relation-
ship between behavioural studies, psycholinguistic theories, and computational 
modelling (see also Norris 2005; Tuller 2003).

When implementing a computational model, two different types of design 
choices must be made. The first type of design choice is related to the specifica-
tions of the algorithm and representation that are to perform the functions defined 
at the computational theory level. This is because the theory (usually) does not 
define the details of these representations and processes. Secondly, most repre-
sentations and algorithms can be implemented in several different ways, requiring 
design choices regarding the actual implementation. The fact that quite different 
computational models seem to be compatible with the theory raises questions 
about the extent to which a model can indeed provide support for the theory. If a 
model fails to simulate behavioural data, theorists can blame this to the choice of 
the representations or the algorithm or to the way these were implemented. If the 
model does simulate the data, proponents of another theory may claim that some 
aspects of the model have been tweaked in such a manner that they actually violate 
aspects of the underlying theory, or that the actual algorithm makes assumptions 
that clearly violate computational constraints imposed by the human wetware.5 
It is therefore crucial that the theoretical and modelling assumptions are pulled 
apart in order to evaluate a model (and/or a theory). In the following, we will il-
lustrate the design choices that need to be made to get a working computational 
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Figure 2. The relationship between behavioural studies, psycholinguistic theories, and 
computational modelling.
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model of spoken-word recognition based on the abstract theory of spoken-word 
recognition.

3.1 Design choices

In our explanation of the design choices that need to be made when building a 
computational model of the abstract theory of spoken-word recognition, we will 
go into more detail with respect to the theory as outlined in Section 2.1. The first 
part of this subsection deals with the design choices related to the prelexical level; 
the second, with the design choices related the lexical level.

3.1.1 Prelexical level
The first issue that needs to be addressed is the input to the model. One might 
wonder why this is an issue, as it might seem obvious that the input to the pre-
lexical level should be the acoustic signal. In truth, however, virtually all com-
putational models based on the abstract theory simply claim that some kind of 
prelexical units can be computed, and in reality miss an explicit prelexical level. 
So, instead of dealing with the complexity and variability of real speech at the pre-
lexical level, most influential computational models (Distributed Cohort Model 
(DCM): Gaskell and Marslen-Wilson 1997; ARTphone: Grossberg et al. 1997; 
PARSYN: Luce et al. 2000; TRACE: McClelland and Elman 1986; Shortlist: Norris 
1994) avoid the specification of the computational processes at the prelexical level 
that are needed for this function, and instead use an artificial, often hand-crafted, 
idealised discrete (prelexical) representation of the acoustic signal as input to the 
lexical level of the model.

Existing versions of the abstract theory only hold that there is a limited num-
ber of discrete abstract prelexical units. The question of what form the prelexical 
representations take and how these can be derived from speech signals is not de-
cided (McQueen 2005). In the absence of an answer to this issue, different compu-
tational models make different design choices with respect to the form of the prel-
exical representations. Shortlist, ARTphone, and SpeM (Scharenborg et al. 2005), 
for instance, take phoneme symbols, DCM and TRACE use multi-dimensional 
features, which in the case of TRACE internally activate phonemes, Fine-Tracker 
(Scharenborg 2008, 2009) uses articulatory-acoustic features, and PARSYN (Luce 
et al. 2000) uses context-sensitive allophones. Shortlist B (Norris and McQueen 
2008), the successor of Shortlist, uses a prelexical representation consisting of se-
quences of multiple phoneme probabilities over three time slices per phoneme, 
which are derived from the performance of listeners in a large-scale gating study. 
However, Shortlist B does not specify the process that listeners use to convert 
speech to sequences of phoneme probabilities.
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To our knowledge, there are only three computational models of the abstract 
theory of spoken-word recognition that take the actual speech signal as input. By 
doing so, these models extend the theory of spoken-word recognition by specifying 
a computational process that converts the acoustic signal to the prelexical represen-
tations. An important side-effect of using the acoustic signal as input is that these 
computational models can perform simulations by being fed with exactly the same 
speech stimuli used in a behavioural experiment. Two of these models are SpeM 
(Scharenborg et al. 2005) and its successor Fine-Tracker (Scharenborg 2008, 2009). 
SpeM and Fine-Tracker use techniques from the field of automatic speech recogni-
tion to achieve the conversion of speech signals into prelexical units. In the case of 
SpeM, a phone recognition system based on hidden Markov Models is used to con-
vert the acoustic signal into phone graphs. Like Shortlist, SpeM thus uses prelexical 
units that take the form of phonemes. Fine-Tracker uses a set of multi-layer percep-
trons that convert the acoustic signal into vectors consisting of articulatory-acoustic 
features; these articulatory-acoustic features are the prelexical representations. The 
third model is TRACE I (Elman and McClelland 1986), which converts digitised 
speech to a set of real-valued phonetic features, reminiscent of the features which 
are converted into phoneme symbols in the model of the lexical stage TRACE II 
(referred to as TRACE in this paper; McClelland and Elman 1986).

To summarise, most existing computational models based on the abstract the-
ory miss an explicit prelexical level. Furthermore, there is no general agreement 
with respect to the definition of the prelexical units. The status of a specific defini-
tion of prelexical unit is different between models that essentially miss the prelexi-
cal stage — and therefore are free to handcraft the prelexical units — and models 
that compute prelexical units from actual speech signals. Even if the latter type of 
models still need to choose a specific form of prelexical representation, different 
types can be compared on the basis of the accuracy with which they can be derived 
from real speech input. Additional design choices need to be made in the case of 
an explicit prelexical level, namely with respect to the processes needed to convert 
the acoustic signal into the prelexical representations. The specification of these 
processes is again dependent on the definition of the prelexical representations.

3.1.2 Lexical level
The single most important task to be accomplished at the lexical level is the disam-
biguation of the representations that enter from the prelexical level. Although one 
might think that ambiguity resolution is not necessary when recognising isolated 
words, temporary ambiguity is always present. For example, the word ‘inquiry’ will 
also activate embedded words such as ‘ink’ and ‘choir’ (see Section 2) and word 
sequences such as ‘ink wire’. In the case of the recognition of a word sequence the 
number of different possible parses can be extremely large.
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The two most influential computational models of the lexical stage of spoken-
word recognition, TRACE and Shortlist, differ in their choice for the representa-
tion at the input (multi-dimensional features, which are converted into phonemes, 
in TRACE, only phonemes in Shortlist) but they seem to agree on the representa-
tion of the mental lexicon (a store of orthographic strings with associated phone-
mic transcriptions). Moreover, both chose interactive-activation networks (also 
referred to as connectionist models) for computing the (string of) word(s) that 
matches the input best. These networks suggest the concept of ‘word activation’, 
because lexical representations (words) are represented by a single node which is 
assigned an activation value. There thus is a link between the theoretical concept 
of word activation and the activation of words in the networks. Both models as-
sume that the activation of a node increases through input that matches the word 
and decreases through inhibition from other words. This suggests the concept of 
‘competition’. Furthermore, both models assume that the activation of words oc-
curs in parallel. In older versions of the theory (e.g., McClelland and Elman 1986; 
Norris 1994) the concepts of ‘activation’ and ‘competition/inhibition’, analogous 
to what is happening in the interactive-activation networks, were considered as 
essential parts of the theory.

Despite the fact that both TRACE and Shortlist opted for interactive-activation 
networks, the actual disambiguation proceeds differently. In Shortlist, the prelexi-
cal representations are first compared to the lexical representations using an ex-
haustive search through the lexicon. The degree of match between the prelexical 
and lexical representations is calculated as follows: for each matching phoneme 
the candidate word scores +1, and -3 for each mismatching phoneme. A shortlist 
of the most promising candidate words is then entered into an interactive-activa-
tion network. The word nodes in the network are activated in proportion to their 
match to the input as determined by the match/mismatch score, and words that 
derive their evidence from the same input phonemes are connected via inhibi-
tory links. TRACE’s input representation has featural nodes as well as phoneme 
nodes, and there is competition (inhibition) between phoneme nodes as well as 
word nodes. Furthermore, word activation in TRACE is not decreased by the 
presence of mismatching phonemes. Finally, in TRACE all words in (a necessarily 
small) lexicon are wired into the interactive-activation network. These differences 
between TRACE and Shortlist, however, are design choices not imposed by the 
theory. They thus do not play a role when comparing the theoretical implications 
of Shortlist and TRACE. What remains, of course, are the differences between the 
two models with respect to their assumptions about the input representations and 
the difference in flow of information.

In SpeM and Shortlist B the disambiguation process is not implemented us-
ing an interactive-activation network; instead, in these models, disambiguation 
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is regarded as a search problem (Norris and McQueen 2008; Scharenborg et al. 
2005). Scharenborg et al. (2005) showed that, given a certain (probabilistic) repre-
sentation at the prelexical level, disambiguation as implemented in an interactive-
activation network and as a search are similar at the computational theory level: a 
clever beam search process returns the word (sequence) that is most likely given 
the speech signal. During the processing of incoming speech, multiple paths cor-
responding to (sequences of) candidate words are considered simultaneously, and 
each candidate word (or to be more precise, each path) is assigned a likelihood 
score that indicates the match between the word (sequence) and the input. The 
path with the best score wins. Since it is not possible to compute P(W|X), the like-
lihood of a word sequence W given the speech signal X directly, Bayes’ Rule is used 
and the problem is transformed in computing the sequence of words W that maxi-
mises the likelihood of observing the acoustic signal X (i.e., P(X|W) multiplied by 
the prior probability of the word sequence (P(W)). During the search, pruning 
techniques remove the most implausible paths, in order to keep the number of 
paths through the search space manageable. As a result, only the most plausible 
words are considered in the search. This search process can use arbitrarily large 
lexicons without the need to create a shortlist before the disambiguation starts.

The difference between Shortlist and Shortlist B illustrates how computation-
al modelling suggested an adaptation of the theory of spoken-word recognition. 
When TRACE and Shortlist were developed, the meaning of ‘activation’ was di-
rectly related to the representation of words as a single node in a connectionist 
model, which was assigned an activation value. However, in Shortlist B (as well 
as in SpeM), the meaning of ‘activation’ shifted to a score representing the degree 
of match with the input. Likewise, originally the ‘competition process’ was con-
sidered to be a process in which candidate words competed with each other like 
athletes compete in a wrestling match, i.e., candidate words were trying to actively 
suppress or inhibit the other candidate words. However, in SpeM and Shortlist B, 
the ‘competition process’ is regarded as a process in which candidate words com-
pete with each other like track and field athletes, i.e., candidate words have their 
own match with the input, they run their own race, and do not actively suppress 
or inhibit other candidate words.

To summarise, the design choices that need to be made when building the 
lexical level of a computational model of the abstract theory of spoken-word rec-
ognition focus on the implementation of the disambiguation process. Originally, 
the lexical stage was modelled as an interactive-activation network, while sub-
sequent models regarded the disambiguation process as a search problem. Not 
surprisingly, there is a strong interaction between the assumptions about the prel-
exical representation of the input of the lexical stage and the computations that are 
needed to match the input to a sequence of phonemic representations of words in 



© 2010. John Benjamins Publishing Company
All rights reserved

148 Odette Scharenborg and Lou Boves

the lexicon. It appears that recent advances in computational modelling have af-
fected the theory of spoken-word recognition. At the very least, modelling experi-
ments have clarified the status and importance of the concepts of ‘activation’ and 
‘competition’ that were central in older versions of the theory.

4. Computational model evaluation

The evaluation of the contributions that a computational model can make to the 
advancement of a cognitive theory involves at least two aspects: assessing the 
model’s fit to the empirical data (Section 4.1), and the cognitive plausibility of its 
design choices (Section 4.2). Ideally, a model should also predict not-yet-observed 
behaviour. If a computational model fails to accurately simulate empirical data, 
further analyses should determine whether the problem is in the algorithms used 
to compute the functions stipulated by the theory or whether the theory needs re-
visiting. If the assessment is positive, the implications of the design choices should 
be investigated (Section 4.3) with respect to the underlying theory.

In cognitive science, computational models are not a goal per se, but rather a 
means to improve theories and therefore to advance our understanding of as yet 
unobservable cognitive processes. Therefore, it does not make much sense to ask 
which computational model is ‘best’ (Myung 2001). This is due to multiple reasons. 
First of all, the results from behavioural studies are never clear-cut; different subjects 
and stimuli may give different results (see, e.g., Scharenborg 2009). And perhaps 
even more importantly, the link between the behavioural data and the underlying 
processes may not always be direct. In addition, there may not even be a gener-
ally agreed formal procedure for establishing the degree to which the output of the 
model fits the behavioural data (cf. Section 4.1). Secondly, computational models 
are generally tested on only a limited number of data sets (e.g., data from two or 
three experiments; Pitt, Myung, Montenegro, and Pooley 2008). As a consequence, 
it is difficult to know whether the results are due to essential features of the com-
putational models or rather to some features of the data sets. In addition, almost 
invariably individual data sets can be reproduced in many ways due to the flexibility 
of computational models, governed by the model’s parameter set. The more param-
eters a computational model has, the more flexible the model is, and the better its 
fit with the behavioural data. However, there is always the danger of over-fitting the 
data. Pitt et al. (2008) present an overview of methods to compare computational 
models and investigating the models’ flexibility. They present a framework called 
‘parameter space partitioning’, which was originally developed for evaluating sta-
tistical computational models, but they showed that it can also be applied for the 
evaluation of procedural models, such as the models in focus in this paper.
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4.1 The fit to the empirical data

In general, a computational model is evaluated by assessing the fit of its output 
with empirical/behavioural data. However, in the case of computational models of 
spoken-word recognition there is no one-to-one mapping between the data from 
behavioural studies and the output given by computational models. Therefore, ei-
ther the behavioural data must be ‘interpreted’ in terms of the output of the model, 
or — perhaps more likely — the other way around: we must interpret the model 
output in terms of behavioural measures.

Computational models such as TRACE, Shortlist, and SpeM do not output re-
sponse times or eye fixation durations, nor are error rates usually being calculated. 
Cutler and Robinson (1992: 190) describe a way of extracting response times out 
of an automatic speech recognition system in order to directly compare it to the 
human response times, and Scharenborg et al. (2005: 907) calculated error rates for 
their computational model and compared those with the error rates of listeners.

Models such as TRACE, Shortlist, ARTphone, PARSYN, and DCM were de-
signed to compute word activations as a function of ‘time’. Word activation is a 
continuously changing measure that indicates how strong a word hypothesis is at 
a specific moment in time. However, in most experimental paradigms we can only 
observe instantaneous behaviours (e.g., button presses) that correspond with the 
result of the disambiguation and decision process of a specific subject.

Shortlist B, SpeM, and Fine-Tracker were also designed to compute the equiv-
alent of the time course of word activations. SpeM provides an estimate of the 
probability that a listener would identify that word given that input — an estimate 
which changes over time as the speech input unfolds. Word activation as used in 
SpeM provides a joint measure of the goodness of fit of the word to a particular 
stretch of a given input and the goodness of fit of the path on which that word 
occurs to the complete input (more specifically, the score of the best path asso-
ciated with that word). Shortlist B is based on the theoretical assumptions that 
listeners use a “near optimal strategy” (Norris and McQueen 2008: 358) for the 
recognition of spoken words, in other words it is suggested that listeners behave 
as optimal Bayesian decision makers. Because of this perspective on spoken-word 
recognition the output of Shortlist B consists of time varying posterior probabili-
ties (which by definition cover the interval [0, 1]), rather than of word activations 
(which cannot be expressed in a fixed scale). Fine-Tracker computes time varying 
word scores, which are based on the goodness of fit between articulatory-acoustic 
features extracted from the acoustic signal and corresponding features in the lexi-
cal representations.

However, the response times provided by the experimental paradigms used 
in the past do not provide the detailed patterns of the activation functions of the 
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eventual winner, and even less so from the competitors. Consequently, it is not 
possible to compute a quantitative measure of the degree of fit between the output 
of the models and the behavioural data, leaving it to the modeller to decide if a 
certain degree of match is sufficient or not.

In this respect, the visual world eye-tracking paradigm and the ‘linking hy-
pothesis’ are a substantial improvement (e.g., Allopenna et al. 1998; Tanenhaus et 
al. 2000). It is assumed that the activation of a word is reflected by the proportion 
of the time that the eyes are focused on the corresponding picture. As such, the 
visual world eye-tracking paradigm has provided a completely new type of be-
havioural data that must be accounted for by theories of spoken-word processing. 
Moreover, the new data are more similar to the output of existing computational 
models, thus allowing for a more direct and formal measure of the degree of fit 
(Dahan et al. 2001a, 2001b). It goes without saying that the new type of behav-
ioural data will have an impact on the development of future computational mod-
els (e.g., Allopenna et al. 1998; Dahan et al. 2001a, 2001b).

In any behavioural experiment there are going to be differences (between 
items and between subjects) that are of interest to the experimenter and those that 
are not. The interesting differences are the ones that are related to the underlying 
theory; the ‘uninteresting’ differences are considered noise and it is hoped that 
these are removed by averaging over subjects and stimuli. Therefore, behavioural 
results are usually reported as averages over multiple stimuli and multiple subjects. 
Most computational models, therefore, are ‘macroscopic’ models, i.e., the overall 
response of the model is fitted to the averaged behavioural data.

Several sets of average data that can be used for building and testing macro-
scopic models are available in the literature. ‘Microscopic’ computational models, 
on the other hand, are models whose response pattern has a high probability of be-
ing part of the set of response patterns of individual participants in a behavioural 
study. One way of building a microscopic model is to change the parameter set-
tings of a macroscopic model in order to model individual and item-specific dif-
ferences. In order to be able to evaluate a microscopic model, the raw behavioural 
data is needed, i.e., the data of each stimulus and subject individually. Further-
more, the availability of raw behavioural data enables one to make useful in-depth 
comparisons of the simulation results and the behavioural data, including analy-
ses at the level of error rates and the responses to individual stimuli. We would 
therefore strongly suggest that raw data are published or at least made available 
on request.
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4.2 Cognitive plausibility

In order to evaluate a computational model in terms of its cognitive plausibility, 
the algorithm, the input and output representations, and relevant implementa-
tion details need to be assessed. For instance, as explained above, models such 
as TRACE, Shortlist, PARSYN, and DCM use a discrete representation of the 
acoustic signal as input to the lexical stage of spoken-word recognition. It is tacitly 
assumed that there is some (plausible) process that converts the acoustic signal 
into the discrete prelexical representation that the models expect. In this con-
text it may be telling that to the best of our knowledge TRACE I (the mapping 
from speech to features) and TRACE (the lexical disambiguation) have not been 
used in tandem to model the spoken-word recognition process using the acoustic 
speech signal as input. (Note that the lack of a (cognitively plausible) process that 
can convert speech into prelexical units not only raises questions about the valid-
ity of the theory,6 but also complicates attempts to compare different versions of 
the theory by means of computational modelling experiments. It is difficult to 
compare lexical level models that rely on handcrafted input, if only because the 
details of a specific set of input representations might have substantial effects on 
the output of the simulations).

At the present state of our understanding of speech processing it is highly 
unlikely that it will ever be possible to convert neither an arbitrary speech signal, 
nor even a carefully articulated read sentence into a feature or phoneme repre-
sentation with an accuracy that comes close to the input representations needed 
by TRACE or Shortlist. Automatic phoneme recognition experiments using the 
well-known TIMIT corpus (Garofolo 1988) invariably show that only about 75% 
of the phonemes are recognised, irrespective of the recognition algorithm (e.g., 
Schwarz et al. 2004). Attempts to extract phonetic features from a carefully articu-
lated corpus such as TIMIT do not fare any better (e.g., Scharenborg et al. 2007; 
Schuppler et al. 2009). Yet, the well-known computational models of spoken-word 
processing require (close to) perfect accuracy of the input representation. For in-
stance, Scharenborg et al. (2003) created an automatic phone recogniser to convert 
the acoustic signal into a string of phones that was subsequently fed into Short-
list. Only 76.5% of the words were present in the shortlist generated by Shortlist 
(which subsequently entered the competition phase), and only 54.1% of the words 
were correctly recognised by Shortlist. Scharenborg et al. (2003: 3034) suggested 
that the limitations of the joint model of the phone recogniser and Shortlist could 
be overcome by avoiding hard phone decisions at the output side of the phone 
recogniser and by using a match between the input and the internal lexicon that 
can cope with deviations from canonical phonemic representations. This led to the 
development of SpeM (Scharenborg et al. 2005). It is evident that a model that can 
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only operate successfully with an input representation that cannot be computed in 
a plausible manner can only claim limited cognitive plausibility.

In addition to issues with the cognitive plausibility of the input, there are also 
design choices related to the implementation of the processing algorithms that 
raise questions about the cognitive plausibility. TRACE, for example, needs to du-
plicate the entire lexical network many times. As a consequence, TRACE could 
only deal with small lexicons and it is not evident that this limitation can be lifted 
by a different implementation of the algorithm. One of the aims for the develop-
ment of Shortlist was to tackle this limitation. In Shortlist, competition takes place 
in a small lexical network that only considers those word candidates that match 
the input best. This set-up resulted in the possibility of using a more realistically-
sized lexicon. However, the cognitive plausibility of the actual implementation in 
Shortlist is questionable: the competition process can only start after the end of (a 
stretch of) the input utterance, because the creation of the shortlist and the com-
petition are implemented as sequential processes.

It is worthwhile pointing out that “cognitive plausibility” is not a precisely de-
fined concept. This explains why models such as TRACE and Shortlist have made 
major contributions to our understanding of human spoken-word recognition, 
despite the fact that they make unrealistic requirements for their input. These 
models can account for many behavioural data, and by so doing they have helped 
to obtain a better understanding of the processes that are needed to generate the 
behavioural responses observed in a range of experiments.

4.3 Implications of the computational model for the underlying theory

If the assessment of the computational model is positive in terms of goodness of fit 
and cognitive plausibility, then the implications of the design choices, the theoreti-
cal assumptions, and the parameter settings for the theory underlying the model 
should be investigated. The important question to ask is: what is it about the model 
that makes it able to be successful? Is it because of the computational functions 
specified in the theory or due to coincidental side-effects of the design choices? 
Answers to these questions will give us insights into the way human spoken-word 
recognition actually works and provide insights into how and under which con-
ditions simulation experiments can lead to improved theories and better under-
standing of the human spoken-word recognition process.

An example of this enterprise is related to a study by Scharenborg (2009) on 
the role of durational information in spoken-word recognition: there is now con-
siderable evidence that durational cues in the acoustic speech signal help resolve 
temporarily ambiguous speech input due to lexical embedding, such as ‘ham’ in 
‘hamster’ (e.g., Davis et al. 2002; Salverda et al. 2003). Scharenborg (2009) presented 
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two simulation experiments with Fine-Tracker, using the acoustic stimuli from 
two behavioural studies as input. The simulations showed that the model, like hu-
mans, takes benefit from durational cues during word recognition, and uses it to 
disambiguate the incoming speech signal. Durational information in Fine-Tracker 
is stored in its lexicon, which is a design choice. An analysis of the question what 
it is about the model that makes it successful shows that there are three aspects 
that are crucial to the workings of Fine-Tracker: 1) the differentiation in the lexi-
cal representations between monosyllabic words and phonemically identical syl-
lables which are part of polysyllabic words; 2) the ability to represent durational 
information at the prelexical level; 3) and to use this durational information at the 
lexical level to distinguish between the monosyllabic and the polysyllabic word. 
These aspects of the model are in accordance with theoretical assumptions about 
the role of durational information in spoken-word recognition, and not due to, for 
instance, side-effects of the chosen implementation.

5. Open issues in theories of spoken-word processing

In this section, we explore three open issues in theories of spoken-word process-
ing where computational models are an essential tool for making progress. These 
issues are the debate about the role of feedback from the lexical to the prelexical 
level that was already alluded to in relation to Figure 1; the way in which abstract 
theories can deal with adaptation to strong foreign or regional accents; and the 
relation between abstract and episodic theories.

5.1 The role of feedback in spoken-word recognition

Perhaps the best way to introduce this issue is by means of a quote from the per-
sonal research website of Dennis Norris:

One of the most hotly debated issues in perception is whether the early stages of 
perceptual analysis are modular or not. In the context of spoken word recogni-
tion, the critical question is whether lexical information feeds back down to influ-
ence earlier stages of phonological or phonetic analysis. 7

It should be clear that the abstract theory as outlined in Figure 1 is fundamen-
tally modular: it is assumed that the prelexical process is independent of the lexi-
cal process, with the prelexical representations as the interface between the two. 
The question that has intrigued researchers for almost two decades is whether the 
representation at the interface can or cannot be affected by knowledge from the 
lexical level. The issue at stake is not how subjects recognise spoken words, but 
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rather what factors affect phoneme recognition. One camp maintains that such 
feedback is not logically necessary, because results from behavioural experiments 
can be satisfactorily accounted for under the assumption that the information flow 
is strictly bottom-up, meaning that feedback cannot be demonstrated (e.g., Norris 
1994; Norris et al. 2000). The competing camp (e.g., McClelland and Elman 1986; 
Samuel and Pitt 2003) maintains that experiments in which subjects must make 
phoneme decisions on speech that is manipulated to create ambiguous sounds do 
show that the feedback phenomenon can be attested, implying that the spoken-
word recognition process is not strictly modular. Perhaps not surprisingly, the de-
bate centres to a large extent around the question whether behavioural effects — if 
at all statistically significant — are ‘real’ or rather the result of biases in the experi-
ments (McQueen, Jesse, and Norris 2009).

One would expect that computational modelling can shed light on the issue of 
(strict) modularity. In investigating this issue it must be taken into account that all 
models that subscribe to the architecture in Figure 1 assume that there are indeed 
two modules that operate in tandem: in all models, the prelexical processing (if 
implemented) precedes the lexical level. Therefore, there is only one way in which 
a model that implements the modular structure can lead to the conclusion that 
the spoken-word recognition process is not strictly modular, namely by show-
ing that the modular architecture is not able to simulate all relevant behavioural 
data. In the past, simulation experiments have been conducted with feed-forward 
only models (e.g., Shortlist, Merge (Norris et al. 2000), SpeM, and Fine-Tracker) 
as well as with models that have on-line feedback (among others PARSYN and 
TRACE). Both types of computational models have been able to simulate relevant 
behavioural data; however, all models leave some behavioural results unexplained. 
Therefore, it might seem that computational modelling has not been able to re-
solve the debate.

However, the question of whether or not feedback plays a role can be ap-
proached from a somewhat different computational modelling perspective. In Sec-
tion 3.1.1 we have pointed out that most models have not specified the process that 
should convert speech input to the prelexical representation. It was also mentioned 
that different models make different assumptions about the details of the prelexi-
cal representations. In the summary of Section 3 we emphasised the (seemingly 
obvious) fact that there is a strong interaction between the assumptions about the 
prelexical representations and the processes that compute these representations 
from the speech signal and that map prelexical to lexical representations. And in 
Section 4.2 we argued that it is extremely unlikely that a computational process 
(natural or artificial) can exist that converts speech into an unambiguous discrete 
prelexical representation that is good enough to allow the older models to suc-
cessfully simulate spoken-word recognition. We also pointed out that the newer 
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models (SpeM, Fine-Tracker, and Shortlist B) assume that the prelexical represen-
tations are essentially probabilistic. Shortlist B does this by design, while SpeM 
and Fine-Tracker do this by necessity, because they do include a full-fledged pre-
lexical processing stage. And although SpeM and Fine-Tracker are implemented 
in such a way that they can export prelexical representations for inspection by the 
experimenter, these models share basic properties with the integrated search that 
is the arguably the single most important characteristic of state-of-the-art auto-
matic speech recognition systems. The search implemented in Shortlist B shares 
the same property. But if it is so that prelexical representations are fundamentally 
ambiguous and probabilistic, the issue of phoneme recognition must be funda-
mentally re-thought. All results from experiments with speech signal processing 
strongly suggests that accurate purely bottom-up phoneme recognition is not pos-
sible. And from automatic speech recognition we know that phoneme recognition 
is not necessary. Therefore, it would seem that our re-analysis of computational 
modelling experiments strongly suggests that phoneme recognition may not be 
possible without invoking the notion of a lexicon in which words are represented 
as phoneme sequences.

5.2 Coping with unfamiliar pronunciations

A phenomenon that has attracted a lot of attention recently in the spoken-word 
recognition community is the ease with which listeners in communicative situ-
ations and subjects in experiments can adapt to unfamiliar (foreign or regional) 
pronunciation variants (e.g., Bradlow and Bent 2008; Kraljic and Samuel 2007; 
McQueen et al. 2006). Part of the newly learned pronunciation features generalises 
across speakers and words, while another part seems to be speaker-dependent. 
These findings raise the question how these adaptations can be made compatible 
with a theory that attributes an essential role to abstract invariant phonemes at the 
interface between the prelexical and lexical stages of spoken-word processing.

Al least since the seminal paper by Peterson and Barney (1952) — and most 
probably already long before that time — it has been known that speech sounds 
display a tremendous degree of variation and a substantial overlap in their acous-
tic characteristics. Knowledge about the human auditory system does not suggest 
procedures that could be invoked for mapping the variable acoustic features onto 
distinct abstract vowel points or volumes in the acoustic space. Technical proce-
dures for normalising vowels have not been particularly effective (Adank et al. 
2004). To be able to deal with between-speaker variation a theory that claims that 
prelexical representations can only consist of a limited number of ‘abstract’ units 
must assume that prelexical processing in some way or another involves statistical 
distributions (perhaps of relative distances between sounds, rather than of features 
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of individual sounds) that are learned during language acquisition. And there are 
no compelling reasons to assume that learning will stop completely at some age.

While phoneticians prefer to think of vowels in terms of two or three for-
mant frequencies (Harrington 2010), it is much more likely that speech sounds 
are represented in the auditory system in terms of energies in some 20–30 band 
pass filters, combined with the speed and acceleration of energy changes over time 
(Jurafsky and Martin 2009). Even if the redundancy due to correlations between 
adjacent frequency bands is removed, we are still facing a high-dimensional acous-
tic space. In such a high-dimensional space virtually all distributions tend to be 
underspecified. As a result, almost every observation in that space sits in the tail 
of the distribution in some of the dimensions. It is quite conceivable that idiosyn-
cratic sounds produced by a foreigner or a speaker with a strong regional accent 
can be integrated in the tails of a sparsely specified high-dimensional distribution. 
This would provide a means for representing new knowledge, without interfering 
with previously learned representations which must be retained for recognising 
‘standard’ speakers. Although it remains to be proven in actual simulation experi-
ments, it is reasonable to assume that some version of Fine-Tracker should be 
able to combine on-line adaptation to idiosyncratic speech with unchanged per-
formance for ‘standard’ speech and without interfering with the assumption that 
phonemes are represented as abstract invariable units.

While the idea of sparsely specified multidimensional distributions is com-
patible with conventional Gaussian models, we can also think in terms of non-
parametric distributions or of set membership of observations. Recent compu-
tational modelling experiments in the ACORNS project have shown that general 
purpose structure discovery techniques such as Non-Negative Matrix Factorisa-
tion (NMF) (Lee and Seung 2001; van Segbroeck and van Hamme 2009) and DP-
Ngrams (Aimetti et al. 2009) are able to learn discrete acoustic representations 
of speech signals which might not be identical to conventional phonemes, but 
that may eventually obtain phoneme-like status. Interestingly, the number of these 
acoustic units that will be learned can be determined by global parameters of the 
learning techniques. These parameters also determine the manner in which new 
observations will be merged into previously learned representations. It goes with-
out saying that the basic units can be used for recognising novel input.

While the seminal computational models of spoken-word processing basi-
cally skipped the prelexical stage, newer models such as SpeM, Fine-Tracker, and 
the models developed in the ACORNS project feature concrete specifications 
and operational implementations of the prelexical stage. These models suggest 
ways for dealing with acoustic variation and idiosyncratic pronunciations in a 
framework that is still compatible with an essential role for abstract phonemic 
representations.
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5.3 Episodic and abstract models

The discussion of the role of computational modelling as a means for better under-
standing human speech recognition focused on the ‘abstract’ theory. What moti-
vated this choice was the large number of computational models and papers on a 
large number of behavioural and modelling studies that allow us to trace the his-
tory and show how computational modelling has advanced the theory. However, 
we cannot avoid the question whether computational modelling might come into 
play in the discussion between ‘abstract’ and ‘episodic’ models of spoken-word 
recognition. After all, one might harbour hopes that computational models might 
prove a class of theories right or wrong. However, from our discussion of the de-
velopment of models based on the abstract theory it is obvious that we do not be-
lieve that any model comes close to providing decisive arguments. That being said, 
we still believe that computational modelling will be at the heart of future research 
and theorising in this domain.

There is a hot debate among phonologists whether phonological underlying 
representations should be considered as one single underlying form that is deriva-
tionally mapped onto a phonetic representation (e.g., Chomsky and Halle 1968) or 
whether phonological underlying representations should be considered as a ‘cloud 
of examplars’ (e.g., Bybee 2001; Pierrehumbert 2003). This issue is presented as the 
crucial difference between episodic and abstract theories and computational mod-
els. However, from our discussion of possible solutions for the problem of how to 
deal with ever new variation and occasional outliers in Section 5.2 it should be clear 
that we do not believe that abstract and episodic theories are impossible to recon-
cile. On the contrary, we believe that further investigations of the emergence during 
language acquisition and the eventual mental representation of ‘subword units’ (to 
use a theory-neutral term borrowed from speech technology) will show that these 
representations do not consist of units that all have the same ‘size’ and live on a 
single level. Rather, there are strong arguments in favour of more complex repre-
sentations, some on the level of sub-phonemic detail, some on the level of what con-
ventionally are called phonemes, yet others on the level of the syllable, and perhaps 
even representations on the level of frequent word sequences (cf., the discussion on 
the representations of the word sequence “I don’t know” in Hawkins (2003)).

If one thing has become clear from the debate about the status of feedback in 
theories of spoken-word processing, it is how exceedingly difficult it is to design 
decisive behavioural experiments aimed at elucidating mental representations of 
sub-word units (McQueen et al. 2009). At the same time, computational models 
are able to advance our understanding of the issues related to these representations 
(ten Bosch et al. 2009). Representations that aim at speaker-independent acoustic 
characteristics (perhaps in the form of statistical distributions) require different 
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learning strategies than representations that are based on clustering speaker-spe-
cific observations. And these two different kinds of representations make different 
(testable) predictions about, for instance, the impact of the number of different 
speakers that a baby interacts with during the first stage of language acquisition 
(Newman 2008). If we accept that it is not possible to directly observe ‘prelexi-
cal’ representations in a subject’s brain, computational modelling is the next best 
thing. However, for this purpose we need models that take real acoustic signals as 
input. In addition, we believe that these models will have to learn the representa-
tions as emergent units, rather than as a fixed set of pre-defined phonemes. The 
demands that these representations must be able to fulfil seem daunting given 
the seemingly irreconcilable outcomes of behavioural experiments. Yet, we are 
convinced that models such as Fine-Tracker (Scharenborg 2009) and the models 
developed in the ACORNS project (ten Bosch et al. 2009) all point in the direction 
of integrating concepts from the abstract and the episodic theories in explaining 
the representations on what is still considered as the prelexical level in the spoken-
word recognition process.

6. Discussion and conclusion

The principle divide and conquer has been extremely successful in the sciences, 
and especially in the natural sciences where it is possible to isolate phenomena 
from their context so that they can be analysed in conditions where a small num-
ber of possibly relevant factors can be tightly controlled. This research strategy 
has been extremely influential in psychology and in the cognitive sciences, to the 
extent that ‘modularisation’ became a central tenet in many theories, instead of 
what it originally was: a strategy to come to grips with phenomena that seemed far 
too complex for a holistic analysis. Modular theories seemed to be supported by 
early brain research that was aimed at identifying specific regions in the brain as 
dedicated to specific cognitive functions. However, recent advances in brain imag-
ing strongly suggest that the idea of strong modularisation was wrong: virtually all 
cognitive functions seem to invoke many different areas in the brain. Therefore, 
it is not surprising that the cognitive science field is becoming increasingly aware 
of the arguably unwarranted transformation of ‘modularity’ from a research ap-
proach to a corner stone in many theories.

The idea that cognition is modularised has dominated linguistics for a number 
of decades, resulting in heated debates about (the lack of) interactions between 
phonology, morphology, syntax, semantics, etc. While it is of course true that lan-
guage use is extremely complex and that we are far from a comprehensive theory 
of language as a cognitive tool (Dascal 2002; Dascal and Dror 2005) we believe 
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that recent developments in modelling language acquisition and speech recogni-
tion as an integrated process, starting from the acoustic speech signal and work-
ing the way upward until the final understanding of the utterance, have shown 
that computational modelling holds the promise of coming to grips with the full 
complexity of language. This is the more so because the modelling approach that 
we promote can profit from parallel developments in eScience and the science 
of complexity (e.g., Weaver 1948; Corominas-Murtra, Valverde, and Solé 2009). 
Without doubt language is Weaver’s ‘organised complexity’ domain where systems 
are characterised as having emergent, rather than predictable properties, so that 
they are only amenable to in-depth analysis by means of (computer) simulations.

We believe that the data and the computer power that are needed to simulate 
the processes involved in language use — rather than trying to reproduce some 
form of meta-level description of language products — are becoming available. 
The benefit of such an approach is clearly illustrated by the computational models 
that start from real speech, rather than from some hand-crafted discrete symbolic 
representation. The first attempts at this type of models have advanced the theory 
of spoken-word processing and at the same time elucidated gaps in the theories. 
Future research in modelling spoken language understanding should concentrate 
on what is the prelexical stage in current ‘abstract’ theories. Coming to grips with 
this stage is an essential prerequisite for understanding the complete picture. And 
we predict that this line of research will resolve the discussion about abstract ver-
sus episodic models, and that it will eventually result in an integrated model, rath-
er than in a modular one.

Notes

* This research was supported by a Veni-grant from the Netherlands Organisation for Scientific 
Research (NWO) to the first author. The authors would like to thank three anonymous reviewers 
for their usful comments on an earlier version of this manuscript.

1. Throughout the paper ‘model’ and ‘computational model’ are used interchangeably. Note that 
in the psycholinguistic literature the term ‘model’ is sometimes used for something that is closer 
to what we here refer to as ‘theory’.

2. The term ‘computational model’ has also been used to indicate research in which relations are 
investigated between behavioural data and (possibly large numbers of) independent factors. In 
this paper, we will limit ourselves to computational models that aim to account for the cognitive 
processes involved in speech comprehension.

3. For instance, Tuller (2003) presents an example of how testing predictions of not-yet-ob-
served behaviour can further knowledge on switching in speech categorisation. In speech cat-
egorisation, subjects listen to stimuli from a continuum, for instance the continuum ‘say’-‘stay’, 
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where the length of the silent gap after the /s/ is changed in a stepwise fashion. When listeners 
are presented with the stimulus from one end of the continuum, e.g., ‘say’, many times over, the 
position of the perceived category boundary in an identification test of stimuli from the entire 
continuum will move towards the repeated stimulus, thus ‘say’. When subsequently trained with 
stimuli from the other end of the continuum, the position of the category boundary in an iden-
tification test will again move towards the repeated stimulus. Tuller refers to this as the desta-
bilisation of the perception of the stimulus. Tuller’s model, however, predicts that when a word 
is perceived many times over, this destabilisation should not occur. This difference between the 
literature and the model’s prediction motivated two experiments, which tested and confirmed 
the model’s prediction, and showed that not only the number of stimulus repetitions is crucial 
for category switching, but also how the stimuli move through perceptual space.

4. Brain imaging techniques such as fMRI and ERP are able to show the areas of the brain that 
are most active in speech processing tasks, but the (interpretation of the) link between activated 
brain areas and speech recognition processes is not straightforward. So, even when using imag-
ing techniques it is not possible to directly investigate neural processes.

5. For example, an implementation may require a larger number of sequential sub-processes 
than the brain can perform in the time that is available. A well-known example of such a viola-
tion is the theory of voice pitch control proposed by R. Husson (1962).

6. It should be noted that existing episodic theories of spoken-word comprehension are facing 
similar problems in defining input representations.

7. http://www.mrc-cbu.cam.ac.uk/people/dennis.norris/personal/ last accessed on December 
22nd, 2009.
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