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The fluctuation-dissipation relation is usually formulated for a system interacting with a heat bath at finite
temperature, and often in the context of linear response theory, where only small deviations from the mean are
considered. We show that for an open quantum system interacting with a nonequilibrium environment, where
temperature is no longer a valid notion, a fluctuation-dissipation inequality exists. Instead of being proportional,
quantum fluctuations are bounded below by quantum dissipation, whereas classically the fluctuations vanish at
zero temperature. The lower bound of this inequality is exactly satisfied by (zero-temperature) quantum noise
and is in accord with the Heisenberg uncertainty principle, in both its microscopic origins and its influence upon
systems. Moreover, it is shown that there is a coupling-dependent nonequilibrium fluctuation-dissipation relation
that determines the nonequilibrium uncertainty relation of linear systems in the weak-damping limit.
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I. INTRODUCTION

The fluctuation-dissipation relation (FDR) is a fundamental
relation in nonequilibrium statistical mechanics, dating back to
Einstein’s Nobel Prize-winning work on Brownian motion [1]
and Nyquist’s seminal work on electronic conductivity [2].
We distinguish the FDR from the more common fluctuation-
dissipation theorem (FDT), because, as we will demonstrate,
nonequilibrium environments also permit a FDR. In the
nonequilibrium case, there is no universal relation, but we will
show that there is a universal inequality that all such relations
satisfy.

To give our inequality a physical interpretation, we will
couch it within the tractable context of a general quantum
system under the influence of quantum noise, from a linear
environment or where the influence of the environment is
weak. However, let us first briefly introduce the known results
with the simple example of a one-dimensional Langevin
equation. The equation of motion for a classical damped
particle with time-local response coupled to a thermal bath
with temperature 7 is given by

mi(t) + 2y x(1) —F(x) = §(1) . (M
damping noise

Deriving this equation from a microscopic model results in a
relation between the damping and noise correlation,

v(t,7) = (§()§(T)): = v 2kpT 8(1—7), 2
or more simply in the frequency domain,

U(w) = 2kpT yo, 3)
where v(t,7) = v(t—1) and V(w) = fdt e ' y(¢). In short,
the noise is proportional to both the temperature and the
amount of damping or resistance. The same can also be said

of the diffusion, which is the Einstein-Smoluchowski relation.
This model can be easily generalized to a response that is not
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instantaneous, but where there is nonlocal damping:

t

mx(t) + 2/ dty(t—1)x(t) — F(x) = &(), @)

—00
in which case the classical fluctuation-dissipation relation
generalizes to

V() = 2kpT 7(w). &)

If the response has some lag, then the thermal noise is colored,
and vice versa, whereas above for instantaneous response the
noise was white. Finally, when we apply this same formalism
to the phase-space characteristics of a quantum oscillator with
the same type of Langevin equation [3], the quantum FDR can
be seen to generalize to

5(@) = hocoth [ - )7 6
B(w) = hoco (m)”“”- (©6)

The qualitative difference between the classical and quantum
FDR is that at zero temperature there are ground-state fluctu-
ations proportional to /. Only at sufficiently high temperature
does the quantum FDR asymptote to the classical relation.

What we show in this work is that for any nonequilibrium
environment, one has the fluctuation-dissipation inequality
(FDI),

i(w) 2 |hoy (@), )

or, in other words, for any amount of damping, the correspond-
ing noise must be greater than the corresponding hypothetical
ground-state fluctuations. Moreover, the FDI is fundamentally
related to the Heisenberg uncertainty principle (HUP). As we
will show, if one could have an environment that violated the
FDI, then it would relax the system to a state that violates the
HUP. Furthermore, if one allows the state of the environment
to violate the HUP, then it may also violate the FDI.

Like the HUP, the FDI is mathematical in nature and is
a precise inequality which must be obeyed by all quantum
environments, in all regimes. Whereas, in its most general
form, the HUP relates two quantum operators of arbitrary
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systems, the FDI relates the two-time noise and dissipation (or
equivalently, susceptibility) kernels of arbitrary environments.
Though it is exact, we will mostly discuss its context and
physical implications in one of two regimes, both with station-
ary correlations: (1) the regime of weak coupling to a general
environment and (2) the regime of nonperturbative coupling
to a linear environment. Moreover, for linear systems we
additionally show that the nonequilibrium FDR (which must
satisfy the FDI) determines the nonequilibrium uncertainty
relation (which must satisfy the HUP) for weak coupling.

In the following section we present the necessary back-
ground material of quantum open systems, wherein we
formally categorize quantum noise in terms of its time
dependence, dissipation, and microscopic origin. Readers
familiar with this may skip to our results in the later sections
and refer back as needed. In Sec. III we derive the FDI from a
microscopic model and contrast it to the usual thermal FDR.
On the other hand, in Sec. IV we work from the other end
and motivate the FDI phenomenologically, but less generally.
This result also produces the (weak-coupling) nonequilibrium
uncertainty relation for quantum Brownian motion, which can
be contrasted to the finite-temperature uncertainty relation
[4-T7].

II. NOISE AND BACK-REACTION

A. Open systems and noise
Consider the closed system + environment Hamiltonian

environment renormalization

—_— ——
Hc= H + Hg + H + Hy , )

system interaction

with the interaction Hamiltonian expanded as a sum of tensor
products (in the Schrodinger picture):

Hi(1) =) L,(t) ®1,(1), ©)

where L, (¢) and 1,(¢) are system and environment operators
respectively, possibly with some intrinsic time dependence.
The environment coupling operators 1, will typically be
collective observables of the environment, with dependence
upon very many modes. For linear environments or weak
coupling to general environments, the central ingredient of
any open-systems analysis is the second-order (multivariate)
correlation function of the environment (E):

o (1,7) = (L) L(T))E, (10)

where 1 (1) represents the time-evolving 1,,(¢) in the interaction
(Dirac) picture. The correlation function can always be written
in terms of two real kernels, respectively symmetric and
antisymmetric, and traditionally referred to as the noise kernel
and dissipation kernel:

a(t,t) = v(t,t)+1th u(,7) . (11D
—— ~—— ~——
complex noise noise dissipation

Note that despite this choice of name the dissipation kernel
can also give rise to nondissipative effective forces.

The correlation function e(f,7) exists for any quantum
system and environment, and its corresponding noise and
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dissipation kernels will always obey our inequality. However,
the physical interpretation of these kernels is less obvious
in the case of strong coupling to nonlinear environments
with significant higher-order cumulants for their processes,
such as fermionic environments. For example, for a thermal
environment consisting of two-level systems the noise kernel is
temperature independent, whereas the dissipation kernel has
explicit temperature dependence, as shown in Appendix A.
This nonintuitive behavior is opposite to that of typical
bosonic environments, such as photons and phonons. Leaving
this consideration aside, let us briefly discuss next how the
correlation function arises in the most common formalisms
for open-system analysis.

In the influence functional formalism [8] for the quantum
Brownian model with continuous system couplings L,(X;?)
(in the Lagrangian) and a linear environment [9-11] the
correlation function appears as the kernel in the exponent of
a Gaussian influence functional, called the influence kernel ¢
in Refs. [12,13]. The reduced density matrix p for the open
system evolves according to the double path integral

x|p(®ly)
_ < / " Dx(t) / " Dy() e+;S[x<r>JgS[y<t>]d>[x(r>,y<t>J>
X0,Yo

Xo Yo

12)

with the initial-value average given by

g = // dxodyo (xolpO)lyo) --- . (13)

for factorized initial states p(0) ® pg(0). The Gaussian influ-
ence phase is given by

1 ! ! ! ! A
SIx.¥0) = 55 Y- [ a7 [ a7 8,0 vt At

n,m

t T
+;7Z/dff dt' D(T) L (T,T) Ty (),
0 0

n,m

(14)

in terms of the difference and sum coordinates
Ap(t) = L,(x;1) — L,(y; 1), (15)
2a(t) = Lo(X;1) + La(y; 1). (16)

The Gaussian influence is exact for a linear environment
and perturbative for general environments. The conventional
influence functional here requires the system only to be
coupled with continuous variables, though the formalism can
be extended to fermionic systems with Grassman numbers. The
noise kernel v appears in the influence kernel as the correlation
of an ordinary real stochastic source, whereas the dissipation
kernel pu alone would produce a purely homogeneous (though
not positivity preserving in general) evolution.

These same roles can also be inferred from the Heisenberg
equations of motion for the system operators after integrating
the environment dynamics, producing the so-called quantum
Langevin equation [14]. In Appendix B we generalize the
quantum Langevin equation to nonlinear systems, although
restricted to Gaussian influence functionals and, hence, pertur-
bative for nonlinear environments. The Heisenberg equations
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of motion for an open system operator S(z), where the
environment has been integrated out, can be expressed as

RS = +1HSOI +1 ) (L), [L,@).SOl, (17

L() =&, -2 /0 AT pn (1. Ly(D), (18)

where H is the free system Hamiltonian and &,(¢) is an
operator-valued stochastic process with two-time correlations

<En(t)€m(f)>3;' = anm(tvf) = vnm(tvf) + th Mnm(tvf)~ (19)

In the classical limit, the dissipation kernel vanishes in the
commutator expectation value for the operator noise process,
but not in the Langevin equation’s memory kernel.

Finally, using the notation of Ref. [15], the second-order (in
the interaction) master equation [ 16—18] of the reduced density
matrix p can be represented in terms of the noise correlation as

p= —%[H,p] + La{p), (20)

with the second-order contribution given by the operation

1
Lo(p) = =5 3 Wanop A @ L)' = (Ano L) pl. - (21)

nm

where the A operators and ¢ product define the second-order
operators

(Anm © Lin)(1) E/ dt oy (1,7){Go(t, T) Ln()},  (22)
0

given the free system propagator Gy(¢,7) : p(tr) — p(¢). For
example, for a time-independent system Hamiltonian H we
have the free system propagator

Go(1.1) p = ¢TI p o TiHOT, (23)

This formalism also makes no assumptions as to the structure
of the system, e.g., continuous or discrete; however, the master
equation is strictly perturbative, even for linear environments.
Therefore the system Hamiltonian must contain sufficiently
large transition energies to justify a perturbative expansion in
the interaction, and the environment correlations cannot be
excessively long ranged, or else the expansion can be secular
in time.

One context in which the influence functional, Langevin
equation, and master equation all work together seamlessly is
in the quantum Brownian motion of linear systems [14,19,20].
In addition to a a quantum Langevin equation for noncommut-
ing operators, linearity makes it possible in that case to have a
Langevin equation for real classical stochastic processes from
which general quantum correlation functions and the master
equation can be exactly derived [19,20].

B. The correlation function

From its microscopic definition, Eq. (10), the environmental
correlation function is Hermitian in the sense of

a(t,7) = ol(z,1) (24)

and also positive definite in the sense of

/ dr, / doo £ (0 a(z1, ) F(z2) > 0, 25)
0 0
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for all vector functions f(z) indexed by the noise. Hermiticity
is relatively straightforward to see, whereas the positivity in
Eq. (25) can be proven by inserting Eq. (10) and manipulating
this expression into the form

/ dr, / dofim) o)t = Q Qs (26)
0 0

in terms of the operator
t
Q=> / dry fu(r)L, (1), 27)
— Jo

and so positivity must follow, as the environment’s density ma-
trix is positive definite. Positivity and the noise decomposition
(11) are the key properties from which the FDI arises.

Stationary correlations are defined by their invariance under
time translations,

a(t,t) =a(t — 1), (28)

and can produce asymptotically stationary (time-independent)
master equations. Such correlations are produced when the
environment is in an initially stationary state and its coupling
operators in the Schrodinger picture are constant in time:

pe(0) =Y peeile:) (eil, (29)

yielding the correlation function

(8, 7) =Y pr(eneillale;) (Eillle) e ™00, (30)
ij
where 7 = z* denotes the complex conjugate, &; = &; —¢;,
le;) denotes the energy basis of the environment, and pg(s;)
are its stationary probabilities at the initial time. The associated
characteristic function can be obtained quite directly from the
mode sum

1 +00
at) = —f dwe™ a(w), 31
21 J_wo

yielding the Fourier transform

Gum(@) o< 27 Y~ pr(ei)(eillyle; — ) (Eillule; — @), (32)

where the underscored proportionality here is strictly in
reference to the continuum limit of the reservoir which relates
environmental mode sums to integrals given the infinitesimal
strength of individual environmental mode couplings. This can
be more rigorously defined through the use of a finite spectral
density function in place of the infinitesimal environment
couplings.
Also of note are quasistationary correlations of the form

o(t, 1) = as(t—1) + da(t+71), (33)

where ag(r—7) denotes a stationary correlation function,
or, more specifically, the stationary projection of «(t,7),
while da(r+17) is an additional nonstationary contribution.
Such correlations will result from (time-independent) linear
coupling to an environment with nonstationary initial state,
such as a squeezed thermal state. In these cases the stationary
projection of the correlation function does correspond to the
stationary projection of the initial state of the environment.
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As for the nonstationary contributions, due to their highly
oscillatory behavior in the late-time limit they typically lose
effect asymptotically. Therefore, quasistationary correlations
can produce an asymptotically stationary master equation with
equivalent asymptotics as generated by their corresponding
stationary correlation.

C. The damping kernel

Here we will use the Langevin equation (B24) to determine
the role of the dissipation kernel and to motivate an appropriate
method of renormalization. The correlation function e(z,7) is
positive definite, and therefore the noise kernel v(¢,7) must also
be positive definite, which follows from Eq. (25) by taking a
real f(¢). However, the dissipation kernel (¢, 7) is not positive
definite, but it is related to the damping kernel y(¢,7), which
is given by

a
IL([9T) = _a y(t,f), (34)
T

and can be positive definite, negative definite, or indefinite,
as will be discussed in Sec. II C2. For nonstationary noise,
Eq. (34) is an incomplete definition, and constructing a sym-
metric damping kernel will require additional considerations.
Assuming that relation (34) is sufficient, which is the case
for stationary correlations, the nonlocal term present in the
Langevin equation can be represented:

/ dt /J/nm(t’f)Lm(T) :/ dt ynm(tvf)Lm(T)
0 0

dissipation damping
- Vnm(tJ) Lm(t) + Vnm(t’o) Lm(o) .
renormalization slip

(35)

In the damping-kernel representation we now have three terms:
nonlocal damping, renormalization forces, and transient “slip”
forces. The nonlocal damping and renormalization forces will
be more thoroughly considered in the following subsections.
The transient slip is a pathology associated with factorized
initial conditions and can be avoided with the consideration of
a properly correlated initial state [21].

Given a symmetric damping kernel, which is the case for
stationary correlations, our quantum Langevin equation can
then be expressed as

RS(1) = +1[Hesr(1),S(1)] + % Xn:{gn(’)’[Ln(t)’S(t)]}

+IZ/O AT Y (t, )Ly (), [Ly (1), 8]}, (36)

when discarding the transient slip and where the effective
Hamiltonian is given by

Heit(r) = H(1) — ZLn(I) Vi (£,1) Ly (£). (37

nm

We denote this term as the “effective Hamiltonian” and
not the “renormalized Hamiltonian,” because the correction
may contain both divergences which require renormalization
and terms which describe completely new environmentally
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induced forces. A canonical example of this is nonequilibrium
electrodynamics, wherein these corrections contain both the
mass renormalization of the electron as well as magnetostatic
forces between electrons [22].

1. The energy-damping property

To demonstrate that a symmetric damping kernel can be
given a physical interpretation we will consider the time
evolution of the effective system Hamiltonian. First, we will
assume the following dynamical evolution of the system-
coupling operators:

h Lm(t) =+ [Heff(t)vLm] . (38)

This relation is exact if all of the system coupling operators L,
commute, otherwise it is only perturbative. Now we substitute
Eq. (37) into Eq. (36), apply the above relation, and integrate
to obtain the following open-system energy as a function of
time when neglecting the transient slip:

Hei (1) = Herr (0) — H, (1) + He (1), (39)

0 =+3 [ dr [ av v @)L,

(40)

1 ,
He(n) = =) S{E,0.Li0). (41)

n

This relation reveals that a positive-definite damping kernel
will only decrease the system energy, whereas a negative-
definite damping kernel will only increase the system energy.
The criteria for each condition will be more thoroughly covered
in Sec. II C2. This expression for H,, (¢) also contrasts nonlocal
damping to local damping. Evaluation with a delta-correlated
damping kernel yields damping which is strictly dissipative
at every instant of time whereas nonlocal damping is only
guaranteed to have an accumulated dissipative effect since the
initial time.

2. Classification of stationary damping

Two-time correlation functions can always be decomposed
into a real noise kernel and dissipation kernel as in Eq. (11).
The Hermiticity stated in Eq. (24) leads to the relations

v(t,7) = %[a(l,r) + o' (7,0)], (42)

— 1 _ ol
w(t,7) = S la(t) — o (T.0], (43)

For stationary correlations a(f — t), which lead to a symmetric
damping kernel, one can introduce the Fourier transform
a(w) = fj;o dt e7'"a(t). The noise and damping kernels
are then Hermitian in both noise index and frequency argu-
ment:

7 () = 7o) = 7 (~o), (44)

P(w) = vl (w) = 7 (—w). (45)
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The first equality in Eqgs. (44)—(45) follows from the Fourier
transform of Eq. (24), whereas the second equality follows
from the fact that v(r,r) =vT(t,7) and y(r,t) = pT(t,7).
Moreover, by Bochner’s theorem both &(w) and v(w) are
positive-definite for all frequencies; see Appendix C. For
stationary correlations, the damping kernel is uniquely defined
by relation (34). Again the damping kernel y(w) may be
positive definite, negative definite, or indefinite.

Asproven in Sec. II C1, environments with positive-definite
damping kernels are damping or resistive environments, while
those with negative-definite damping kernels are amplifying.
If the system coupling operators L, are position operators,
the damping terms correspond to forces linear in momentum.
Stationary correlations are the easiest to dissect and the most
well behaved. Their dissipation and damping kernels are
related by

(e) =1ep(e), (46)

and from the definition of the dissipation kernel in Eq. (43) and
the double Hermiticity in Eq. (44)—(45), the damping kernel
will be exactly positive or negative definite, respectively, if we
have a strict inequality between positive and negative energy
argumented environmental correlations:

@(—|ol) > &*(+|w|) (Damping), (47)

@(—|w|) < @*(+|w)) (Amplifying), (48)

with inequality in the sense of Appendix C. From Eq. (32), one
can show that damping environments result when the initial
stationary probability of the environment pg(e) is a mono-
tonically decreasing function of the environment energy. Am-
plifying environments result from monotonically increasing
functions or population inversion. The most common example
of each being positive and negative temperature reservoirs.
Furthermore, in the perturbative master-equation formalism,
the above equations imply that damping environments induce
a higher probability of transitions to lower energy states,
while amplifying environments induce a higher probability
of transitions to higher energy states.

III. NONEQUILIBRIUM RELATIONS

A. Nonequilibrium fluctuation-dissipation relation
and inequality

From the definitions of the multivariate noise kernel v (42),
dissipation kernel p (43), and damping kernel y (46), one can
prove the fluctuation-dissipation inequality:

v>+ihp, (49)

with inequality in the sense of Appendix C. In the case of
stationary noise it takes the more useful form

V() 2 tho p(w), (50)

in the Fourier domain where the w would denote energy-level
transitions of the system; When the noise is univariate, the
inequality can also be written

i(w) 2 |hoy ()] (S

To prove the general inequality, one simply notes that the noise
kernel is the sum of two positive-definite kernels, whereas the
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dissipation kernel is given by their difference. The essential
point is that if there is any damping, or amplification, there will
be quantum noise, and Eq. (50) determines its lower bound.
This is quite a departure from classical physics where noise can
be made to vanish in the zero-temperature limit, although the
lower bound of this inequality is satisfied by zero-temperature
quantum noise since &(|w|) = 0 in that case.

For the case of a single collective system coupling, coupled
to one or more environments, it is sufficient to define a
fluctuation-dissipation relation

5(0) = £(@) (), (52)
R(w) = 29 (53)
7(w)

with #(w) being the fluctuation-dissipation kernel [10,11]
which relates fluctuations to dissipation. For multivariate noise
one might use the symmetrized product

() = 3[k(®) P () + 7 (@) k(@)], (54)

which would ensure #(w) to be positive definite if (w) is, in
accord with this being a (continuous) Lyapunov equation [23].
We will use this particular definition for quantum Brownian
motion in the next section. Inequality (50) can now be
restated as

k() Z |hol, (55)

for damping environments. Typically #(w) will contain depen-
dence upon the precise nature of the environment couplings 1,,.

B. Equilibrium fluctuation-dissipation relation

Let us consider a time-independent system-environment
interaction and environment Hamiltonian as well as initial
stationary probabilities of the environment given by pg(e). If
the FDR is to be independent of precisely how the system
and environment are coupled, then one can work out from the
microscopic theory (32) that the FDR kernel must be a scalar
quantity, directly related to the initial state of the environment
by way of

K(w)  pe(e — )+ pg(e)

ho  pp(e — ) — pg(e)’
for all . To prove this one first applies relation (32) to
definitions (42)—(43), and notes that if the dissipation and
noise are related in a manner independent of the coupling
then the two kernels must be related term by term in a sum
over couplings.

But such an equality between the FDR kernel and mode
probabilities implies the functional relation

(56)

K (w) l
pe(e — ) = | g | Pe(®). (57)
o

where the w translations can factor out. This factorization
property is unique to exponential functions; therefore, only the
thermal distribution pg(e) o e#¢ can produce a fluctuation-
dissipation relation which is generally coupling independent.

‘We then have that
ho (58)
2kgT )’

K7(w) = hw coth <
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for the thermal distribution. One should be careful to note that
the thermal FDR is not special because it exists, nor because of
its simple form, but because of its complete independence of
the details of the system-environment interaction. “Observable
dependence” for nonequilibrium correlations was also noticed
in Ref. [24]. In a more general context, the thermal FDR is
also special because it ensures a relaxation to detailed balance
in a coupling-invariant manner. In fact, these properties can be
shown to be equivalent [15].

As a concrete example of an elegant yet nonequilibrium
FDR, the late-time dominating stationary correlations for
linear coupling to a squeezed thermal reservoir [25,26] will
produce the FDR kernel

%4 (w) = cosh[2 r(w)]hw coth (%) (59)

where r(w) is the squeezing parameter, which may be allowed
to vary with the energy scale. One can easily see that this FDR
also obeys inequality (50) as it must.

C. Fluctuation-dissipation equality

For stationary environments, we can more easily determine
when equality is achieved between the fluctuations and
dissipation in the sense of

¥ (w) = Hhe 7 (w). (60)
Working backwards through the FDI proof, this implies
1+ D@ +1FDa-o)' =0, (61)

which can only occur for all w if either the environment is
damping with @&(+|w|) = 0 or amplifying with &(—|w|) = 0.
In the perturbative master-equation formalism, these equalities
correspond to there being no environmentally induced transi-
tions to higher energies and lower energies, respectively. From
relation (32), we then have the constraint upon the environment
couplings

(e|l,]le — w) =0 (Damping), (62)

(ell,le + w) =0 (Amplifying), (63)

which must hold for all environment energies ¢ for which
there is any population pg(e). Assuming that the environment
coupling 1 is not sparse at particular energies, then the
damping environment must have all of its population in
the lowest-energy state, T = 40 or B = +o00o, while the
amplifying environment must have all of its population in the
highest-energy state, T = —0 or § = —oo0. If the environment
coupling 1 is sparse, then it must only be the case that the
population of states lies on a boundary of the energy spectrum
accessible by 1.

IV. NONEQUILIBRIUM UNCERTAINTY PRINCIPLE

In the context of second-order perturbation theory, quantum
noise is effectively Gaussian in the influence functional,
and Gaussian noise is equivalent to that arising from linear
coupling to a bath of harmonic oscillators. Therefore, any
violations of Eq. (50) must correspond to an environment
of oscillators in a nonquantum state. In the phase-space or
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Wigner function representation [27], HUP violating states of
the environment can be constructed which violate the quantum
FDI. Such is the case for the classical vacuum, which has
vanishing fluctuations yet finite damping. Now we shall show
that FDI violating noise can also relax the system into a HUP
violating state.

Let us consider weakly influencing a system of oscillators
at resonance, all with mass m and frequency w, via position-
position coupling to some phenomenological set of noise
processes with resistive correlation &(w). We do not assume
the system-environment couplings to be identical, nor do
we neglect the presence of cross-correlations among the noise
processes. Furthermore, the system may relax in general
to stationary states which do not correspond to thermal
equilibrium. A simple example would be a situation where
there is a constant heat flow through the system between two
thermal baths at different temperatures.

From the results of Ref. [20,28] and the second-order master
equation coefficients (21), the damping kernel p (w) will play
the role of the dissipation coefficients and the noise kernel
¥(w) will play the role of the normal diffusion coefficients
in the Fokker-Planck or master equation. Integrals over the
two kernels will then provide the system renormalization
and antidiffusion coefficients, respectively. Given sufficient
dissipation and bandwidth-limited correlations, the system
will relax into a Gaussian state which satisfies the Lyapunov
equation

1 2 2
V(w) = E [(EGPP>}7(Q)) + ?(C‘))<Zo’pp)i|s (64)

for the momentum covariance, which has elements ( piDj ), and
1
= ——0 ,
(ma))2 pp

Oxp = 0, (66)

(65)

GX)C

for the remaining covariances in the phase-space (Wigner func-
tion) representation [27], and to lowest order in the system-
environment interaction. Comparing Eq. (64) to Eq. (54), we
can express our covariances as

K (), 67)

Oxx =

2mw?
m_
) (68)

in terms of the FDR kernel # (w). So far our FDR kernel remains
phenomenological and not microscopically derived. However,
it must be positive definite for this to describe a physical state.
Since i (w) is positive definite, we can transform to the basis
in which it diagonalizes. If £(w) is a scalar quantity, then this
is simply the normal basis of the free system. For each mode
in this basis we have the phase-space covariance

xx xp 1 =~
n n 0
0, = |:O'n K :| = 2mw2K (a)) "~ s (69)
o oy 0 Skn(@)

px pp

which must then satisfy the generalized Heisenberg uncer-
tainty relation due to Schrodinger [29,30]:

2

n
(Ax?) (AP — = ({Ax,Ap}) = T (70)

1
2
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or in terms of the phase-space covariance

h2
det(o) > T (71)

and, therefore, it must be the case that
Kn(w) 2 ho, (72)
for all w > 0. But this is equivalent to our previous statement,
() > ho, (73)

in terms of positive definiteness as w is a scalar quantity. So not
only do FDI violating correlations arise from HUP violating
environment states, they can also produce HUP violating
system states via dissipation and diffusion (and decoherence).
Furthermore we can say that in the weak-damping limit, the
scalar FDR kernel #(w) precisely determines the (asymptotic)
nonequilibrium uncertainty product
- 2
det(o) = B K(w)] ,

(74)

for a single system mode of frequency w. Larger FDR kernels
naturally produce larger uncertainty, and minimal FDR kernels
(zero temperature) produce minimal uncertainty. Nonpertur-
bative results require evaluation of the exact expressions
found in Refs. [20,28] for a single-system oscillator and
multiple-system oscillators, respectively.

V. DISCUSSION

In this paper we have derived a fluctuation-dissipation
inequality (FDI) for an open quantum system interacting
with a nonequilibrium environment from the microscopi-
cally derived environment correlation function and recovered
the well-known fluctuation-dissipation relation (FDR) for a
thermal environment. The FDI is a very general statement
contrasting quantum noise to classical noise, and is satisfied
even for nonequilibrium fluctuations. Simply put, quantum
fluctuations are bounded below by quantum dissipation,
whereas classically the fluctuations can be made to vanish.
The lower bound of this inequality is exactly satisfied by
zero-temperature noise and is in accord with the Heisenberg
uncertainty principle (HUP). FDI violating correlations arise
from HUP violating states of the environment and can relax
the open system into HUP violating states. Therefore, the
FDI can be viewed as an open-system corollary to the HUP
both from microscopic and phenomenological considerations.
Analogously, the nonequilibrium FDR also determines the
nonequilibrium uncertainty product, most directly in the limit
of weak damping [see Eq. (74)], and the corresponding FDI
implies the HUP.

As an example of a practical application of the FDI, we note
that there is a large class of situations where applying the FDI to
the zero-temperature solution of an open system can produce
general bounds on all related nonequilibrium solutions. For
instance, consider a possibly multipartite quantum optical
and/or mechanical system with linear photonic and phononic
environments, as would be the case with a system linearly
coupled to the environment field operators and where the
system moves very slowly relative to the speeds of sound
and light. In the case we consider, the damping kernels are

PHYSICAL REVIEW E 88, 012102 (2013)

determined by the commutator of the field operators and not
by the environment’s state (see, for instance, Ref. [31]). Now
let us say that we can solve the zero temperature case (or
the result is already available), but we cannot solve the more
realistic nonequilibrium case, either because the realistic case
is too difficult or because we lack a sufficient understanding of
the nonequilibrium state of the combined environment. If we
solve the zero-temperature case, and in our derivation we track
all instances of the noise kernel and its resulting diffusion coef-
ficients, then at the end of the calculation we can apply the FDI
to obtain bounds on the true solution. As a trivial example, one
can apply the FDI to our resulting Eq. (74). However, in a more
complicated system, and particularly if the full-time evolution
is considered, results of such an analysis can be very nontrivial.
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APPENDIX A: KERNELS FOR TWO-LEVEL
ENVIRONMENTS

A model with an environment consisting of a set of
two-level systems provides a useful illustration of how very
nonlinear environments can give rise to nonintuitive noise and
dissipation kernels, which nevertheless respect fluctuation-
dissipation relations. We consider the time-independent
environment Hamiltonian

w,
He=) 7"62’0, (A1)
k

where a® denotes a Pauli spin matrix of the kth particle. For
the environment coupling operator, we take the most general
time-independent noncommuting operator

L= &, (A2)
k
with the vector of coefficients and spin matrices given by
Skn = (85n-&in:0)- (A3)
6 =(0,,0,,0;). (A4)

Assuming a factorized initial state for the environment, with
the state of each spin initially given by

* _ |:1 —8(wr)  qlwx) :|

= A5
E T g0t 148 (&3)

it is then straightforward to calculate the noise and damping
kernels to be

Vum (1) =Y @i * Bim) cOS(@yt), (A6)
k

- 8(wy)
Yon() = ) (B~ &) cOSx) == (AT)

X @k

which satisfies the nonequilibrium FDR
ho

H(w) = — F(w), A8
@) = 55 7@ (A8)
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and, since —1 < §(w) < +1 by the positivity of pgo, this
relation satisfies the FDI. For a thermal state we have

5(w) = tanh < hw

2kpT ) (&9

which also satisfies the FDT. However, notice that the noise
kernel has no relation to the temperature or even to the
initial state of the environment, other than the fact that
the environment spins are taken to be initially uncorrelated.
Instead, the damping kernel decreases with temperature to
satisfy the FDT.

APPENDIX B: THE QUANTUM LANGEVIN EQUATION

The quantum Langevin equation [14] is well understood
in the context of bilinear position-position couplings between
system and environment. Here we would like to extend the
simpler theory by considering quantum Langevin equations
that correspond to the same class of Gaussian influences which
appear in the second-order master-equation and influence-
functional formalisms. We begin with the same kind of
Hamiltonian for our system and environment:

He =H+ H; + Hg, (B1)
Hi(1) = ) L) ®1L,(1). (B2)

The Heisenberg equations of motion for any system operator
S(?), as driven by the environment, are therefore given by

A 8(1) = +1[H0.8(1)] +1 ) _[L,(1) @ L,(1).S(1)].  (B3)

To generate a Gaussian influence, we specify the environment
to be linear in its driven dynamics

1
He®) =) 5 [mi'0) 7o + a au’], (B4

k

L) =) [, a) + gf, (1) m®].  (BS)
k
To approximate nonlinear environments perturbatively, one
would match the influence kernels at the end of the calculation.
Let us define the “phase-space” vectors

zp = (qg, ), (B6)

(1) = (g1, (). 85,(1)).- (B7)

The Heisenberg equations of motion for the environment
operators, as driven by the system, can then be expressed
conveniently as

7(1) = Fk(t)zk(t)+Zegkn([)Ln(t)7 (B8)

_ 0 m (0
Fk(t)=[_6k@ 0 } (BY)

o 1
=121 o

(B10)
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so that the driven solutions of the environment operators are
given by

2 (1) = P (1) 2,(0) +/0 dt q)k(taf)ZEgkn(T)Ln(f)a

(B11)

in terms of the free environment transition matrix ®;, which
satisfies the relations

&, (1) = Fu(r) B4(0), (B12)
®.(0) =1, (B13)
Q,.(1,7) = Dk(2) <I>k(‘l,')_l. (B14)
The driven solutions can then be written as

Lo =50+2Y [ 4 D) L), (BIS)
60 = 3 g0 0020, (B16)

k
o 17) = 3 D) et e g, BID

where p is so far only proven to be a memory kernel in the
driven solution. We further wish to prove that, when assuming
the environment to be initially in a Gaussian state, &,(¢) is an
operator-valued Gaussian stochastic process, with two-time
correlation function

<En(t) Em(T))E =y (1,T) = Vpp (£,7) + 17 (2, 7),
(B18)

in terms of the noise kernel v and dissipation kernel u, given
by

1
Unm(t’f) = <§{En(t)7§m(f)}> (B19)

3

1
P (2,T) = <ﬁ[§n(t),’§m(f)]> (B20)

£
To prove this, we must relate the memory kernel to the
commutator. From Eq. (B16), the commutator is given by

[€,().€,, (D] =17 ) gin()" @4(t) & @4(7) gem (7). (B21)
k

Note that for any two-dimensional matrix A
., €Ae
 detA’

with &2 = 1. It therefore suffices to prove that det ®;(¢) = 1.
First, note that det®;(0) =detl = 1. Then consider its
dynamics:

(B22)

i det q’k(t) — ielogdenbk(t) — ieTrlog()k(t)
dt dt dt

d
= | —Trlog ®(r) |8 ®®
[dt rlog ®( )}e

= Tr[ @ (1) ®4()"'1det B4 (1)

= Tr[Fy(¢)] det ®4(7) = 0. (B23)
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It was erroneously reported in Ref. [15] that the relation (B20)
did not always hold for parametric bath oscillators.

Substituting (B15) back into (B3) results in a quantum
Langevin equation for the open system. However, due to the
fact that 1(r) commutes with system operators at all times
whereas the operator noise &(¢) and dissipation separately do
not, there is no unique method of expressing the quantum
Langevin equation in a manifestly Hermitian manner. All
representations generate equivalent solutions, but some are
more robust with respect to approximations than others. In
particular, non-Hermitian representations are rather patholog-
ical as they only preserve Hermiticity after noise averaging.
The second-order adjoint master equation [15] would appear
to suggest the following representation:

hS(1) = +:[H(1),8(1)] + 15 ;{ln(t)’[Ln(t)’S(t)]}’ (B24)

ln(t)=8n(t)+22f0 dt pum (1, 7) Lin(7). (B25)

Although we have derived this Langevin equation under
the assumption of a linear environment, we may apply it
self-consistently for any Gaussian influence. The quantum
Langevin equation here is nonperturbative. However, it only
approximates non-Gaussian environments in a perturbative
manner.

Finally note that in the corresponding classical Langevin
equation, &,(#) would be real Gaussian noise with two-time
correlation v,,,, and the dissipation kernel would only appear
as given in Eq. (B25). That the dissipation kernel appears in
the operator-noise average is a quantum feature.

APPENDIX C: INEQUALITY OF OPERATORS

The positivity of a matrix kernel «(¢,7) in the sense of

t t
[ an [dnti@rmmte =0
0 0
for all vector functions f(7), is the natural extension of the
positivity of a matrix K in the sense of
F'KF >0, (C2)

for all vectors F. The time arguments of a kernel can be
viewed as the (continuous) indices of a matrix. The fact

PHYSICAL REVIEW E 88, 012102 (2013)

that we have two sets of indices, time ¢ and noise n,
is indicative of a convenient block-matrix structure being
employed.

Given a notion of positivity for a matrix, there is a natural
notion of inequality that can exist between matrices. If a matrix
K is positive definite in the above sense, then we can express
this more succinctly as

+K > 0, (C3)

-K <0, (C4

where 0 is the matrix with zero in every entry. Therefore if
K—J is a positive-definite matrix, then we can say

K>, (C5)
and if K £ J is a positive-definite matrix, then we can say
K > 4],
(Co)
F'KF > |[FIJF|,

for all F and whereby the notation == we mean to imply
the inequality for both 4+ and — cases. Note that, unlike
scalar quantities, kernels and matrices cannot always be
ordered in this way. The relationship between matrices can
be indetermined.

A famous theorem for stationary kernels, where «(¢,7) =
k(t—7), is due to Bochner and states that if « is positive
definite, then it follows that the Fourier transform is non-
negative: K(w) > 0 for all w. For stationary matrix kernels
k(t — 1), Bochner’s theorem naturally implies that the Fourier
transform is positive definite: £(w) > 0 for all w. The basic
idea behind the theorem in this case can be understood
by realizing that for stationary kernels the time integration
domain in Eq. (C1) can be extended to (—o00,00). Taking then
into account that the Fourier transform of a convolution is
simply the product of the Fourier transforms, together with
Parseval’s theorem for Fourier transforms, Eq. (C1) becomes
equivalent to

/ ooda) ' (w) k() f(w) > 0, (C7)

]

for arbitrary f(w), which implies #(w) > 0 for all w.
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