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Chapter 1    

“The central issues in the study of speech recognition by human listeners (HSR) and of 
automatic speech recognition (ASR) are […] clearly comparable; nevertheless, the 
research communities that concern themselves with ASR and HSR are largely 
distinct.” 

- R. K. Moore & A. Cutler (2001) 

 

“Given the relatively advanced state of psycholinguistics and speech perception, it 
seems remarkable that the only working models of lexical access from acoustic 
waveforms are products of the engineering technology of automatic speech 
recognition […].” 

- T. M. Nearey (2001) 

1.1 The recognition of human speech  
In everyday life, speech is all around us, on the radio, television, and in human-human 
interaction. Communication using speech is easy. We human beings are continually 
confronted with novel utterances that speakers select from the infinite set of possible 
utterances in a language, and usually we encounter little to no difficulty in recognising and 
understanding them. Utterances are made up from a much smaller (but open) set of lexical 
forms (e.g., word, morphemes). The most important aspect of the process of understanding 
spoken language by human listeners is the mapping of the information in the speech signal 
onto word representations in the mental lexicon (e.g., McQueen, 2004), although human 
listeners also use para- and extra-linguistic information (e.g., Hawkins, 2003). Word 
recognition is therefore a key component of the speech recognition process. Then, on the 
basis of the recognised words, an interpretation of the utterance can be constructed. 

1.1.1 A common goal – Different approaches 

There are various research fields that investigate (parts of) the speech recognition process. 
In this thesis, I focus on two: the fields of human speech recognition (HSR) and of 
automatic speech recognition (ASR). Although the two research areas are closely related –
they both study the speech recognition process, and the central issue of both is word 
recognition – their aims are different. In HSR research, the goal is to understand how we, 
as listeners, recognise spoken utterances. This is done by building models of HSR, which 
can be used for the simulation and explanation of the human speech recognition process. In 
ASR, the central issue is minimising the number of recognition errors. Much research 
effort in ASR has therefore been put into the development of systems that generate reliable 
lexical transcriptions of acoustic speech signals. In parallel with the difference in aims 
between the two research fields, the research approaches are different as well. To clarify 
the differences, the research approaches used in HSR and ASR are described in some detail 
in Section 1.2. 
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Between the two fields, another difference exists. Although both ASR and HSR claim to 
investigate the whole recognition process from the acoustic signal to the recognised units, 
an automatic speech recogniser necessarily is an end-to-end system – it must be able to 
recognise words from the acoustic signal – while most models of HSR describe only parts 
of the human speech recognition process. An integral model covering all stages of the 
human speech recognition process does not yet exist. One part of the recognition process 
that virtually all models of human speech recognition lack is the part that converts the 
acoustic signal into some kind of segmental representation. Existing symbolic HSR models 
cannot recognise real speech, because they do not take the acoustic realisation as their 
starting point. This makes it hard to evaluate the theoretical assumptions underlying models 
of HSR in real-life test conditions. Moreover, the HSR models cannot be tested with 
exactly the same stimulus materials as the human listeners in psycholinguistic studies. 
Section 1.2 further elaborates on these issues. It describes the approaches used in ASR to 
recognise speech from the acoustic signal, and it explains the solutions chosen in HSR to 
deal with the fact that models of HSR cannot recognise real speech. 

1.1.2 Narrowing the gap 

Despite the gap that separates the two fields, there is a growing interest in possible cross-
fertilisation (Moore & Cutler, 2001; ten Bosch, 2001). Specific strands in HSR research 
hope to deploy ASR approaches to integrate partial modules into a convincing end-to-end 
model (Nearey, 2001). Nearey (2001) further suggests combining dynamic pattern 
recognition techniques from ASR with computational models of HSR in order to be able to 
use “detailed phonetic models […] as front ends for reasonable models of lexical access”. 
From the point of view of ASR, there is some hope to improve performance by 
incorporating essential knowledge about HSR into current ASR systems (Carpenter, 1999; 
Hermansky, 2001).  

The central goal of this thesis is to narrow the gap that has existed for decades between the 
two research fields of HSR and ASR. Given the central role of word recognition in both 
ASR and HSR, the focus of this thesis is on word recognition. Taking into account the 
shortcomings of current computational models as explained above and the suggestions 
made by researchers in the field of HSR, it is an obvious choice to start the endeavour by 
trying to build an end-to-end model of human word recognition. Following Nearey’s 
(2001) suggestion, we do so by using techniques from the field of ASR. The issues that 
need to be tackled in building such an end-to-end model of HSR using techniques from 
ASR are described in detail in Section 1.3. Finally, Section 1.4 provides an overview of the 
remaining chapters of this thesis, in which the solutions we suggest for dealing with these 
issues are described. But, first, background information on the two research fields is 
presented. 
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1.2 Research approaches 

1.2.1 Human word recognition 

To investigate the properties underlying the human speech recognition process, HSR 
experiments with human subjects are usually carried out in a laboratory environment. 
Subjects are asked to carry out various tasks, such as: 

Auditory lexical decision: Spoken words and non-words are presented in random order 
to a listener, who is asked to identify the presented items as a word or a non-word 
(Goldinger, 1996).  

• 

• 

• 

• 

Phonetic categorisation: Identification of unambiguous and ambiguous speech sounds 
on a continuum between two phonemes (McQueen, 1996).  
Sequence monitoring: Detection of a target sequence (larger than a phoneme, smaller 
than a word), which may be embedded in a sentence or list of words/nonwords, or in a 
single word or nonword (Frauenfelder & Kearns, 1996). 
Gating: A word is being presented in segments of increasing duration and subjects are 
asked to identify the word being presented and to give a confidence rating after each 
segment (Grosjean, 1996). 

In these experiments, various measurements are taken, such as reaction time, error rates, 
identification rates, and phoneme response probabilities. Based on these measurements, 
theories about specific parts of the human speech recognition system are developed or 
refined. To put the theories to further test, they are implemented in the form of 
computational models for the simulation and explanation of HSR. Various models of HSR 
(e.g., Luce et al., 2000; Marslen-Wilson, 1987; McClelland & Elman, 1986; Norris, 1994) 
have been developed that are capable of simulating experimental data, obtained through, 
for instance, word recognition and phoneme perception experiments. In this thesis, the 
focus is on the process of word recognition. One of the most powerful models for the 
simulation and explanation of human word recognition is the Shortlist model (Norris, 
1994). 

Most data on human word recognition involve measures of how quickly or accurately 
words can be identified. A central requirement of any model of human word recognition is, 
therefore, that it should be able to provide a continuous measure (usually referred to as 
‘activation’ or ‘word activation’) associated with the strength of different lexical 
hypotheses over time. During the human speech recognition process word hypotheses that 
overlap in time compete with each other. This process is referred to as (lexical) 
competition. The activation of a word hypothesis at a certain point in time is based on its 
initial activation and the inhibition caused by other activated words. The word activation 
score, then, can be compared to the performance of listeners in experiments where they are 
required to make word-based decisions (such as the above-described auditory lexical 
decision experiments). 
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There are two major theories of human speech recognition. The first theory, referred to as 
‘episodic’ or sub-symbolic theory, assumes that each lexical unit is associated with a large 
number of stored acoustic representations (e.g., Goldinger, 1998; Klatt, 1979, 1989). On 
the other hand, symbolic theories of human speech recognition say that human listeners 
first map the incoming acoustic signal onto prelexical representations, e.g., in the form of 
phonemes, after which the prelexical representations are mapped onto the lexical 
representations (e.g., Gaskell & Marslen-Wilson, 1997; Luce et al., 2000; McClelland & 
Elman, 1986; Norris, 1994). The speech recognition process in symbolic theories thus 
consists of two levels: the prelexical level and the lexical level. A central requirement of 
symbolic computational models is thus a segmental representation of the speech signal. 
However, as explained before, most HSR models lack a module that converts the speech 
signal into a segmental representation; instead they use a handcrafted ‘error-free’ linear 
representation of the input – in the sense that the input always perfectly aligns with the 
segmental representations of the words in the lexicon. Thus in effect, in most symbolic 
computational models, the process of creating the prelexical representations is only 
assumed, and not physically present. Only the output of the prelexical process is available 
in the form of the handcrafted segmental representation of the speech signal. 

This shortcoming could, however, be solved if such an ‘error-free’ representation of the 
speech signal could be generated automatically. The handcrafted input could then be 
replaced by the ‘real’ representation of the speech signal. But is it likely that such an ‘error-
free’ representation of the speech signal can be (automatically) created? There are reasons 
to believe that no unique segmental representation of the speech signal exists. One of these 
reasons is that no absolute truth exists as to what phones a person has produced; therefore, 
it is not possible to obtain a unique and ‘true’ symbolic transcription  of a given speech 
signal (Cucchiarini, 1993). Furthermore, studies in phonetics “suggested that the more 
detailed a transcription is, the less reliable it tends to be” (Ball & Rahilly, 2002). This 
statement is backed-up by experiments by, for instance, Shriberg et al. (1984). Shriberg et 
al. report on a consensus transcription procedure. Two experienced transcribers created a 
narrow consensus transcription of continuous speech samples of 72 children. These speech 
samples consisted of approximately five minutes of free conversation. Six weeks after the 
last tape had been transcribed they created a new narrow consensus transcriptions of 25 
utterances for each of eight randomly selected speech samples. Four weeks later, another 
eight speech samples were randomly selected and transcribed. Comparing the original 
consensus transcriptions and the retest transcriptions segment by segment yielded an 
agreement of 68%. However, the percentage agreement went up to 76% when the diacritics 
were removed from the transcriptions. So, it seems unlikely that the ideal segmental 
representation of the speech signal can be generated. But how would a symbolic 
computational model of HSR behave if the best possible (automatically generated) 
segmental representation were used? The answer (presented in Chapter 2) is as to be 
expected: it does not perform well.  
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The Shortlist model and the theory underlying it 
The research presented in this thesis is based on Shortlist and more specifically the theory 
underlying the Shortlist model. Shortlist aims at simulating and explaining the lexical 
processes in word recognition. Like all other HSR models, Shortlist is a partial model – it 
recognises words given a sequence of phoneme symbols. Chapter 3 details the theory 
underlying the model, but for the sake of clarity, a summary of that theory is given here: 

• Prelexical and lexical levels: The incoming acoustic signal is mapped onto prelexical 
representations, after which the prelexical representations are mapped onto the lexical 
representations. 

• Autonomous model: Autonomous models only have a feed-forward flow of 
information; this is also referred to as ‘bottom-up’ processing. This means that the 
processing at the phoneme level is totally unaffected by lexical-level processing: 
Information only flows from the phonemes to the lexical level; no information flows 
back from the lexical level to the phonemes. 

• Time-shift invariance: A word can start at any point in time.  
• Competition: At the lexical level time-overlapping words compete with each other. 
In order to implement a theory in the form of a computational model of human word 
recognition, assumptions have to be made. In Shortlist, these are the following:  

• Input: The input consists of a single string of discrete phoneme symbols. 
• Output: The output consists of the activations of all words that were activated by the 

input.  
• Phoneme mismatch: When a phoneme is presented in the input that is not in 

correspondence with a phoneme in an activated word, this word’s activation is 
decreased. 

• Inhibition: During lexical competition, word nodes in a neural network are activated in 
proportion to their match to the input. Words that derive their evidence from the same 
input phonemes are connected together via inhibitory links. The word with the highest 
activation will therefore inhibit words with lower activation during competition. 

• Recognition: The word with the highest activation is recognised. 

Word recognition in Shortlist is realised as follows. Each incoming phoneme is matched 
against the phonemic representations of all words in the internal lexicon. Using an 
exhaustive lexical search, a candidate list is built containing the words that are roughly 
consistent with the bottom-up input. This list of candidates is called a shortlist; hence, the 
name Shortlist. The bottom-up activation of each candidate word is determined by its 
degree of fit with the input. If a phoneme in a word matches the input, the word activation 
is increased by 1, for each mismatching phoneme the word activation is reduced by 3 (in 
the default operation mode of the model). Subsequently, the candidate words are wired into 

 6 



                                                                                                               Introduction 

 

a neural network. The activated words in the shortlist compete with each other by means of 
a combined effect of their initial activation and the inhibition by other activated words. 
This word-word inhibition is proportional to the number of phonemes by which the words 
overlap. In Figure 1-1, the words connected by arcs compete with each other. Ultimately, 
the word with the highest activation is recognised. 

 

Figure 1-1. The pattern of inhibitory connections between candidates produced by 
presentation of /kætlg/ (taken from Norris, 1994). 

catalog 

cattle

acat

at 

log 

 

Shortlist has been successful in the simulation of results obtained in various behavioural 
studies, such as studies related to the segmentation of a speech stream in words (Norris, 
1994; Norris et al., 1997) and lexical competition (McQueen et al., 1994). 

1.2.2 Automatic speech recognition 

The aim of ASR research is to build an algorithm that is able to recognise speech utterances 
automatically, under a variety of conditions, with the least possible number of recognition 
errors. Figure 1-2 shows a schematic representation of the steps of the automatic speech 
recognition process and the information that is needed for it. The speech recognition 
process is the search for the (hopefully) correct word (sequence) in a search space 
effectively spanned by the acoustic models, the language models, and the lexicon. 

 

 

 

 

 

Acoustic 
models 

Feature 
representation

Recognition 

Language 
model

Lexicon 

...output...
Acoustic pre-

processing 

Figure 1-2. A schematic representation of the speech recognition process. 
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Chapter 1    

The input of an automatic speech recogniser consists of an acoustic signal. During speech 
recognition, the speech signal is, first, passed through the acoustic pre-processor where 
feature vectors are extracted from the speech signal. Subsequently, the features, 
representing the acoustic signal, are matched with the succession of acoustic models 
associated with the items, usually words, in the internal lexicon. For each observation, the 
degree of fit between the observation and each of the models is determined. Ultimately, the 
word that belongs to the sequence of acoustic models for which the degree of fit is best is 
hypothesised.  

In the match, only those sequences of acoustic models are used that correspond with the 
words in the lexicon; words not included in the lexicon cannot be recognised. It is 
important to point out that a standard ASR system is not capable to decide that a stream of 
feature vectors belongs to a non-word: an ASR system will always come up with a solution 
in terms of the items that are available in the lexicon1. Each word in the lexicon is built 
from a limited number of units, e.g. phonemes or syllables. The type of units used to 
describe the words in the lexicon is identical to the type of units represented by the acoustic 
models. So, if the acoustic models represent phonemes, the units used to describe the words 
in the lexicon are also phonemes. The language model incorporates the linguistic 
information that can be learned from the occurrences and co-occurrences of words in a 
training set.  

For each path, i.e., a (sequence of) word(s), through the search space, a score is calculated. 
At the output of the ASR system, the path with the best score is given. In addition, also a 
word graph can be constructed, which is a compact and efficient representation for storing 
an N-best list. It contains those path hypotheses whose scores are closest to the best scoring 
path. 

For recognition, most ASR systems use an integrated search: all information (from the 
acoustic model set, lexicon, and language model) is used at the same time. The likelihood 
of a number of hypothesised word sequences (paths) through the complete graph is 
computed, and then a backtrack is performed to identify the words that were recognised on 
the basis of the hypothesis with the highest score at the end of the utterance (or the 
hypothesis with the highest score after a number of recognised words, depending on the 
length of the influence of the language model). (For more information on automatic speech 
recognition systems and search, cf., Jelinek (1997)). 

ASR systems are usually evaluated in terms of accuracy, the percentage of the input 
utterances that is recognised correctly, or in terms of word error rate (WER): 

                                                
1 It is possible to configure an ASR system such that it rejects inputs if the quality of the match with the 
words in the vocabulary is below a certain minimum. However, this is not the same as detecting that the 
input speech contains non-words. 
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where #insertions, #deletions, and #substitutions, are the number of inserted, deleted, and 
substituted words, respectively, and the #words denotes the number of words in the 
reference transcription. 

One-stage vs. multi-stage recognition systems 
Automatic speech recognition can be performed in a single step (or stage) or in multiple 
subsequent stages. In the past, multi-stage ASR systems have been built in which a first 
stage recogniser converted the acoustic signal into an intermediate representation (of, for 
instance, phones) after which the second stage recogniser mapped the intermediate 
representation onto lexical representations (e.g., Klatt, 1977). However, the success of this 
type of systems was limited. One of the major problems of this approach was that it was 
very difficult to compute posterior probabilities for the elements in the output of the first 
stage. In the absence of those probabilities, ‘hard decisions’ about the identity of the 
phones needed to be made, introducing a lot of errors in the representation, since the first 
stage appeared far from perfect. Therefore, most ASR systems that were built in the past 
decades directly map the acoustic signal onto the lexical representations. In this way, the 
problem with the ‘hard decisions’ is removed, or at least delayed up to a point later in time. 

However, lately, a new trend in ASR is to go back to the idea of multi-stage ASR systems. 
The difference is that this time the intermediate representation of the speech signal is not a 
deterministic string of phones, but a phone graph, which is a probabilistic representation of 
the speech signal. The advantage of probabilistic phone graphs over deterministic phone 
strings is that no hard decisions about the identity of the phones in the phone graph need to 
be made. It was found that although the correct solution is not always on the first-best path 
through the phone graph, it often does occur in the top N best paths available in the phone 
graph. It can therefore be worthwhile to divide the recognition process (again) into multiple 
stages. The advantage of such multi-stage recognition systems is that in a second (or 
subsequent) recognition step more detailed information can be used, for instance by 
integrating more powerful language models (e.g., morphological, morpho-phonological, 
morpho-syntactic, and domain knowledge) into the system (see, e.g., Demuynck et al., 
2003).  

In a second type of multi-stage recognition system, the recogniser is adapted towards the 
task, the utterance, or language use on the basis of the result of the first recognition step. 
This result is usually in the form of a word graph or word N-best lists. After the first stage, 
a new recognition attempt is carried out, but this time with a tuned recognition system. One 
way of tuning the second stage of such a multi-stage recognition system is to adapt the 
lexicon of the second recognition step such that it is more tailored to the utterance to be 
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recognised (see, e.g., Geutner et al., 1999; Ohtsuki et al., 2004; Tang et al., 2003). The 
recognition result of the first and second stage are thus of the same type, i.e., words, 
whereas in the type of multi-stage recognition system described above the segmental 
representations of the acoustic signal produced by the first and second stages are usually 
not of the same type, e.g., phones after the first step and words after the second.  

Creating intermediate lattice representations of the speech signal is also used in the field of 
spoken document retrieval. Instead of decoding the acoustic parameter file every time a 
request is made, a phone or word lattice is created from the acoustics, and a search 
mechanism searches for the query terms in the stored lattice. This procedure is less time 
consuming, and it reduces the computational load. For instance, the multi-stage system 
described by Cardillo et al. (2002) has a first stage that creates a representation of the 
acoustic signal in the form of a phone lattice which is stored. Subsequently, for each query, 
a search through this phone lattice on the basis of a lexicon is carried out. Their multi-stage 
system is thus similar to the multi-stage system described at the start of this section. 

The automatic phone recogniser as an acoustic front-end 
ASR systems do not adhere to a theory of HSR like computational models of human 
speech recognition do. Thus, a standard ASR system cannot be used as a computational 
end-to-end model of human speech recognition. But an ASR system is able to make a 
segmental representation of the speech signal, making it a seemingly logical step to use an 
adapted ASR system as the missing front-end that converts the acoustic signal into a 
symbolic representation in current HSR models. To that end, an ASR system is built that 
does not recognise words, but recognises phones. Such an ASR system is called an 
automatic phone recogniser (APR). The lexicon of the APR only contains the phones of the 
language, and its ‘language model’ now incorporates the occurrence and co-occurrence 
frequencies of phones. An APR functions the same as a standard ASR system: at the input, 
the acoustic signal is presented, and at the output a segmental representation of the speech 
signal is produced in the form of the first-best hypothesis and a graph. But, in the case of an 
APR, the first-best hypothesis and the graph consist of sequences of phones instead of 
words. 

1.3 The issues 
Several issues need to be resolved in order to build an end-to-end model of HSR using 
techniques from ASR. In this section, the main issues are explained in detail.  

1.3.1 The input representation 

As explained in Section 1.2, in Shortlist a handcrafted segmental representation of the 
speech signal is presented at the input. Thus, similar to other symbolic computational 
models of HSR, in Shortlist the process of creating the prelexical representations is only 
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assumed, and only the output of the prelexical level is available in the form of the 
handcrafted segmental representation of the acoustic signal.  

When building our end-to-end model of human word recognition, we, of course, do have to 
build the prelexical level. This prelexical level, thus, should create the segmental 
representation of the speech signal, preferably ‘error-free’, i.e., the input should perfectly 
align with the segmental representations of the words in the lexicon.  

However, speakers usually do not adhere to the canonical pronunciations of words when 
talking. Especially in spontaneous speech, speech sounds may be reduced, deleted, 
inserted, and substituted compared to the ‘canonical’ pronunciation. As already indicated in 
Section 1.2.1, it is thus unlikely that a segmental representation of the speech signal can be 
created that perfectly aligns with the segmental representations of the words in the lexicon, 
especially since no top-down information about the phonemic representations of the words 
can be used (Shortlist is an autonomous model). 

Based on the finding from ASR that the correct path often features in the top N best paths 
in a (phone) graph, it is a logical step in our search for an end-to-end model of HSR to 
investigate whether replacing the one-dimensional input representation used by current 
HSR models by a representation of the speech signal in the form of a probabilistic phone 
graph will bring us closer to our goal of a working end-to-end model of HSR. This 
approach is described in Chapters 2 and 3. 

1.3.2 Incremental vs. integrated search 

Most mainstream ASR systems use some kind of integrated search algorithm: humans, on 
the other hand – at least according to obvious behaviour and mainstream psycholinguistic 
theory on human speech perception – seem to compute an on-line activation measure for 
words as the speech comes in (and presumably make a decision as soon as the activation of 
a word is high enough; see also Chapter 3). In order to model the human speech 
recognition process, computational models of HSR should thus be able to provide word 
activation scores over time, as the input comes in. So, it should be possible for words to be 
recognised before their acoustic realisation is complete. In order for an end-to-end model 
based on ASR techniques to be able to recognise words while the speech comes in, the 
traditional integrated search cannot be used. A different type of search, one that 
hypothesises words while the input comes in, e.g., an incremental search, needs to be 
implemented. 

The capability of recognising words on the basis of their initial part helps humans in 
detecting and processing self-corrections, broken words, repeats, etc. (Stolcke et al., 1999). 
This makes it worthwhile to investigate whether an ASR system using an incremental 
search would be able to perform ‘early recognition’, i.e., recognising a word before the end 
of its acoustic realisation is complete. This is done in Chapter 4. 
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If a word is not present in an ASR system’s lexicon, it cannot be recognised; this will result 
in an error. This problem of out-of-vocabulary (OOV) words is well-known in ASR. One 
possible solution would be to include as many words as possible in the recogniser’s 
lexicon. Very large lexicons do not necessarily pose a problem for ASR systems, but the 
combination with a weak language model usually results in poor performance. If only a 
weak language model is available, one might want to adopt a strategy in which a subset of 
words is selected from the large vocabulary to create a smaller lexicon of most likely 
words. The ability of the incremental search to recognise parts of words can be used for the 
extraction of such subsets of words from a large vocabulary. This approach is addressed in 
Chapter 5. 

1.3.3 Word activations vs. path-based scores 

As explained in Section 1.2, human listeners compute word activation scores, while ASR 
systems calculate path-based scores. When building an end-to-end model of human word 
recognition using techniques from the field of ASR, a way needs to be found to relate the 
path-based ASR scores to the word activation scores in HSR. If a word lies on the first-best 
path, this does give an estimate of the activation of the word but not its precise value. 
Related to this issue, during the human speech recognition process words that overlap in 
time compete with each other. However, in ASR, no active inhibition of words is possible, 
since only path scores are being calculated. These issues are addressed in Chapters 3 and 4. 

The word activation scores as used in HSR and the path-based ASR scores can also be 
regarded as confidence scores: the higher the word activation score, the more likely that the 
word is indeed present in the input. This might make such an activation score a useful 
predictor of early recognition. This is put to the test in Chapter 4. 

1.4 The proposed solutions 
My first attempt in creating an end-to-end computational model of human word recognition 
on the basis of an APR and Shortlist is described in Chapter 2. The end-to-end model was 
tested with the best possible (automatically generated) one-dimensional segmental 
representation that was available. 

Chapter 3 describes the second attempt to build an end-to-end model of HSR. This end-to-
end computational model of human word recognition (based on the theory of Shortlist) is 
called SpeM. In SpeM, the one-dimensional segmental representation is replaced by a 
probabilistic phone graph, and it is completely built using techniques from ASR. In 
addition to being able to use real speech instead of an idealised form of input, this model 
also resembles the speech recognition process in human listeners because of the two-step 
recognition procedure: it has both a prelexical level, at which a segmental representation of 
the speech signal is created, and a lexical level, at which the segmental representation is 
mapped onto lexical representations. 
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The problem that the traditional integrated search in ASR is not able to hypothesise words 
before their acoustic offsets is solved in SpeM by using an incremental search that gives a 
ranked list of the most likely words at each point in time while the input comes in, and thus 
hypothesises words before their acoustic offsets.  

In Chapter 3, I propose a method to convert the path-based scores that are used in ASR 
search methods, and thus also in SpeM, into word-based activation scores. The details of 
the underlying mathematics are presented in Chapter 4. I further explain how these word-
based activation scores can be used for the simulation of the lexical competition process. 

The solutions chosen for the issues described in Section 1.3 make it possible to use the end-
to-end model of human word recognition presented in Chapter 3 as an unconventional ASR 
system: besides doing normal speech recognition, it has the capability of doing recognition 
tasks a human listener can easily perform, but standard ASR systems cannot. In Chapter 4, 
I investigate how SpeM’s incremental search can be used for the task of early recognition, 
i.e., recognising a word before its acoustic offset. I looked for predictors that can be used to 
determine during the speech recognition process whether a word is correctly recognised 
before its acoustic offset. One of the investigated predictors was the word activation score 
calculated by SpeM. 

In Chapter 5, SpeM’s ability of recognising word-initial cohorts is used for dealing with the 
problem of OOV words. A multi-stage recognition system is presented in which a large 
number of OOVs (in the form of city names) exist at the first stage. On the basis of the 
recognition results of the first stage recogniser, SpeM is used to select a subset of city 
names from a larger lexicon containing city names. In the subsequent recognition run, the 
list of words created by SpeM is used as part of the lexicon. The second stage recogniser is 
thus tuned to the task. Presumably, the correct city name is no longer an OOV, thus 
removing the problem of OOVs. 

In summary, the research presented in Chapters 2 and 3 shows the benefit that can be 
obtained by using techniques from the field of ASR for building models of HSR. The 
experiments described in Chapters 4 and 5 show the benefit for ASR of a recognition 
procedure that makes use of key aspects of the human speech recognition process.  

This thesis ends with a chapter in which the findings of the research presented in Chapters 
2 through 5 are discussed and put into perspective. Also, the main conclusions are drawn 
and suggestions for further research are presented.  
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This letter evaluates potential benefits of combining human speech recognition (HSR) 
and automatic speech recognition by building a joint model of an automatic phone 
recogniser (APR) and a computational model of HSR, viz. Shortlist (Norris, 1994).  

Experiments based on ‘real-life’ speech highlight critical limitations posed by some of 
the simplifying assumptions made in models of human speech recognition. These 
limitations could be overcome by avoiding hard phone decisions at the output side of 
the APR, and by using a match between the input and the internal lexicon that flexibly 
copes with deviations from canonical phonemic representations. 

2.1 Introduction 
In this letter, we address speech recognition by making a bridge between two disciplines 
that have little overlap with respect to theoretical framework and experimental paradigms. 
One discipline is automatic speech recognition (ASR), which studies the automatic 
transformation of a speech signal into a sequence of discrete ‘recognition tokens’ 
(commonly words). The main goal in ASR research is to minimise the number of 
recognition errors on a certain test set under specific testing conditions. The second 
discipline is the area of human speech recognition (HSR). In HSR, the conversion from an 
acoustic signal to (a string of) words is studied with a focus on understanding the 
psychological processes underlying human word recognition, e.g. the word perception 
process per se.  

In HSR experiments, the usual stimuli are carefully spoken utterances recorded in noiseless 
environments. On the basis of theories of HSR, several computational models have been 
developed to simulate data from experiments on human speech perception. These models 
compute word activations as the input unfolds over time, where activation can be related to 
the speed and accuracy with which human listeners can recognise words. However, the 
existing computational models of HSR model only parts of the human speech recognition 
process. Typically, one of the missing parts is a module that converts the acoustic speech 
signal into a representation that forms an appropriate input for the models, which almost 
invariably assume some kind of symbolic representation of the speech signal. 

Most experimental studies of HSR are based on read speech; however, in the last few 
years, the focus is shifting towards (more) spontaneous speech. Much more than read 
speech, spontaneous speech is affected by articulatory processes such as assimilation and 
reduction. Since listeners are sensitive to this type of subtle sub-phonemic information (e.g. 
Gow, 2002; see Cutler, 1998, for an overview), and to durational differences in the input 
(Davis et al., 2002), HSR models are now challenged to address the question of how the 
speech signal is mapped onto lexical representations in more detail. This is an area where 
established techniques from ASR could be useful in informing future research. Nearey 
(2001) suggests combining dynamic pattern recognition techniques from ASR with HSR 
models in order to be able to use “detailed phonetic models […] as front ends for 
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reasonable models of lexical access”. Nearey doubts that existing HSR models “will work 
as advertized when attached to real phonetic transduction systems”. 

The present letter presents the results of experiments that put Nearey’s conjecture to the 
test by attempting to make a bridge between the two research areas by studying a combined 
ASR-HSR model (henceforth referred to as ‘joint model’) that can be regarded as an end-
to-end model of human speech recognition. The input for the computational model of HSR 
is provided by an automatic phone recogniser (APR). This HSR model is tested with input 
consisting of extemporaneous, ‘real-life’ speech. 

2.2 The joint model 
The proposed joint model is a first step in the development of an end-to-end model of HSR. 
From the available computational models for human word recognition, we have chosen 
Shortlist (Norris, 1994) to use in the joint model, because it has been successfully applied 
to a wide range of data from studies of HSR.  

The joint model works as follows. The APR decodes a speech signal into a sequence of 
phone symbols; Shortlist takes this sequence as input and generates a sorted word list. 
These processes are discussed in more detail below. 

2.2.1 Automatic phone recogniser (APR) 

For the APR, we trained 36 context-independent (hidden Markov) phone models, one 
silence model, one model for hesitations such as ‘uh’, and one noise model (Scharenborg et 
al., 2002a). The APR decoding is based on a phone loop with optional silence preceding 
and following each phone, and is guided by a phone bigram. The APR output is a purely 
phonemic representation of the acoustic signal – without word boundaries. 

2.2.2 Shortlist 

In its present implementation, Shortlist itself is a two-stage model. In the first stage, the 
input  (i.e., a sequence of phone symbols) is processed from left to right and an exhaustive 
search of the internal lexicon yields a shortlist of word candidates (max. 301 per phone 
position) that roughly match the phonemic input processed so far. The ‘activation’ of the 
words in the shortlist is determined by the ‘degree of fit’ between the phones in the input 
and the string of phones specified in Shortlist’s internal lexicon. For each phone in the 
input that matches the lexicon representation of a word, the word’s activation is increased 
with 1; otherwise the activation is reduced by the mismatch parameter (default value is 3). 
In the second stage – the competition stage – the candidates in the shortlist enter into a 

                                                
1 The number 30 is arbitrarily chosen; the exact value does not have a large effect on the performance of 
the model (Norris, 1994). 
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network where time-overlapping candidates compete with each other. The output consists 
of (a sequence of) the most activated word(s). 

2.3 Material 

2.3.1 Acoustic data 

For training the APR, data from a Dutch telephone corpus (the Dutch Directory Assistance 
Corpus, DDAC) were used (Sturm et al., 2000). DDAC contains telephone calls to the 
Dutch 118 Directory Assistance service. Most utterances consist of either one Dutch city 
name or ‘ik weet het niet’ (‘I don’t know’) pronounced in isolation. Others may also 
contain disfluencies and longer connected speech fragments. From this corpus, an 
independent test set (DDAC-test) of 10,510 utterances comprising 11,523 words was 
selected. 

2.3.2 Lexicons 

The baseline lexicon of Shortlist consists of 2,392 city names and ‘ik weet het niet’ (‘I 
don’t know’). For each word in the lexicon, one unique ‘canonical’ phonemic 
representation was available. 

The psycholinguistic theory underlying Shortlist makes no claim about the manner in 
which humans cope with pronunciation variation. Specifically, there is nothing in the 
theory that promotes the exclusive use of citation forms in the mental lexicon. Therefore, in 
order to deal with pronunciation variation, we created a second lexicon (‘PronVar’) with on 
average 2.6 pronunciation variants per word (Scharenborg et al., 2002a).  

2.4 Experiment I: Baseline 
We investigated the performance of the joint model in a baseline experiment using the 
baseline lexicon. The input for Shortlist consists of the speech utterances of DDAC-test 
transcribed by the APR. The parameter settings of Shortlist are identical to those used in 
Norris (1994). The ‘performance’ of the joint model was tested in terms of the ASR 
benchmarking method of recognition errors, rather than on the psycholinguistic benchmark 
of similarity to human performance. Thus, the performance measure in this study is word 
accuracy: the percentage of utterances for which the reference words (in DDAC-test) 
receive the highest activation value at the output of Shortlist. 

With an accuracy of 23.5%, the performance of the joint model in this baseline experiment 
appears to be quite poor. Since the performance of Shortlist on canonical phone 
representations is close to 100%, this result shows that recognising real-life speech is more 
difficult than recognising ‘perfect’ phonemic transcriptions. An error analysis reveals that 
the model has great difficulty in dealing with reduced forms: the APR output mostly 
comprises fewer (and sometimes also different) phones than the canonical representation 
stored in Shortlist’s lexicon. 
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Two follow-up experiments were carried out. The aim of the experiments was to study the 
possible improvement of the joint model’s baseline performance using two strategies: using 
a lexicon that accounts for pronunciation variation (Experiment II), and adjusting the value 
of the mismatch parameter in Shortlist (Experiment III). 

2.5 Experiment II: Accounting for pronunciation variation 
The second experiment is identical to Experiment I, except that the PronVar lexicon 
(including pronunciation variations) was used. Using PronVar, Shortlist’s performance as a 
speech recogniser – reported in terms of word accuracy – increases substantially with 
16.2% absolute to 39.7%. An error analysis reveals that there are few cases where the 
correct word is in the shortlist, but where a competitor receives a higher final activation. 
This finding suggests that, in the case of non-canonical input, the selection of correct 
lexical candidates into the shortlist is problematic. This problem is addressed in 
Experiment III. 

2.6 Experiment III: Adjusting the mismatch parameter 
Listeners are highly sensitive to any mismatch between input phones and the phonological 
representations of words; a mismatch of a single phonological feature can eliminate all 
signs that a word has been activated (e.g. McQueen et al., 1999). Because of these findings, 
Shortlist weights mismatching information much more heavily than matching information. 
However, a high value of the mismatch parameter could actually impair recognition of real-
life speech considerably, as even quite small deviations from the expected lexical 
representation might make a word unrecognisable.  

 

Table 2-1. Effect of M=3.0 and M=0.0 measured in terms of the accuracy and the 
percentage of utterances for which the correct word was present in the shortlist (% In 
shortlist). Two lexicons are used, viz. baseline and PronVar. 

Baseline lexicon PronVar lexicon Mismatch 
Accuracy (%) In shortlist (%) Accuracy (%) In shortlist (%) 

3.0 23.5 24.3 39.7 42.3 
0.0 32.5 59.5 54.1 76.5 

 

In experiment III, we investigated the effect of ‘cancelling’ the mismatch penalty (M) by 
setting M=0.0 in a test with both lexicons (for a complete account of the experiment, see 
Scharenborg et al., 2002b). Table 2-1 shows the results in terms of the percentage of 
utterances for which the correct word is present in the shortlist (‘In Shortlist’). In addition, 
we report the word accuracy of the joint model on the word recognition task. 
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The first row of Table 2-1 shows the results of Experiment II for reference. As can be seen 
in Table 2-1, using M=0.0 increases the model’s performance with both lexicons compared 
to the default value M=3.0. 

2.7 General discussion 
The aim of the research described in this letter is to build and evaluate an end-to-end 
computational model of HSR – based on a joint model of an APR and Shortlist – that takes 
acoustic recordings of ‘real-life’ speech as input. Real-life speech is characterised by 
pronunciation variation, which leads to non-canonical phonemic representations. In order 
to study the effects of non-canonical input to Shortlist, we carried out three experiments. 
Experiment I was the baseline experiment. In short, Experiment II showed that including 
pronunciation variants in the internal lexicon of Shortlist improves the ability of the joint 
model to deal with real-life input. Experiment III showed that the combination of a 
mismatch parameter value of 0.0 and the use of the lexicon containing pronunciation 
variants is best able to deal with the reduced phonemic forms encountered in real-life 
speech. This combination yields a recognition accuracy of 54.1%, which is more than twice 
the baseline performance.  

The experiments show that a straightforward combination of an APR and Shortlist does not 
yield an end-to-end model of HSR that can deal satisfactorily with real-life input, despite 
the fact that the APR and Shortlist each perform well in their own domains. Apparently, 
one cannot take for granted that a combination of the best models of two sides yields the 
best overall end-to-end model. Perhaps this is not too surprising, since neither system was 
designed with the intention of being interfaced with the other. Nevertheless, these 
experiments illustrate the consequences of some of the simplifying assumptions made in 
Shortlist and other HSR models, and show the extent to which these assumptions need to 
be revised to produce genuine end-to-end models that will be able to deal with the 
pronunciation variation present in spontaneous speech.  

One shortcoming of the joint model is that it makes ‘hard’ decisions both at the level of 
input phones, and in the goodness-of-fit metric used in the search process. Shortlist 
requires a single string of phone symbols as input. This implies that the APR is forced to 
make ‘hard’ decisions about the segmental representation of the speech signal based only 
on the acoustic information. Also for HSR (e.g. Gaskell et al., 1998; McQueen et al., 
1999), data from experiments indicate that human listeners do not make hard decisions 
prior to lexical selection. This problem with Shortlist has been addressed in the Merge 
model (Norris et al., 2000), which is derived from Shortlist. However, the present 
implementation of Merge can handle only very small lexicons. One can eliminate hard 
decisions in the input by representing the speech signal as a segment-based lattice 
containing multiple segment-string hypotheses. The subsequent word search or activation 
algorithm should make the final decision which phones were present by re-ranking the 
activated words or taking the first best.  
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The second level of ‘hard’ decisions involves the word search process in Shortlist. This 
search matches input phone strings to the phone strings stored in the lexicon in a way that it 
is intolerant of deviations from the canonical form of words. This is exactly the problem 
highlighted by Nearey (2001) and is certainly an area where more flexible pattern-matching 
techniques (such as dynamic programming as commonly used in ASR) could play an 
important role in refining computational HSR models. Of course, the resulting refined 
model should still be able to simulate actual data of HSR experiments. 

An important question to be borne in mind when assessing the results of our experiments is 
whether our conclusion would have been radically different had we been able to drive 
Shortlist with the output of a human ‘phone recogniser’ rather than the APR or with the 
output of an APR optimised on the task. Cucchiarini et al. (2001) showed that 
automatically generated transcriptions of read speech are very similar to manual phonetic 
transcriptions created by expert phoneticians. Such transcriptions are to a large extent also 
non-canonical. Thus, transcriptions created by human expert transcribers would cause 
similar problems for HSR models. In Scharenborg et al. (2002b), it is shown that 
optimising the APR settings in order to improve the balance between generating an input 
phone sequence that is close to the signal and at the same time meets the input criteria of 
Shortlist does not improve the performance of the joint model. So, while our experiments 
may not provide a precise quantitative measure of the extent of the problems faced by 
Shortlist, the problems are real nonetheless.  

Finally, we would like to raise an additional point2. A human being is able to identify a 
non-lexical token as a nonword. However, the joint model is not able to classify any input 
as a nonword, since it simply activates the nearest known word. Identification of a nonword 
could be made possible by using an activation threshold: when no lexical token exceeds the 
threshold, the system identifies a nonword. This is one topic for further research. 

2.8 Conclusion 
This letter describes a coupling of an automatic phone recogniser and a computational 
model of human word recognition, viz. Shortlist. The coupling helped to identify aspects of 
the two components of the joint model that need to be improved in order to build a 
comprehensive end-to-end computational model of HSR that is able to deal with real-life 
speech. One of the future research directions is extending the representation of the speech 
signal from a single linear input phone string to a probabilistic phone graph. This allows, in 
a natural way, the postponement of a hard decision to a point later in the word search 
process, which we believe is desirable. A second possibility of improvement lies in 
changing the current word search in Shortlist into a search algorithm based on dynamic 

                                                
2 This issue was raised by one of the anonymous reviewers of an earlier version of this letter. 
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programming techniques. By doing so, deviations from the canonical representations can 
be dealt with in a natural way. 
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Although researchers studying human speech recognition and automatic speech 
recognition share a common interest in how information processing systems (human 
or machine) recognise spoken language, there is little communication between the two 
disciplines. We suggest that this lack of communication follows largely from the fact 
that research in these related fields has focussed on the mechanics of how speech can 
be recognised. In Marr’s (1982) terms, emphasis has been on the algorithmic and 
implementational levels rather than on the computational level. In the present paper, 
we provide a computational-level analysis of the task of speech recognition which 
reveals the close parallels between research concerned with human and automatic 
speech recognition. We illustrate this relationship by presenting a new computational 
model of human spoken word recognition, built using techniques from the field of 
automatic speech recognition that, in contrast to current existing models of human 
speech recognition, recognises words from real speech input. 

3.1 Introduction 
Researchers in the fields of both human speech recognition (HSR) and automatic speech 
recognition (ASR) are interested in understanding how it is that human speech can be 
recognised. It might seem, therefore, that this common goal would foster close links 
between the disciplines. However, while researchers in each area generally acknowledge 
that they might be able to learn from research in the other area, in practice, communication 
is minimal. One barrier to communication might be that the research is often seen as being 
about how humans, or how machines, recognise speech. In one sense, the answers to these 
questions must necessarily be different because of the radical differences in the hardware 
involved (brains vs. computers). However, questions posed at a higher level of analysis 
may well have the same answers in both disciplines. In his book “Vision” (1982), Marr 
argues that complex information processing systems can be described at three different 
levels: the computational, the algorithmic, and the implementational. Computational-level 
descriptions focus on specifying both what functions a particular information processing 
system must compute, and why those computations are required to achieve the goals of the 
system. In contrast, the algorithmic and implementational levels address the question of 
how computations are performed. The algorithmic level specifies the algorithms and 
representations involved in the computations, while the implementational level is 
concerned with how representations and algorithms can be realised physically. From an 
information processing perspective, Marr suggests that the computational level is the most 
important. Although speech recognition in humans and machines is implemented in very 
different ways, at the computational level humans and machines must compute the same 
functions, as both must perform the same task. Marr himself suggests that a failure to 
distinguish between what and how questions has hampered communication between 
disciplines such as artificial intelligence and linguistics. Exactly the same problem seems to 
prevent communication between HSR and ASR. 

 24 



  How should a speech recogniser work? 

Here, we attempt to construct a computational analysis of the task of recognising human 
speech. In presenting this analysis, we relate the computational level to the different 
algorithms used in ASR and HSR. Although ASR uses vocabulary like dynamic 
programming and pre-processing, whereas HSR is described in terms of lexical 
competition and auditory perception, we show that most of these terms have direct 
homologues in the other domain.  

As a concrete illustration of the parallels between HSR and ASR we present a new model 
of HSR constructed using techniques from the field of automatic speech recognition. This 
new model, called SpeM, can be considered to be an implementation of the Shortlist model 
(Norris, 1994) with one important difference from Shortlist: SpeM can recognise real 
speech. 

3.1.1 A common goal 

In HSR research, the goal is to understand how we, as listeners, recognise spoken 
utterances. We are continually confronted with novel utterances that speakers select from 
the infinity of possible utterances in a language. These utterances are made up from a much 
more limited set of lexical forms (words or perhaps morphemes). The only way a listener 
can understand the message that is conveyed by any given utterance is thus to map the 
information in the acoustic speech signal onto representations of words in their mental 
lexicon, and then, on the basis of stored knowledge, to construct an interpretation of that 
utterance. Word recognition is therefore a key component of all HSR models. 

Word recognition is also a major focus of research in the field of ASR. Although speech-
driven systems may have many higher-level components (e.g., for semantic interpretation), 
these components, just as for human listeners, require input from sufficiently accurate and 
efficient word recognition. Much research effort in ASR has therefore been put into the 
development of systems that generate reliable lexical transcriptions of acoustic speech 
signals.  

Given the centrality of word recognition both in human speech comprehension and in ASR 
systems, we will limit the present discussion to a computational analysis of the word 
recognition process itself. An account of word recognition at Marr’s computational level of 
description will apply equally well to computer speech systems as to human listeners. 
Whether the speech recogniser is human or machine, it still has the same computational 
problem to solve. The principal question we will try to answer, therefore, is this: What 
computations have to be performed in order to recognise spoken words? 

3.1.2 Human speech recognition 

Explanatory theories in HSR have generally focussed on quite specific issues such as 
acoustic variability (e.g., Elman & McClelland, 1986; Stevens, 2002), the lexical 
segmentation problem (e.g., Norris, McQueen, Cutler & Butterfield, 1997), and the 
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temporal constraints on the word recognition process (e.g., Marslen-Wilson, 1987; 
Marslen-Wilson & Welsh, 1978). Many of the more influential psychological models have 
been implemented as computational models (e.g., Shortlist, Norris, 1994; TRACE, 
McClelland & Elman, 1986; and the Neighborhood Activation Model, Luce & Pisoni, 
1998), and each of these models has had success in simulating important empirical data. 
However, none of these models attempts to supply a complete account of how the acoustic 
signal can be mapped onto words in the listener’s mental lexicon. Each deals only with 
particular components of the speech recognition system, and many parts of the models 
remain unspecified. This is often for the very good reason that there is no constraining data, 
or no a priori reason to prefer one implementation to another. That is, these are primarily 
piece-meal approaches; there are no grand unified theories accounting for all aspects of 
human spoken word recognition. As a consequence, no matter how well a model may be 
able to simulate the available psychological data, it is difficult to assess whether the 
assumptions embodied in the model are actually consistent with an effective complete 
recognition system. For example, in Shortlist, the simplifying assumption is made that the 
word recognition process receives a sequence of discrete phonemes as input (Norris, 1994). 
Could such an assumption really hold in a fully functioning recogniser? More importantly, 
if this simplifying assumption were abandoned, would it have implications for the way 
other components of the model work? In the context of a restricted model it is difficult to 
ascertain whether many of the assumptions in these models are plausible. It is therefore 
necessary to step back from detailed explanations of particular psycholinguistic data sets, 
and ask, following Marr (1982), how well HSR models address the computational 
problems that must be solved for successful word recognition. 

3.1.3 Automatic speech recognition  

In ASR research, it is impossible to avoid confronting all aspects of word recognition 
simultaneously, such as speaker accents, speaking style, speaking rate, and background 
noise. The success of a recogniser is generally measured in terms of its accuracy in 
identifying words from acoustic input. Mainstream ASR approaches are usually 
implementations of a specific computational paradigm (see below for details), 
unencumbered by any considerations of psychological plausibility. An ASR system must 
be able to recognise speech tolerably well under favourable conditions, but nothing in the 
behaviour of such a system needs to map onto any observable human behaviour, such as 
reaction times in a listening experiment. Similarly, the representations and processes in 
ASR systems need not be psychologically plausible; all that matters is that they work. 
Consequently, any practical ASR system is unlikely to be a candidate for a psychological 
theory. 
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3.1.4 Summary 

In a sense, therefore, we have two complementary models of speech recognition. HSR 
models explain at least some human behaviour, but often leave a lot to the imagination 
when it comes to a detailed specification of how the recognition system would actually 
perform the task of recognising spoken words with the acoustic signal as starting point. In 
contrast, ASR models can recognise speech, but offer little in the way of explaining human 
behaviour. HSR and ASR are however not complementary in the set-theoretic sense of 
being non-overlapping. For either type of model to be a success, it has to be consistent with 
a computational level description of the problem of recognising speech. In the following 
section, therefore, we present an analysis of the word recognition process at the 
computational level, and discuss how both HSR and ASR systems have dealt with different 
aspects of the word recognition problem. We thus try to bridge the gap that exists between 
HSR and ASR (Moore & Cutler, 2001) by linking them at the computational level. 

3.2 Computational analysis of word recognition 

3.2.1 Prelexical and lexical levels of processing 

Two acoustic realisations of the same word, or even the same sound, are never identical, 
even when both are spoken by the same person. These differences are due to factors such as 
speaker-dependent characteristics (e.g., vocal tract length, gender, age, speaking style, and 
emotional state), phonological context (e.g., sounds appearing at different places within a 
syllable or word are pronounced differently), coarticulation processes, and prosody. 
Furthermore, speakers usually do not adhere to the canonical pronunciation of words when 
talking; speech sounds may be reduced, deleted, inserted, and substituted. The resulting 
pronunciations of those words are often referred to as pronunciation variants. The speech 
recogniser must be able to accommodate this variability. Humans and computers are thus 
faced with the task of mapping a highly variable acoustic signal onto discrete lexical 
representations (such as words). We will refer to this as the ‘invariance problem’ (see, e.g., 
Perkell & Klatt, 1986). What kind of algorithms and representations could perform the 
computations required to solve this problem? 

One possible solution to the invariance problem is to assume that each lexical unit is 
associated with a large number of stored acoustic representations, and that these 
representations cover the normal variability observed in the signal (e.g., Goldinger, 1998; 
Klatt, 1979, 1989). In the HSR literature, theories that rely on storing representations of 
each encounter with a word are often called ‘episodic’ theories. Episodic theories of lexical 
organisation have been successful in explaining experimental data showing that human 
listeners are able to remember details of specific tokens of words that they have heard, and 
that such episodic memories for words influence subsequent speech processing (see, e.g., 
Goldinger, 1998). However, the most obvious limitations of episodic models, especially if 
they refer to entire words, follow from their inefficiency compared to models using sub-
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lexical representations. Learning to recognise a word reliably will require exposure to a 
large number of acoustic realisations of that particular word. That is, a model that simply 
stores multiple episodes of words has to learn each word independently. Nothing the model 
learns about recognising one word will make it any better at recognising previously 
unencountered words1. 

A similar issue of generalisation occurs across speakers. It is rather unclear how an 
episodic word recognition system could robustly recognise speech produced by a new 
speaker with unusual speech characteristics (e.g., a speaker of an unfamiliar dialect, or a 
speaker with a speech impediment) without learning new representations for each new 
word that that speaker utters. Even if the new (unknown) speaker differs from known 
speakers in a completely systematic and predictable manner, for example by consistently 
pronouncing one particular phoneme in an unusual way, this systematicity cannot easily be 
exploited to help recognise words spoken by the new speaker. In order to take account of 
the systematicity in pronunciation an episodic model would first of all have to be able to 
analyse both the input and the episodic lexical representations in terms of their sublexical 
components, and then to modify the episodic representations of all words accordingly. 
These modified representations would then no longer correspond to any previously 
encountered episode. However, human listeners can rapidly adapt to a new speaker after 
exposure to only a few words. Norris et al. (2003) have shown that listeners can quickly 
learn that a speaker produces a particular phoneme in an unusual manner; moreover, 
McQueen et al. (in preparation) have shown that this knowledge generalises to the 
processing of new words not yet heard from that speaker. Such learning seems to require a 
more abstract level of representation of speech sounds, at a prelexical level of processing. 
Adjustments made in response to idiosyncratic speech at this level of processing would 
allow generalisation to novel words. Models with fully episodic lexical representations, 
however, lack phonologically abstract prelexical representations. 

Although there is no doubt that listeners can retain very detailed memories of the acoustic-
phonetic properties of individual word tokens, this episodic information cannot support the 
robust generalisation to new words and speakers shown by human listeners. In contrast, 
HSR models that rely primarily on abstract representations (such as phonemes or features) 
are able to generalise to new words and speakers. A drawback to this type of theory, 

                                                
1 It is well known that episodic models can form abstractions (e.g., Hintzman, 1986). This type of 
generalisation, however, applies to new tokens of categories that have previously been presented to the 
model (e.g., new tokens of previously presented words), and not to novel categories (e.g., previously 
unencountered words). We are therefore not arguing that episodic models are completely unable to 
generalise. Nevertheless, they are unable to take advantage of what they have learned about the set of 
words in their previous experience in recognising a novel word. 
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however, is that they have difficulty explaining how details of specific tokens of words 
heard and remembered by human listeners can influence subsequent speech processing.  

Furthermore, the use of abstract phonological representations at a prelexical level of 
processing, that is, one that mediates between low-level auditory processing and higher-
level lexical processing, helps to address the invariance problem. Prelexical representations 
such as features, phonemes, or syllables would provide a means of modelling the acoustic-
phonetic information in the speech signal in terms of a limited number of sub-word units, 
and thus offer the possibility for a more efficient coding of the variability in the signal than 
whole-word episodic models. For example, information about the variability associated 
with the stop consonant [t] could be associated with a single phonemic representation of 
that consonant (or perhaps representations of a small number of allophones), rather than 
with the lexical representations of all words containing [t].  

Because of the listener’s ability to generalise over new words and speakers, most HSR 
word recognition models therefore assume that there is some kind of prelexical level. The 
exact form of the representations at the prelexical level is still the topic of extensive 
research and debate (see McQueen, 2004, for a review) – in fact, this is arguably the most 
important question in current HSR research. In the absence of a clear answer to this 
question, different models make different assumptions about the form that prelexical 
representations take, for example: phonemes in Shortlist (Norris, 1994); acoustic-phonetic 
features and phonemes in TRACE (McClelland & Elman, 1986); features in the Distributed 
Cohort Model (DCM; Gaskell & Marslen-Wilson, 1997); and context-sensitive allophones 
in PARSYN (Luce et al., 2000).  

ASR solutions to the invariance problem in large part parallel those proposed in HSR. 
Some ASR models have close parallels to episodic models of HSR. In such models, each 
word is associated with a (large) number of acoustic templates, and it is assumed that these 
templates cover the variability observed in the signal. Speaker verification by spoken 
signatures is often based on the processing of a limited number of acoustic word templates 
(Furui, 1996). For each individual speaker, a few speech samples corresponding to specific 
words (e.g., spoken passwords, or spoken signatures) are stored, and every time a new 
speaker is encountered, new speech samples for each word of that new speaker are 
recorded and stored. However, this kind of approach is not practical when the recognition 
system is intended to be used by many people or for large vocabularies: Adding new 
speech samples for each new speaker is often not feasible.  

An alternative ASR approach to the invariance problem is to build sub-word statistical 
models that encode the expected variation in the signal. These sub-word models could in 
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principal represent several types of speech segments (e.g., phones2, syllables, diphones, or 
triphones). In the lexicon used by the ASR system, each word has one or more 
representations (i.e., the canonical representation plus possibly pronunciation variants) 
coded in terms of those sub-word units. Most mainstream mid- and large vocabulary ASR 
systems are based on statistical phone models (see, e.g., Juang & Furui, 2000; Lesser et al., 
1975; Rabiner & Juang, 1993).  

In developing such ASR systems, there are two obligatory steps. First, in the front-end, a 
mapping is made from the raw speech signal to so-called features (i.e., numerical 
representations of speech information). The most important function of these features is to 
provide a relatively relevant, robust, and compact description of the speech signal. Ideally, 
the features would preserve all information that is relevant for the automatic recognition of 
speech, while eliminating irrelevant components of the signal such as those due to 
background noise. These features describe spectral characteristics such as the component 
frequencies found in the acoustic input and their energy levels. Second, in the acoustic 
modelling stage, an acoustic model is created for each recognition unit (e.g., each phone). 
Such an acoustic model usually consists of a sequence of hidden Markov model (HMM) 
states (or artificial neurons in the case of an artificial neural network). For an introduction 
on HMMs, the reader is referred to Rabiner & Juang (1993). 

 

b3 b2   b1 

a24a13

a12 a23 a34

a33a22a11

Figure 3-1. A graphical representation of a Hidden Markov Model consisting of three 
states. 

 

                                                
2 A phone is the smallest identifiable unit found in a stream of speech that can be transcribed with an 
IPA symbol. A phoneme is the smallest contrastive phonological unit in the sound system of a 
language. 
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Figure 3-1 shows a graphical representation of an HMM consisting of three states 
(indicated by the circles in Figure 3-1). Each state describes a specific segment of speech 
using the features that were computed during the feature extraction process. These feature 
vectors are clustered together and the probability of any given cluster is then described in 
terms of probability density functions (pdfs; indicated as b in Figure 3-1). For example, the 
acoustic model for a particular phone might encode the expected spectral variability that 
occurs when that recognition unit is spoken in the context of different neighbouring 
recognition units or when people with different regional accents produce that specific 
recognition unit. The pdfs are estimated over all acoustic tokens of the recognition unit in 
the training material. Once trained, the acoustic model can be used to derive an estimate of 
the probability that a particular stretch of signal was generated from the occurrence of a 
particular recognition unit (P(W|X), where P denotes the probability, W is the recognition 
unit, and X is the acoustic model of the recognition unit). The variability in duration found 
in the speech signal is modelled by a set of transition probabilities (indicated by a in Figure 
3-1), namely: 

• self-loop (Figure 3-1: ai,i): remain in the current state; 
• next (Figure 3-1: ai,i+1): jump to the next state; 
• skip (Figure 3-1: ai,i+2): skip one state. 

A very common procedure for training acoustic models maximises the likelihood that a 
given acoustic signal has been generated by a given acoustic model, more precisely, it 
maximises P(X|S) (in which P denotes the probability, S is the speech model, and X is the 
acoustic signal). The procedure for training acoustic models is such that sequences of 
acoustic models corresponding to sequences of speech segments are trained simultaneously 
instead of one acoustic model at a time. The trained acoustic models can then be used for 
recognition. During word recognition, the incoming speech signal is matched against the 
acoustic representations of the words in the lexicon. 

ASR systems with sub-word models have the same advantage as HSR models with 
prelexical representations: New words can be learned simply by learning the appropriate 
sequence of sub-word models, and such knowledge will automatically generalise to new 
tokens of the word. In fact, once a sufficient range of subword models has been trained, 
new words can be recognised simply by providing a phonemic transcription of those words. 
No prior exposure to the new words is required. This is exactly how commercial systems 
such as IBM’s Via Voice and ScanSoft’s Dragon Dictate work. The recogniser only 
requires exposure to a representative sample of speech in order to achieve accurate 
recognition of a large vocabulary. 

This comparison of HSR and ASR approaches to the invariance problem already shows 
that there are strong similarities at the computational level between the two domains. 
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Because both HSR and ASR researchers are attempting to solve the same computational 
problem, it should come as no surprise that they have developed similar solutions.  

Although we argued above that for successful speech recognition, a prelexical level is 
needed in order to effectively solve the invariance problem, it is critical to note that the 
search algorithms in mainstream ASR approaches are generally indifferent to the level of 
representation or size of the models involved. In the search process, the distinction between 
prelexical and lexical levels is almost absent. The search for the sequence of words that 
best matches the signal is usually performed by searching for the best path through a 
lattice. The left hand panel of Figure 3-2 shows an example of a word-based lattice. During 
the search, the lattice is built dynamically. At the lowest level, the nodes in the lattice are 
the individual HMM-states (see also Figure 3-1). The connections (or the allowed 
transitions) between the nodes are fully specified by the combination of HMM model 
topologies (i.e., the number of states present in the HMM of each sub-word unit), the 
structure of the word in the lexicon in terms of the sub-word units, and, if applicable, a 
language model that specifies the syntax, that is, the allowed (possibly probabilistic) 
ordering of the words in the output of the speech recogniser. This means that in this lattice, 
the information on the level of probabilistic acoustic detail up to the level of probabilistic 
linguistic information about syntax is integrated in a single structure, which is used to 
decode the speech signal in terms of words. A lattice has one begin node (denoted ‘B’ in 
Figure 3-2) and one end node (denoted ‘E’ in Figure 3-2). There are multiple paths from 
‘B’ to ‘E’ following the direction of the arrows, and, given an utterance as input, each path 
corresponds to a possible lexical parse of the input. 

 

he E 

spied

a ear

deer

spider

he

spider 

pie

spied deer

a earpieB 

Figure 3-2. The left panel shows an example of a word lattice as used in automatic 
speech recognition; the right panel shows the competition process that occurs in 
human speech recognition. 

 

3.2.2 Cascaded prelexical level  

An ideal speech recogniser would be able to recognise spoken words in close to real time. 
For the human listener, this is necessary for efficient communication. It indeed appears to 
be the case that there is very little lag between when a word is spoken and when it is 
recognised: On the basis of results from a number of different listening tasks, Marslen-
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Wilson (1987) estimated this lag to be only 200 ms (i.e., about one syllable at an average 
speaking rate).  

To achieve this rapid recognition, HSR models generally assume that there is continuous, 
or cascaded, flow of information between the prelexical and lexical levels. That is, rather 
than sending discrete chunks of information after each prelexical unit is identified, the 
prelexical level continuously outputs the results of all partial analyses. If these two levels 
operated serially, with categorical decisions being taken at the prelexical level before 
lexical access was initiated, this would introduce delays in processing time: The lexical 
level would have to wait for decisions about each prelexical unit in the input (e.g., about 
each phoneme or each syllable) before word recognition could be achieved. Cascaded 
processing helps to avoid this delay. Moreover, as McQueen et al. (2003) have argued, 
cascaded processing has another benefit with respect to the timing of word recognition: It 
allows contextual information (i.e., the semantic or syntactic constraints imposed by the 
preceding words in the utterance) to be used immediately in the process of lexical 
selection. 

Extensive experimental HSR data support cascaded processing. A growing body of HSR 
experiments has shown that lexical processing is modulated by fine-grained acoustic-
phonetic information (e.g., Andruski et al., 1994; Davis et al., 2002; Gow, 2002; Marslen-
Wilson & Warren, 1994; McQueen et al., 1999; Salverda et al., 2003; Spinelli et al., 2003; 
Tabossi et al., 2000; see McQueen et al., 2003, for review). Other HSR research has shown 
that lexical processing is continuous and incremental (i.e., it changes as the input unfolds 
over time, e.g., Allopenna et al., 1998; Zwitserlood, 1989). Again, such findings suggest 
that the prelexical level is not a discrete processing stage.  

Although fast and immediate recognition is vital to successful human communication, real-
time recognition is not always important in ASR applications. For example, in systems 
designed for the orthographic transcription of large collections of speech, recognition can 
satisfactorily be performed off-line (Makhoul et al., 2000). However, although they are not 
able to match human performance, some ASR systems are able to perform speech 
recognition in close to real time. For example, commercial systems designed to recognise 
dictated speech (e.g., Via Voice and Dragon Dictate) can often produce results shortly after 
words have been uttered. However, the solution that is hypothesised after a certain word 
has been presented to the system may change based on additional information that arrives 
after this word, and this adjustment process may delay the output of the eventual 
hypothesised word sequence. This effect is often due to the influence of long-span 
language models, for instance, tri-gram language models, which affect the interpretation of 
bottom-up evidence of individual words from the acoustic signal. A very similar 
phenomenon is observed in human listeners. When listening to natural speech (as opposed 
to the read speech used in the studies reviewed by Marslen-Wilson, 1987) listeners may not 
recognise a word until several following words have been heard (Bard et al., 1988).  
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In most ASR systems, there is a form of cascaded processing. This can be found in the 
graded, continuous matching that occurs between the signal and the acoustic models. As 
explained above, in mainstream ASR approaches, the word search is based on a search of 
optimal paths through a decoding lattice. This lattice is constructed on the basis of both 
prelexical and lexical representations (see Section 3.2.1), which means that decisions about 
the final recognition result are based on the combination of all information in the decoding 
lattice, rather than just the prelexical level alone. The matching scores that are the result of 
the matching function all contribute to the a posteriori probability of a path in the decoding 
lattice. 

Cascaded processing in ASR is more clearly visible in ASR systems using a two-step 
approach (e.g., Demuynck et al., 2003). The first step involves the decoding of the 
incoming acoustic signal into a (probabilistic) lattice with prelexical units, and the second 
step involves a lexical search (and sometimes even the search for semantic information) 
from this intermediate lattice representation. The lexical search in the second step does not 
need to wait for the lattice to be final, but can start while the lattice is still under 
construction. Again, therefore, because of the computational constraint of needing to 
recognise speech rapidly, both HSR models and ASR systems have converged on cascaded 
processing algorithms.  

3.2.3 Multiple activation and evaluation of words 

At the heart of the problem of speech recognition is the task of matching the representation 
of the speech signal to words in the lexicon. This task can be considered to have three 
subcomponents. First, the input must be compared with representations of the words in the 
lexicon. Second, some assessment must be made of the degree to which the input matches 
those representations. Finally, a choice must be made as to which word matches the input 
most closely. In HSR, these three subcomponents can sometimes correspond to separable 
parts of a model. In ASR, these subcomponents are generally combined in a single search 
process, as described earlier (see Section 3.2.1). 

The matching process necessarily depends on the form of the prelexical representations. In 
an HSR model like Shortlist, where the prelexical representations are simply a sequence of 
phones, the process of comparing the input to lexical representations is trivial: It is 
performed by a serial search through the lexicon. However, in common with almost all 
psychological models, it is assumed that human listeners can perform this search in 
parallel. The degree of match between the input and individual representations is calculated 
very simply in the Shortlist model: words score +1 for each matching phoneme, and –3 for 
each mismatching phoneme. A set of words that best matches the input (the Shortlist) is 
then entered into an interactive activation network. The word nodes in the network are 
activated in proportion to their match to the input as determined by the match/mismatch 
score, and words that derive their evidence from the same input phonemes are connected 
together via inhibitory links. The word with the highest activation (i.e., the greatest 
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perceptual support) will therefore inhibit words with lower activation during competition, 
and the best matching word will be recognised. As we will see later, however, the real 
value of the competition process is in the recognition of continuous speech. 

The matching process in TRACE is more complicated than in Shortlist because the 
TRACE network has featural nodes as well as phoneme nodes, and there is competition 
(inhibition) between phoneme nodes as well as word nodes. The most important difference 
between TRACE and Shortlist is probably that, in contrast to Shortlist, word activation is 
not decreased by the presence of mismatching phonemes. Both models assume that access 
to lexical entries occurs in parallel, that word nodes in an interactive activation network are 
activated in proportion to their degree of match to the input, and that selection of the best 
matching word is achieved by competition between activated words. 

In the Cohort model (Marslen-Wilson, 1987, 1990; Marslen-Wilson & Welsh, 1978), the 
input signal activates all words that begin in the same way as the input (e.g., start with the 
same phoneme as the input). These words form what is called the word-initial cohort. 
Whenever the mismatch between the input and the target word becomes too large, the 
candidate word drops out of the cohort. A word is recognised via a decision process where 
the activation values of the words that remain in the cohort are compared. Recognition 
takes place when the difference in activation between the best candidate word and its 
runner-up exceeds a certain criterion. In all of these HSR models (and others, such as the 
Neighborhood Activation Model, Luce & Pisoni, 1998, the DCM, Gaskell & Marslen-
Wilson, 1997, and PARSYN, Luce et al., 2000) there is therefore some kind of competition 
mechanism which allows for the relative evaluation of multiple candidate words. 

A large number of psycholinguistic experiments, using a wide variety of different 
paradigms, have amassed considerable evidence that multiple candidate words are indeed 
‘activated’ simultaneously during human speech comprehension (e.g., Allopenna et al., 
1998; Gow & Gordon, 1995; Tabossi et al., 1995; Zwitserlood, 1989). There is also 
extensive evidence that there is some form of relative evaluation of those alternatives (e.g., 
Cluff & Luce, 1990; McQueen et al., 1994; Norris et al., 1995; Vitevitch & Luce, 1998, 
1999; Vroomen & de Gelder, 1995). The data on both multiple activation and relative 
evaluation of candidate words are reviewed in McQueen et al. (2003) and McQueen 
(2004). 

The competition mechanism in HSR models helps them solve what we will refer to as the 
‘lexical embedding’ problem. Because natural language vocabularies are large (many 
languages have on the order of 100,000 words), but are constructed from a limited set of 
phonemes (most languages have inventories of between 10 and 50 phonemes; Maddieson, 
1984), and since words have a limited word length, it is necessarily the case that there is 
considerable phonological overlap among words. Any given word is likely to begin in the 
same way as several other words (Luce, 1986), and to end in the same way as other words. 
In addition, longer words are likely to have shorter words embedded within them 
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(McQueen et al., 1995). This means that when the recogniser is presented with any 
fragment of a spoken word, that fragment is likely to be compatible with many lexical 
alternatives.  

Parallel evaluation of lexical hypotheses is thus the main solution to the lexical embedding 
problem in HSR. Note that the particular choice of algorithms in HSR is strongly 
influenced by the belief that the brain is a parallel processing device, which is therefore 
capable of comparing many different lexical hypotheses simultaneously. For our present 
purposes, it is worth drawing attention to an important terminological consequence of 
contrast between parallel activation theories and serial search models. In the psychological 
literature, activation models are often thought to stand in contrast to search processes. 
However, in the ASR literature, the entire speech recognition process is seen largely as a 
search problem: How should an ASR system search through the entire set of lexical 
hypotheses to discover which best matches the input? The search might be performed 
serially, or in parallel, depending on the choice of algorithms and hardware. Technically 
then, even parallel activation models in psychology are really search models. 

In ASR, the search module searches for the word that maximises the likelihood of the word 
given the speech signal: P(W|X); in which P is the probability, W is the word, and X is the 
acoustic signal. The search is often implemented by a dynamic programming (DP) 
technique (e.g., Rabiner & Juang, 1993). Two often-used types of DP are A* search (e.g., 
Paul, 1992), in which the best hypothesis is searched for in a time-asynchronous depth-first 
way, and Viterbi decoding, in which the search strategy is time-synchronous and breadth-
first (e.g., Rabiner & Juang, 1993; for a text-book account, see Chapter 5 of Jelinek, 1997). 
Both of these algorithms are simply efficient methods of finding the best path through a 
lattice, that is, the sequence of words that best matches the input. During the processing of 
incoming speech, pruning techniques remove the most implausible paths, in order to keep 
the number of paths through the search space manageable. As a result, only the most 
plausible words are considered in the search.  

During the recognition of isolated words, multiple paths (corresponding to candidate words 
in HSR) are considered simultaneously, and each candidate word (or to be more precise: 
path) is assigned a score that indicates the match between the word and the input. 
Internally, the paths – or candidate words – and their corresponding scores are ranked on 
the basis of the path score. The path (which in the case of isolated word recognition will 
only contain one word) with the best score wins. The score each path obtains is determined 
on the basis of Bayes’ Rule and is related to 1) the probability that the acoustic signal is 
produced given the word (P(X|W)), and 2) the prior probability of the word (usually based 
on its frequency of occurrence; P(W)).  

Thus, while in ASR systems the lexical access and lexical selection stages are combined 
into one search module, pruning mechanisms do have the effect of limiting the search. This 
has parallels in the Shortlist model, where only a small number of words are considered as 
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candidates at each point in time. Similarly, the search process in ASR, and the ordering of 
surviving paths in the lattice on the basis of the accumulated path scores, are akin to the 
relative evaluation processes seen in HSR models. There is one important difference 
between the ASR approach and psychological models, however. In HSR models such as 
Shortlist and TRACE, the competition process involves individual lexical candidates, 
whereas most ASR systems base their search on comparing scores of complete paths. 
Nevertheless, this qualification aside, there are again strong similarities between ASR and 
HSR. 

3.2.4 Continuous speech recognition 

So far, our computational analysis of spoken word recognition has focussed on the task of 
identifying isolated words. However, the real task facing a listener, or an automatic speech 
recogniser, is to identify words in utterances. Natural utterances are continuous, with no 
gaps or reliably marked boundaries indicating where one word might end and another 
begin. That is, to a first approximation, speechiscomparabletohandwrittentextswithoutspaces 
(thus, with no gaps between words or letters). Words in a spoken utterance may therefore 
in principle start and end at any time in the acoustic signal. In itself, the absence of clear 
boundaries might not create any additional computational problems beyond that involved 
in isolated word recognition. If all words in the language were highly distinctive, and could 
be identified at or before their final phoneme, then words could be identified in sequence, 
with one word starting where the next ended (as in the Cohort model). However, in natural 
languages this is not the case. The lexical embedding problem (described in the previous 
section) is particularly acute given continuous speech as input. Consider the input ship 
inquiry ([pkwri]). Within this phone sequence several words can be found starting 
and ending at different moments in time, for example, ship, shipping, pink, ink, inquiry, 
and choir. In addition, there are a multitude of partially matching words, such as shin, sip, 
shipyard, pin, quite, quiet, and fiery. How do we determine the best way of parsing this 
continuous input into a sequence of words? Once again, this can be considered to be a 
search problem.  

The algorithms for continuous speech recognition used in HSR and ASR are usually rather 
different. However, in both cases, the algorithms are direct extensions of the procedures 
used for isolated word recognition. As noted earlier, a critical difference between ASR and 
HSR models is that search in ASR is based on hypotheses at the utterance level (i.e., paths 
through the lattice for all the words in an input sentence), while the evaluation process in 
HSR is at the word level (e.g., competition between individual lexical hypotheses). This 
difference is illustrated in Figure 3-2. The left hand panel shows a graphical representation 
of a set of words in the form of a lattice with possible paths through the utterance as used in 
ASR, while the right hand panel shows a graphical representation of the same set of 
activated words and the inhibitory connections between those words, as in HSR models 
such as TRACE and Shortlist.  
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In HSR models, the best parse of the input is generated by the lexical competition process. 
Because lexical candidates that overlap in the input inhibit each other, the most strongly 
activated sequence of words will be one in which the words do not overlap with each other. 
Also, because words with more bottom-up support have more activation, the competition 
process will tend to favour words that completely account for all phonemes in the input 
over any sequences that leave some phonemes unaccounted for. Through the competition 
process, the activation value of a given candidate word comes to reflect not only the 
goodness of fit of that word with the input with which it is aligned, but also its goodness of 
fit in all lexical parses of the utterance that it is involved in. The competition process thus 
results in the optimal segmentation of the input. Lexical competition is therefore a valuable 
algorithm in HSR, both for the lexical embedding problem, and for the segmentation 
problem. 

 The ASR algorithm for the recognition of sequences of words is also an extension of the 
algorithm for the recognition of isolated words. In the case of isolated word recognition, 
each path corresponds to one word; in the case of continuous speech recognition, each path 
corresponds to a word or a sequence of words. The underlying search algorithm is 
identical. In the case of continuous speech recognition, the score on the basis of which the 
paths are ranked and the best path is determined is based on three factors (instead of two in 
the case of isolated words): 1) the probability that the acoustic signal is produced given the 
word sequence (P(X|Path), in which Path denotes a word or word sequence); 2) the prior 
probability of each word (based on its frequency of occurrence), and 3) possibly other 
higher level sources of information with respect to the recognition unit and its context (like 
N-gram scores or grammars).  

It is worth noting that in the original account of the Shortlist model (Norris, 1994), it was 
suggested that the ‘lexical competition’ process could equally well be performed by a 
dynamic programming algorithm instead of an interactive activation model, and Figure 3-2 
indeed clearly shows the striking resemblance between the search in ASR and the 
competition process in HSR models. This reinforces the point that competition and search 
are simply alternative algorithms that perform the same computational function. 

3.2.5 Cues to lexical segmentation 

Work in HSR has suggested that there is more to the segmentation of continuous speech 
than lexical competition. Although they are not fully reliable, there are cues to likely word 
boundaries in the speech stream (e.g., cues provided by rhythmic structure, Cutler & 
Norris, 1988; phonotactic constraints, McQueen, 1998; acoustic and allophonic cues, 
Church, 1987; and silent pauses, Norris et al., 1997), and listeners appear to use these 
boundary cues in segmentation. The question therefore arises how this boundary 
information can be used to modulate the competition-based segmentation process in HSR 
models. Norris et al. (1997) argue that human listeners use a lexical viability constraint 
called the Possible Word Constraint (PWC). As implemented in Shortlist, the PWC 
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operates as follows: Each candidate word is evaluated with respect to any available cues to 
likely word boundary (i.e., boundaries marked by rhythmic, phonotactic, allophonic, and 
acoustic signals). If the stretch of speech between the edge of a candidate word and the 
location of a likely word boundary is itself not a possible word, then that candidate word is 
penalised (its activation is halved). A stretch of speech is not a possible word if it does not 
contain a vowel. Cross-linguistic comparisons have suggested that this simple phonological 
constraint on what constitutes a possible word in lexical segmentation may be language 
universal (see, e.g., Cutler et al., 2002). 

Norris et al. (1997) suggested that an important benefit of the PWC was that it would help 
solve the problem of recognising speech containing unknown or “out-of-vocabulary” 
words. There are many reasons why a portion of an utterance may not match any lexical 
entry (due, e.g., to a mispronunciation, to masking of part of the signal by noise, to use of 
an unknown pronunciation variant, or of course to use of a genuine out-of-vocabulary 
word). Competition-based recognisers will tend to parse such inputs in terms of the words 
that are in the lexicon. Consider the utterance “They met a fourth time”, but spoken by a 
speaker of a London dialect of English, who produces the last sound of the word fourth as 
[f]: fourth will thus be said as fourf. As Norris et al. argue, a competition-based model such 
as Shortlist, if fourf is not stored as a word form in the lexicon, will tend to recognise such 
a sequence as They metaphor f time. This is clearly inadequate. What is required is a 
mechanism which will generate plausible candidates for new word forms (such as fourf) 
and rule out impossible new word forms (such as f). The PWC achieves this: candidates 
such as metaphor and four will be penalised because there is a vowelless sequence (the 
single f) between the end of those words and the boundary marked at the onset of the strong 
syllable time. The sequence fourf will thus be available as a potential new word form, 
perhaps for later inclusion in the lexicon (see Norris et al. for more details and simulation 
results).  

Most ASR systems do not have a mechanism that looks for cues in the speech signal to 
help the segmentation process. However, a few attempts have been made to use prosodic 
cues to help the segmentation process. In analogy with the finding of Norris et al. (1997) 
that human listeners use silent pauses to segment speech, Hirose et al. (2001) have built an 
ASR system that uses silent pauses to place boundaries between morae in Japanese speech. 
The number of attempts to use prosodic (or other types of) cues in the segmentation 
process in ASR is small, however, and the results are usually poor. A mechanism like the 
PWC has not to our knowledge yet been added to ASR models. 

In HSR, the PWC is supported by experimental data and is motivated as an algorithm to 
solve the out-of-vocabulary problem. The out-of-vocabulary problem is usually not a big 
problem in ASR systems that have been developed for a specific (small) task, such as digit 
recognition. However, when the task involves a more natural conversation between a 
human and an ASR system, such as an automatic directory assistance system where the 
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caller can ask for any business or private telephone listing, the number of out-of-
vocabulary words increases dramatically, reducing the recognition accuracy of the ASR 
system. A number of ASR systems therefore have a mechanism to detect out-of-vocabulary 
words (e.g., Hypothesis Driven Lexical Adaptation, HDLA; Waibel et al., 2000): If a 
sequence cannot be associated with a lexical entry with any high degree of certainty, it will 
be labelled as out-of-vocabulary, and usually not processed further (there are exceptions, 
for instance, the second pass in HDLA does process the entries labelled as out-of-
vocabulary). However, the detection method is prone to errors. Furthermore, few of those 
systems can automatically ‘learn’ these out-of-vocabulary words. Adult human listeners, 
however, can learn new words from limited exposure, and these words appear to be rapidly 
incorporated into the listener’s lexicon (Gaskell & Dumay, 2003). As we have just argued, 
the PWC can assist in this learning process through helping to specify which novel 
sequences in the input are potential new words. There is therefore a fundamental difference 
between human and machine speech recognition. HSR must be an inherently dynamic 
process (i.e., must be able to change over the course of the listener’s lifetime), while ASR 
systems are usually built for a specific purpose, and thus, after an initial training and 
development phase, are basically fixed systems. That is, HSR algorithms must be flexible, 
in order for the listener to be able to deal with the changing speech input. ASR systems 
may need to become more flexible if they are to be able to achieve large vocabulary 
speaker-independent recognition. The PWC could offer a mechanism in ASR for more 
dynamic handling of out-of-vocabulary words. 

3.2.6 No feedback from the lexical level to the prelexical level 

During word recognition in a model with prelexical and lexical levels of processing, 
information must flow bottom up from the acoustic signal to the prelexical level, and from 
there to the lexical level. A question that is still unanswered, however, and one that is 
rather controversial within the field of HSR, is whether information also flows from the 
lexical level back to the prelexical level. Norris et al. (2000) argued that there was no 
psycholinguistic data which required the postulation of a lexical feedback mechanism, and 
argued that some data (that of Pitt & McQueen, 1998) challenge HSR models such as 
TRACE, which have feedback. Furthermore, Norris et al. pointed out that this kind of 
feedback as a word is heard could not help recognition of that word, and could in fact harm 
recognition of sub-lexical units within that word such as phonemes. 

 It is important to note that this debate concerns the architecture of the speech recognition 
system and not whether lexical and prelexical processes both contribute to word 
recognition. All researchers agree that both lexical and prelexical information contribute to 
the final interpretation of the speech signal. The question about feedback, therefore, is that, 
if there are separate processes responsible for lexical and prelexical processing, does 
information from a lexical processor feed back to influence the operation of the prelexical 
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processor? This question is still hotly debated (see, e.g., Magnuson et al., 2003; McQueen, 
2003; Norris et al., 2003; Samuel, 2001; Samuel & Pitt, 2003).  

ASR systems do not use the kind of on-line feedback that has been the focus of so much 
debate in the HSR literature. In part this is for the reason noted by Norris et al. (2000): 
Feedback cannot do anything to improve the process of matching prelexical representations 
onto lexical representations. Given a particular prelexical analysis, optimal recognition is 
achieved simply by selecting the word representation that best matches the representation 
of the input. This is a formal property of pattern recognition systems in general, and so 
there is simply no advantage to be gained by using feedback. However, there is another 
reason why ASR models do not incorporate feedback between lexical and prelexical 
processes. As observed earlier, in mainstream systems, acoustic models are directly 
matched against the signal, and there is a unified search process that considers information 
from all levels simultaneously. Since the prelexical and lexical levels are not distinct, there 
is no scope for feedback between levels. Both lexical information and the language model 
can change path scores. If this alters the best path, then the sequence of phonemes on the 
best path will change, but this will have no effect on the fit of an acoustic model to a stretch 
of speech. In an exact parallel with the Merge model (Norris et al., 2000), lexical 
information can change the interpretation of the input, but cannot change the processing of 
the prelexical information itself. 

In terms of a computational analysis of speech recognition, therefore, there appears to be 
no function for feedback from the lexical to prelexical levels. There is one exception, 
however. As Norris et al. (2003) have argued, feedback can be of benefit in retuning 
prelexical representations. The experiments that Norris et al. report indeed show that 
listeners appear to use lexical knowledge to adjust their prelexical phonetic categories. In 
their experiments, listeners might hear an ambiguous phoneme in a context where the 
lexical information indicated how that phoneme was to be interpreted. Subsequently, 
listeners changed the way they categorised the ambiguous phoneme in a way that was 
consistent with the information provided from the lexicon. This “lexically-guided” learning 
is of benefit to word recognition because it would improve recognition during subsequent 
encounters with the same speaker. That is, feedback for learning helps to solve the 
invariance problem by ensuring that the recognition system can dynamically adjust to new 
forms of variability. It is therefore critical to distinguish between on-line feedback (where 
the lexical level influences prelexical processing as speech is being input to the recogniser) 
and off-line feedback (i.e., feedback over time, for learning). Only the latter appears to be 
motivated by the computational analysis of the problem of speech recognition.  

In ASR, various methods have been described for adapting an ASR system to the specific 
speech characteristics of a specific group of test speakers or to a single speaker (see 
Woodland, 2001, for an overview), but none yet use the lexically-guided learning seen in 
human listeners. The common method is to adapt the acoustic models towards the 
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characteristics of the voice of the test speaker. This adaptation requires some amount of 
speech input (in modern adaptation algorithms on the order of a few minutes, e.g., Hazen, 
2000); this input is used to adapt the acoustic models such that the match between them and 
the test speaker’s speech is improved. 

Whether feedback is necessary in the speech recognition process is a computational 
question that applies to both HSR and ASR. However, the question of on-line feedback 
does not usually arise in ASR, because of the integration of the prelexical and lexical level 
information into one decoding structure.  

3.2.7 Summary 

We have identified a number of key problems that must be solved for successful speech 
recognition: the invariance problem, the real-time processing problem, the lexical 
embedding problem, the segmentation problem, and the out-of-vocabulary problem. Both 
human and machine recognisers must include algorithms that solve these problems. We 
have discussed the standard approaches that have been taken in both HSR and ASR to 
confront these problems. In almost every case there are striking parallels between the 
solutions adopted in HSR and ASR. In the General Discussion, we will return to the issue 
of how this comparison between domains may be of value in developing both HSR models 
and ASR systems.  

First, however, we present a new model of human spoken word recognition, called SpeM 
(SPEech-based Model of human speech recognition; see also Scharenborg et al., 2003a, 
2003b). SpeM is a new implementation of the Shortlist model (Norris, 1994) developed 
using ASR techniques. In contrast to existing HSR models, SpeM can recognise words 
from real speech input. 

3.3 SpeM 
We had several goals in developing SpeM. First, we wanted to provide a concrete 
demonstration of the computational parallels between HSR and ASR. If it really is the case 
that ASR algorithms serve the same functions as analogous HSR mechanisms, then it ought 
to be possible to build an HSR model using ASR components. SpeM therefore makes the 
links between HSR and ASR fully explicit, and serves as an illustration that a 
psychological model can be built using ASR techniques. Second, as Section 3.3.5 will 
show, the challenge of building an HSR model with ASR techniques forced us to confront 
how to relate the performance of the model to measures of human performance in 
psycholinguistic experiments. In deriving human performance measures from the model, 
we were able to draw further parallels between ASR and HSR. Third, it has been difficult 
to evaluate the Shortlist model given the unrealistic form of the input to Shortlist (see 
Section 3.2.2). SpeM therefore shares all assumptions made in Shortlist, but has a 
probabilistic/graded input rather than a discrete sequence of phonemes (which was the case 
in the original 1994 implementation of Shortlist). We were thus able to test whether a 
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version of Shortlist would be able to recognise words given acoustic input (rather than a 
hand-crafted symbolic description of the speech signal). We present simulations (Sections 
3-4 and 3-5) showing that SpeM can indeed recognise words from real continuous speech 
input. The broader goal in developing SpeM is thus that the model can be used to evaluate 
further how a speech recogniser should work.  

Figure 3-3. Overview of the SpeM model. 
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The architecture of the SpeM model is shown in Figure 3-3. SpeM consists of three 
modules. The first module is an automatic phone recogniser (APR) which takes the 
acoustic signal as its input. The APR creates a segmental representation of the acoustic 
signal in the form of a probabilistic phone lattice (see Section 3.3.1) using statistical 
acoustic models (see Section 3.2.1). This probabilistic phone lattice is then used as input to 
the second module, which is responsible for the lexical search. This module searches for 
the word (sequence) that corresponds to the best path through the probabilistic phone 
lattice (see Section 3.3.3) and produces output in the form of a list of the N-best paths 
through the phone lattice. The third module compares these alternative paths and hence 
computes a measure of the probability that, for a given input, individual words will be 
recognised (see Section 3.3.5). Each of the key computational problems identified in 
Section 3.2 are dealt with in the SpeM model, as described below. 

3.3.1 Prelexical and lexical levels of processing 

In Section 3.2.1, we argued that a speech recogniser must contain a mechanism to deal with 
the invariance problem. In HSR, it is generally assumed that this problem is solved by 
separating the speech recognition system into two levels, namely the prelexical and lexical 
levels. In many mainstream ASR approaches, these levels are intertwined in the search 
module by compiling grammar and lexicon into one single phone-based decoding lattice. 
SpeM – although based on ASR paradigms – does however consist of separate prelexical 
and lexical levels. In SpeM, the prelexical level is represented by the APR. The prelexical 
representations used in SpeM are identical to those used in Shortlist. Thus the recognition 
units of the APR are phones, and the probabilistic graph that will be built also consists of 
phones. 

The APR converts the acoustic signal into a weighted probabilistic phone lattice without 
using lexical knowledge (see Scharenborg & Boves, 2002, for a detailed account of the 
APR). Figure 3-4 shows a simplified weighted phone lattice: The lattice has one root node 
(‘B’) and one end node (‘E’). Each edge (i.e., connection between two nodes) carries a 
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phone and its bottom-up evidence in terms of negative log likelihood (its acoustic cost). 
The acoustic cost denotes the probability that the acoustic signal was produced given the 
phone (P(X|Ph), in which Ph denotes a phone; see Section 3.2.3). The lower the acoustic 
cost, the more certain the APR is that the phone was indeed produced. The acoustic scores 
for a phone typically range from 10 to 120. For the sake of clarity, not all phones and 
acoustic costs are shown. Only the most probable nodes and edges for the input [s] (the 
Dutch word as, “ash”) are shown. 
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Figure 3-4. A graphical representation 
of a weighted probabilistic input phone 
lattice. For the sake of clarity, not all 
phones and acoustic costs are shown. 

Figure 3-5. A graphical representation 
of the beginning of a lexical tree. 

 

The lexical level in SpeM, as in Shortlist, has two components: the search module and the 
evaluation module. In the search module, one or more phonemic representations are 
available for each item in the lexicon. Internally, the lexicon is represented as a lexical tree 
in which the entries (words) share common prefix phone strings (a word-initial cohort), and 
each path through the tree represents a word. See Figure 3-5 for a graphical representation 
of the beginning of a lexical tree. The lexical tree has one root node (‘B’) and as many end 
nodes as there are words in the lexicon. The hash ‘#’ indicates the end of a word; the 
phonemic transcription in the box is the phonemic representation of the finished word. 
Each node in the lexical tree represents a word-initial cohort. The phonemic transcriptions 
belonging to the word-initial cohorts are not explicitly shown. Note that the word [s] is an 
example of an embedded word, since the node labelled with [s] in the lexical tree (Figure 
3-5, node 2) has outgoing arcs (thus in this case the phonemic transcription [s] also 
represents a word-initial cohort). As described in more detail below, during word 
recognition the lexical tree is used to find the best paths through the phone lattice, and 
these paths are then evaluated relative to each other by the evaluation module. 

At the lexical level, it is also possible to include knowledge on the frequencies of words 
(unigram language model scores) and the frequency of a word given its predecessor 
(bigram language model scores). These components, though implemented in SpeM, are not 
used in the simulations described in this paper. 
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3.3.2 Cascaded prelexical level 

Rapid on-line word recognition requires cascaded processing between the prelexical and 
lexical levels. As reviewed earlier, HSR experiments have shown that the representations at 
the prelexical level should be probabilistic. In the 1994 implementation of Shortlist, 
however, the prelexical representations were discrete phonemes (though, as Norris (in 
press) points out, this was not a key assumption of the theory underlying the model). In the 
Merge model (Norris et al., 2000), which is derived from Shortlist, output from the 
prelexical level is continuous and graded. SpeM is therefore implemented in such a way 
that the output of the APR module is probabilistic rather than categorical. With respect to 
real-time processing, SpeM’s search module is able to perform the search in close to real 
time. 

3.3.3 Multiple activation and bottom-up evaluation of words 

The lexical selection and competition stage in SpeM consists of the search module, which 
searches for the best path through the phone lattice and the lexical tree (see also Section 
3.2.3), and the evaluation module. The search module computes the bottom-up goodness-
of-fit of different lexical hypotheses to the current input, while the evaluation module acts 
to compare those hypotheses with each other (see Section 3.3.5). During the search 
process, the best path (the optimal sequence of words) is derived using a time-synchronous 
Viterbi search through a search space which is defined as the product of the lexical tree and 
the probabilistic phone lattice. In a Viterbi search, all nodes of the phone lattice are 
processed from left-to-right, and all hypotheses are considered simultaneously (see also 
Sections 3.2.1 and 3.2.3). As noted earlier, Viterbi search is simply an efficient method for 
finding the best path through a lattice. 

The words hypothesised by the search module are each assigned a score (referred to as 
total cost hereafter) that corresponds to the degree of match of the word to the current 
input. Whenever the mismatch between the hypothesised word and the input becomes too 
large, the hypothesis drops out of the beam, that is, it is pruned away, as in ASR systems. 
Only the most plausible paths are therefore considered (see also Section 3.2.3). 

When a node in the lexical tree is accessed, all words in the corresponding word-initial 
cohort are activated. Multiple activation of words is thus implemented (see Section 3.2.3). 
For instance, when node ‘2’ (Figure 3-5) is accessed, not only is the word [s] activated but 
also all words that have [s] as their word-initial cohort.  

The total cost of a path is defined as the accumulation along the path arcs of the bottom-up 
acoustic cost, the symbolic phone matching cost, the PWC cost, the history cost, and the 
word entrance penalty. 
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• Bottom-up acoustic cost: this cost is the negative log likelihood as calculated by the 
APR (see Section 3.3.1); it is the probability that the acoustic signal is produced given 
the phone (P(X|Ph), in which Ph denotes a phone, see Section 3.2.3). 

• Symbolic phone matching cost: this is the cost associated with the current match 
between the phone in the phone graph and that in the lexical tree. If the phones are 
identical, there are no additional costs involved. In the case of a substitution, deletion, or 
insertion, associated costs are added to the path costs. The associated costs for a 
substitution, deletion, or insertion are tuned separately. 

• PWC cost: this cost is described in detail in Section 3.3.4. 
• History cost: this is the total cost of the path up to the mother node, that is, the search 

space node from which the current search space node originates. The mother node is the 
previous node in the search space (i.e., in the product lattice) and is thus not necessarily 
the root node ‘B’. 

• Word entrance penalty: when the search leaves the root node ‘B’ of the lexical tree, the 
word entrance penalty is added to the total cost of the path.  

The way the total path cost is calculated in SpeM differs from mainstream ASR systems in 
that ASR systems do not have an explicit cost for phone-level insertions, deletions, and 
substitutions. Because the search in SpeM is phone based, mismatches can arise between 
the phonemic representation of the input in the phone graph and the phonemic 
transcriptions in the lexicon. It is therefore necessary to include a mechanism which 
explicitly adjusts for phone-level insertions, deletions, and substitutions. In mainstream 
ASR, however, it is usually assumed that the search space is spanned effectively by the 
combination of the pronunciation variants in the system’s dictionary and the system’s 
language model, so that the additional overhead of modelling insertions, deletions, and 
substitutions on the phone-level is not necessary. Furthermore, in regular ASR there is no 
PWC to influence the accumulated path cost. In standard ASR systems, a weighting of the 
acoustic cost score with a (statistical) language model score (containing, e.g., the a priori 
probability of a word and the probability of occurrence of a sequence of N words) 
determines the entire path score and therefore determines the likelihood of the path being 
among the ‘best paths’.  

Various types of pruning (see Ney & Aubert, 1996, for an overview) are used to select the 
most probable hypotheses through the decoding lattice. As in Shortlist, therefore, only the 
most likely candidate words and paths are considered. The pruning mechanisms are: 

• Number of nodes: A maximum number of search space nodes (320 per input node in the 
present simulations) are kept in memory. After each cycle of creating new search space 
nodes, the active nodes are sorted according to their total cost; only the top maximum 
number of search space nodes are kept, the rest are discarded.  
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• Local score pruning: A new search space node is only created if the total cost of the new 
path is less than the total cost of the best path up to that point plus a pre-set value.  

• No duplicate paths: Of the search space nodes that represent duplicate paths, only the 
node with the cheapest path is kept.  

The search algorithm in SpeM works as follows. The search algorithm starts in the initial 
search space node of the product lattice. This is denoted as (B,B), meaning that the search 
algorithm starts both in the root node of the phone lattice (Figure 3-4) and the root node of 
the lexical tree (Figure 3-5). As already indicated, the search algorithm is time-
synchronous. First node ‘1’ of the phone lattice is evaluated:  

• The phone on the incoming arc of node ‘1’ is compared with the phones in the nodes 
directly following the root node of the lexical tree (resulting in search space nodes (1,1) 
and (1,6)). If no match is found, this counts as a substitution, and the substitution cost is 
added to the total cost of the path; if a match is found, no costs are added. 

• The phone on the incoming arc of node ‘1’ is compared with the phones in the daughter 
nodes of the nodes directly following the root node of the lexical tree (resulting in search 
space nodes (1,2), (1,5), and (1,7)). This counts as an insertion (i.e., the insertion cost is 
added to the total path cost). 

• The phone on the incoming arc of node ‘1’ is compared with the phones in the root node 
of the lexical tree (resulting in search space nodes (1,B)). This counts as a deletion, and 
the deletion cost is added to the total path cost. 

After all incoming arcs of node ‘1’ of the phone lattice have been evaluated and the new 
search space nodes have been created, the incoming arcs of node ‘2’ of the phone lattice are 
evaluated (note that in Figure 3-4, nodes ‘1’ and ‘2’ both have only one incoming arc, but 
node ‘3’, for example, has three). In this way, paths are created through the phone lattice 
and the lexical tree. A path consists of a sequence of candidate words with possibly a word-
initial cohort at the end of the path. Each word and word-initial cohort obtains an activation 
that is calculated using Bayes’ Rule (see Section 3.3.5). 

Let’s look in more detail at path ‘B-3-E’ through the phone lattice compared to the path ‘B-
1-2’ for the Dutch word as ([s]) through the lexical tree. The total path cost at input node 
‘3’ is the sum of the acoustic cost (which is 76.65, see the arc between the nodes ‘B’ and 
‘3’ in Figure 3-4), the word entrance penalty (in this case say: 50), the phone matching cost 
(here 0, because there is a perfect match between the phone on the arc in the phone graph 
and the phone in state ‘1’ of the lexical tree), the PWC cost (here 0, because there are no 
insertions) and the history cost (here 0, because there is no history), thus in total: 126.65. 
The total path cost of this path through the phone lattice at the end node ‘E’ is the sum of 
the acoustic cost (103.85), the word entrance penalty (which is 0, because we are already in 
a word and not entering one), the phone matching cost (here 0, because there is a perfect 
match between the phone on the arc in the phone graph and the phone in state ‘2’ of the 
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lexical tree), the PWC cost (here 0, because there is no phone sequence between words) 
and the history cost (which is now 126.65, the cheapest path to the mother node ‘3’), thus 
in total: 230.5. When comparing the word Assen ([sn], the name of a Dutch city) with the 
same path through the phone lattice, the total path cost would be 230.5 plus twice the 
deletion cost (because both the [] and [n] are not to be found in the phone lattice and thus 
must have been deleted if this word were the source of this input). The path containing the 
most likely sequence of words has the highest activation (and the lowest total path score). 

The output of the search module is a list of the best paths through the search space. The 
search algorithm thus implements multiple activation of lexical hypotheses (or sequences 
of words in a hypothetical path), and evaluation of each of these hypotheses with respect to 
the bottom-up information in the speech signal. The ‘shortlist’ of best paths is then input to 
the evaluation module. Before turning to this module, however, we first describe one 
further component of the bottom-up evaluation process. 

3.3.4 Segmentation of continuous speech 

In Section 3.2.5, it was argued that human listeners use a mechanism called the Possible 
Word Constraint for the segmentation of continuous speech into a sequence of words. The 
implementation of the PWC in SpeM is based on the implementation in the Shortlist 
model, which is that if a stretch of speech between the edge of a candidate word and the 
location of a likely word boundary is itself not a possible word, then that parse of the input 
is penalised. In SpeM, this procedure is implemented using ‘garbage’ symbols, comparable 
to the ‘acoustic garbage’ models in ASR systems. In such systems, garbage models are 
used to deal with phone insertions. A garbage model is effectively a phoneme that always 
has some small P(X|phoneme). That is, it will always match the input to some degree, but 
will never figure in the final interpretation of the input if there is a cheaper path through the 
lattice consisting in a contiguous sequence of real words. The garbage symbols in SpeM 
match all phones with the same cost and are hypothesised whenever an insertion that is not 
word-internal occurs on a path. A garbage symbol (or a consecutive sequence of garbage 
symbols) is itself regarded as a word, so the word entrance penalty is added to the total cost 
of the path when garbage appears on that path.  

The PWC evaluation is applied only to paths on which garbage is hypothesised. Word 
onsets and offsets, plus utterance onsets and offsets and pauses, count as locations relative 
to which the viability of each garbage symbol (or sequence of symbols) is evaluated. (Note 
that, as shown in Figure 3-5, the ends of words in the lexical tree are marked with a hash 
‘#’, and word onsets can be found because the mother node is ‘B’.) If there is no vowel in 
the garbage sequence between any of these locations and a word edge, the PWC cost is 
added to the total cost of the path. More specifically, when the search goes through the root 
node of the lexical tree and the recognition of a new non-garbage word has begun, there is 
a PWC check on the sequence of garbage symbols. 
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3.3.5 Lexical competition and word activation 

The output of the search module in SpeM is a ranked N-best list of alternative paths, each 
with an associated path score. This is inadequate as the output of an HSR model for two 
reasons. First, although the path scores reflect the goodness of fit of each path to the current 
input, they are not normalised relative to each other. That is, each path score is independent 
of all other path scores. As we discussed in Section 3.2, however, human word recognition 
appears to involve some kind of lexical competition, in which different lexical hypotheses 
are compared not only with the speech signal but also with each other. Second, the search 
model computes only path-based scores (to guide the search), not word-based scores. (The 
search module does have access to word scores, but does not use them to order the word 
sequence hypotheses). A central requirement of any HSR model is that it should be able to 
provide a continuous measure (usually referred to as ‘activation’ in the psychological 
literature) of how easy each word will be for participants to respond to in listening 
experiments. To relate the performance of SpeM to psycholinguistic data, it is therefore 
necessary to derive a measure of ‘word activation’ from the path scores. These two 
functions, relative ranking and evaluation, are provided by the evaluation module. 

The way SpeM computes word activation is based on the idea that word activation is a 
measure related to the bottom-up evidence of a word given the acoustic signal: If there is 
evidence for the word in the acoustic signal, the word should be activated. The second set 
of factors that are relevant for the computation of word activation are the scores of the 
complete paths (hypotheses of word sequences) in the N-best lists.  

Obviously, the total score of a path (i.e., the score of the path starting at the initial node of 
the lattice up to the last node of the path under construction) does not give us a direct 
estimate of the activation of individual words along this path. Since the path score is 
computed incrementally as the input unfolds over time, the best (cheapest) path from the 
beginning of the utterance until a certain time t changes over time; therefore, words on the 
best path at one point during the input need not be on the best path at a later time. Thus, 
broadly speaking, for each t, the best path so far does indicate which words are most likely 
to be in the input processed so far. The current implementation of word activation in SpeM 
therefore applies the idea that the word activation of a word W is based both on the bottom-
up acoustic score for the word W itself and the total score of the path containing W.  

A possible approach to derive a measure of word activation might be to calculate the 
Bayesian probability of each word W in the utterance which would take into account the 
probability of all paths on which word W appears at the same moment in time. However, 
although this might be possible in principle (see Norris et al., in preparation, for an 
example of a Bayesian approach in a much simpler HSR model), there are considerable 
practical difficulties in calculating such probabilities accurately with real speech input. In 
what follows we will develop a simplified measure of word activation which takes into 
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account both the bottom-up evidence for a word, and the probability of the path that the 
word lies on. 

The word activation of a word W is closely related, in terms of Bayes’ Rule, to the 
probability P(W|X) of observing a word W, given the signal X. Bayes’ Rule and this 
probability play a central role in the mathematical framework on which statistical pattern 
matching techniques are built (i.e., most ASR implementations). Using Bayes’ Rule to rank 
competitors is, for instance, also used by Jurafsky (1996) in his probabilistic model of 
lexical and syntactic access and disambiguation. The probability P(W|X) is the foundation 
on which we base the calculation of word activation (Scharenborg et al., 2003c).  

In the current SpeM-implementation, the procedure for computing word activation of word 
W at time t is as follows. First, the best path that contains that word W at time t is 
determined. Then, the posterior probabilities for word W itself and for the best path on 
which W lies on the basis of the word’s score (based on the acoustic score, and penalties for 
insertions, deletions, and substitutions) are calculated. The details on how these 
probabilities are computed are given in Scharenborg et al. (2003c). The key components of 
these computations, however, are as follows. 

The probability of word W given the acoustic signal X is based on Bayes’ Rule: 
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in which P(W) is the prior probability of W, and P(X) denotes the prior probability of 
observing the signal X.  

This prior probability P(X) formally denotes the a priori probability of ‘observing’ the 
signal X. To ensure a proper normalisation of the a posteriori probability P(W|X), P(X) is 
often evaluated as follows: 

 

∑ •=
W

WPWXPXP )()|()( ,             (3-2) 

 
where the sum is taken over all words W. In our case, however, we do not have all this 
information available due to the limited length of the N-best lists that are outputted by 
SpeM. Instead, we evaluate P(X) as follows: 
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In this equation, D denotes a constant (which is to be calibrated on a corpus). The exponent 
of D, #nodes, refers to the number of nodes of the path, starting from the beginning of the 
graph. In other words, this number refers to the number of units (phones) along that path. 

The effect of this choice for P(X) is that the probability P(X|W) P(W) is normalised on the 
basis of the number of phones along the path that is making up the word sequence W. This 
normalisation is very similar to the normalisation of acoustic scores applied in the 
evaluation of confidence measures, the difference being that these confidence 
normalisations are often based on the number of frames instead of on the number of 
phones. This option has been chosen since, in SpeM, we do not have information about the 
number of frames in the input. Instead, we use the number of units (nodes) in the phone 
graph. 

Equation 3-1 refers to a static situation, in which the signal X is specified. We are interested 
in how lexical activation changes over time, however. When the search process is 
processing the speech signal a short time after the start of W, a word-initial cohort of W 
(denoted W(n), where n is the number of phones of W processed so far) will start to appear 
at the end of a number of hypothesised paths.  Incorporating this into Equation 3-1 leads to: 
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where W(n) denotes a phone sequence of length n, corresponding to the word-initial cohort 
of n phonemes of W. W(5) may, for example, be /mst/, i.e., the word-initial cohort of the 
word ‘amsterdam’. Note that n is discrete because of the segmental representation of the 
speech signal. W is thus a special case of W(n): In this case, n is equal to the total number 
of phones of the word. Xw(t) is the gated signal X until time t (corresponding to the end of 
the last phone included in W(n)). P(Xw(t)) denotes the prior probability of observing the 
gated signal Xw(t). P(W(n)) denotes the prior probability of W(n). In the simulations 
reported in this paper, P(W(n)) is the same for all cohorts and all words – that is, all words 
and cohorts have equal a probability. 

Of all the paths carrying W(n), there will be one path with the lowest (i.e., best) overall 
path score (i.e., lowest at that particular moment in the search). This particular path is used 
to evaluate the word activation of W(n) at this point in time. The probability of this path is 
similar to Equation 3-4: 
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where Path is the entire path that W(n) is on from the root node up to the time instant of 
interest. Xp(t) is the gated signal X until time t (corresponding to the end of the last phone 
included in Path). P(Xp(t)) denotes the prior probability of observing the gated signal Xp(t). 
P(Path) denotes the prior probability of Path. In SpeM, P(Path) is simply the product of 
the prior probabilities of all words on that path, due to the fact that in all simulations are 
based on a unigram language model 

Both Equations 3-4 and 3-5 deal with normalisation over time. The probabilities they 
compute are not yet normalised over paths, however. That is, these probabilities reflect the 
goodness of fit of each intended path/word to the input, but do not take into account the 
goodness of fit of other words/paths. In order to make an across-path normalised word 
activation measure, the multiplication of the word and path probabilities is divided by the 
sum of all word and path probability multiplications of all word candidates in the N-best 
list at a particular moment in time (this is what we refer to as the ‘probability mass’). The 
value of the multiplication of the word and path probabilities for a certain word is thus 
considered in relation to the value of the multiplications of the word and path probabilities 
of competitors of this word. The result of the normalisation is an activation measure that is 
both normalised over time and across paths. 

Although an across-path normalisation is necessary, it is not necessary to use the entire 
probability mass that is present in the full word lattice for the normalisation. Instead, it is 
sufficient to normalise the multiplication of the word and path probabilities of a certain 
word by taking into account the multiplications of the word and path probabilities of a 
sufficient number of possible word candidates for a certain stretch of speech. Clearly, the 
longer the N-best list is on which the normalisation is based, the more robust and reliable 
are the results. In our case, an N-best list of 50 has proved to give robust results, in the 
sense that the results of the simulations reported here did not change when an N-best list 
longer than 50 was used. 

The time and path normalised word activation (Act(W(n))) for a word W is therefore 
calculated as follows: 
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in which Pr Mass denotes the probability mass. 

We can make the following two observations about this definition of word activation. First, 
the activation of a word W is computed using the probability of the word W itself, and of 
the best path containing the word W, and is normalised by the sum of the word and path 
probability multiplications of all words in the N-best paths. An alternative approach would 
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be to use all paths containing W in the N-best list to compute the numerator in Equation 3-
6. The difference between these two approaches – taking only the best path or taking (a 
weighted sum over) all appropriate paths – reflects the conceptual difference between ‘the 
winner takes all’ (i.e., neglecting entirely the presence of tokens of the word W on 
competing paths), and allowing several tokens of W to contribute to the overall word 
activation of the word W, following the assumption that the more often word W appears on 
a path in the N-best list the more likely it is the word W was actually produced. We chose 
the winner-takes-all option in SpeM because it is more transparent and easier to compute. 
If all paths containing W were included in the computation, a decision would have to be 
taken about the temporal alignment of W on different paths. That is, how closely matched 
in time would W have to be on different paths for those paths to contribute to the same 
word activation score? This issue has been addressed in ASR (see, e.g., Wessel et al., 
2001), but is currently beyond the scope of SpeM. The winner-takes-all measure 
nevertheless tends to provide an upper estimate of word activation. 

The second observation about this word activation measure is that it has close parallels 
with ASR confidence measures (e.g., Bouwman et al., 2000; Wessel et al., 2001). The 
confidence measure is the degree of certainty which an ASR system has that it has 
recognised that word correctly. Such a measure can be of value, for example, in monitoring 
the ongoing dialog in directory-assistance systems. The calculation of word activation in 
SpeM is in at least two respects similar to the calculation of word confidence measures. 
First, both word activation and the word confidence measure need a well-defined mapping 
from the (non-probabilistic) acoustic and language-model scores in the search lattice to the 
probabilistic domain. In SpeM, Bayes’ Rule plays a central role in this mapping. In ASR, 
the raw arc scores in the word graph are converted into arc probabilities. Wessel et al. use a 
word graph to combine the raw scores of all word instances on all paths through the search 
lattice and hence derive a confidence measure. Thus, although the implementation of the 
word activation measure in SpeM and the word confidence measure in ASR systems such 
as that of Wessel et al. are different, both are able to relate word-based measures with 
lattice-based approaches. Second, for the evaluation of the confidence measure as well as 
the activation measure, one must rely on certain approximations in the construction of word 
graphs. In a real-world ASR system, an ideal word graph is not available. Instead, the word 
graph is a result of choices imposed by various constraints based, for example, on 
numerical and memory restrictions. Wessel et al. nevertheless show that a realistically 
pruned word graph can be used to derive satisfactory confidence measures. In the case of 
SpeM, similar kinds of restrictions mean that, in standard simulations, only the 50-best 
paths are available at any moment in time.  

In summary, the word activation measure in SpeM provides a joint measure of the 
goodness of fit of the word to a particular stretch of a given input and the goodness of fit of 
the path on which that word occurs to the complete input (more specifically, the score of 
the best path associated with that word). It uses Bayes’ Rule to provide an estimate of the 
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probability that a listener would identify that word given that input – an estimate which 
changes over time as the speech input unfolds.  

3.3.6 No feedback from the lexical level to the prelexical level 

In Section 3.2.6, it was argued that, during word recognition, information flows from the 
prelexical level to the lexical level, but not back from the lexical to the prelexical level. In 
SpeM, the prelexical level creates a phonemic representation of the acoustic signal, which 
is passed on to the lexical level. There is no top-down flow of information from the lexicon 
to the prelexical level. The intermediate phonemic representation of a given input at the 
prelexical level cannot be altered once it is created, so lexical information cannot be used 
on-line at the prelexical level to guide the word recognition process. This feedforward 
architecture is partly motivated by the parallels with Shortlist. More fundamentally, 
however, as we noted earlier, adding feedback would be pointless as it could not possibly 
improve the recognition performance of the model. 

SpeM is a computational model of human word recognition. If one wanted to model 
phoneme recognition and, for example, lexical effects on phonetic perception with SpeM, 
then feedback from the lexical to the prelexical level would still not be necessary. In 
analogy with Merge (Norris et al., 2000), a phoneme decision layer could be added to 
SpeM. This layer would receive input both from the APR and the lexical evaluation 
modules. 

3.3.7 Summary 

In developing SpeM, we provided a concrete demonstration of the computational parallels 
between HSR and ASR. The solution to the invariance problem in SpeM is the separation 
of word recognition into three stages, an ASR-based APR at the prelexical level, and, at the 
lexical level, an ASR-based Viterbi search and an ASR-based evaluation procedure. The 
real-time processing problem is addressed using probabilistic output from the APR, and a 
time-synchronous lexical search that performs close to real time. The search and evaluation 
procedures also provide solutions to the lexical embedding problem (since all matching 
candidate words in the lexical tree are considered in parallel during the search and then 
compared during evaluation) and the segmentation problem (since selection of the best 
paths through the search space entails segmentation of continuous speech into word 
sequences even in the absence of any word boundary cues in the speech signal). Finally, 
the implementation of the PWC cost in the search process offers a solution to the out-of-
vocabulary problem. The PWC cost penalises paths that include impossible words (garbage 
sequences without vowels), but does not penalise those with garbage sequences which do 
contain vowels. Such sequences are potential novel words. SpeM therefore offers 
algorithmic solutions for all of the computational problems in spoken word recognition that 
were discussed in Section 3.2. An obvious question now arises: How does SpeM perform?  

 54 



  How should a speech recogniser work? 

3.4 Recognition of words given real speech input 
Our first set of simulations sought to answer the most fundamental question that can be 
asked about SpeM’s performance: How well can the model recognise words given an 
acoustic speech signal as input? We addressed this question by comparing the performance 
of SpeM on the recognition of a large sample of Dutch words taken from a multi-speaker 
corpus of spontaneous speech recorded in natural circumstances (thus including 
background noise), with the performance of the Shortlist model on the same materials. If 
our computational analysis of speech recognition is accurate, then, since SpeM instantiates 
algorithms to deal with the principle problems of spoken word recognition, it ought to be 
able to perform this task reasonably well. Note that the model need not perform perfectly 
for one to be able to conclude that the assumptions made by the model are justified; good 
performance in the recognition of words from a large vocabulary, spoken by multiple 
speakers and recorded in natural circumstances, and on the basis of the acoustic signal, 
rather than an idealised transcription of speech, already goes far beyond what any previous 
model of human spoken word recognition has achieved.  

The comparison of SpeM with Shortlist allowed us to test the effectiveness, in terms of 
word recognition accuracy, of the principle difference between the two models. Unlike the 
original implementation of Shortlist (which we used here), SpeM has a probabilistic rather 
than a categorical prelexical level. As we argued earlier, probabilistic prelexical processing 
should provide SpeM with more flexibility to deal with the variability in the speech signal 
(the invariance problem, Section 3.2.1). In particular, if there is some degree of phonetic 
mismatch between the current input and stored lexical knowledge, as would be expected in 
multiple-speaker and noisy background testing conditions, a model with probabilistic 
prelexical output ought to be able to recover more readily than one with categorical 
prelexical output. Consider, for example, an ambiguous input /?it/, as a token of the word 
seat, where /?/ is ambiguous between /s/ and //. If a categorical prelexical level decided 
that /?/ was //, then recovery of the intended word seat, and rejection of the competitor 
sheet, would be more difficult than in a model where varying degrees of support for both 
/s/ and // could be passed up to the lexical level. Note that there are in fact two inter-
related reasons why a probabilistic prelexical level should perform better than a categorical 
level. First, multiple phones can be considered in parallel in the probabilistic system. 
Second, those phones can be differentially weighted, as a function of their degree of match 
to the input. If SpeM were therefore to perform better than Shortlist on the materials from 
the Dutch spontaneous speech corpus, then this would reflect the increased flexibility and 
robustness of word recognition provided by a probabilistic prelexical level.  

In this first set of simulations, we also examined another aspect of the invariance problem. 
As we described in Section 3.2.1, due to the variation found in everyday speech, the 
number of phonemes in a word that are actually produced may differ from the number of 
phonemes in the canonical representation of that word (either because of phone insertions 
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and/or because of phone deletions). Furthermore, the identity of the phonemes themselves 
may vary too (because of phone substitutions). We therefore also addressed how a speech 
recogniser should deal with the fact that real speech often does not align segmentally with 
predefined lexical representations.  

At the lexical level in SpeM, each word has a representation that includes an abstract 
specification of its phonological form, specifically, a sequence of phones in the lexical tree 
(see Figure 3-5). The lexical representations in Shortlist are also sequences of phonemes. It 
might therefore appear that both of these models would be unable to recognise words that 
had undergone phone insertions or phone deletions. There are two features of SpeM, 
however, that might allow it to deal with this problem. First, SpeM does not use simple 
lexical look-up (as Shortlist does). Instead, it uses a DP algorithm that is able to align two 
strings of different lengths (see Section 3.2.3). This means that when a phone insertion 
occurs, for example, the mismatch with lexical representations need not be so severe in 
SpeM as in Shortlist. In particular, the insertion would not cause all subsequent phones in 
the input to be misaligned, as occurs in Shortlist. Second, SpeM includes insertion and 
deletion scores (see Section 3.3.3). In the context of a DP algorithm, which tolerates 
misalignment between the input and canonical lexical representations, it is necessary to 
include a mechanism which acts to rank the relative goodness of fit of different degrees of 
mismatch. For example, an input with one phone insertion relative to a canonical 
pronunciation of a word ought to be a better match to that word than to another word where 
the difference entails two or more insertions. The insertion and deletion costs in SpeM 
provide this mechanism. In the following set of simulations, we examined whether the DP 
algorithm, modulated by the insertion and deletion scores, would allow SpeM to recognise 
words in spite of insertions and deletions. We compared a version of the model with the 
insertion/deletion penalties (see Section 3.3.3) set so high that the model did not tolerate 
any insertions or deletions in the input (SpeM–I/D) with one in which the scores were set at 
normal levels (SpeM+I/D/S). 

We also examined the effect of SpeM’s substitution penalty by including a simulation run 
in which not only the insertion and deletion penalties were set very high, but also the 
substitution penalty was set such that the model did not tolerate any substitutions in the 
input (SpeM-I/D/S). Finally, we investigated whether there were any differences in 
performance levels between Shortlist and SpeM as a function of the different types of 
lexical search in the two models (a DP technique in SpeM; a lexical look-up procedure in 
Shortlist). Both models were presented with categorical input: the first-best phoneme string 
as output by the APR (we refer to this version of SpeM as SpeM-cat; note that the 
insertion, deletion, and substitution penalties in this simulation were the same as in the 
SpeM+I/D/S simulation). 
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3.4.1 Method 

The APR (consisting of 36 context-independent acoustic phone models, one silence model, 
one model for filled pauses, and one noise model) was trained on 24,559 utterances taken 
from the Dutch Directory Assistance Corpus (DDAC; Sturm et al., 2000). Each utterance 
consisted of a Dutch city name pronounced in isolation. The same APR was then used for 
the Shortlist simulation and for the SpeM simulations. The outputs of the APR were 
probabilistic in the SpeM+I/D/S, SpeM-I/D, and SpeM-I/D/S simulations (i.e., they took 
the form of a probabilistic phone graph, see Section 3.3.1). Because Shortlist takes a 
symbolic description of the speech signal as input, it is not able to recognise words given 
real speech input. The APR-module of SpeM was therefore used to generate a categorical 
phonemic representation of the speech signal for use in the Shortlist simulation (and the 
SpeM-cat simulation). In both of these cases, the sequence of best-matching phones, as 
computed by the APR, was selected for each input. 

The systems were tested on 10,509 utterances from the DDAC corpus that had not been 
used for training the APR. These utterances contain either a Dutch city name, the name of a 
Dutch province, or the Dutch sentence ik weet het niet (‘I don’t know’). The lexicon in all 
three simulations consisted of 2,398 entries: city names, Dutch province names, and ik weet 
het niet. For each entry in the lexicon, one unique canonical phonemic representation was 
available. Prior to the test, all models were optimised on a subset of 100 utterances from 
this test corpus. Parameter values in both Shortlist and SpeM were adjusted to maximise 
the number of correctly recognised words in each case. In Shortlist, the optimised 
parameter was the mismatch parameter (see Scharenborg et al., 2003d, also for related 
Shortlist simulations). 

3.4.2  Results and discussion 

Performance of the Shortlist and SpeM models was evaluated using the ASR benchmarking 
method of recognition performance. Recognition performance was therefore measured in 
terms of word accuracy: The percentage of utterances for which the word in the 
orthographic transcription of the test material received the highest activation value in the 
output of Shortlist or SpeM.  

The results are presented in Table 3-1. There are four key aspects to these findings. First, 
the comparison of the performance of Shortlist and SpeM-cat shows that the lexical search 
as implemented in SpeM is better able to match the input string onto lexical items. The 
3.5% gain in performance is solely contributable to the implementation of the search since 
the earlier components of the two systems were kept the same (i.e., the same APR 
producing the same phoneme strings). This shows that the DP implementation in SpeM is 
somewhat better able to deal with the variability in real speech materials than the lexical 
look-up process in Shortlist. In particular, the DP algorithm provides more flexibility in 
dealing with insertions, deletions, and substitutions. It is important to note that the 
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mismatch parameter in Shortlist provides some tolerance for phone substitutions: If this 
parameter is not set too high, words can still be recognised in spite of a mismatch between 
the input and that word’s canonical representation. In the present simulations, however, the 
mismatch parameter was adjusted during optimisation. Even though Shortlist was therefore 
operating with an optimised mismatch parameter, it appears that the DP search algorithm in 
SpeM works somewhat better in dealing with non-canonical input. 

 

Table 3-1. Results on the Dutch Directory Assistance Corpus test utterances for 
Shortlist and four versions of SpeM, one in which the APR produced categorical 
phonemic output (SpeM-cat), and three in which it produced probabilistic output: one 
in which phone insertions, deletions, and substitutions were tolerated by the model 
(SpeM+I/D/S), one in which substitutions but not insertions and deletions were 
tolerated (SpeM-I/D), and one in which neither substitutions nor insertions/deletions 
were tolerated (SpeM-I/D/S). 

Model Accuracy (%) 
Shortlist 32.5 
SpeM-cat 36.0 
SpeM+I/D/S 72.1 
SpeM-I/D 70.3 
SpeM-I/D/S 64.3 

 

Second, the difference in effectiveness of a categorical prelexical level and a probabilistic 
prelexical level is clearly illustrated by the comparison of SpeM-cat with SpeM+I/D/S 
(remember that the parameter settings in the two versions of SpeM were otherwise 
identical across these two simulation runs). As Table 3-1 shows, a gain of 36.1% in 
performance is obtained once the input has changed from a categorical sequence of 
phonemes to a probabilistic phone graph. SpeM+I/D/S is thus much more able than SpeM-
cat to deal with the variability in real speech input. The probabilistic prelexical level of 
SpeM+I/D/S outperforms the categorical prelexical level of SpeM-cat (and Shortlist) 
because it allows the lexical search process to consider multiple phones in parallel, each 
with a graded degree of bottom-up support, while SpeM-cat and Shortlist only have 
available the most likely phone. This means that word recognition, in particular given the 
variability in the test materials used here, is more robust and flexible in SpeM+I/D/S (the 
standard version of SpeM) than in SpeM-cat and Shortlist. This finding thus supports the 
claim made in Section 3.2.2 that the intermediate representation of the speech signal at the 
prelexical level should be probabilistic rather than categorical.  
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Third, the analyses of the benefits of the insertion, deletion, and substitution penalties show 
that although all three mechanisms improve recognition accuracy, tolerance of phone 
substitutions is more important than tolerance of insertions and deletions The comparison 
of the performance of SpeM+I/D/S and SpeM–I/D/S shows that the joint mechanisms of a 
DP search algorithm and the insertion/deletion/substitution costs help the model to 
recognise words when the input mismatches with canonical lexical pronunciations. 
Recognition accuracy improved by 7.8% when the insertion, deletion, and substitution 
costs were set at a level which allowed the DP algorithm to find lexical matches in spite of 
phone mismatches. The bulk of this benefit is due to the effect of the substitution costs. 
When the substitution penalty was operating normally, but the insertion and deletion 
penalties were very high (the SpeM-I/D simulation), there was only a 1.8% change in 
recognition performance.  

Fourth, the recognition rate of the standard version of the SpeM model (SpeM+I/D/S) is 
72.1%. This means that SpeM can recognise over two thirds of all words in the test corpus 
of (mainly) isolated words, spoken in a spontaneous speech setting (a directory assistance 
system) by a variety of speakers. No previous HSR model has done this. This is made clear 
by the SpeM+I/D/S – Shortlist comparison: SpeM performed more than twice as well as 
Shortlist. 

Would the performance of Shortlist have been better had we used a narrow transcription of 
the speech signal created by a human transcriber rather than the APR? In Scharenborg et al. 
(2003d), we argue that this would not have been the case. Cucchiarini et al. (2001) showed 
that automatically generated transcriptions of read speech are very similar to manual 
phonetic transcriptions created by expert phoneticians. Such human transcriptions are to a 
large extent also non-canonical, just as the transcriptions created by the APR. Thus, we 
would predict that input created by human expert transcribers would result in a similar 
level of recognition performance in Shortlist. 

One might also ask how SpeM would compare with conventional ASR systems on the 
same recognition task. In Scharenborg et al. (2003b), SpeM was not only compared with 
Shortlist but also with an off-the-shelf ASR system. The performance of SpeM fell short of 
the performance of the ASR system. Using the same lexicon, the ASR system reached an 
accuracy of 84.9%. This might in turn raise the question: Why not use this ASR system as 
a model of HSR instead of SpeM? This would not be appropriate, however, since ASR 
systems are not designed for the simulation of human word recognition processes nor must 
the design choices in such models respect the available data on HSR. In short, ASR 
systems are not models of HSR. Scharenborg et al. (2003b) suggest that the poorer 
performance of SpeM was attributable to two factors: the limitations of the APR used in 
SpeM, and the more complex lexical search algorithms used in the ASR system. It may be 
possible to improve SpeM’s performance by enriching the DP technique that is currently 
employed. There is, however, no psychological data that would support any such specific 
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adjustments, and, more fundamentally, we doubt whether such an attempt to improve 
SpeM’s recognition performance by a few percentage points would lead to any further 
understanding of HSR.  

We hope that in the future it will be possible to improve the APR module in SpeM. This 
will be an important issue to pursue since the computational analysis (Section 3.2.1) 
suggests that an effective prelexical level is essential for large-vocabulary speaker-
independent word recognition. 

3.5 Recognition of words in continuous speech 

3.5.1  Temporarily lexically ambiguous input 

The simulations reported in Section 3.4 show that SpeM is able to recognise over two 
thirds of the words in real, spontaneous speech, where the input mainly consisted of 
isolated words. In this section, SpeM’s ability to recognise words in continuous speech will 
be addressed. We took the approach in the next simulation of examining the performance 
of the model on a specific input, rather than on a large corpus of materials (as in the 
preceding simulations). Thus, instead of using global recognition accuracy measures, we 
focussed on SpeM’s performance at the item-specific level. This level of analysis provides 
valuable insights into the detailed working of the model. SpeM was confronted with input 
that was temporarily lexically ambiguous: the utterance ship inquiry. Such utterances can 
effectively ‘garden-path’ a listener or recogniser. After [p] the input matches the word 
shipping, and this may be the preferred analysis of the input. However, the only word that 
matches the final three syllables of the utterance is inquiry. At the end of the utterance, 
therefore, the only fully consistent parse of the input is ship inquiry and the initial analysis 
of the input must be revised. This example was used by Norris (1994) to show how the 
relative evaluation of material in non-overlapping portions of the input in the lexical 
competition process in Shortlist can allow the model to derive the correct interpretation of 
this input. The example thus provided an excellent test of the ability of Shortlist to select 
the optimal interpretation of an input sequence which was temporarily lexically ambiguous, 
and which initially offered more bottom-up support for an incorrect word (i.e., more 
support for shipping than for ship). In this simulation, therefore, we tested whether SpeM 
would also be able to segment the continuous input [pkwri] into the correct sequence 
of words.  

Method and material 
First, the APR component of SpeM was trained on British English. Forty four acoustic 
phone models, one silence model, and two noise models were trained on 35,738 British 
English utterances taken from the Speechdat English database (Höge et al., 1999). Each 
utterance in the training corpus contained maximally two words.  
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At test, SpeM was asked to recognise ship inquiry. Three carefully spoken tokens of ship 
inquiry were produced by a male native speaker of British English, and recorded in a 
soundproof booth. The APR module converted the acoustics of each of these three 
recordings into probabilistic phone graphs. Subsequently, these phone graphs were fed into 
the lexical search module. The lexicon used in the search was identical to that used in the 
Shortlist simulations in Norris et al. (1997). Each word had one canonical phonemic 
representation, and there were a total of 26,449 lexical entries. The parameters of the model 
were not optimised for these specific inputs. Instead, we selected the same parameters as 
were optimised in previous related simulations on ship inquiry (simulations in which a 
linear sequence of phones rather than real speech was used as input; Scharenborg et al., 
2003a). In addition to the word activation values generated by SpeM, we also examined the 
10 best paths generated by the search module.  
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Figure 3-6. The mean word activation flows for three recordings of ‘ship inquiry’. 
The y-axis in all panels displays the word activation; the x-axis shows the phonemes 
in DISC-format (Burnage, 1990) in the input, as they arrive over time. 

Results and discussion 

Appendix A shows the 10-best lists for each of the recordings. Figure 3-6 shows the 
average word activations of ship and inquiry (i.e., the words associated with correct 
recognition), shipping (the word also embedded in the signal), and the closest competitors 
(shook in the first recording and chip in the second and third recording). The path on which 
the word lies is shown between brackets in the legend. 
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For the first recording, the most likely segmentation is shook inquiry, while the 
segmentation ship inquiry can be found at rank 3 (see Appendix A). For the second 
recording, the most likely segmentation is chip inquiry, while the segmentation ship inquiry 
can be found at rank 2. Finally, for the third recording, SpeM is able to correctly parse the 
input: ship inquiry can be found at the first position. 

The word activation of shipping is higher than the word activations of ship, shook, and chip 
around the phonemes [] and [], as is to be expected on the basis of the bottom-up 
evidence. The difference, however, is only small. This small difference is due to the small 
difference in the bottom-up acoustics costs associated with the phonemes in shipping, chip, 
shook, and ship as calculated by the APR. Towards the end of the input, the average word 
activation function of the parse ship inquiry is higher than the average word activation 
function of its closest competitors. 

What is striking in these results is the success of the word inquiry. Hardly ever is inquiry 
substituted by another word. The search procedure in SpeM is thus able to select this word 
in 22 out of the 30 best paths across the three simulation runs, and to select this word on all 
three of the first best paths in each set of 10. The word activation of inquiry is therefore 
consistently high, and the word activation of the incorrect lexical hypothesis shipping is 
consistently lower. Thus, even on the inputs for which ship is not on the first best path, ship 
always falls on a more highly-ranked path than shipping does, and always has a higher 
word activation at the end of the input than shipping does.It is quite remarkable that SpeM 
performs this well, since the task it is faced with is not trivial. Specifically, even though the 
same speaker produced the same word sequence three times in the same recording 
environment, the three inputs generated three different APR outputs. This is of course 
another form of the invariance problem. In the N-best phone lists generated on the basis of 
the probabilistic phone graph created by the APR, the correct phone sequence 
[pkwri] was hardly ever found. The phone sequences found in these lists instead 
included [ʤtgwr], [ʤtgwr], ʤtkwbr], and [ʤdkwdr]. Furthermore, 
there were, on average, 3.03, 4.69, and 3.79 different phonemes (for the first, second, and 
third recording respectively) on parallel arcs in the phone graph. That is, SpeM had to 
consider, on average, more than three phoneme alternatives at any moment in time. The 
limitations of the APR are thus the primary reason why words such as shook and chip end 
up on high-scoring paths and have high word activations. In spite of these limitations, 
however, the search process is powerful enough for the correct lexical interpretation of 
[pkwri] to tend to win out. That is, SpeM is able to find the correct segmentation of 
this continuous real speech input, albeit not always on the first best path. For these 
simulations, an N-best list of 50 was used to calculate the probability mass. Increasing the 
length of the list did not influence the pattern of performance of SpeM. 
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3.5.2 Lexical competition in spoken word recognition 

In Section 3.2.3, we explained that any speech fragment is likely to be compatible with 
many lexical alternatives, and that there is considerable HSR evidence that multiple 
candidates are indeed activated. In McQueen et al. (1994), for instance, human listeners 
were confronted with speech fragments that were either the beginning of an existing word 
or the beginning of a nonword. They were asked to press a button as quickly as possible if 
the stimulus began or ended with a real word and then say the word they had spotted aloud. 
The results showed that words were spotted faster, and less errors were made, if the real 
word was embedded in a stimulus that was not the onset of another word. This indicates 
that when the stimulus was the onset of an existing word that particular word was also 
activated, resulting in an inhibitory effect on the target word. 

This competition process is implemented in SpeM’s evaluation module. We have already 
seen how this process helps in the resolution of lexical ambiguities such as ship inquiry. In 
this section, SpeM’s ability to spot words in ambiguous speech fragments is addressed 
further. We took the approach of examining the performance of the model on recordings of 
an entire set of stimuli from an HSR experiment. The test material consisted of the stimuli 
from the experiments described in McQueen et al. (1994). We therefore employed a third 
style of simulation. Rather than testing SpeM on utterances from a speech corpus (Section 
3.4) or on one specific two-word sequence (Section 3.5.1), we used the complete stimulus 
set from a psycholinguistic experiment. This illustrates the flexibility that SpeM has as a 
tool for examining HSR. 

SpeM was confronted with bisyllabic stimuli of which either the first or the second syllable 
was the target word. The full stimulus was either the start of an actual word or a nonword. 
In the case where the stimulus was the start of an actual word (the so-called ‘embedding 
word’), both the target word and the embedding word should be activated, resulting in a 
competition effect relative to the case where the stimulus was not the onset of an actual 
word. Is SpeM able to simulate this effect? 

Method and materials 

All items (target words embedded as second syllable of Weak-Strong (WS) word onsets, 
WS nonword onsets, words embedded as first syllable of SW word onsets, and SW 
nonword onsets) used in the McQueen et al. (1994) experiment were twice carefully 
reproduced by the same British English speaker as in the previous simulation, and recorded 
in a soundproof booth. There was a total of 144 items, divided into four types of stimuli. 
Table 3-2 gives an example of each of the four stimulus types. (For a full list of the 
materials, see McQueen et al., 1994.) We preferred to use the same speaker throughout all 
simulations, so that the mismatch between the speaker’s voice and the acoustic model set 
of the APR was identical across simulations. 
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Table 3-2. The four types of stimuli from McQueen et al. (1994). 

 Words embedded as second 
syllable of WS words 

Words embedded as first syllable 
of SW words 

 stimulus target embedding 
word 

stimulus target embedding 
word 

Word onset domes mess domestic sacrif sack sacrifice 
Nonword onset nemess mess -- sackrek sack   -- 

 

At test, SpeM was asked to recognise the recorded items. The APR module converted the 
acoustics of each of the recordings into probabilistic phone graphs. Subsequently, these 
phone graphs were fed into the lexical search module. The lexicon used in the search was 
identical to that used in the Shortlist simulations in Norris et al. (1997). Each word had one 
canonical phonemic representation, and there were a total of 26,449 lexical entries. 

Results and discussion 

The word activations of the (cohorts of the) target words as they grow over time were 
extracted from the 50-best lists. For each of the four conditions, the average word 
activation functions are plotted. Figure 3-7 shows the activation flows of the target and the 
embedded words in the four conditions. The upper panel shows the activation flows for the 
WS stimuli; the lower panel shows the activation flows for the SW stimuli. The y-axis 
displays the average word activation. The nodes on the x-axis correspond to the number of 
input phones processed. In the upper panel, position ‘1’ is aligned with the start of the 
embedding word (e.g., of domestic); position ‘3’ is aligned with the start of the target word 
(e.g., of mess). The WS stimuli are such that the target word always starts at the third 
phoneme of the embedding word. In the lower panel, position ‘1’ is aligned with the start 
of the target word (e.g., of sack, and thus also the embedding word, e.g., of sacrifice). Note, 
however, that since the nodes on the x-axis correspond to the number of nodes in the output 
graph of the APR, they thus may reflect phones which overlap partially in time. They do 
however obey chronological ordering: if m > n, node m has a later time stamp than node n. 

McQueen et al. (1994) found that target words embedded as the second syllable of WS 
word onsets (e.g., mess in domes) were harder to identify than words embedded as the 
second syllable of WS nonword onsets (e.g., mess in nemess). Furthermore, the 
identification of target words embedded as the first syllable of SW word onsets (e.g., sack 
in sacrif) was more difficult than the identification of target words embedded as the first 
syllable of SW nonword onsets (e.g., sack in sackrek) after the offset of the target word. 
Figure 3-7 shows that SpeM is able to simulate these results. In the case of the WS syllable 
stimuli, the activation of the embedding word in the matched word onset situation (e.g., 
domestic in domes) is much higher than the activation of that word in the nonmatched word 
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onset situation (e.g., domestic in nemess), because there is more evidence for domestic in 
the acoustic signal in the former stimulus type. The inhibitory effect of the embedding 
words on the target words in the matched word onset case is larger than in the nonmatched 
word onset case, resulting in a higher activation for the target word in the nonmatched 
word onset than the matched word onset case. The lower panel shows a similar picture: The 
activation of the embedding word in the matched word onset case (e.g., sacrifice in sacrif) 
is higher than the activation of the embedding word in the nonmatched word onset case 
(e.g., sacrifice in sackrek). This higher activation again causes the activation of the target 
word in the matched word onset case (e.g., sack in sacrif) to be lower than the activation of 
the target word in the nonmatched word onset case (e.g., sack in sackrek) due to the larger 
inhibitory effect. 
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Figure 3-7. Mean activation levels for the materials in the domes-simulation for the 
four stimuli types. In the upper panel, position ‘1’ is aligned with the start of the 
embedding word (e.g., of domestic); position ‘3’ is aligned with the start of the target 
word (e.g., of mess). In the lower panel, position ‘1’ is aligned with the start of the 
target word (e.g., of sack, and thus also the embedding word, e.g., of sacrifice). 

McQueen et al. (1994) also found that the competition effect was stronger for target words 
that were embedded as second syllables (the WS stimuli) than for target words that were 
embedded as first syllables (the SW stimuli). This effect is illustrated in Figure 3-7 by the 
greater absolute difference in mean activations of the target words in the matched and the 
nonmatched word onsets in the WS stimuli (positions ‘3’ to ‘5’ in upper panel of Figure 3-
7) versus the absolute difference in mean activations of the target words in the matched and 
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the nonmatched word onsets in the SW stimuli (positions ‘1’ to ‘3’ in lower panel of Figure 
3-7). The earlier activation of the longer embedding word in the case of the WS stimuli 
causes more inhibition sooner and hence a larger competition effect at the offsets of the 
target words. 

These results show that SpeM is able to simulate the results of the McQueen et al. (1994) 
experiments. The present simulations also show that SpeM can be used to simulate 
performance in specific psycholinguistic experiments: Recordings of the entire set of 
stimuli from an experiment can be given as input to the model. Note that in these 
simulations, an N-best list of 50 was used to calculate the probability mass. Increasing the 
length of the list did not influence the pattern of performance of SpeM. 

3.5.3  The Possible Word Constraint and the segmentation of continuous speech 

In the final simulation, SpeM’s ability to deal with the segmentation problem was 
investigated further. With the ship inquiry simulation we have seen that the lexical search 
procedure in SpeM can be biased by late-arriving information, such that an earlier incorrect 
interpretation (i.e., the word shipping) can be revised in favour of the correct parse of the 
input. That is, the lexical search and evaluation procedure is able to settle on an optimal 
segmentation of continuous speech input in the absence of any cues to a word boundary in 
that input. In the domes simulation we saw in addition how lexical competition between 
words beginning at different points in the signal can influence recognition performance 
across a set of stimuli from a psycholinguistic experiment, but again in the absence of any 
disambiguating word boundary cues. In Section 3.2.5, however, we argued that human 
listeners do use cues to word boundaries in the speech signal, when those cues are 
available, and that they do so by using a lexical viability constraint, the PWC. A word is 
disfavoured in the recognition process if it is misaligned with a likely word boundary, that 
is, if an impossible word (a vowelless sequence) spans the stretch of speech between the 
boundary and the beginning (or end) of that word (Norris et al., 1997). We have argued that 
the PWC helps the speech recogniser solve the segmentation problem and the out-of-
vocabulary problem. SpeM, like Shortlist (Norris et al., 1997), therefore contains an 
implementation of the PWC. It was important to test whether the implementation in SpeM 
allows the model to simulate experimental evidence on the PWC. 

SpeM was therefore confronted with words which were preceded or followed by a 
sequence of phones that could or could not be a possible word in English. The test material 
consisted of the stimuli (words embedded in nonsense words) from the PWC experiments 
(Norris et al., 1997). Again, we used the complete stimulus set from a psycholinguistic 
experiment for testing SpeM. 

In the Norris et al. (1997) experiments, English listeners had to spot real English words 
embedded in nonsense sequences (e.g., apple in fapple and vuffapple). In line with the 
predictions of the PWC, the listeners found it much harder to spot target words when the 
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stretch of speech between the beginning of the target and the preceding silence was an 
impossible English word (e.g., the single consonant f in fapple) than when this stretch of 
speech was a possible (but non-existing) English word (e.g., the syllable vuff in vuffapple). 
Can SpeM simulate this result?  

Method and materials 

All items (target words preceded or followed by phone sequences that are either impossible 
or possible words of English) used in the Norris et al. (1997) PWC experiments were 
carefully reproduced by the same British English speaker as in the previous simulations, 
and recorded in a soundproof booth. There was a total of 384 items, divided into eight 
types of stimuli – target words embedded in nonsense words. Table 3-3 gives an example 
of each of the eight stimulus types. For a full list of the materials, see Norris et al. (1997).  
 

Table 3-3. The eight types of stimuli (words embedded in nonsense words) from 
Norris et al. (1997). 

Monosyllabic words Bisyllabic words Residue 
Preceding context Following context Preceding context Following context

Impossible fegg seash fapple sugarth
Possible maffegg seashub vuffapple sugarthim

 

To test whether the implementation of the PWC in SpeM allows the model to simulate 
experimental evidence on the PWC, the word activation flows as they grow over time were 
plotted for each of the eight conditions for the case where the PWC mechanism was 
disabled (control condition) and for the case where the PWC mechanism was enabled 
(following Figures 1 and 2 in Norris et al., 1997). The conditions of the simulation were 
otherwise identical to the previous simulation. The same APR, trained in the same way, 
was used. The APR converted the acoustic signal of each item into a probabilistic phone 
graph. Furthermore, the same lexicon as before was used for the lexical search. SpeM again 
calculated the 50 best paths for each of the items.  

Results and discussion 

The word activations of the (cohorts of the) target words as they grow over time were 
extracted from the 50-best lists. For each of the eight conditions, the average word 
activation functions are plotted. Figure 3-8 shows the activation flows in the control case 
when the PWC mechanism is disabled; Figure 3-9 shows the activation flows when the 
PWC mechanism is enabled. In both figures, the y-axis displays the average word 
activation. The nodes on the x-axis correspond to the number of input phones processed. 
The activation functions are aligned relative to the first phoneme of the target word. So, 
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position 1 of the x-axis corresponds with the first phoneme of the target word. As was the 
case for the results plotted in Figure 3-7 in the previous simulation, the nodes on the x-axis 
correspond to the number of nodes in the output graph of the APR, and they thus may 
reflect phones which overlap partially in time. They do however obey chronological 
ordering. 
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Figure 3-8. Mean target activation levels for the materials in the PWC simulation 
while the PWC mechanism was disabled. The upper panel shows the activation levels 
for target words with preceding context. The lower panel shows the activation levels 
for the target words with following context. The activation functions are aligned 
relative to the last/first phoneme of the target word (‘0’). Thus, for targets with 
preceding context, ‘+1’ is the second segment of the target word, while for targets 
with following context, ‘+1’ is the first segment of the context.  

Norris et al. (1997) found that words preceded or followed by residues that were possible 
words were more easily recognised by human subjects (resulting in faster reaction times 
and fewer errors) than words preceded or followed by residues that were not possible 
words. Figure 3-8 shows that, in the absence of the PWC, word-spotting should be harder 
for monosyllabic target words with possible context than for monosyllabic target words 
with impossible context, and in the case of preceding context that word-spotting should be 
harder for bisyllabic target words with possible context than for bisyllabic target words 
with impossible context. This is contrary to the findings reported by Norris et al. When the 
PWC mechanism is enabled, however, SpeM is able to correctly simulate these findings, as 
is shown in Figure 3-9. For each of the four different types of target word (monosyllabic or 
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bisyllabic, and with preceding or following context), those in possible word contexts (solid 
lines) have higher mean activations than those in impossible word contexts (dashed lines). 
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Figure 3-9. Mean target activation levels for the materials in the PWC simulation 
while the PWC mechanism was enabled. The upper panel shows the activation levels 
for target words with preceding context. The lower panel shows the activation levels 
for the target words with following context. The activation functions are aligned 
relative to the last/first phoneme of the target word (‘0’). Thus, for targets with 
preceding context, ‘+1’ is the second segment of the target word, while for targets 
with following context, ‘+1’ is the first segment of the context. 

Comparing the word activation flows in Figures 3-8 and 3-9 shows that the activations in 
Figure 3-9 are overall lower than the activations in Figure 3-8. This is due to the PWC 
mechanism. First, the addition of the PWC penalty (to target words in impossible word 
context) causes the word activation to be lower. Second, the addition of the PWC penalty 
causes more words to be absent from the 50-best list, such that there are more zero 
activations in the setting where the PWC mechanism was enabled, which in turn also 
causes the overall activations to be lower. Note also that, in these simulations, increasing 
the length of the N-best list did not influence the pattern of performance of SpeM. This 
shows again that the choice of a 50-best list is reasonable. 

SpeM models the word-spotting data in the same way as was done by Shortlist in Norris et 
al. (1997): The higher a word is activated the more likely it is that that word will get a ‘yes’ 
response and the faster the response will be. With Shortlist, however, it was not possible to 
make a direct link between the error rates of the subjects and the error rate of the model. 
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The implementation of SpeM, however, makes this possible. We calculated SpeM’s error 
rates in two different ways and compared them with the error rates of the human subjects. 
Table 3-4 shows the mean error rates of the human subjects (‘H’) and SpeM for each of the 
eight conditions. ‘1B’ shows the percentage of target words that were not found on the 
first-best path as was calculated by SpeM; ‘10B’ shows the percentage of target words that 
were not to be found in the 10-best list.  
 

Table 3-4. Mean percentage error rates of the human subjects (H; taken from Norris 
et al., 1997, Experiment 1); of the words on the first-best path as calculated by SpeM 
(1B); and of the words in the 10-best list as calculated by SpeM (10B). 

Monosyllabic words (%) Bisyllabic words (%) Residue 
Preceding context Following context Preceding context Following context

 H 1B 10B H 1B 10B H 1B 10B H 1B 10B
Impossible 52 79 29 39 85 6 18 98 40 38 96 17 
Possible 57 77 19 28 69 10 14 90 40 17 92 4 

 

Norris et al. (1997) found that responses to targets with possible context were more 
accurate than responses to targets with impossible context. In SpeM, for the words on the 
first-best path (‘1B’) alone, the error rates show the PWC effect in all four conditions: For 
each type of target word and each context position, responses to targets in possible contexts 
were more accurate than responses to targets in impossible contexts. Using only the first-
best path to estimate error rates may be a rather strict criterion, however. Even when the 
error rates are calculated on the basis of the words in the 10-best list, the PWC effect is still 
present in 2 out of the 4 cases. 

As shown in Table 3-4, however, the error data in SpeM do not align perfectly with the 
human error data. There are at least three reasons for this. First, as pointed out before, the 
APR in SpeM does not work perfectly. This certainly causes the error rates in SpeM’s first-
best paths to be much higher in all four conditions than those in the human data, and will 
also contribute to the pattern of error rates in SpeM’s 10-best lists. Second, it is impossible 
to compare directly the error rates in SpeM’s 10-best lists with the human data, since it is 
unlikely that humans compute specifically 10-best lists, and, even if they do, we have no 
access to those lists. Third, SpeM’s behaviour is more deterministic than human word-
spotting behaviour. While SpeM will always behave (in terms of word activation scores 
and error rates) in the same way on a given input, humans can show the effect of the PWC 
in speed or accuracy or both, and the relative weighting of these effects can vary from trial 
to trial and subject to subject. For all three of these reasons, we should not expect perfect 
correlations between the model’s errors and the human error data. 
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Although the comparison of error rates in SpeM with the Norris et al. (1997) error data is 
not straightforward, it does nevertheless show that SpeM is able to model the PWC effect 
with real speech input not only using word activation flows but also using error rates. The 
PWC implementation helps SpeM to segment continuous speech fragments and to favour 
parses that only contain real or possible words. As we have discussed earlier, the PWC 
therefore ought to improve SpeM’s ability to deal with out-of-vocabulary words and with 
the lexical embedding problem (e.g., through disfavouring the parse ch apple, given the 
input chapel). Again, the present simulations show that SpeM can be used to simulate 
performance in specific psycholinguistic experiments. 

3.6 General Discussion 
In this paper, we attempted to bridge the gap that has existed for decades between the 
research fields of human and automatic speech recognition. According to Marr (1982), 
every complex information processing system, including any speech recogniser, can be 
described at three different levels: the computational, the algorithmic, and the 
implementational. In the present paper, we offered a computational analysis of speech 
recognition, with an emphasis on the word recognition process. We focussed initially on 
the computational level instead of the algorithmic and implementational levels. As we 
showed, a computational-level description of spoken word recognition applies equally well 
to computer speech systems as to human listeners, since they both have the same 
computational problems to solve. The computational-level analysis of the word recognition 
process revealed close parallels between HSR and ASR. We identified a number of key 
computational problems that must be solved for speech recognition both by humans and by 
ASR systems, and we reviewed the standard approaches that have been taken in both HSR 
and ASR to address these problems.  

We illustrated the computational parallels between HSR and ASR by developing SpeM: A 
model of HSR, based on Shortlist (Norris, 1994), that was built using techniques from 
ASR. SpeM is not just a reimplementation of Shortlist; it represents an important advance 
over existing models of HSR in that it is able to recognise words from acoustic speech 
input at reasonably high levels of accuracy. Our simulations also showed how the 
representations and processes in SpeM allow it to deal with the computational problems 
that we highlighted in our review of HSR and ASR. The use of separate prelexical and 
lexical levels of processing, and, crucially, a probabilistic prelexical level, allows the model 
to deal quite well with the invariance problem (the problem caused by the variability in the 
acoustic-phonetic realisation of words in the speech signal). SpeM strongly outperformed 
Shortlist in its ability to recognise words from spontaneous speech, spoken by a large 
number of different talkers in a noisy environment, largely due, we showed, to the 
probabilistic prelexical level in SpeM. We also showed that the combination of a DP 
lexical search algorithm and phone insertion, deletion, and substitution costs allows SpeM 
to approach a different aspect of the invariance problem – the fact that real-world 
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pronunciations of words often diverge, due to the insertion and/or deletion and/or 
substitution of phonemes, from those words’ canonical pronunciations. The probabilistic 
prelexical level also allows SpeM to recognise speech in close to real time (i.e., it offers a 
solution to the second computational problem we highlighted, the real-time processing 
problem).  

Our simulations using the input ship inquiry showed in addition that SpeM is able to solve 
the lexical embedding problem (the fact that any stretch of speech is likely to be consistent 
with several different lexical hypotheses) and the segmentation problem (how can 
continuous speech be segmented into words when there are no fully reliable cues to word 
boundaries?). The simulations using the materials from McQueen et al. (1994) and Norris 
et al. (1997) confirmed that SpeM was able to reproduce their data on lexical competition 
and the PWC, respectively. In turn, these results also suggest that SpeM is armed to deal 
with the fifth and final computational problem which we discussed: the out-of-vocabulary 
problem. Taken together, these simulations illustrate that the theory of HSR underlying 
SpeM (and Shortlist) holds in the situation of real speech input; in all simulations, the input 
to SpeM was the acoustic speech signal.  

3.6.1  Value of SpeM enterprise for HSR 

There are a number of ways in which the comparison of HSR and ASR, and the SpeM 
model itself, can be of value in advancing our understanding of spoken word recognition in 
human listeners. The most obvious contribution that ASR can make to theories of HSR is 
by facilitating development of models that can address the complete range of issues from 
acoustic analysis to recognition of words in continuous speech. As we have shown with the 
SpeM simulations reported here, such models can be assessed and evaluated in exactly the 
same way as existing computational models. One clear advantage of these models is that 
they can be tested with precisely the same stimulus materials as used in the behavioural 
studies being simulated, rather than using some idealised form of input representation. 
These benefits are illustrated by the simulations reported here. First, as in the ship inquiry 
simulations, detailed analyses of hand-crafted (but real speech) inputs can be carried out. 
Second, as in the lexical competition and PWC simulations, the model can be used to test 
psycholinguistic theory by comparing its performance on the same set of materials as were 
presented to listeners in a listening experiment. Analysis of the failures of SpeM informs us 
about areas where the model needs improvement. As is clear from the present simulations, 
SpeM’s performance is not perfect. We argued in the context of the ship inquiry 
simulations that the limitations of the model given this input were due largely to problems 
with the APR. These problems are undoubtedly at least part of the reason for the limited 
success that SpeM had in the other simulations. Obviously, if the APR fails, then 
everything downstream of the APR must fail too. It may therefore be necessary in HSR 
modelling to continue to use idealised inputs, in parallel with real-speech simulations in 
models such as SpeM. Nevertheless, producing a better front end should be one of the 
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goals of HSR modelling; one challenge for the future will therefore be to establish whether 
the limitations of SpeM’s APR can be overcome. 

Of course, producing models that can operate on real speech is not an end in itself. The real 
benefit of such models is in their contribution to the development of better theories. For 
example, although HSR modelling has not been naive about the complexity and variability 
of real speech, it has tended to focus on explaining specific sets of data from experiments 
(and those experiments have used high quality laboratory speech). HSR modelling has 
therefore tended to avoid detailed analysis of the problems of robust speech recognition 
given real speech input. As we noted earlier, the fact that HSR models can not recognise 
real speech can potentially make it hard to evaluate the theoretical assumptions embodied 
in those models. It is sometimes difficult to know whether or not a particular theoretical 
assumption would make a model better or worse at recognising speech, or might even 
make it fail to recognise speech altogether. ASR modelling has of course been forced to 
deal with those problems (ASR systems have to be reasonably successful in recognising 
words in real-world speech communication situations). The ASR approach adopted in 
SpeM thus offers a new way of looking at specific modelling problems in HSR from the 
perspective of the technical problem of achieving reasonable levels of recognition of words 
in real speech.  

We have highlighted two areas where we believe that the more formal and practical 
considerations of building a speech recogniser can inform issues of active theoretical 
debate in psychology. Although models incorporating process interaction (Section 3.2.6), 
or episodic recognition (Section 3.2.2) continue to have adherents among psychological 
researchers, work in ASR throws down a strong challenge to both of these theories: Is it 
possible to demonstrate any real benefit of on-line interaction, or to show how it might be 
possible to build a practical large-vocabulary recogniser based on episodic representations?  

In addition, the integrated search procedures used in ASR leads to a very different 
perspective on the interaction debate from that usually adopted in HSR. In the 
psychological literature the debate is usually seen as a contrast between models with and 
without interaction between processes responsible for lexical and prelexical processing. 
The question is: Does lexical information feedback to influence the internal workings of 
prelexical processes? However, the integrated search processes used in ASR models do not 
fit neatly into either of these categories. In ASR, there tends not to be independent levels of 
processing (such as the prelexical and lexical levels). Instead, many different sources of 
information can contribute to a single lexical search process. Thus, for example, bottom-up 
acoustic costs can be combined in the search lattice with language model costs that specify 
the probability of words as a function of syntactic or semantic constraints. In the 
terminology suggested by Norris (1982) this is an information interaction rather than a 
process interaction (i.e., it is not the case that, e.g., a syntactic processor influences an 
acoustic-phonetic processor). Thus, even though the concept of a single, combined search 
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process may seem alien to psychologists who tend to build models with distinct processing 
levels, this kind of approach need not involve any process interactions.  

Although we have not considered the use of higher level sources of information here, the 
principle of a unified search process in ASR is usually extended to syntactic and semantic 
factors too (usually in the form of a ‘language model’). Syntactic or semantic constraints 
could influence the choice of the best path(s) through the search lattice. This is the most 
obvious way of dealing with sentence context effects in a model like SpeM; one that is 
close in spirit to the suggestion (Norris, 1994) that the Shortlist model could be combined 
with the Checking Model (Norris, 1986) to account for context effects. As we have just 
argued, however, the inclusion of syntactic constraints as probabilistic biases in the lexical 
search process would not undermine the assumption that Shortlist and SpeM are non-
interactive models. That is, the contextual biases could change the path scores and hence 
the ultimate segmentation of a given input (i.e., there would be an information interaction) 
but could not change the bottom-up fit of a word to a stretch of acoustic signal (i.e., there 
would be no possibility of a process interaction). 

The preceding discussion also highlights the fact that the entire word recognition process in 
both ASR and HSR is best characterised as a search process. The close similarities between 
the ASR-inspired lattice search process in SpeM and the interactive-activation lexical 
competition process in Shortlist (see Figure 3-2) make clear that even in a connectionist 
model with parallel activation of multiple lexical hypotheses, word recognition is a search 
for the best-matching word(s) for a given input. Put another way, in spite of differences at 
the algorithmic and implementational levels, word recognition is, computationally, a search 
problem. 

Furthermore, the Bayesian approach adopted in SpeM has implications for many 
psycholinguistic questions, for instance with respect to the modelling of word frequency 
effects and with respect to the effects of phonetic mismatch on word recognition. When 
using Bayes’ Rule to calculate lexical activation, as in SpeM, there is, for example, no need 
to have an explicit inhibition mechanism to handle mismatching input like the [] in 
[Igrεt] (i.e., how a drunk might say the word cigarette). The issue in a Bayesian model 
becomes one of whether P(|s) is high, rather than in standard HSR models, where the 
question, in deriving some mismatch penalty, is whether [s] is confusable with []. That is, 
the Bayesian approach changes one’s way of thinking about spoken word recognition from 
the notion of what is similar to the notion of what is likely. Norris et al. (in preparation) 
also adopt a Bayesian approach in related work developing the Shortlist model. Although 
the model of Norris et al. uses Bayesian measures, computed on the basis of probabilistic 
path scores, it differs from SpeM in that it uses input derived from data on perceptual 
confusions rather than real speech input. That is, rather than using an ASR front end, Norris 
et al. drive their model from input designed to reflect the characteristics of human 
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prelexical processing. That paper discusses the theoretical implications of a Bayesian 
approach to HSR in more detail than is possible here. 

In assessing the value of models like SpeM in evaluating theories of HSR, it is worth 
considering one other point. Some psychologists might be concerned that these ASR 
techniques do not have the familiar comforting look and feel of, for example, the 
connectionist models commonly used in psychology. That is, at first glance, connectionist 
models might seem to be neurobiologically more plausible. However, the contrast between 
a connectionist model and say, an HMM or Viterbi search, may be nothing more than a 
difference at the implementational level. We know from Hornik et al. (1989) that 
connectionist networks are universal approximators. That is, algorithms like Viterbi search 
could be implemented as connectionist networks. If our analysis is correct, given that the 
human brain can recognise speech, it must implement algorithms that can compute the 
appropriate functions. Connectionist networks could only stake a claim to superiority if 
they could be shown to implement algorithms that could perform the computations 
necessary for speech recognition, but that could not be implemented in non-connectionist 
models. For more general arguments in favour of explanations at a computational level, 
rather than in terms of mechanisms or implementations, the reader is referred to Anderson 
(1990). 

3.6.2 Value of SpeM enterprise for ASR 

The SpeM enterprise also has implications for ASR. Most mainstream ASR systems use 
some kind of integrated search algorithm: they compute the best path through the complete 
lattice, and then trace back to identify the words that make up that path (see, e.g., Juang & 
Furui, 2000). SpeM, however, is capable of giving a ranked list of the most likely words at 
each point in time (i.e., at each node in the input lattice). For each word and each path, 
SpeM computes an activation value: as long as a word is consistent with the acoustic input, 
its activation grows. Scharenborg et al. (2003c) show that this feature of SpeM allows the 
model to recognise words before their acoustic offset. Continuous and early recognition 
measures could be of considerable value in ASR systems, which often do not provide on-
line recognition measures.  

Second, there are important lessons to be learned from SpeM for the development of more 
dynamic ASR systems. As we argued in Section 3.2, both human and machine word 
recognisers need to be able to adjust their operation to achieve good large-vocabulary 
speaker-independent recognition performance. We suggested that the prelexical level in 
SpeM allows for retuning processes that would allow for adjustments to generalise across 
both speakers and words. Two-stage ASR systems, similar to the cascaded processing 
described in Section 3.2.2, may, therefore, prove to have more flexibility than traditional 
one-stage systems. Two-stage procedures have another advantage over one-stage 
procedures. Because of the intermediate symbolic representation of the speech signal in a 
two-step recognition system, the second recognition step can be used for integrating more 
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powerful language models (e.g., morphological, morpho-phonological, morpho-syntactic, 
and domain knowledge) into the system (see, e.g., Demuynck et al., 2003). 

A final implication for ASR also concerns the two-stage architecture of SpeM, and its 
potential for dynamic adjustment. Many spontaneous speech effects, such as hesitations 
and repetitions, and the occurrence of out-of-vocabulary words, are problematic for the 
word-based integrated search in ASR, since this type of search by default tries to match the 
results of these spontaneous speech phenomena onto lexical items. ASR systems require 
acoustic garbage models to handle these phenomena. In SpeM, the use of the garbage 
symbol [?] makes it possible to model speech that does not consist entirely of lexical items. 
The garbage symbol simply matches with a phone (sequence) that does not match with a 
lexical item. The combination of the Possible Word Constraint implementation and the 
garbage symbol makes it possible in SpeM for out-of-vocabulary words to be marked as 
new words. A garbage symbol sequence that is matched against a sequence of phones 
containing a vowel can be considered to be a possible word, and could on the basis of this 
PWC evaluation be added to the lexicon. In this way, new words could be learned, and thus 
the number of out-of-vocabulary words could be reduced. Although the step of adding new 
words to the lexicon is not implemented in SpeM, it nevertheless ought to be possible to 
include similar mechanisms in new and more dynamic ASR systems, in the continued 
search to improve recognition performance. 

3.6.3 Limitations of the computational analysis 

As we set out in the introduction, the computational analysis presented here has been 
restricted to the problem of spoken word recognition. In fact, the scope of our analysis has 
been restricted to only part of the word recognition problem. We have only touched briefly 
on questions about the nature of prelexical representations, or the kind of acoustic-phonetic 
analyses that must form the front-end of a speech recogniser. In part this reflects a 
conscious decision to focus our discussion on issues where there are clear parallels between 
ASR and HSR. It also reflects the limitations of our computational analysis, however. 
When dealing with questions such as lexical competition, there is a clear case to be made 
that deriving an optimum lexical parse of the input is a central part of the computational 
task of a speech recogniser. We can also suggest a number of algorithms that might 
compute the necessary functions. However, as yet we can offer no comparable analysis of 
the necessary computations required for the early stages of acoustic-phonetic analysis. We 
could review ASR techniques for extracting spectral and temporal information from the 
signal, and we could compare them with models of the human auditory system (e.g., 
Meddis & Hewitt, 1991; Patterson et al., 1995). However, in neither case can we offer a 
detailed specification of the kind of computation these stages must perform. That we must 
leave as a challenge for the future. 
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3.6.4 Conclusion 

Despite good intentions, there has been little communication between researchers in the 
fields of ASR and HSR. As we suggested in the introduction, this failure may stem from a 
lack of common vocabulary. Research in both areas has tended to concentrate on the 
question of how humans or how machines recognise speech, and to approach these 
questions by focussing on algorithms or implementations. Here, we have presented a 
computational-level analysis of the task of recognising spoken words that reveals the close 
parallels between HSR and ASR. For almost every aspect of the computational problem, 
similar solutions have been proposed in the two fields. Of course, the exact algorithms 
differ, as does everything about how they are implemented, but both fields have had to 
solve the same problems. The parallels between the two fields are further emphasised by 
the implementation of the speech-based model of human speech recognition, SpeM. We 
hope that the computational analysis can provide a common framework to encourage future 
communication between the disciplines of ASR and HSR. As we have suggested here, each 
has a great deal to learn from the other. 
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Appendix A 
This table displays the 10-best segmentations as calculated by SpeM for the three 
recordings of ship inquiry. The column indicated by ‘Segmentation’ shows the sequence of 
recognised words in DISC-format (Burnage, 1990). The column ‘Total cost’ shows the 
total path cost as calculated by SpeM (see Section 3.3.3). The ordering of the paths is done 
on the basis of the total path cost.  

Recording 1 Recording 2 Recording 3  
Segmentation Total cost Segmentation Total cost Segmentation Total cost

1 SUk INkw2@ri 863.890 JIp INkw2@ri 744.930 SIp INkw2@ri 779.770 
2 SUk Inkw2@rIN 864.000 SIp INkw2@ri 745.320 JIp INkw2@ri 780.200 
3 SIp INkw2@ri 864.080 JIt INkw2@ri 745.400 SIt INkw2@ri 780.240 
4 Sut INkw2@ri 864.180 JVb INkw2@ri 745.660 SUk INkw2@ri 780.330 
5 SIp Inkw2@rIN 864.190 JIk INkw2@ri 745.700 Sut INkw2@ri 780.370 
6 JIp INkw2@ri 864.240 SIt INkw2@ri 745.780 S@d INkw2@ri 780.560 
7 SIt INkw2@ri 864.280 SUk INkw2@ri 745.870 JIt INkw2@ri 780.670 
8 Sut Inkw2@rIN 864.290 Sut INkw2@ri 745.920 SIpIN kwQri 780.810 
9 JIp Inkw2@rIN 864.350 S@d INkw2@ri 745.950 SIbin kwQri 781.080 
10 SIt Inkw2@rIN 864.390 Jip INkw2@ri 746.150 SIp Inkw2@ rIt 781.130 
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Humans are often able to recognise a word before its acoustic realisation is complete. 
This in contrast to conventional automatic speech recognition (ASR) systems, which 
compute the likelihood of a number of hypothesised word sequences, and identify the 
words that were recognised on the basis of a trace back of the hypothesis with the 
highest eventual score, in order to maximise efficiency and performance. In the 
present paper, we present an ASR system, SpeM, based on principles known from the 
field of human word recognition that is able to model the human capability of ‘early 
recognition’ by computing word activation scores during the speech recognition 
process.  

Experiments on 1,463 polysyllabic ‘focus’ words in 885 utterances showed that 64.0% 
(936) of the focus words were recognised correctly at the end of the utterance. For 
81.1% of the 936 correctly recognised focus words the local word activation allowed us 
to identify the word before its last phone was available, and 64.1% of those words were 
already identified one phone after their lexical uniqueness point. 

We investigated two types of predictors for deciding whether a word is considered as 
recognised before the end of its acoustic realisation. The first type is related to the 

absolute and relative values of the word activation, Actmin and , which trade false 
accepts for false rejects. The second type of predictor is related to the number of 
phones of the word that have already been processed and the number of phones that 
remain until the end of the word. The results showed that SpeM’s performance 
increases if the amount of acoustic evidence in support of a word increases and the risk 
of future mismatches decreases.

Keywords: automatic speech recognition; human speech recognition; early speech 
recognition; continuous speech recognition 

 

4.1 Introduction 
For almost all tasks and under almost all conditions humans do a much better job at 
recognising speech than the most advanced automatic speech recognition (ASR) systems 
(Lippmann, 1997). Thus, it is not surprising that there are numerous indications that 
humans employ different algorithms for the processes that are necessary to convert 
continuous acoustic signals into discrete lexical representations than today’s ASR systems. 
And it is only natural that several ASR researchers have suggested to take a fresh look at 
the way humans recognise speech, and try to incorporate the processes that are most likely 
to make the difference into the design of ASR systems (e.g., Carpenter, 1999; Hermansky, 
2001; Moore, 2003).  

Most theories of human speech recognition (HSR; Gaskell and Marslen-Wilson, 1997; 
Luce et al., 2000; McClelland and Elman, 1986; Norris, 1994) assume that human listeners 
first map the incoming acoustic signal onto prelexical representations (e.g., in the form of 
phonemes or features) and that these resulting discrete symbolic representations are then 
matched against the words in an internal lexicon. In general terms, this is not unlike the 
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way ASR systems operate, although most mainstream systems avoid an explicit 
representation of the prelexical level to prevent decisions that might incur irrecoverable 
errors. Looking more closely, however, the lexical search performed by human listeners 
and ASR systems appears to be organised quite differently. ASR systems postpone final 
decisions as long as possible (i.e., until additional input data can no longer affect the 
result). Again, this strategy is chosen in order to prevent premature decisions, the results of 
which may affect following words. On the other hand, there is ample evidence that human 
listeners are able to recognise words reliably even before the corresponding acoustic signal 
is complete (Marslen-Wilson, 1987). According to theories of HSR, human listeners 
compute a word activation measure (i.e., a measure indicating the extent to which a word is 
activated based on the incoming speech signal) as the speech comes in and presumably 
make a decision as soon as the activation of a word is high enough, often before all 
acoustic information of the word is available (Marslen-Wilson, 1987; Marslen-Wilson and 
Tyler, 1980; Radeau et al., 2000).  

Marslen-Wilson (1987) coined the term early selection for the “reliable identification of 
spoken words, in utterance contexts, before sufficient acoustic-phonetic information has 
become available to allow correct identification on that basis alone.” He reviews a number 
of gating experiments (a word is being presented in segments of increasing duration, and 
subjects are asked to identify the word being presented and to give a confidence rating after 
each segment) and monitoring experiments (detection of a target sequence, which may be 
embedded in a sentence or list of words/nonwords, or in a single word or nonword) in the 
context of early selection. On the basis of the results of these experiments, he concluded 
that in normal speech recognition, content words heard in an utterance context can be 
selected and recognised earlier than would be possible if just the acoustic input was being 
taken into account.  

Identifying and recognising words before their acoustic realisation is complete is important 
in human-human communication, for example for adequate turn-taking in a dialogue with 
minimal response latencies. It may also enhance the segmentation of the continuous stream 
of acoustic information into words, a process that should be easier if the end of words can 
be predicted (Marslen-Wilson, 1987). The capability of recognising words on the basis of 
their initial part certainly helps human listeners in detecting and processing self-
corrections, broken words, repeats, etc. (Stolcke et al., 1999).  

This paper introduces the concept of ‘early recognition’, i.e., the reliable identification of 
spoken words before the end of its acoustic realisation, but after the uniqueness point (UP) 
of the word (given the lexicon). The restriction to recognition at or after the uniqueness 
point allows us to focus on acoustic recognition, with only a small impact of a language 
model, which would be comparable – but certainly not identical – to the contexts used in 
human word recognition in Marslen-Wilson’s definition of ‘early selection’.   
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If one wants to model early recognition in ASR after human speech recognition, one needs 
to develop an ASR system that is able to produce a measure analogous to the word 
activation measure – as used by human listeners – that can be computed on-line, as 
additional speech comes in. In Scharenborg et al. (2003a, 2003b, accepted), we have 
presented an end-to-end speech recognition system called SpeM (SPEech based Model of 
human speech recognition) that is indeed capable of providing ‘word activations’ that are 
derived from the log-likelihood values in conventional ASR systems. Since the procedure 
that converts log-likelihoods into word activations is based on Bayes’ Rule, we use the 
term ‘Bayesian activation’ along with the more general term ‘word activation’ (Section 
4.3). The SpeM system consists of three modules: The first converts the speech signal into 
a phone graph; the second parses the graph to detect (sequences of) words; the third makes 
decisions about the recognition of words as more acoustic evidence comes in (Section 4.2). 
Furthermore, during the lexical search, SpeM provides a list of the most likely path 
hypotheses at every phone node in the phone graph. This enables SpeM to recognise and 
accept words before the end of an utterance or phrase. 

In previous papers (Scharenborg et al., 2003b, accepted), we investigated the performance 
of SpeM as a standard speech recognition system, which makes decisions about the identity 
of the words (spoken mainly in isolation) it has recognised after the complete signal has 
been processed. In this paper, we extend this research by investigating SpeM’s capability 
for early recognition of spoken words. For standard speech recognition, it suffices to search 
for the best-scoring path through the search space spanned by the language model, the 
lexicon, and the acoustic input. In early recognition, on the other hand, an additional 
decision procedure is needed for accepting a word as being recognised if its local word 
activation fulfils one or more criteria (Section 4.6).  

Early recognition is dependent on the structure and the contents of the lexicon. If a lexicon 
contains many words that only differ in the last one or two phones, early recognition (on 
the basis of acoustic input) is more difficult than when the lexicon mainly consists of words 
which contain many different phone sequences after the lexical uniqueness point. At the 
same time, it is evident that making decisions on the basis of only a few phones at the 
beginning of a long word is more dangerous than deciding on the basis of a longer string of 
word-initial phones. Therefore, we will investigate the impact of the number of phones 
before and after the UP on the decision criteria that must be applied to the Bayesian 
activation in early recognition. This should allow us to draw conclusions about the 
feasibility of early recognition in an ASR system (Section 4.6).  

Section 4.2 of this paper introduces SpeM, while Section 4.3 explains the way in which 
SpeM computes the ‘word activation’ measure in some detail. Section 4.4 briefly describes 
the speech material used in this study. In order to be able to put the results of SpeM on the 
task of early recognition into perspective, it is necessary to know how well SpeM performs 
as a standard ASR system. This issue is taken up in Section 4.5. In that section, we also 
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define the crucial concept of the ‘Recognition Point’ (RP) of a word, and we analyse the 
location of the RP in the focus words that were recognised correctly. Finally, Section 4.7 
provides a general discussion of the results of this study.  

4.2 The recognition system 
SpeM was developed to serve as an experimental ASR system and at the same time also as 
a tool for research in the field of HSR. In fact, it is a new and extended implementation of 
the theory underlying Shortlist, the computational model of human word recognition 
developed by Norris (1994). Unlike Shortlist and most other computational models of 
HSR, which take handcrafted symbolic phoneme-like representations of the speech signal 
as input, SpeM starts from the actual acoustic signal.

APR SearchProbabilistic 
phone lattice

Decision 
Module

N-best of most 
likely paths 

Figure 4-1. Overview of the SpeM model and the additional decision module1. 
 

SpeM consists of three modules that operate in sequence (see Figure 4-1). The first module, 
the automatic phone recogniser (APR), generates a symbolic representation of the speech 
signal in the form of a (probabilistic) phone graph (Section 4.2.1). The second module, the 
word search module, parses the graph to find the most likely (sequence of) words, and 
computes for each word its activation based on, among others, the accumulated acoustic 
evidence for that word (Section 4.2.2). Below, we give the relevant details of the first two 
modules. The focus of this paper is on the third module of the system (see Figure 4-1), 
which makes decisions about the recognition of words as more acoustic evidence comes in. 
This module is explained in detail in Section 4.6. 

The sequential operation of the first two modules should be considered as an 
implementation detail. It would be easy to change the phone-based architecture of SpeM in 
such a way that the search module would advance one step each time the APR adds a new 
node to the phone graph. The essential difference with ASR is that the search module in 
SpeM depends in a crucial manner on the availability of some kind of prelexical symbolic 
representation of the speech signal. Consequently, it is not straightforward to implement 

                                                
1 In the current research, we are interested in the early recognition of words and not in comparing word 
activation scores over time in the context of simulating human speech recognition. These two issues 
require different modules after the search. Therefore, in Figure 4-1, the ‘Evaluation’ module of Figure 
3-3 is replaced by the ‘Decision’ module. 
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early recognition in SpeM in conventional frame-based ASR systems, since in those 
systems a prelexical symbolic representation is lacking.  

4.2.1 The automatic phone recogniser 

The APR is based on the Phicos ASR system (Steinbiss et al., 1993), but it is easy to build 
an equivalent module using open source software, such as HTK (Young et al., 2002). For 
the experiments reported in this paper, 37 context-independent phone models, one noise 
model, and one silence model were trained on 25,104 utterances in Dutch (81,090 words, 
corresponding to 8.9 hours of speech excluding leading, utterance internal, and trailing 
silent portions of the recordings) selected from the VIOS database that consists of 
telephone calls recorded with the Dutch public transport information system OVIS (Strik et 
al., 1997). More details about the VIOS database are given in Section 4.4. All phone 
models and the noise model have a linear left-to-right topology with three pairs of two 
identical states, one of which can be skipped. For the silence model, a single-state hidden 
Markov Model (HMM) is used. Each state comprised a mixture of maximally 32 Gaussian 
densities. The phone models were trained using a transcription generated by a 
straightforward look-up of the phonemic transcriptions of the words in a lexicon of 1,415 
entries, including entries for background noise and filled pauses. For each word, the 
lexicon contains a single unique phonemic representation, corresponding to the canonical 
(citation) pronunciation. Pronunciation variation is not taken into account. 

The ‘lexicon’ used for the phone recognition by the APR consists of 37 Dutch phones and 
one entry for background noise, yielding 38 entries in total (in the lexicon, no explicit entry 
for silence is needed). During recognition, the APR uses a bigram phonotactic model 
trained on the canonical phonemic transcriptions of the training material.  

2

1
3
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5
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sil/47.65 

/16.49sil/33.2
a/26.35

s/123.8 

s/103.85
/76.65

B 

Figure 4-2. A graphical representation of a weighted probabilistic input phone lattice. 
For the sake of clarity, not all phones and acoustic costs are shown. 

The APR converts the acoustic signal into a weighted probabilistic phone lattice without 
using lexical knowledge. Figure 4-2 shows a simplified weighted phone lattice: The lattice 
has one root node (‘B’) and one end node (‘E’). Each edge (i.e., connection between two 
nodes) carries a phone and its bottom-up evidence in terms of negative log likelihood (its 
acoustic cost). The acoustic cost denotes the probability that the acoustic signal X was 
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produced given the phone (P(X|Ph), in which Ph denotes a phone). In our experiments, the 
acoustic scores for a phone typically range from 10 to 120 (not normalised for length). 

4.2.2 The search module 

In the lexical search module, the search for the best-matching sequence of words is in 
effect the search for the cheapest path through the product graph of the input phone lattice 
and a lexicon represented as a lexical tree. In the lexical tree, entries share common phone 
prefixes (called word-initial cohorts), and each complete path through the tree represents a 
pronunciation of a word. See Figure 4-3 for a graphical representation of the beginning of a 
lexical tree. The lexical tree has one root node (‘B’) and as many end nodes as there are 
words in the lexicon. The hash ‘#’ indicates the end of a word; the phonemic transcription 
in the box is the phonemic representation of the complete word. Each node in the lexical 
tree represents a word-initial cohort. The phonemic transcriptions belonging to the word-
initial cohorts are not explicitly shown. Note that the word [s] is an example of an 
embedded word, since the node labelled with [s] in the lexical tree (Figure 4-3, node 2) 
has outgoing arcs (thus in this case the phonemic transcription [s] also represents a word-
initial cohort). Finally, SpeM supports the use of unigram and bigram language models, 
which models the prior probability of observing a word and of observing a word given its 
predecessor. In the experiments reported in this paper, only a unigram language model is 
used (see also Section 4.4). 
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 Figure 4-3. A graphical representation of the beginning of a lexical tree. 

The search is implemented using dynamic programming (DP) techniques, and is time-
synchronous and breadth-first. SpeM calculates scores for each path (the total cost), and 
also a score for the individual words on a path (the word cost). The total cost of a path is 
defined as the accumulation along the path arcs of the bottom-up acoustic cost (as 
calculated by the APR) and a number of costs associated with SpeM’s parameters. SpeM 
has a number of parameters that can be tuned individually and in combination. Most of 
these parameters (e.g., a word entrance penalty and the trade-off between the weights of the 
bottom-up acoustic cost of the phones and the contribution of the language model) are 
similar to the parameters in conventional ASR systems. In addition, however, SpeM has 
two types of parameters that are not usually present in conventional ASR systems. The first 
novel parameter type is associated to the cost for a symbolic mismatch between the input 
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lattice and the lexical tree due to phone insertions, deletions, and substitutions. Insertions, 
deletions, and substitutions have their own weight that can be tuned individually. Because 
the lexical search in SpeM is phone based, mismatches can arise between the phonemic 
representation of the input in the phone graph and the phonemic transcriptions in the lexical 
tree. It is therefore necessary to include a mechanism which explicitly adjusts for phone-
level insertions, deletions, and substitutions. In mainstream ASR, however, the search 
space is usually spanned effectively by the combination of the pronunciation variants in the 
system’s dictionary and the system’s language model, so that explicit modelling of 
insertions, deletions, and substitutions on the phone-level is not necessary. 

The second novel parameter type is associated to the Possible Word Constraint (PWC, 
Norris et al., 1997). The PWC determines whether a (sequence of) phone(s) that cannot be 
parsed as a word (i.e., a lexical item) is phonotactically well formed (being a possible 
word) or not (see also Scharenborg et al., 2003b, accepted). In SpeM, the PWC is 
implemented using ‘garbage’ symbols, comparable to the ‘acoustic garbage’ models in 
ASR systems. The garbage symbol in SpeM matches all phones with the same cost (note 
that the acoustic costs of the phones themselves do vary) and is hypothesised whenever an 
insertion that is not word-internal occurs on a path. A garbage symbol (or an uninterrupted 
sequence of garbage symbols) is itself regarded as a word, so the word entrance penalty is 
added to the total cost of the path when garbage appears on that path. The PWC evaluation 
is applied only to paths on which garbage is hypothesised. Word onsets and offsets, plus 
utterance onsets and offsets and pauses, count as locations relative to which the viability of 
each garbage symbol (or sequence of symbols) is evaluated. If there is no vowel in the 
garbage sequence between any of these locations and a word edge, the parse is penalised 
and the PWC cost is added to the total cost of the path. For example, consider the utterance 
“they met a fourth time”, where the last sound of the word fourth is pronounced as [f]. If 
fourf is not stored as a possible pronunciation in the lexicon, a potential parse by the 
recogniser in terms of lexical items is they metaphor f time. Since the phone ‘f’ is not a 
possible word in English, the PWC mechanism penalises this parse, and if the cost of the 
substitution of [θ] by [f] is less than the PWC cost, the parse yielding the word sequence 
‘fourth time’ will win. At the same time, it is worth mentioning that the presence of the 
garbage phones enables SpeM to parse input with broken words and disfluencies, since it 
provides a mechanism for handling arbitrary phone input (for more information, 
Scharenborg et al., accepted).  

All parameters in SpeM are robust: Even if they are not optimised in combination, SpeM’s 
output does not change significantly if the value of the parameter that was optimised with 
fixed values of other parameters is changed within reasonable bounds. In this study, the 
parameters were tuned on an independent tuning set (see Section 4.4), and subsequently 
used for processing the test corpus.  
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The output of SpeM consists of an N-best list of hypothesised parses. Each parse consists 
of words, word-initial cohorts, garbage, silence, and any combination of these, except that a 
word-initial cohort can only occur as the last element in the parse. Thus, in addition to 
recognising full words, SpeM is able to recognise partial words. Furthermore, for each 
recognised item, its activation and the activation of the entire path up to that point in time 
are calculated. This capability allows SpeM to simulate results from psycholinguistic 
experiments on word recognition which show how words are activated over time; it also 
enables SpeM to provide the activation values that can be used in the decision module 
where early recognition is decided upon. 

4.3 The computation of word activation 
The functionality of SpeM that is most important here is the computation of word 
activation. The measure of word activation in SpeM was originally designed to simulate 
experimental results of human word recognition experiments (Scharenborg et al., 2003a, 
accepted). In the computation of the word activation, the local negative log-likelihood 
scores for paths and words on a path are converted into activation scores that obey the 
following properties: 

• The word that matches the input best, thus having the smallest word cost (see Section 
4.2.2), must have the highest activation.  

• The activation of a word that matches the input must increase each time an input phone 
is processed.  

• The measure must be appropriately normalised. That is, word activation should be a 
measure that is meaningful, both for comparing competing word candidates, and for 
comparing words at different moments in time. 

The way SpeM computes word activation is based on the idea that word activation is a 
measure related to the bottom-up evidence of a word given the acoustic signal: If there is 
evidence for the word in the acoustic signal, the word should be activated. Activation 
should also be sensitive to the prior probability of a word – even if this effect was not 
modelled in the original version of Shortlist (Norris, 1994). This means that the word 
activation of a word W is closely related to the probability P(W|X) of observing a word W, 
given the signal X, the cost function maximised in virtually all ASR systems. Thus, it is 
reasonable to stipulate that the word activation Act(W|X) is a function of P(W|X), and apply 
the same Bayesian formulae that form the basis of virtually all theories in ASR to estimate 
P(W|X). This is why we refer to Act(W|X) as the ‘Bayesian activation’. It is important to 
emphasise that the theory underlying word activation does not require that the sum of the 
activations of all active words should add to some constant (e.g., 1.0, as in probability 
theory). In accordance with conventional ASR systems, for the purpose of early recognition 
it is not mandatory that the total ‘activation mass’ is normalised, as long as it is possible to 
apply (possibly context dependent) decision thresholds to the measure.  
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Following Bayes’ Rule, we define the word activation Act(W|X) = P(W|X), which can be 
written as: 
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Since we also want to deal with incompletely processed acoustic input (for early 
recognition of words), Equation 4-1 is extended to: 
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where W(n) denotes a phone sequence of length n, corresponding to the word-initial cohort 
of n phones of W. Note that n is discrete because of the segmental representation of the 
speech signal. X(t) is the gated signal X from the start of W(n) until time t (corresponding to 
the end of the last phone included in W(n)). P(X(t)) denotes the prior probability of 
observing the gated signal X(t). P(W(n)) denotes the prior probability of W(n). W(5) may, 
for example, be /mst/, i.e., the word-initial cohort of the word ‘amsterdam’. In the 
experiments reported in this paper, P(W(n)) is exclusively based on the unigram probability 
of the word-initial cohorts and the words.  

The (unnormalised) conditional probability P(X(t)|W(n)) in Equation 4-2, is calculated by 
SpeM as: 

 
TCaenWtXP •−=))(|)(( ,                         (4-3) 

 

where TC is the total bottom-up cost associated with the word starting from the beginning 
of the word up to the node corresponding to instant t. TC includes not only the acoustic 
costs in the phone lattice, but also the costs contributed by substitution, deletion, and 
insertion of symbols (like the acoustic cost calculated by the APR, TC is a negative log 
likelihood score). The definition of the total bottom-up cost is such that TC > 0. The value 
of a determines the contribution of the bottom-up acoustic scores to the eventual activation 
values. The a weights the relative contribution of TC to Act(W(n)|X(t)), so it acts similar to 
the language model factor in standard ASR systems. To illustrate the effect of a, consider a 
cohort W(n)1 on one path and a different cohort W(n)2 on a competing path with the same 
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history as W(n)1 (P(X(t)|history) is identical) and an identical LM score (P(W1(n)) = 
P(W2(n))). The difference in word activation between W(n)1 and W(n)2 is now completely 
determined by the difference in acoustic scores P(X(t)|W1(n)) and P(X(t)|W2(n)) between 
the two words. a is a positive number; its numerical value is determined such that the three 
properties of word activation introduced at the start of this section will hold. The 
comparison of the results of HSR experiments and SpeM simulations (Scharenborg et al., 
2003a), yielded a value a=0.01. In the phone graphs generated of our test material by the 
APR, the average acoustic score (in terms of negative log likelihoods) of a matching phone 
is 25. In combination with a=0.01, this amounts to P(X(t)|W(n)) ≈ exp(-0.25) ≈ 0.78, if 
W(n) is one phone long (i.e., if n=1).  

In SpeM, in contrast to conventional ASR systems, the prior P(X(t)) in the denominator of 
Equation 4-2 cannot be discarded, because hypotheses covering different numbers of input 
phones must be compared. The problem of normalisation across different paths is also 
relevant in other unconventional ASR systems (e.g., Glass, 2003). The denominator, then, 
is approximated by 
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where D is a constant (0 < D < 1) and #nodes(t) denotes the number of nodes in the 
cheapest path from the beginning of the word up to the node associated with t in the input 
phone graph. In combination with a, D plays an important role in the behaviour over time 
of Act(W(n)|X(t)). Once the value of a is fixed, the value of D follows from two constraints: 
1) the activation on a matching path should increase; 2) the activation on any mismatching 
path should decrease. Then it follows from Equation 4-2 and these two additional 
requirements that: 
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where avgMismatchPhone is the average acoustic cost of a mismatching phone on a 
competing path, SubC is the cost for a phone substitution, and avgMatchPhone is the 
average acoustic cost of a matching phone on the first-best path. Because of the way the 
APR works, the average acoustic cost of a mismatching phone is only marginally smaller 
than the average acoustic cost of a matching phone. Thus, the difference between 
(avgMismatchPhone + SubC) and avgMatchPhone is essentially determined by the value 
of SubC. The tuning experiments to be described in Section 4.4 yielded SubC = 150. The 

 89



Chapter 4                       
   

left-most term in Equation 4-5, then, evaluates to exp(-0.01(26+150)) ≈ 0.17; the rightmost 
term evaluates to exp(-0.01·25) ≈ 0.78. We set D = 0.7.   

Our choice to normalise the Bayesian activation by the expression given by Equation 4-4 is 
based on two considerations. Firstly, given the Bayesian paradigm, it seems attractive to 
use a measure with the property that logarithmic scores are additive along paths. Let X1 and 
X2 be two stretches of speech such that X2 starts where X1 ends, associated with two paths 
P1 and P2 in the phone lattice (such that P2 starts where P1 ends), then log(P(X1)) + 
log(P(X2)) = log(P(X1 : X2)) (where ‘:’ means ‘followed by’). This means that the lengths of 
X1 and X2 are assumed to be independent, which is a plausible assumption. Secondly, the 
normalisation as given by Equation 4-4 is similar to the normalisation that has to be 
performed in the calculation of confidence measures. In order to be able to compare 
confidence measures of hypotheses with unequal length, the normalisation must, in some 
way, take into account the duration of the hypotheses. Equation 4-4 can be regarded as a 
normalisation in which the number of phones is the normalising factor, rather than the 
number of frames, that is, as a type of normalisation that is more phonetically oriented. 

4.4 Material 
There is a considerable phonological overlap among words, because of which any given 
word is likely to begin and end in the same way as several other words (Luce, 1986). In 
addition, longer words are likely to have shorter words embedded within them (McQueen 
et al., 1995). Consequently, short words are likely to have a UP that is not before the end of 
the word, making it impossible to recognise the word before its acoustic offset. 
Furthermore, Grosjean (1985) pointed out that especially function words and short 
infrequent content words may not even be identified by human listeners until the word 
following it has been heard. Therefore, in our evaluation of SpeM’s ability for early 
recognition, we focus on polysyllabic content words. 

The VIOS training and test corpus consists of utterances taken from dialogs between 
customers and an automatic timetable information system (Strik et al., 1997). We decided 
to define a set of 318 polysyllabic station names as focus words. From the VIOS database, 
1,106 utterances (disjoint from the corpus used for training the acoustic phone models) 
were selected to tune and test SpeM. Each utterance contained two to five words, at least 
one of which was a focus word (708 utterances contained multiple focus words). 885 
utterances of this set (80% of the 1,106 utterances) were randomly selected and used as the 
independent test corpus. The total number of focus words in the test corpus was 1,463; 563 
utterances contained multiple focus words. The remaining 221 utterances were used as 
development test set and served to tune the parameters of SpeM (see also Section 4.2.2). 
The parameter settings yielding the lowest Word Error Rate (WER) were used for the 
experiment. The WER is defined as: 
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The insertions, deletions, and substitutions in Equation 4-6 concern words (different from 
the phone insertions, deletions, and substitutions discussed in the previous sections); N is 
the number of words in the reference transcription.  

The lexicon used by SpeM in the test consisted of 980 entries: The 318 polysyllabic station 
names, additional city names, verbs, numbers, and function words. There are no out-of-
vocabulary words. For each word in the lexicon, one unique canonical phonemic 
representation was available. A unigram language model (LM) was trained on the VIOS 
training data – the same data that was used for training the acoustic models and the bigram 
phonotactic model for the APR. 

4.5 Early recognition 
In this section, we first present the results of an experiment designed to get an idea of how 
SpeM performs as a standard ASR system (Section 4.5.1). The results are presented in 
terms of WER (for all words in the test set, thus not only the focus words) by taking the 
best matching sequence of words as calculated by SpeM after processing the entire input 
and comparing it with the orthographic transcriptions of the test corpus. 

Second, we investigate how many of the focus words have a recognition point that is before 
the end of the word, and thus can, in principle, be recognised before their acoustic offsets 
during the recognition process (Section 4.5.2). To that end, we investigate the behaviour of 
the Bayesian word activation score as a measure to rank path and word hypotheses 
dynamically.  

In the analysis, we first determine the proportion of the focus words that were recognised 
correctly at the end of the utterance. Subsequently, the recognition point (RP) was 
determined, which is defined as the node after which the activation measure of a correct 
focus word exceeds the activation of all competitors, and remains higher until the end of 
the word (after the offset of a word, the word’s activation does not change). This means 
that a word that is not recognised correctly does not have an RP. The RP is expressed as the 
position of the corresponding phone in the phonemic (lexical) representation of the word. 
In our analysis, the RP will be related to both the length of the canonical phonemic 
representation and the lexical uniqueness point (UP) of the word. Prior to the UP, multiple 
words (in the word-initial cohort) share the same lexical prefix, and therefore cannot be 
distinguished on the basis of the acoustic evidence.  
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4.5.1 The performance of SpeM as a standard speech recognition system 

To get an idea of the task SpeM is facing, we determined the average depth of the input 
graphs. For all graphs, the number of arcs was divided by the number of nodes. The sum of 
these averages was then divided by the total number of phone graphs (885). The average 
depth of all input graphs was 6.3. Thus, on average, SpeM needs to evaluate 6.3 arcs (or 
phones) at any point in time. Or in other words, each node in the input graph has on 
average 6.3 outgoing arcs.  

Of the 1,463 focus words, 64.0% (936 focus words) were recognised correctly at the end of 
the word. An analysis of the phone graphs revealed that 309 utterances (34.9% of the test 
utterances) did not contain a path that matched exactly with the canonical representation of 
the spoken words. For 95 of these utterances (30.7%), SpeM was able to correctly 
recognise the (one or more) focus word(s). Thus, SpeM is able to ‘repair’ part of the 
deficiencies in the output of the APR.  

The WER obtained by SpeM on all words in the test material was 40.4%. Thus, the 
performance on polysyllabic station names is only slightly better than the overall WER. 
This result is certainly worse than the best performance of other ASR systems on the VIOS 
database observed in previous experiments (Kessens et al., 1999, 2003; Wester, 2003). 
However, the performance of SpeM as an ASR system cannot be compared directly to 
results presented for the VIOS database in previous publications. There are a number of 
reasons for this. First of all, contrary to SpeM, the ASR systems used in previous 
experiments used bigram language models, while SpeM only used a unigram language 
model. Second, the subset of the VIOS test set used in the present study contains the 
longest utterances, which are most difficult to recognise, while previous results were 
obtained on the full test set, including a large number of yes/no answers that appear to 
boost performance substantially. Finally, the present model uses a two-step recognition 
procedure in which the APR generated many phone sequences that do not occur in the 
canonical representations of the words in the lexicon of SpeM. In contrast, previous results 
were obtained with an ASR in which the acoustic signal could be directly matched against 
the lexicon (and therefore avoided considering phone sequences that do not occur in the 
canonical representations of the words).  

In the present study, no attempt has been made to maximise the performance of the 
acoustic model set of the APR. Quite probably, an APR that computes more accurate 
acoustic likelihoods should allow SpeM to reach a performance level comparable to a 
conventional ASR system. The results presented in Scharenborg et al. (2003b, accepted) 
show that SpeM’s performance is comparable to that of an off-the-shelf ASR system (with 
an LM in which all words are equally probable) when the acoustic model set used to 
construct the phone graph is optimised for a specific task.  
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Despite the mediocre performance of SpeM as an ASR system, and although there is still 
room for improvement of SpeM’s performance as a standard ASR system, it is possible to 
use SpeM to investigate early recognition, since there are a sufficiently large number of 
words recognised correctly. 

4.5.2 Recognition point analysis 

Of the focus words that were recognised correctly, 81.1% had their RP before the end of 
the word (759 of 936 correctly recognised focus words; 51.9% of all focus words). Not all 
focus words that were recognised correctly have an RP before the end of the word, since a 
focus word that is correctly recognised by SpeM does not necessarily have a one hundred 
percent match with the phone sequence in the phone graph. As indicated before, for 34.9% 
of the utterances, the canonical phone transcription of the utterance was not present in the 
phone graph. This implies that for many of the focus words phone insertion, deletion, and 
substitution penalties are added to the total score of the word and the path. Obviously, 
multiple words can have a small distance to the path through the phone graph that carries 
the correct solution. Therefore it is clear that the best matching word can only be 
determined with certainty after all information of all competing words is available. 

For the 936 focus words that were ultimately correctly recognised, the RP was related to 
the UP and to the total number of phones of the word. The results are shown in the form of 
two histograms in Figure 4-4. The frequency is given along the y-axis. In the left panel, the 
x-axis represents the distance (in phones) between the UP and the RP of the focus words.  
N = 0 means that the word activation exceeded all competitors already at the UP. In the 
right panel, the x-axis represents the position of the RP (in number of phones (N)) relative 
to the last phone in the canonical representation of the word. Here, N = 0 means that the 
word activation exceeded the competitors only at the last phone of the word. 

For the interpretation of the information in Figure 4-4, the phonemic structure of the words 
in the set of correctly recognised 936 focus words and the position of the UP of the words 
must be known. This information is shown in Table 4-1. The first column shows the 
distance in number of phones between the UP and the end of the word. ‘Total-UP’ = 0 
means that the UP is at the end of the word: The word is embedded in a longer word. 
Columns 2 and 3 show the number of focus word types and tokens with ‘Total-UP’ phones 
between the end of the word and the UP. From Table 4-1 it can be deduced that the UP of 
85.0% of all focus word tokens (1,243/1,463) is at least two phones before the end of the 
word; only 2% of the focus word tokens (30/1,463) have their UP at the end of the word. 
The high frequency in the case of N = 3 in the right panel of Figure 4-4 is due to an 
idiosyncratic characteristic of the data. As can be seen in Table 4-1, there is a large set of 
words that have their UP three phones before the end of the word (450). 
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Figure 4-4. In the left panel, recognition point related to the uniqueness point (‘UP+N 
phones’); in the right panel, the recognition point related to the total number of 
phones in the word (‘#Phones before end’) for the 936 correctly recognised focus 
words. 

 

 

Table 4-1. The distribution (in #types and #tokens) in number of phones between the 
UP and the total number of phones in the word (‘Total-UP’); Cumulative: #focus 
word tokens that could in principle be recognised at position Total-UP. 

Total-UP #types #tokens Cumulative 
9 2 4 4
8 3 11 15
7 17 57 72
6 38 82 154
5 39 186 340
4 50 271 611
3 63 450 1,061
2 50 182 1,243
1 44 190 1,433
0 10 30 1,463
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Combining the information in Figure 4-4 and Table 4-1 reveals that although only 2% of 
the focus words have their UP at the end of the word, 19.8% (185/936, see right panel of 
Figure 4-4) of the words were only recognised at the end of the word. Apparently, SpeM is 
not always able to recognise a word before its acoustic offset, despite the fact that the UPs 
in the set of words were almost always at least one phone before the end of the word. More 
interestingly, however, from Figure 4-4 it can also be deduced that 64.1% (sum of N = 0 
and N = 1, see left panel of Figure 4-4) of the total number of recognised focus words were 
already recognised at, or maximally one phone after the UP. Taking into account that 
85.0% of the focus words have at least two phones after their UP, this indicates that SpeM 
is able to take advantage of the redundancy caused by the fact that many words in the 
vocabulary are unique before they are complete. 

4.6 Predictors for reliable on-line early recognition 
The experiment presented in the previous section showed that the word activation of many 
polysyllabic content words exceeds the activation of all competitors already before the end 
of the words. However, this does not imply that word activation can be safely used to 
perform early recognition. If we want to use word activation as a basis for deciding 
whether a word is considered as recognised before the end of its acoustic realisation, we 
must develop a decision procedure. To that end, we have experimented with a combination 
of absolute and relative values. In addition, we have investigated whether the reliability of 
early decisions is affected by the number of phones of the word that have already been 
processed and the number of phones that remain until the end of the word.  

In Section 4.6.1, we explain the decision module that we implemented. The performance of 
that module will be evaluated in terms of precision and recall: 

Precision: The total number of correctly recognised focus words relative to the total 
number of recognised focus words. Precision gives an impression of the trade-off between 
correctly recognised focus words and false accepts. 

Recall: The total number of correctly recognised focus words divided by the total number 
of focus words in the input. Recall gives an impression of the trade-off between correctly 
recognised focus words and false rejects. 

As usual, there is a trade-off between precision and recall. Everything else being equal, 
increasing recall tends to decrease precision, while increasing precision will tend to 
decrease recall. We are not primarily interested in optimising SpeM for a specific task in 
which the relative costs of false accepts and false rejects can be established, since we are 
mainly interested in the feasibility of early recognition in an ASR system. Therefore, in 
contrast to standard procedure, we decided to refrain from defining a total cost function 
that combines recall and precision into a single measure that can be optimised.  
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4.6.1 Decision Module 

For a focus word to be recognised by SpeM, the following three conditions have to be met:  

1. The phone sequence assigned to the focus word is at or beyond the focus word’s UP.  
2. The quotient of the word activation of the focus word on the best-scoring path and the 

word activation of its closest competitor (if present) exceeds a certain threshold (). 
Thus, we do not want SpeM to make a decision as long as promising competitors are 
still alive. The notion that there must be a sufficiently large difference between the first 
best hypothesis and its runner-up has also been used for a long time in various types of 
ASR systems to compute a kind of confidence measure (e.g., Brakensiek et al., 2003). 
In the SpeM search, two words are said to be in competition if the paths they are on 
contain an identical sequence of words, except for the word under investigation. Figure 
4-5 illustrates this with an example where the first-best path: [a:vnt vo:rbYr*] 
competes with the path: [a:vnt xu:dm*]. The competitor of [vo:rbYr*] is thus 
[xu:dm*]. The asterisk indicates that the processing of a word has not yet reached its 
last phone. 

Given our definition of ‘competitor’ it is not guaranteed that all words always have a 
competitor, because it is possible that all paths in the N-best list are completely disjunct 
– and so do not share the same history, as is required for being competitor. Absence of a 
competitor makes the computation of  impossible. To prevent losing all words without 
competitors due to a missing value, we accept all focus words without a competitor that 
appear at least five times in the N-best list.  In the experiments described below, we 
tested various values for . The number of hypotheses in the N-best list is set at 10, so 
that SpeM will output the 10 most likely hypotheses for each node in input graph. 

3. The value of the Bayesian activation of the focus word itself should exceed a certain 
minimum activation (Actmin). Thus, SpeM does not just accept the word with the highest 
activation, irrespective of the absolute value of the activation. In the experiments 
described below, we tested various values for Actmin. Actmin is reminiscent of the graph 
based confidence measures introduced in Wessel et al. (2001). 

 

 

 Figure 4-5. Two focus words in competition. 
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  Figure 4-6. Schematic illustration of the process of (on-line) early recognition. 

The process of early recognition is schematically depicted in Figure 4-6. The word 
activation of words grows over time as matching evidence is added. Before the word’s UP, 
several words are consistent with the phone sequence; the difference in activation of the 
individual words in the cohort is caused by the influence of the LM. After a word’s UP, it 
has its own word activation. For the purpose of the experiments in this section, we define 
the decision point (DP) as the point at which a word on the first best path meets the 
decision criteria described in this section. 

4.6.2  and Actmin as predictors of on-line early recognition 

In this section, we investigate the Bayesian activation as a predictor of early speech 
recognition as a function of  and Actmin. Figure 4-7 shows the relation between precision 
(y-axis) and recall (x-axis) for a number of combinations of the two thresholds. The 
symbols on the lines in Figure 4-7 represent the values of Actmin for three different values of 
. The value of Actmin was varied between 0.0 and 2.0 in 20 equal-sized steps. The left-most 
symbol on each line corresponds to Actmin=2.0; the right-most one corresponds to 
Actmin=0.0. For the sake of clarity, Figure 4-7 is limited to three values of ; all other values 
of  show the same trend.  

The results in Figure 4-7 are according to expectation. Recall should be an inverse function 
of : the smaller  becomes, the less it will function as a filter for words that have a 
sufficiently high activation, but which still have viable competitors. Similarly for Actmin: 
For higher values of Actmin, fewer focus words will have an activation that exceeds Actmin, 
and thus fewer words are recognised. These results indicate that the Bayesian activation 
can be used as a predictor for the early recognition of polysyllabic words. 
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Figure 4-7. For three values of , precision and recall of all 21 values of Actmin are 
plotted. 

4.6.3 The effect of the length of the word 

As pointed out before, in our definition of early recognition, a word can only be recognised 
at or after its UP. Thus, words that have an early UP can fulfil the conditions to be 
recognised while there is still little evidence for the word. This raises the question whether 
the amount of evidence in support of a word (the number of phones between the start of the 
word and the DP), or the ‘risk’ (in the form of the number of phones following the DP until 
the end of the word) can be helpful in increasing precision and recall. This is the focus of 
the analyses described in this section. The value for Actmin is set to the arbitrarily chosen 
value of 0.5; the value of  was varied between 0.0 and 2.0 in 80 equal-sized steps. 

We are interested in the number of words that could in principle be recognised correctly at 
a certain point in time. Therefore, for calculating precision and recall, only the number of 
focus word tokens that in principle could be recognised correctly should be taken into 
account. The column ‘Cumulative’ in Table 4-1 shows the number of focus word tokens 
that could in principle be recognised correctly at ‘Length-UP’ phones before the end of a 
word. For instance, at 8 phones before the end of the word, the only words that could in 
principle be recognised correctly are those that have a distance of 8 or more phones 
between the end of the word and the UP. At 0 phones before the end of a word, all words 
could in principle be identified correctly. For calculating recall, the total number of 
correctly recognised focus words is divided by the total number of focus words that could 
in principle have been recognised correctly. Precision is calculated in the same manner: the 
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total number of correctly recognised focus words so far is divided by the total number of 
recognised focus words so far. The effect of the amount of evidence is investigated in a 
similar fashion. Precision and recall are computed as a function of the number of phones 
between the start of the word and the DP, and again, only the number of focus word tokens 
that in principle could be recognised correctly is taken into account. 

The contour plots in Figure 4-8 show the relation between the number of phones separating 
the DP from the end of the word and precision and recall for different values of . On the 
y-axis, the value of  is shown; the x-axis shows the number of phones between the DP and 
the end of the word. The lines in the plots are the equal-percentage lines for the cumulative 
precision (upper panel) and the cumulative recall (lower panel). Precision and recall of a 
point between two equal-percentage lines can be estimated using the distance of the point 
to the two neighbouring equal-percentage lines. For instance, for =1.0 and a distance of 
four phones between the DP and the end of the word, precision is about 39%. Figure 4-8 
suggests that precision and recall at DPs where there is a high number of phones separating 
the DP from the end of the word can be rather high (see the bottom left part of Figure 4-8). 
However, this is an artefact caused by the special characteristics of the 15 focus words that 
happen to be unique already 8 phones before the end of the word. Precision and recall of 
distances between 8 and 5 are rather low. However, distances of 4 phones or less show a 
clear increase in both precision and recall. 
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Figure 4-8. The x-axis shows the number of phones between the DP and the end of 
the word; the y-axis shows the value of . The upper panel shows precision; the lower 
shows recall. 
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Figure 4-9. The x-axis shows the number of phones between the start of the word and 
its DP; the y-axis shows the value of . The upper panel shows precision; the lower 
shows recall. 

The contour plots in Figure 4-9 show the relation between the number of phones between 
the start of the word and its DP and precision and recall for different values of . In other 
words, Figure 4-9 shows the effect of the amount of information available for a word on 
precision and recall. The results shown in Figure 4-9 reveal – not surprisingly – that when 
there is yet little evidence available for the word, recall is rather low. The more phones 
have been processed, the higher recall is. The high precision for the situation where only 
two phones have been processed and high values of  is an artefact of the data (see top left 
part of Figure 4-9) – there are only a few words that exceed the threshold . 

To clarify the effects of an increasing number of phones between the DP and the end of the 
word and an increasing number of phones between the start of the word and its DP, the 
precision and recall are plotted for a single  and Actmin value, viz. =1.625 and Actmin= 0.5. 
Figure 10 shows on the x-axis the number of phones between the DP and the end of the 
word; the y-axis shows the percentage recall (solid line) and precision (solid line with 
crosses +), respectively, while Figure 11 shows on the x-axis the number of phones 
between the start of the word and its DP; the y-axis again shows the percentage recall (solid 
line) and precision (solid line with crosses +), respectively. 
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Figure 4-10. The x-axis shows the number of phones between the DP and the end of 
the word; the y-axis shows for a =1.625 and Actmin= 0.5, the percentage recall (solid 
line) and precision (solid line with crosses +), respectively. 
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Figure 4-11. The x-axis shows the number of phones between the start of the word 
and its DP; the y-axis shows for a =1.625 and Actmin = 0.5, the percentage recall 
(solid line) and precision (solid line with crosses +), respectively. 
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Figures 4-10 and 4-11 clearly show what was already (implicitly) shown in Figures 4-8 and 
4-9, respectively. Precision and recall increase if the number of phones remaining after the 
DP is smaller (Figures 4-8 and 4-10). This is easy to explain, since mismatches in the part 
of the word that is as yet unseen cannot be accounted for in the activation measure, but the 
risk that future mismatches occur will be higher if more phones remain until the end of the 
word. At the same time, performance – in terms of recall – increases if the DP is later, so 
that more information in support of the hypothesis is available (Figures 4-9 and 4-11). This 
too makes sense, since one may expect that a high activation measure that is based on more 
phones is statistically more robust than a similarly high value based on a small number of 
phones. What should be noted, however, is that Figures 4-9 and 4-11 further suggest that 
precision is not dependent on the number of phones between the start of a word and its DP: 
The trade-off between the false accepts and the correctly recognised focus words does not 
change much. 

4.6.4 Summary 

We investigated two types of predictors used for deciding whether a word is considered as 
recognised before the end of its acoustic realisation. The first type of predictor is related to 
the absolute and relative values of the word activation, Actmin and , respectively. The 
results showed that the actual values of Actmin and  should not be set too high or too low, 
since both predictors function as filters: The higher the values for both predictors, the fewer 
words are recognised, and vice versa. We did not identify an optimal setting because we 
were not interested in optimising SpeM for a specific task. 

The second type of predictor is related to the number of phones of the word that have 
already been processed and the number of phones that remain until the end of the word. 
Not surprisingly, the results showed that SpeM’s performance increases if the amount of 
evidence in support of a word increases and the risk of future mismatches decreases. These 
results clearly indicate that early recognition is indeed dependent on the structure and the 
contents of the lexicon. If a lexicon contains many (long) words that have an early UP, 
decisions can be made while only little information is known, increasing the risk of errors. 
It is an obvious issue for follow-up research to investigate whether the decision thresholds 
for  and Actmin can be made dependent on the phonemic structure of the words on which 
decisions for early recognition must be made. 

Summarising, we observed that a word activation score that is high and based on more 
phones with fewer phones to go predicts the correctness of a word more reliably than a 
similarly high value based on a small number of phones or a lower word activation score. 

4.7 General discussion and conclusion 
Human listeners are often able to reliably identify a word before the end of its acoustic 
realisation (Marslen-Wilson, 1987). Human listeners not only use acoustic-phonetic 
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information, but also contextual constraints to make a decision about the identity of a word. 
This makes it possible for human listeners to recognise content words even before their 
uniqueness point. In the research presented in this paper, we investigated an alternative 
ASR system that is able to recognise words during the speech recognition process, called 
SpeM, for its ability for recognising words before their acoustic offset, a capability that we 
dubbed ‘early recognition’. We define early recognition as the reliable identification of 
spoken words before the end of its acoustic realisation, but after the uniqueness point of the 
word (given the lexicon). The restriction to recognition at or after the uniqueness point 
allowed us to focus on acoustic recognition only, and minimise the impact of contextual 
constraints. One might wonder whether an advanced statistical language model would be 
able to emulate the context effects that enable humans to recognise words even before their 
uniqueness point. This would make SpeM’s recognition behaviour more like human speech 
recognition behaviour. 

In our analyses, we investigated the Bayesian word activation and the contents and 
structure of the lexicon as predictors for early recognition. The results in Section 4.6 
indicate that the Bayesian activation can be used as a predictor for the on-line early 
recognition of polysyllabic words if we require that the quotient of the activations of the 
two hypotheses with the highest scores () and the minimum activation (Actmin) both 
exceed a certain threshold. There is, however, a fairly high percentage of false alarms. In 
the subsequent analysis, we found an effect of the amount of evidence on the performance. 
If the DP was later in the word, thus with increasing acoustic evidence in support of a 
word, the performance in terms of precision and recall improved. Furthermore, the risk of 
future mismatches decreases with fewer phones between the end of the word and the DP, 
which also improves the performance. The predictors we have chosen have their parallels 
in the research area that investigates word confidence scores. For instance, the predictor  
is identical to the measure proposed in Brakensiek et al. (2003) for scoring a word’s 
confidence in the context of an address reading system, while  and Actmin are reminiscent 
of the graph-based confidence measure introduced in Wessel et al. (2001). The definition 
of word activation in SpeM resembles the calculation of word confidence measures (e.g., 
Bouwman et al., 2000; Wessel et al., 2001) in that both word activation and word 
confidence require a mapping from the non-normalised acoustic and language-model 
scores in the search lattice to normalised likelihoods or posterior probabilities. 
Conceptually, both word activation and word confidence scores are measures related to the 
‘probability’ of observing a word given a certain stretch of speech (by the human and 
automatic speech recogniser, respectively). However, conventional procedures for 
computing confidence measures only provide the scores after the end of an utterance. 

The incremental search, used by SpeM to recognise a word before its acoustic offset, in 
combination with the concept of word activation proposed in this study opens the door 
towards alternatives for the integrated search that is used in almost all current ASR 
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systems. An incremental search combined with word activations will be able to spot 
potential problems such as restarts, hesitations, and repetitions. This will be beneficial for 
speech-centric multi-modal interaction applications. 

In conclusion, we showed that SpeM, consisting of an APR and a lexical search module, is 
able to recognise words before the end of the word is available. In other words, the results 
presented in this paper showed that early recognition in an ASR system is feasible. This 
property of SpeM is based on the availability of a flexible decoding during the word search 
and on the availability of various scores along the search paths during the expansion of the 
search space. The early recognition process is comparable to the early selection procedure 
human listeners perform while decoding everyday speech. However, there is still ample 
room for improvement. First, the performance of SpeM as a standard ASR system is 
mediocre. SpeM obtained a WER of 40.4% on a set of utterances with lengths between two 
and five words, while of the 1,463 focus words, 64.0% (936 utterances) were recognised 
correctly at the end of the utterance. We can think of several ways for improving this 
performance. It has been shown that optimising the performance of the APR helps to 
improve the performance of SpeM as an ASR system. The same holds for the addition of 
an N-gram language model to the lexical search module. The search can also be improved 
by making the insertion, deletion, and substitution penalties dependent on the identity of 
the phones. For example, substitutions between the phones /t/ and /d/, which differ only in 
one phonetic feature, could be made smaller than the substitution of /t/ for //, where the 
number of different features is higher.  

For 81.1% of those 936 correctly recognised focus words (51.9% of all focus words), the 
use of local word activation allowed us to identify the word before its last phone was 
available, and 64.1% of those words were already recognised one phone after the 
uniqueness point. However, the straightforward predictors that we derived from the 
Bayesian word activation appeared to be not very powerful predictors for correct decisions 
about the identity of a word before its acoustic completion. Yet, we are confident that the 
predictive power of measures derived from word activation can be improved, if only by 
making decision thresholds dependent on knowledge about the words that are being 
hypothesised. Last but not least, we believe that improvements in the APR will have a 
positive effect on the difference in word activation between the correct words and their 
competitors. 
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In this paper, we address the problem of recognising a large vocabulary of over 
50,000 city names within a telephone access spoken dialogue system. The experiments 
are conducted on spontaneous utterances within a joint domain of two spoken 
dialogue systems, a weather domain (Jupiter) and a flight reservation (Mercury) 
domain. We adopt a two-stage framework in which only major cities are explicitly 
represented in the first stage lexicon. We rely on an unknown word model encoded as 
a phone loop to detect out-of-vocabulary (OOV) city names (also referred to as rare 
city names). Furthermore, we utilise SpeM, a tool that can extract words and word-
initial cohorts from phone graphs on the basis of a large fallback lexicon, to provide an 
N-best list of promising city name hypotheses on the basis of the phone sequences 
generated in the first stage. This N-best list is then inserted into the second stage 
lexicon for a subsequent recognition pass. 

Experiments were conducted on a set of spontaneous telephone-quality utterances 
from both domains. These utterances were selected because they each contained a rare 
city name. The first experiment showed that SpeM was able to include nearly 75% of 
the correct rare city names in an N-best hypothesis list of 3000 city names. 

In addition to the N-best lists of most likely words, the lexicon of the second stage also 
contains the so-called ‘base’ lexicon (which covers the other words in the utterance). In 
the second recognition experiment, we tested two methods to create this base lexicon. 
The first method uses the same base lexicon as in the first stage, whereas the second 
method utilised a greatly pruned lexicon, based on the contents of the outputs of the 
first stage. The accuracy of the baseline recognition system (which excluded the N-best 
lists provided by SpeM) was 69.3%. Adding the N-best lists created by SpeM increased 
the accuracy to 77.3%, a relative improvement of 11.5%. While the system with the 
pruned general lexicon did not outperform the other system in terms of overall 
recognition error rate, it was able to correctly recognise up to 5% more rare city 
names. The final recognition results showed that about 1/3 of the rare city names that 
were found by SpeM were correctly recognised. So, work still remains to be done to 
improve on the second stage recogniser. 

Keywords: automatic speech recognition; large vocabulary speech recognition; out-
of-vocabulary word modelling 

 

5.1 Introduction 
Jupiter (Glass et al., 1999, Zue et al., 2000) is an on-line spoken dialogue system that 
provides weather forecasts via a toll-free telephone number. In its current configuration, 
Jupiter is able to handle requests for about 500 cities. Jupiter’s weather source has recently 
been expanded such that it can now provide weather information for 38,000 cities, which 
means that all 38,000 city names need to be incorporated into the speech recogniser in 
some way, before the additional weather information can be made available to callers. (The 
city names originally included in the Jupiter lexicon are referred to as ‘frequent’ city 
names, while the newly added city names are referred to as ‘rare city names’.) A 
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straightforward solution is simply to expand the recogniser’s lexicon, which will, however, 
result in an extremely large search space, with only a back-off (thus small) prior probability 
associated with each of the rare city names. Very large lexicons do not necessarily pose a 
problem for automatic speech recognition (ASR) systems, but the combination with a weak 
language model, which only has small prior probabilities associated with each word, 
usually results in poor performance.  

To overcome the problem of a weak language model, we adopt here a novel strategy which 
uses small-sized lexicons in combination with a generic phone-based unknown word or out-
of-vocabulary (OOV) word model to represent a rare city name (when present in an 
utterance) in the form of a phone sequence. This approach licenses in a second stage only 
those city names that match the proposed phone sequence sufficiently well (this will be 
explained in more detail in Section 5.2). We thus propose a two-stage recognition system 
with on the one hand a greatly expanded city-name capability, and on the other hand a 
small lexicon size, which will keep the size of the search space manageable for the real-
time constraints imposed by the interactive dialogue.  

The goal of this study is to build a two-stage recogniser that detects OOV words in the first 
stage, and adapts the lexicon of the second stage on the basis of an analysis of the 
phonemic composition of the OOV intervals. In the second stage, the aim is to recognise as 
many of the rare city names that are marked as OOV by the first stage recogniser as 
possible. Since an ASR system can only recognise those words that are included in its 
lexicon, it is clear that the performance of the second stage recogniser on recognising the 
OOV words is crucially dependent on whether the correct word is included in the second 
stage recogniser’s lexicon. Optimising the coverage of the second stage lexicon is the main 
focus of this work (see Section 5.4). 

In the literature, a variety of different solutions to handle OOV words have been proposed. 
These solutions can roughly be divided into two groups. In the first group (e.g., the 
Hypothesis Driven Lexical Adaptation (HDLA) method proposed by Geutner et al. (1999) 
and the Multi-pass Automatic Speech recognition uSIng Vocabulary Expansion 
(MASSIVE) method proposed by Ohtsuki et al. (2004)), a subset of words (to ensure that 
the lexicon and, thus, the search space of a second stage recogniser remain manageable) 
from a large fallback lexicon is selected on the basis of the results of a first stage 
recogniser.  The selected subset is then added to the lexicon of the second stage recogniser. 
The second group of solutions omits a fallback lexicon, and thus other techniques have to 
be found to deal with the OOVs (e.g., decompounding strategies (Laureys et al., 2002); or 
using a phone loop as an OOV ‘word’ parallel to the words in the lexicon (Bazzi and Glass, 
2000, 2001)).  

In this research, a large fallback lexicon is available in the form of the list of city names. 
Therefore, in accordance with Geutner et al. (1999) and Ohtsuki et al. (2004), we built a 
two-stage recogniser that uses the outcome of the first recognition stage to create an 

 107



Chapter 5                       
   

adapted lexicon for the second stage recogniser by selecting a subset from the fallback 
lexicon. 

To select the subset of words from the large fallback lexicon, the HDLA method (Geutner 
et al., 1999) uses morphology, and phonetic and grapheme distances, while MASSIVE 
(Ohtsuki et al., 2004) measures the distance between the input speech and the words in the 
vocabulary database in terms of word co-occurrence patterns, in order to select the optimal 
subset. In this research, we use SpeM (SPEech-based Model of human speech recognition 
(Scharenborg et al., 2003a, 2003b)) – a tool originally designed for the simulation of 
human speech recognition (HSR) processes. SpeM is used to extract words and word-
initial cohorts (words sharing phone prefixes) from the fallback lexicon on the basis of the 
phonemic distances between the phones in a phone graph and the phonemic representation 
of the words and word-initial cohorts in the fallback lexicon (see Section 5.2.2).  

This research is part of a larger research project aiming at providing seamless domain 
switching among multiple domains within a single conversational agent. Towards that goal, 
we have combined the vocabularies of two pre-existing systems, the Jupiter system in the 
weather domain (Glass et al., 1999; Zue et al., 2000) and the Mercury system in the flight 
domain (Seneff, 2002). There is a large overlap in the general lexicons of the Jupiter and 
Mercury systems. For instance, they share general question syntax and dates, as well as city 
names, making it a logical step to combine the two systems into one domain-independent 
system. We have included the original set of 500 major cities in the lexicon of the first 
stage recogniser. We hope that a rare city name uttered by the speaker will appear as an 
unknown city in the N-best list of the first stage. 

5.2 The proposed two-stage recognition system 
The proposed two-stage recognition system is schematically depicted in Figure 5-1. The 
acoustic signal is fed into the first stage recogniser, which uses a lexicon that captures 
‘general’ words (see Section 5.3.2 for more details) in addition to the 500 most frequent 
city names. Since the method we propose to deal with OOV words in a two-stage 
recognition system is crucially dependent on the detection of the OOV intervals by the first 
stage recogniser, an OOV model that is intended to mark all city names not in the lexicon 
as being OOV is integrated into the first stage (see Section 5.2.1). The hypothesised phone 
graphs underlying the stretches of speech signal marked as OOVs can be extracted. These 
phone graphs (referred to as OOV phone graphs hereafter) are used by the SpeM module to 
select the most likely city names from the fallback lexicon for that specific utterance. This 
subset of most likely city names is then added to the ‘utterance-dependent’ lexicon of the 
second stage (see Section 5.4). The second stage recogniser then makes a new recognition 
attempt on the basis of the same acoustic models as were used in the first stage. In the 
second stage, the lexicon (and thus the recogniser) is tuned to the utterance (and thus the 
domain). 
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Figure 5-1. Overview of the proposed multi-stage recognition system. 

5.2.1 Automatic speech recognition system 

The two-stage recogniser used in this study is the segment-based automatic speech 
recognition system SUMMIT (Glass, 2003), which uses Finite State Transducers (FSTs) to 
represent its search space. The entire linguistic search space in the recogniser can be 
represented by a single FST (U). Generally, U is represented by a cascade of FST 
compositions: 

 

GLPCU ooo=           (5-1) 

 

where C contains the mapping from the diphone labels used in the acoustic model set to 
monophone labels; P applies phonological rules; L maps the words in the lexicon to their 
phonemic representations; and G is the language model (LM). 

The two-stage recogniser uses class bigram (in the forward pass) and trigram (in the 
backward pass) LMs (see Seneff et al. (2003) for details of the procedure,). The bigram and 
trigram LMs were trained on 167,967 utterances (on average 5.8 words per utterance) from 
both the Jupiter and the Mercury domain, and were used both in the first and the second 
stage recognisers (thus in contrast to the lexicons, the LMs of the second stage recogniser 
are not tuned to the utterance as is the case for the lexicons). In the material used for 
training the LMs, all rare city names were marked, and were treated as one class. Likewise, 
all frequent city names were treated as one class as well. The number of rare city names in 
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the training material was rather low; this would result in a very small probability for the 
rare city class.  To increase the number of rare city names, 3,000 frequent city names in 
existing utterances were artificially changed into an unknown city name. In this way, 
frequent and rare city names were treated as different classes and separate LM scores were 
calculated for them. The frequent city names have their own unigram scores within the 
frequent city class; the rare city names in the rare city class, on the other hand, all have 
equal probability (see also Section 5.2.1).  

Detecting the OOVs 

The procedure used to mark the OOV words and generate the OOV phone graphs is 
described in detail in Bazzi and Glass (2000, 2001): The generic word model is 
implemented as a phone N-gram (a phone loop that allows for phone sequences of arbitrary 
length). This OOV model is included in the lexicon (L) and as such is wired into the 
linguistic search space (U). The transition into the generic word model is controlled via an 
OOV penalty. This OOV penalty can be considered as a unigram score: It controls how 
easily the OOV ‘word’ is selected.  

Underlying the hypothesised OOV is the OOV phone graph. For each utterance, in which 
an OOV was hypothesised in the word lattice, only one OOV phone graph was generated 
(this is due to the implementation of the procedure to extract the OOV phone graphs). This 
means that where an utterance contains more than one OOV, as in I'd like to fly from 
<OOV> to <OOV>, an underlying OOV phone graph can be generated for only one of the 
OOVs. In this experiment, this is not a problem since, in the test data used in this study, 
each utterance contained at most one rare city name.  

Note that an OOV might be hypothesised for a stretch of the speech signal that does not 
correspond to a city name. Furthermore, it is possible that the phone graph does not match 
exactly with the stretch of speech that contains the rare city, i.e., it is possible that 
additional phones are included at the start or the end of the phone graph that do not belong 
to the rare city name. Likewise, it is possible that the word is truncated, i.e., phones of the 
rare city name are missing at the start or the end of the phone graph. Finally, it is possible 
that the first stage recogniser incorrectly recognises the rare city name as an in-vocabulary 
word. In this study, whenever the first stage recogniser incorrectly recognised the rare city 
name as an in-vocabulary word, those data (less than 5% of the total) were removed from 
the test set.  

The ‘dynamic’ lexicon 

The recognisers in the first and second stage are identical, with the exception of the lexicon 
(L) and the prior probability of the OOV model. The lexicon of the second stage consists of 
three components, as shown in Figure 5-2. The first two components, the ‘Base’ lexicon 
and the OOV ‘word’ model are also present in the lexicon of the first stage recogniser. The 

 110 



                              A two-pass approach for handling OOVs in a large vocabulary recognition task 

new ‘dynamic’ lexicon can be wired on-the-fly into the search space of the recogniser, 
without the need to rebuild the lexical search space (Chung et al., 2004). This dynamic 
model is supplied with the list of rare city names extracted by SpeM from the fallback 
lexicon (see also Sections 5.2.2 and 5.3). Our city name lexicon contains 52,595 city 
names, which were harvested from the World Wide Web. Most of the cities were non-
existent in our lexical baseforms resource file, and pronunciations were therefore 
automatically generated for them using the letter-to-sound system described in Chung et al. 
(2004) and Seneff (2004). The errors in these pronunciations have not been corrected 
manually. This further challenges the recognition task. The words in the dynamic lexicon 
have identical unigram scores. This is in contrast to the words in the base lexicon which all 
have their own unigram scores. The probability of choosing a word from the dynamic 
lexicon is controlled via the previously described language model scores for the rare city 
name class. 

Base lexicon 
 
 

 OOV ‘word’ 

‘Dynamic’ 
lexicon 

Fallback lexicon: 
50K city names 

Subset selected 
by SpeM 

2nd stage lexicon 

Figure 5-2. The components of the utterance-dependent lexicon of the second stage 
recogniser. 

The OOV model is included in the lexicon of the second stage recogniser, because also in 
the second stage OOV words can occur, and we want to be able to correctly deal with 
them. The language model scores of the OOV model in the second stage, however, are 
smaller than the language model scores of the OOV model in the first stage, since in the 
first stage recogniser an OOV should be hypothesised more often than in the second stage. 

5.2.2 SpeM 

SpeM was originally implemented to serve as a tool for research in the field of human 
speech recognition. It is a new and extended implementation of the theory underlying the 
Shortlist model, a computational model of human word recognition developed by Norris 
(1994). The main advancement of SpeM over pre-existing computational models of human 
word recognition is that SpeM uses the acoustic speech signal as input, while Shortlist and 
other computational models of HSR only take handcrafted symbolic representations (e.g., 
phonemes or linguistic features) as input. Furthermore, SpeM supports unigram and bigram 
language models, while the Shortlist and the other HSR models do not support language 
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models. Besides its use as a tool for simulating results found in HSR experiments, SpeM 
can also function as an experimental ASR system, e.g., for the recognition of words before 
the end of the acoustic realisation of the word is complete (Scharenborg et al., 2003c, 
2004). 

SpeM consists of two modules: An automatic phone recogniser (APR) and a word search 
module. The word search module parses the probabilistic phone graph created by the APR 
in order to find the most likely (sequence of) words, and computes for each word its 
activation based on the accumulated acoustic evidence for that word (Scharenborg et al., 
2003a, 2003b). In the experiments described in this paper, the phone graphs are created by 
the first stage recogniser. In the remainder of this paper, whenever the word ‘SpeM’ is 
used, this actually only refers to the word search module of SpeM – unless stated 
otherwise.  

In SpeM, the sequence of words with the smallest phonemic distance between the sequence 
of phones on the path through the OOV phone graph and the phonemic representations of 
the words in the fallback lexicon (represented as a lexical tree) is determined using a time-
synchronous and breadth-first dynamic programming (DP) algorithm. Each phone 
insertion, deletion, and substitution is penalised according to independent penalties which 
can be tuned separately (for more details the reader is referred to Scharenborg et al. 
(2003b)). Furthermore, a garbage phone model is included in the lexicon. This garbage 
phone model is mapped onto phones appearing at the start and at the end of the phone 
graph that belong to the preceding and following word. The output of SpeM consists of an 
N-best list of hypothesised parses. Each parse contains words, word-initial cohorts, 
garbage, silence, and any combination of these, with the exception that a word-initial 
cohort can only occur as the last element in the parse. Thus, in addition to recognising full 
words, SpeM is able to recognise partial words. The parameter settings of SpeM are such 
that, although SpeM is able to recognise sequences of words, the recognition of a single 
word (preceded or followed by garbage) is more likely.  

 Subsequently, if a word-initial cohort has been recognised for an utterance (or OOV phone 
graph), and if it consists of more than three phones, the word-initial cohort is ‘unpacked’: 
All words belonging to the word-initial cohort are listed. Finally, for each utterance (or 
OOV phone graph), the top N words in the output of SpeM form an utterance-specific N-
best list that goes into the utterance-specific dynamic lexicon of the second stage 
recogniser. The effect of the size of these N-best lists is investigated in Section 5.4. 

Note that SpeM always returns an N-best list of most likely city names, even if the phone 
graph did not correspond to a city name. This is because SpeM searches a lexicon that 
contains only city names. 
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5.3 Experimental set-up and materials 

5.3.1 Experimental set-up 

In the first series of experiments (Section 5.4), we focussed on the selection of the rare city 
names out of the fallback lexicon. If the second stage recogniser’s lexicon does not contain 
a particular word, it is impossible for the second stage recogniser to recognise it. The aim 
for SpeM is thus to find the correct rare city name for as many utterances as possible in the 
fallback lexicon. We tested two variables: 1) the size of the utterance-dependent N-best 
lists generated by SpeM; 2) the effect of an utterance-dependent language model that 
boosts the probability of the city names in a given (US) state, if a state name was 
recognised by the first stage recogniser. 

The results of this experiment are presented in terms of coverage, i.e., the percentage of the 
test set utterances for which the rare city name in its transcription (which was presumably 
marked as OOV by the first stage recogniser) is present in the N-best list generated for that 
utterance by SpeM.  

In the second series of experiments (Section 5.5), the N-best lists generated by SpeM were 
included in the dynamic lexicon of the second stage recogniser. Besides the dynamic 
lexicon and the OOV model, as is shown in Figure 5-2, the lexicon of the second stage also 
includes the base lexicon. The base lexicon can be created in different ways. We compared 
the approaches of Ohtsuki et al. (2004) and of Tang et al. (2003). Both include a pruning 
stage based on the first stage hypotheses. The results of this series of experiments are 
presented in terms of word accuracy. 

5.3.2 Materials 

The experiments were conducted on a set of continuous speech utterances, recorded from 
interactive telephone conversations with both the Mercury and the Jupiter systems.  The 
independent test set consisted of 418 utterances taken from both domains, each utterance 
containing exactly one rare city name. The first stage recogniser did not detect an OOV in 
19 utterances of the test set (4.5%), which means that the rare city name was recognised 
incorrectly as an in-vocabulary word. If no OOV is detected, no OOV phone graph is 
generated, and SpeM will not be able to extract a list of words from the fallback lexicon for 
those utterances. Consequently, no improvement of the recognition of the rare city names 
by the second stage recogniser can be expected. These utterances were discarded from the 
test set, leaving 399 utterances that were used in the experiments.  

The lexicon of the first stage consisted of the ‘general’ words from both domains, a short 
list of the 500 most frequent city names, all US state names, and a set of 1,326 partial and 
short city names with a phonemic representation of three phones or less, such as ‘los’, 
‘ann’, ‘new’ – this to simplify SpeM’s task, since short words are difficult to find in a 
phone lattice. This resulted in a lexicon of 2,802 words. Note that other OOV words 
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besides city names can occur. In our complete test set, ten words (in nine utterances) other 
than rare city names were missing from the first stage recogniser’s lexicon. In only one of 
those nine utterances, the phone graph that was extracted did not correspond to the phone 
graph underlying the rare city name. In that case, SpeM is of course unable to find the 
correct rare city name. 

5.4 Extracting the subset from the fallback lexicon 
We first investigated the size of the utterance-dependent N-best lists. Does the coverage 
increase proportionally with the increase of the size of the N-best list? Or, does SpeM 
behave similarly to standard beam search techniques, in which a small beam width is 
already able to maintain the hypotheses that are most promising and to suppress the 
hypotheses that are unlikely, such that broadening the beam width does not improve 
performance much (Ney & Ortmanns, 2000)?  

5.4.1 No utterance-dependent language models 

The size of the utterance-dependent N-best lists created by SpeM was varied between 500 
and 3000 in steps of 500 entries. The results are shown in Table 5-1. The second column 
(denoted ‘No LM’) shows the coverage for the varying sizes of the N-best lists in terms of 
absolute number of utterances for which the correct rare city name was present in the N-
best list (‘Abs’) and as a percentage of the total number of 399 utterances of the test set 
(‘%’). For these results, SpeM was run with no utterance-dependent language models. 

 

Table 5-1. Coverage results and analysis for varying sizes of the N-best lists 
generated by SpeM. 

No LM With LM Analysis N-best 
list size Abs % 

Max. Gain 
Possible Abs % Loss Gain 

500 223 55.9 102 275 64.4 6 59 
1000 230 57.6 98 281 70.4 7 58 
1500 234 58.6 95 284 71.2 9 59 
2000 235 58.9 95 291 72.9 9 65 
2500 238 59.6 93 293 73.4 11 66 
3000 239 59.9 92 296 74.2 10 67 

 

The coverage results show that over 55% of the rare city names that were missing from the 
lexicon of the first stage recogniser, and thus could not be recognised in the first stage, are 
now present in the lexicon of the second stage. This is an encouraging result, bearing in 
mind that all 52,595 words in the fallback lexicon have equal probability, and that the 
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generated OOV graphs are far from perfect (because of the possibility of preceding and 
trailing garbage phones, as well as the possibility of phone recognition errors within the 
city name itself, and the possibility that the phone graph is cut off prematurely). Comparing 
the coverage for the N-best sizes 500 and 3000 clearly shows that increasing the length of 
the N-best list 6-fold does not increase the coverage with the same amount: only 16 more 
correct rare city names were found when the N-best list size was 3000. This shows that the 
selection method without LM of SpeM (the lexical search) works in a comparable way to 
the beam search used in standard ASR systems.  

5.4.2 Adding utterance-dependent language models 

It might be possible to improve on the results shown in the ‘No LM’ column in Table 5-1 if 
city names that are more likely on the basis of the context of the utterance receive a higher 
probability, while the more unlikely city names are penalised. An obvious cue is the state 
name. It is highly likely that a city name, which is uttered in the same utterance as a state 
name, lies in that state. Thus, if a state name has been recognised by the first stage 
recogniser, that information can be used to increase the prior probability of all city names 
in that state. The database with state-city name information that we have available shows 
that on average there are 1,890 city names per state. So, if the state name were known, it 
would reduce the number of possible city names considerably. 

In this second experiment, we built utterance-dependent language models for SpeM for 
those utterances in which a state name was present. If a state name is present in the N-best 
list generated by the first stage recogniser, all city names in that state receive a higher 
unigram score by adding a constant to the unigram score. In our test set, for 74.9% (299) of 
the 399 utterances, a state name is present. For 243 utterances, a state name appeared in the 
N-best lists generated by the first stage recogniser. For these utterances, utterance-
dependent language models were created. Of course, the 56 utterances in which a state 
name was present but not found by the first stage recogniser and the 100 utterances in 
which no state name was present will not benefit from this approach.  

First, we tabulated for how many of the 243 utterances for which a state name was 
recognised by the first stage recogniser, the correct rare city name was present in the N-best 
list generated by SpeM. In this way, the maximum gain could be calculated. The column 
‘Max. Gain Possible’ in Table 5-1 contains the number of utterances in which the first pass 
recogniser found a state name, and in which SpeM could not find the correct city name in 
the first experiment.  

The fourth column denoted ‘With LM’ shows the coverage in terms of absolute number of 
utterances (‘Abs’) and the percentage of the full test set (‘%’) when the utterance-
dependent language models were added to SpeM. As can be seen from this column, there is 
a clear increase in coverage. In the case of an N-best list of 500, the rare city name was 
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selected into the utterance-dependent lexicon for 52 more utterances; for an N-best list of 
3000, this number is slightly larger: 57, resulting in a coverage of 74.1%.  

Furthermore, comparing the ‘No LM’ with the ‘With LM’ column shows that the 
difference in coverage between the 500- and 3000-best lists in the ‘No LM’ case is 4.0%, 
while when an LM is available this difference is larger, viz. 9.8%. This difference in 
increase clearly shows that the utterance-dependent language models created using state 
information are doing well in directing the search in SpeM: even rare city names that were 
very difficult to find at first without an LM, are now found more often. Adding additional 
words to the N-best lists, as is done when using a 3000-best list instead of a 500-best list, 
now makes it possible to find these difficult-to-find rare city names. 

5.4.3 Analysis and discussion 

There is always the risk that the state name recognised by the first stage recogniser is 
incorrect, or that another (major) word in the utterance is incorrectly recognised as a state 
name, which will result in a boost of the probability of the wrong city names. Therefore, 
we also analysed the number of utterances for which adding the language models made the 
correct rare city disappear from the utterance-dependent N-best list by SpeM. These results 
are shown in the column ‘Analysis’ in Table 5-1. For instance, in the case of an N-best list 
of length 500, for 6 utterances for which the correct rare city had been included in the N-
best list in the case that no LM was used, the correct rare city name was no longer selected 
when the LMs were used. On the other hand, for 59 utterances for which the correct city 
name was missing from the N-best lists generated by SpeM, the correct rare city names 
were selected once the LMs were used. 

In conclusion, adding the utterance-dependent language models to SpeM resulted in a net 
gain in coverage compared to the situation when no language model was used: for 2/3 to 
3/4 (depending on the size of the N-best list created by SpeM) of the test set, the rare city 
name that was missing from the first stage lexicon and therefore could not be recognised by 
the first stage recogniser is now included in the lexicon of the second stage recogniser. This 
will increase the probability that the second stage recogniser ultimately recognises the 
correct rare city name. In the recognition experiments discussed in the next section, we 
always used the N-best list generated by SpeM with the LM. 

5.5 Performance of the two-stage recogniser 
For each of the utterances in the test set, an utterance-dependent N-best list that can be 
added to the dynamic lexicon of the second stage recogniser is now available. The full 
system, with the base lexicon and the N-best lists generated by SpeM, is used to run a full 
recognition attempt for each utterance of the test set. The performance of the recognition 
system is measured in terms of accuracy (of all words in the test set, not just the rare city 
names), but since we are mainly interested in the recognition of the rare city names, the 
number of correctly recognised rare city names will also be presented.  
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What remains is the construction of the base lexicon (see Figure 5-2). We investigated two 
methods to construct the base lexicon: one using the same base vocabulary as in the first 
stage, and the other using a much smaller lexicon derived directly from the output of the 
first stage recogniser. 

To understand how well the recognisers are able to perform once the N-best lists are wired 
into the dynamic lexicon, ‘measured upper-bound’ (M.U.B.) performance was calculated 
for both types of recognition system. To that end, the rare city names in the reference 
transcriptions were substituted by OOV. The test set was then recognised with a system 
that uses the baseline lexicon plus the OOV-word. By doing so, we created a task that 
effectively had no OOV. The ‘measured upper bound’ is the accuracy obtained with these 
systems. We then compared the performance of the systems with OOVs with this M.U.B. 
baseline. 

5.5.1 The Ohtsuki method 

The easiest way to construct the base lexicon is to use the same lexicon as was incorporated 
into the first stage recogniser. The dynamic lexicon is then in effect an addition to the first 
stage recogniser’s lexicon. This method has also been used by Ohtsuki et al. (2004) for a 
similar task. The column denoted ‘Ohtsuki method’ in Table 5-2 presents the results for 
varying sizes of the N-best lists generated by SpeM. The size of ‘0’ is the baseline result: in 
this case, only the base lexicon (including the OOV model) is used for recognition. The 
baseline system is thus identical to the first stage recogniser. 

 

 

Table 5-2. Results of the two-stage recogniser for varying sizes of the N-best list 
generated by SpeM, and two different methods to construct the base lexicon.  

Ohtsuki method Tang method N-best  
list 
size 

Acc. 
(%) 

#rare cities Lex. size Acc. (%) #rare cities Lex. size 

M.U.B 73.4 0 2,802+1 77.1 0 ± 23.5+100+1 
0 68.3 0 2,802+1 69.3 0 ± 23.5+100+1 

500 77.3 101 2,802+501 76.9 106 ± 23.5+100+501 
1000 77.0 97 2,802+1001 77.3 104 ± 23.5+100+1001 
1500 76.8 96 2,802+1501 77.1 101 ± 23.5+100+1501 
2000 76.7 95 2,802+2001 77.1 101 ± 23.5+100+2001 
2500 76.7 93 2,802+2501 76.9 100 ± 23.5+100+2501 
3000 76.4 93 2,802+3001 76.8 100 ± 23.5+100+3001 
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As shown in Table 5-2, the system with an N-best list size of 0 has an accuracy of 68.3%; 
adding an N-best list with the 500 most likely city names already increases the accuracy by 
9.0 percentage points, while 101 rare city names are recognised correctly. The measured 
upper-bound (‘M.U.B.’ in Table 5-2) accuracy is 73.4% when Ohtsuki’s method is used to 
construct the base lexicon. What is striking is that adding an N-best list with the 500 most 
likely city names increases the accuracy beyond the measured upper-bound accuracy. We 
will discuss this in more detail in Section 5.5.3. Further increasing the lexicon size, 
however, improves neither the accuracy nor the number of correctly recognised rare city 
names. The latter is most likely due to the similarity of the words in the N-best lists 
generated by SpeM. The words are similar because they are the most likely words from the 
fallback lexicon given the phone graph corresponding to the OOV stretch. This increases 
the confusability of the words in the lexicon, which in turn puts a curb on the maximum 
accuracy that can be obtained. We therefore sought a way to decrease the size of the base 
lexicon. 

5.5.2 The Tang method 

Tang et al. (2003) demonstrated that, for a two-stage recognition system, the most 
important words to retain in the lexicon of the second stage are the in-vocabulary words 
that have been recognised by the first stage recogniser, augmented with a list of those 
words that are most often deleted by the first stage recogniser. These words are usually 
short function words such as ‘a’, ‘the’, ‘to’, etc. Although the two-stage recognition system 
designed by Tang et al. has a different goal (it is used for the recognition of the sub-word 
linguistic features ‘manner’ and ‘place of articulation’) than the two-stage recognition 
system presented in this study, we think that Tang’s method might be useful to decrease the 
size of the second stage lexicon in comparison with the method presented in the previous 
section. 

The base lexicon in this second experiment consisted of: 

• The 100 words that were most often deleted by the recogniser in the first stage. 
• All words in the 50-best list created by the recogniser in the first stage. This resulted in 

on average 23.5 different words for each utterance. 

The results are presented in the ‘Tang method’ column in Table 5-2. The lexicon size is 
reduced dramatically when Tang’s method is used (compare the two columns denoted 
‘Lex. size’). The baseline system (N-best list size == 0) shows a higher accuracy than the 
baseline system when the base lexicon was made following Ohtsuki’s method. This 
indicates that the internal confusability within the base lexicon has decreased, due to the 
decrease in the size of the base lexicon. 
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For the Tang method, the measured upper-bound accuracy is 77.1% (see ‘M.U.B.’ row, 
Table 5-2). In the case Tang’s method is used, the best accuracy is obtained when 1000 of 
the most likely words are added to the dynamic list. As can be seen in Table 5-2, this 
accuracy is equal to the best accuracy obtained with the Ohtsuki method. However, the 
number of correctly recognised rare city name differs. When using Tang’s method, the 
number of correctly recognised rare city names is higher than with Ohtsuki’s method. 
Again, the best performance exceeds the measured upper-bound accuracy (see also Section 
5.5.3). 

The highest number of correctly recognised rare city names, however, is obtained for an N-
best list size of 500 with the Tang method. In this case, 106 of the rare city names have 
been recognised correctly, as contrasted with only 101 for the equivalent N-best size using 
the Ohtsuki method. Comparing the results of the 500-best list and the 1000-best list 
recognition systems revealed that the lower accuracy of the former is due to a higher 
number of insertions. 

5.5.3 Analysis and discussion 

The measured upper-bound accuracies for the Ohtsuki method and the Tang method differ 
(Ohtsuki: 73.4% vs. Tang: 77.1%). This difference is due to the fact that, in the latter case, 
an OOV was hypothesised 90 more times (235 times in total), which will of course more 
often result in a ‘hit’. More interestingly, however, both methods have a best performance 
that exceeds the accuracies obtained by collapsing all rare city names to the OOV word (the 
measured upper-bound). It is known from the literature (e.g., Gauvain et al., 1994; 
Hetherington, 1994, 1995) that if a stretch of speech cannot be mapped onto a lexical item, 
the segmentation of that stretch of speech into words is hampered. Once the rare city name 
is added to the lexicon, and thus the OOV problem is removed, the segmentation of that 
stretch of speech is much easier and fewer errors are made. Thus, adding the rare city 
names to the second stage lexicon improves not only the recognition of those rare city 
names but also of the words in the close proximity of those rare city names. 

5.6 Conclusion and future work 
In this work, we presented a two-stage recognition system for handling OOVs in a large 
vocabulary speech recognition task. We showed that SpeM is able to retrieve nearly 75% 
of the rare city names from a large fallback lexicon resulting in an increase of the 
performance of the two-stage recognition system, once the rare city names selected by 
SpeM were added to the lexicon of the second stage, of 8.0% and 9.0% respectively for the 
two types of base lexicons we used. These results are remarkable, keeping in mind that all 
words in the dynamic lexicon have equal probability. 

The fact that SpeM was able to find the correct city name, given a phone graph, is 
encouraging. However, it is evident that there is substantial room for improvement. One 
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way to do this would be using population statistics to compute unigram probabilities for the 
city names, instead of a uniform value. 

The final recognition results showed that about 1/3 of the rare city names that were found 
by SpeM were correctly recognised; thus work still remains to be done to improve on the 
second stage recogniser. First of all, the unigram scores of the words in the dynamic list 
could be improved upon. Here too, population statistics could be mapped to a unigram 
probability model. Secondly, the language model of the second stage is kept identical to the 
language model used in the first stage, while the lexicon of the second stage is tailored to 
the utterance. The performance of the second stage recogniser might improve more when 
an utterance-dependent language model is adopted. A first experiment would involve 
running parallel language models for the two domains – Mercury and Jupiter – in the 
second stage, and weighting them according to the likelihood of each domain, given 
consideration of word sequences extracted from the first stage.  

In the deployed system, a possible way to deal with unrecognised rare city names would be 
to incorporate a speak-and-spell module, such as the one described in Chung et al. (2003). 
Whenever an OOV is hypothesised by the recognition system, the user would be guided 
through a speak-and-spell subdialogue to resolve the city name. 
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6.1 General discussion 
In this thesis, I have attempted to narrow the gap that has existed for decades between the 
research fields of human speech recognition (HSR), more specifically the field of human 
word recognition, and automatic speech recognition (ASR). In Chapters 2 and 3, I focussed 
on the contribution of ASR for HSR. In Chapters 4 and 5, I looked more at what a 
computational model of HSR, called SpeM, could accomplish and contribute to ASR. 

6.1.1 Towards an end-to-end model of human speech recognition 

In Chapter 2, a first attempt to bridge the gap between the two research fields was made by 
creating an end-to-end model of human word recognition that was based on two existing 
models of both sides, namely an automatic phone recogniser (APR) and Shortlist (Norris, 
1994). The experiments described in Chapter 2 illustrated the consequences of some of the 
simplifying assumptions made in Shortlist and other HSR models, and showed the extent to 
which these assumptions need to be revised to produce end-to-end HSR models that are 
able to deal with real-speech input. The biggest shortcoming of the joint model of the APR 
and Shortlist proposed in Chapter 2 was that it made ‘hard’ decisions at the level of input 
phones. Shortlist requires a single string of phone symbols as input. This implies that the 
APR is forced to make ‘hard’ decisions about the segmental representation of the speech 
signal based only on the acoustic information. The second shortcoming of Shortlist is that 
the search in the Shortlist module of the joint model is a simple lexical look-up, which 
causes a misalignment of all subsequent phones in the case of a phone insertion or deletion. 
The experiments clearly showed that a straightforward combination of the APR and 
Shortlist did not yield an end-to-end model of HSR that could deal satisfactorily with real-
life input, even though Shortlist is a successful model for a specific aspect of the human 
speech recognition process.  

In our search for a computational end-to-end model of human speech recognition, the 
research described in Chapter 2 was taken one step further in Chapter 3. The 
computational-level analysis (Marr, 1982) of the word recognition process made the close 
parallels between HSR and ASR explicit. The computational parallels were further 
illustrated by the development of SpeM: a computational model of HSR, based on 
Shortlist, that was built using techniques from ASR. SpeM is not just a re-implementation 
of Shortlist; it represents an important advancement over existing models of HSR in that it 
is able to recognise words from acoustic speech input at reasonably high levels of accuracy, 
while currently existing models of HSR almost invariably assume a (error-free) symbolic 
representation of the acoustic signal as input. In SpeM, the ‘hard decisions problem’ at the 
input level was solved by representing the speech signal as a probabilistic phone lattice 
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containing multiple phone-string hypotheses. This allows, in a natural way, the 
postponement of a hard decision to a point later in the word search process. The second 
shortcoming of the combination of the APR and Shortlist, the implementation of the lexical 
search, is solved in SpeM by using a search algorithm based on dynamic programming 
techniques that tolerates misalignments between the input and canonical phonemic lexical 
representations (at a certain cost). The experiments described in Chapter 3 showed that 
SpeM strongly outperformed Shortlist in its ability to recognise words from real-life 
speech, spoken by a large number of different talkers in a noisy environment, largely due to 
the phone-lattice representation of the input in SpeM. 

According to HSR theory, words that overlap in time compete with each other through 
lexical inhibition during the human speech recognition process. Shortlist is a localist 
connectionist model, with separate nodes for each candidate word involved in the current 
lexical search. SpeM, on the other hand, uses path-based scores. In Chapter 3, we were able 
to show that it is possible to model lexical competition using SpeM’s path-based scores. 
This issue is further addressed in Section 6.1.4. 

Advantages of an end-to-end model of HSR 
HSR modelling has tended to avoid detailed analysis of the problems of speech recognition 
given real speech input. The fact that HSR models cannot recognise real speech makes it 
hard to evaluate the theoretical assumptions underlying those models. For example, 
Shortlist makes the simplifying assumption that the word recognition process receives a 
sequence of discrete phonemes as input. This raises the question whether the theory 
underlying the model (prelexical and lexical level of speech processing, only a feed-
forward flow of information, competition of time-overlapping words, a word can start at 
any point in time; see also Chapters 1 and 3) would remain valid if that simplifying 
assumption were abandoned. Thanks to the implementation of SpeM this could be tested. 
The experiments presented in Chapter 3 showed that the theory underlying Shortlist still 
holds when the simplifying assumption of the symbolic phone string has been removed. 

Another clear advantage of end-to-end computational models of HSR is that they can be 
tested with precisely the same stimulus materials as used in the behavioural studies being 
simulated, while for older HSR models some idealised form of input representation had to 
be used. However, since SpeM’s performance in terms of percentage correctly recognised 
words is far worse than human performance, it may be necessary in HSR modelling to 
continue to use idealised inputs, in parallel with real-speech simulations in models such as 
SpeM. We should note, however, that for human beings to understand each other, 100% 

 123



Chapter 6         

word recognition is not needed; at the same time, 100% word recognition is not achievable 
for ASR systems. 

The performance of the APR 
One might argue that the performance of SpeM as a speech recogniser might have been 
better if an input had been used that is much ‘better’ than the one provided by the current 
APR. In all cases where SpeM would have been confronted with a realistic one-
dimensional representation of the speech signal as input, the answer would undoubtedly be 
‘no’. First of all, as argued in Chapter 1, it is impossible to generate a unique ‘true’ 
representation of the speech signal. And secondly, as argued in Chapter 2 on the basis of 
work by Cucchiarini et al. (2001), if the input of a human ‘phone recogniser’ had been 
used, the results would not have been radically different, despite the fact that human 
transcriptions would have looked much better than the output of the APR. It is thus not 
sufficient to try to improve the single-best output of the APR.  

But SpeM uses a probabilistic phone graph as input instead of a single-best one-
dimensional representation of the speech signal. Will its performance be any different, even 
better, when a better APR will be used as front end? The answer to this question is 
probably ‘yes’ if an APR can be created that is able to get the number of ‘correct’ phones 
as high as possible in the phone graph. However, this is not the full solution to the problem. 
Without top-down information (Shortlist and SpeM are autonomous models, they only 
have a feed-forward (or bottom-up) flow of information), the phonemic transcriptions of 
the words are unknown. This makes it impossible to know for the APR whether it selected 
the correct phones into the phone graph. In order to improve the performance of SpeM, a 
search mechanism is needed that is able to deal with paths through the phone graph in 
which phones are inserted or deleted in comparison with the canonical phonemic 
transcriptions of words. One challenge for the future will therefore be to establish whether 
the limitations of SpeM’s APR can be overcome, such that phone graphs are being 
generated in which as many of the ‘correct’ phones are as high as possible in the phone 
graph. 

6.1.2 Incremental vs. integrated search 

Most mainstream ASR systems use some kind of integrated search algorithm, while 
humans compute an on-line activation measure for words as the speech comes in (and 
presumably make a decision as soon as the activation of a word is high enough). In order to 
model the human speech recognition process, computational models of HSR should thus be 
able to provide word activations scores over time, as the input comes in. So, it should be 
possible to recognise words before their acoustic realisation is complete. SpeM does 
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exactly that: it gives a ranked list of the most likely words at each point in time while the 
input comes in, and thus is able to identify words before their acoustic offsets. 

Out-of-vocabulary words and phone strings 
The incremental recognition capability allows SpeM to handle issues that conventional 
ASR systems have difficulty dealing with. Conventional ASR systems are only able to 
recognise the words that are included in their lexicon. When encountering an out-of-
vocabulary word (OOV; thus a word that is not present in the lexicon), the ASR system 
will match the word to one of the items in its lexicon. This, of course, causes recognition 
errors. For an ASR system to be able to detect the phone sequences associated with OOVs, 
it needs to be tuned to the task of OOV detection. However, there is always the risk that an 
in-vocabulary word is incorrectly marked as an OOV. A bigger problem, however, is when 
an OOV is not recognised as such, and is thus mapped onto an in-vocabulary item. 

A second type of problem for ASR systems is related to phone strings associated with 
garbage, non-words, and speech-like sounds. ASR systems often have included a garbage 
model with which they can model these phenomena. In this way, they are able to skip over 
phone sequences caused by truncated words, hesitations, etc. In psycholinguistics, a non-
word is a phone sequence that complies with the phonotactic constraints of a language, but 
is not an existing word in the language, e.g., ploem for Dutch or fourf for English. In this 
context, an example of a truncated word is hou(se)…home. The speaker started to say the 
word house, but stopped because (s)he meant to say home. The phone sequence associated 
with hou is thus a truncated word. An additional problem with truncated words is that the 
phone sequence can actually be an existing word as in I…my. A hesitation is usually 
associated with a filled pause, such as uhm or mmm. A big problem for an ASR system is a 
non-word which closely resembles an in-vocabulary word, e.g., in the previous example 
ploem-bloem (Eng: flower) or fourf-fourth: it is likely to be recognised as an in-vocabulary 
item. This problem is also to be expected in the case of a truncated word where the first 
phone sequence resembles an existing word. 

In SpeM, the combination of the incremental recognition process, the Possible Word 
Constraint (PWC; Norris et al., 1997) implementation, and the garbage symbols makes it 
possible not only to detect out-of-vocabulary phone sequences (thus phone sequences that 
do not match an in-vocabulary word), but also to parse them and check whether they are 
either a possible word, which could in the future, in a subsequent pass, be included in the 
lexicon, or whether it is a phone sequence that cannot be a word. 

The PWC is a lexical viability constraint that penalises a candidate word or word-initial 
cohort if a stretch of speech between the edge of the previous candidate word and the 
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location of a likely word boundary is itself not a possible word. In SpeM’s implementation, 
a stretch of speech is not a possible word if it does not contain a vowel (of course, other 
methods to check the viability of a sequence of phones as a word are also possible). The 
PWC is implemented using ‘garbage’ phones. A garbage phone is effectively a phone that 
matches all other phones with the same cost. It is hypothesised whenever a phone insertion 
that is not word-internal occurs on a path. A (sequence of) garbage phone(s) that does not 
contain a vowel is marked as being a non-word, and the parse is penalised accordingly. Just 
like human listeners and unlike conventional ASR systems, SpeM is thus able to spot 
phone sequences – due, for instance, to hesitations or restarts – that are phonotactically 
incorrect and treat them as something that is a non-word. This can help with recognition 
and segmentation. Likewise, in SpeM, if the (sequence of) garbage phone(s) does contain a 
vowel, this might be a novel word. The current implementation of SpeM is not able to 
include this novel word in its lexicon, but it is possible to extend SpeM with this feature.  

Thanks to the incremental search, SpeM is also able to do things that conventional ASR 
systems cannot. For instance, as already shown in Chapter 4, it allows SpeM to recognise 
words before their acoustic offset and, as described in Chapter 5, to recognise word-initial 
cohorts that can be used for creating utterance-specific lexicons. In short, SpeM is able to 
parse input that does not solely consist of sequences of lexical items. 

‘Early’ recognition 
In the case of recognising words before their acoustic offset (i.e., ‘early’ recognition), there 
are still a few issues left. During the recognition process of a word there are ‘winners’ at 
various stages: there is an interim winner, i.e., the word-initial cohort on the best path; 
there is a winner at the acoustic offset of the word; and there is a winner after the 
processing of the complete utterance. In Chapter 4, we searched for a (set of) predictor(s) 
for the correct recognition of a word after the processing of the complete utterance on the 
basis of the interim winner. The experiments described in Chapter 4 show that the 
predictors used to determine whether a word is correctly recognised before its acoustic 
offset are promising, but that many false accepts occur. In order to be able to use ‘early’ 
recognition in an actual system, a couple of problems need to be resolved. First of all, the 
performance of SpeM as a conventional ASR system needs to be improved. Second, the 
predictors that determine whether a word is indeed correctly recognised before the acoustic 
offset of the word is reached should be improved or better ones should be found. The 
number of false accepts will automatically be reduced if a solution has been found for the 
two problems. 
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6.1.3 One-stage vs. multi-stage recognition systems 

As explained in Chapter 1, in the past most mainstream ASR systems were one-stage 
recognition systems, while lately more multi-stage recognition systems are being 
developed. In the introduction, two types of multi-stage recognition systems were 
distinguished. In the first type, the result of the first stage of the recognition system is used 
to tune the second stage recogniser, after which a full recognition attempt of the acoustic 
signal is carried out with the tuned system. In the second type, the first stage recogniser 
creates a segmental representation (often of phones) of the speech signal, after which a 
subsequent recognition step carries out a search through the phone graph. 

The ASR system introduced in Chapter 5 is a multi-stage recognition system of the first 
type. On the basis of the stretches of speech marked as being out-of-vocabulary by the first 
recognition step, for each utterance a list of words is extracted from a much bigger lexicon. 
This list of words is then added to the lexicon of the second stage recogniser, yielding a 
lexicon that is more tuned to the utterance to be recognised. Subsequently, a new full 
recognition attempt is carried out. In this way, the lexicons at both the first and the second 
stage are kept small, and the number of out-of-vocabulary words is reduced in the second 
recognition step, both of which improve recognition performance as is shown in Chapter 5. 

SpeM as developed in Chapter 3 is a multi-stage ASR system of the second type. In the 
first stage, the acoustic signal is transformed into a probabilistic phone graph; the second 
stage recognises words from the phone graph without using the acoustic signal again. 
SpeM’s multi-stage approach is based on the cascaded processing of speech as is done by 
human listeners (see also Chapter 3). 

6.1.4 Word activation vs. path-based scores 

In Chapter 3, we proposed a method to convert the path-based scores that are used in ASR 
search methods, and thus also in SpeM, into the word-based activation scores used in 
models of human speech recognition. The details of the underlying mathematics were 
presented in Chapter 4. 

The word activation of a word W is closely related to the probability P(W|X) of observing a 
word W, given the signal X. This can be rewritten using Bayes’ Rule: 
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in which P(W) is the prior probability of W, and P(X) denotes the prior probability of 
observing the signal X. Bayes’ Rule and the probability P(W|X) play a central role in the 
mathematical framework on which statistical pattern matching techniques are built (i.e., 
most ASR implementations). The Bayesian decomposition of the probability P(W|X) is the 
foundation on which we based the calculation of word activation. 

The Bayesian activation, which is defined similar to P(W|X), is calculated for the word and 
the path on which the word occurs. The Bayesian word activation is used as one of the 
predictors for early recognition in Chapter 4: for a word to be recognised, the word had to 
have a minimum Bayesian word activation, and the quotient of the activation of the word 
on the first-best path and its direct competitor had to exceed a pre-set threshold. 

During human word recognition words are in competition, which means that words that 
overlap in the input actively inhibit each other. To ensure a fair competition, the word 
activation scores that are calculated by SpeM for the modelling of human word recognition 
should be comparable across paths and over time. To that end, in Chapter 3, the method for 
calculating word activation is extended. First, we computed the product of the Bayesian 
word activation and the Bayesian activation of the path it features on. Next, this score is 
divided by the total probability mass across all paths, yielding a word activation score that 
is normalised over paths and time. 

The word activation as calculated by SpeM in Chapter 3 is, however, not based on ‘active’ 
inhibition (like the inhibition between lexical representations in the Shortlist model). It 
models competition between words in a ‘static’ way. The question remains whether the 
current way of modelling competition suffices or whether an active inhibition is necessary. 
In Chapter 3, three simulations were run and the results showed that SpeM was able to 
model correctly the outcomes of three psycholinguistic studies. It might be the case, 
however, that psycholinguistic studies exist or new results in the future will show that an 
active inhibition is necessary. In that case, the word activation calculation procedure should 
be refined and the issue that arises then is how this active inhibition should be 
implemented. 

6.2 Future work 
Although the results of SpeM are quite promising, there is room for improvement and 
expansion of the model. First of all, as already pointed out in Section 6.1.1, SpeM’s 
performance – both as an ASR system as well as a computational model of HSR – might 
benefit from a better front end. A challenge for the future, thus, lies in building an APR that 
is able to create a probabilistic phone graph in which the ‘correct’ phonemes are present as 
often as possible and also have a high probability. As explained before, no top-down 
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information may be used. Two possible ways of improving the APR without using top-
down information would be to build a language model for the APR that models the 
phonotactic constraints of the language better, or to use a different type of discrete 
symbolic intermediate representation of the acoustic signal, e.g., features instead of phones. 
A different type of solution to the issue of improving the performance of the APR would be 
to add pronunciation variants for each word in SpeM’s lexicon, such that SpeM’s search 
mechanism is better able to deal with paths through the phone graph in which phones are 
inserted or deleted in comparison with the canonical phonemic transcriptions of words.  

The incremental search in SpeM makes it an ASR system that is able to do things that 
conventional ASR systems cannot. For instance, SpeM is able to spot out-of-vocabulary 
words and mark them as possible new words. In order to overcome the problem of 
recognition errors due to out-of-vocabulary words, these new words should be added to 
SpeM’s lexicon. As already pointed out in Section 6.1.1, the current version of SpeM is not 
able to actually update its lexicon, but this feature could be added. However, the procedure 
to determine whether a phone sequence can be a word (the PWC) is rather coarse: a phone 
sequence is a possible word when it contains a vowel. Of course, when the phonotactic 
rules of the language are being violated, these phone sequences are not words. So, before 
the inclusion of the phone string as a new word in a lexicon, an additional procedure is 
needed to check whether the phone string is indeed a word. Dusan and Flanagan (2002), for 
instance, present a multi-model system that asks the user to provide additional information 
by pointing with a mouse on a computer screen when a word is encountered that is not part 
of the lexicon. This information is then used to add the word and its semantics to the 
system. A different approach would be to ask a user to spell the word that has been 
identified as out-of-vocabulary. Chung et al. (2003) describe an ASR system that is able to 
recognise spelled words and add them to the recogniser’s lexicon and a natural language 
grammar. 

Chapter 4 showed that the predictors used for early recognition are promising, but that 
there is room for improvement. To decrease the number of false accepts SpeM would 
benefit from improved or new predictors for early recognition. In the current 
implementation, the Bayesian word activation (thus in contrast to the word activation used 
for the experiments described in Chapter 3, the Bayesian word activation is not normalised 
over paths and time) is used as one of the predictors. The Bayesian word activation does 
not have the path score incorporated. Thus, one way to improve on this predictor might be 
to use the time- and path-normalised word activation score. 

In Chapter 3, it was shown that SpeM is able to model findings from three different types 
of behavioural studies of human word recognition. These results suggest that SpeM is 
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indeed able to model substantial parts of the human word recognition process. There are, 
however, more aspects to human speech recognition than those associated with word 
recognition. For SpeM to be able to model all these aspects of the human speech 
recognition process, several issues remain to be resolved. For instance, SpeM is not able to 
model effects of phonemic context on speech recognition due to coarticulation and other 
connected speech phenomena, processes involved in phoneme recognition, and lexical 
effects on phonetic perception (see for a review, McQueen, 2004). To model these 
processes, SpeM has to be extended, for instance by adding a decision layer similar to the 
one implemented in Merge (Norris et al., 2000). Second, as research by Goldinger (1998) 
shows, human listeners are able to remember details of specific tokens of words that they 
have heard, and these memories for words have shown to influence subsequent speech 
processing. One way for SpeM to be able to model these results, is to adapt the APR 
module such that it is able to provide information about the speaker as well. A simple first 
step would be to train gender-dependent phone models. Finally, the current version of 
SpeM is able to use unigram and bigram language models. Humans, however, are able to 
use more contextual information than just the word frequency and/or the probability of co-
occurrence of the current and the previous word (e.g., Marslen-Wilson, 1987). Experiments 
by, e.g., Zwitserlood (1989) have shown that context information is used after lexical 
access. For SpeM to be able to simulate these results, higher-order language models such as 
long-span language models and grammars should be included. The inclusion of higher-
order language models will also benefit the performance of SpeM as a conventional ASR 
system. 

6.3 Concluding remarks 
This thesis started with two citations that inspired my research project. The goal of this 
research was to narrow the gap that has existed between the research fields of human and 
automatic speech recognition: 

 

“The central issues in the study of speech recognition by human listeners (HSR) and of 
automatic speech recognition (ASR) are […] clearly comparable; nevertheless, the 
research communities that concern themselves with ASR and HSR are largely distinct.” 

- R. K. Moore & A. Cutler (2001) 

 

The fields of human and automatic speech recognition both study the speech recognition 
process. This suggests that there are close parallels between the two research fields, which 
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were made explicit by a computational-level analysis (Marr, 1982) of the word recognition 
process. 

The second citation provided the starting point for the endeavour of narrowing the gap 
between HSR and ASR: 

 

“Given the relatively advanced state of psycholinguistics and speech perception, it 
seems remarkable that the only working models of lexical access from acoustic 
waveforms are products of the engineering technology of automatic speech recognition 
[…].” 

- T. M. Nearey (2001) 

 

I followed Nearey’s (2001) suggestion of combining dynamic pattern recognition 
techniques from ASR with computational models of HSR in order to be able to use 
“detailed phonetic models […] as front ends for reasonable models of lexical access”, 
although he doubted that existing HSR models “will work as advertised when attached to 
real phonetic transduction systems”. In this thesis, I presented the end-to-end 
computational model of human word recognition, SpeM, built using techniques from ASR. 
SpeM has proven to be successful in simulating parts of the human word recognition 
process. Nearey was right that coupling an existing HSR model, viz. Shortlist, and an APR 
did not work. But SpeM has shown that techniques and knowledge from ASR can be used 
to build a “working model of lexical access from acoustic waveforms”. 

The close parallels between the two research fields were further revealed by the 
development of the word activation scores used by SpeM. I proved that it is possible to 
calculate a word-based continuous activation score from path-based ASR scores that is 
comparable to the activation scores used in HSR. The results showed that a left-to-right 
path-based decoding strategy as used in ASR systems (and in SpeM) is able to model the 
word-based competition effects found in behavioural studies of human speech recognition. 

In conclusion, the most obvious contribution that ASR can make to HSR is to assist in the 
development of models that are able to account for the complete human speech recognition 
process from the acoustic analysis to the recognition of words in continuous speech. SpeM 
has proven to be a successful first step in that direction. The contribution of HSR to ASR is 
not yet as clear-cut. However, if a model of the complete human speech recognition 
process would exist, it could lead to interesting new ideas for the development of better 
ASR systems. 
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Summary 

In everyday life, speech is all around us, on the radio, television, and in human-human 
interaction. Communication using speech is easy. We human beings are continually 
confronted with novel utterances that speakers select from the infinite set of possible 
utterances in a language, and usually we encounter little to no difficulty in recognising and 
understanding them. There are various research fields that investigate (parts of) the speech 
recognition process. In this thesis, I focus on two: the fields of human speech recognition 
(HSR) and of automatic speech recognition (ASR).  

Although the two research areas are closely related – they both study the speech 
recognition process, and the central issue of both is word recognition – their aims are 
different. In HSR research, the goal is to understand how we, as listeners, recognise spoken 
utterances. This is done by building models that can be used for the simulation and 
explanation of the human speech recognition process. In ASR, the central issue is 
minimising the number of recognition errors, irrespective of the question whether the 
approach parallels the processes used by humans. In parallel with the difference in aims 
between the two research fields, the research approaches are different as well.  

The most important difference between the two fields for this thesis is that although both 
ASR and HSR claim to investigate the whole recognition process from the acoustic signal 
to the recognised units, an automatic speech recogniser necessarily is an end-to-end system, 
while most models of HSR describe only parts of the human speech recognition process. 
An integral model covering all stages of the human speech recognition process does not yet 
exist. One part of the recognition process that virtually all models of HSR lack is a module 
that converts the acoustic signal into some kind of segmental representation. Most existing 
HSR models cannot recognise real speech. This makes it hard to evaluate the theoretical 
assumptions underlying models of HSR in real-life test conditions. 

Despite the gap that separates ASR and HSR, there is a growing interest in possible cross-
fertilisation. The central goal of this thesis is to narrow this gap that has existed for decades 
between the two research fields. This endeavour is started from the field of HSR by trying 
to build an end-to-end model of human word recognition using techniques from the field of 
ASR. An end-to-end model is able to simulate the speech recognition process from the 
acoustic signal to the recognised words. 

Human speech recognition 
To investigate the properties underlying the human speech recognition process, HSR 
experiments with human subjects are usually carried out in a laboratory environment. In 
these experiments, various measurements are taken, such as reaction time and phoneme 
response probabilities. Based on these measurements, theories about specific parts of the 
human speech recognition system are developed or refined. To put the theories to further 
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test, they are implemented in the form of computational models for the simulation and 
explanation of HSR. For this thesis, the computational model of human word recognition 
Shortlist is of interest. 

Symbolic theories of human speech recognition say that human listeners first map the 
incoming acoustic signal onto prelexical representations, e.g., in the form of phonemes, 
after which the prelexical representations are mapped onto the lexical representations, 
almost invariably in the form of words. The speech recognition process in symbolic 
theories thus consists of two levels: the prelexical level and the lexical level. A central 
requirement of symbolic computational models is thus a segmental representation of the 
speech signal. Since most computational models of HSR are not able to recognise real 
speech, they use a handcrafted ‘error-free’ linear representation of the input – in the sense 
that the input always perfectly aligns with the segmental representations of the words in the 
lexicon. Thus in effect, in most symbolic computational models, the process of creating the 
prelexical representations is only assumed, and not physically present. Only the output of 
the prelexical process is available in the form of the handcrafted segmental representation 
of the speech signal. 

Automatic speech recognition 
The input of an ASR system consists of an acoustic signal. During speech recognition, the 
speech signal is first passed through the acoustic pre-processor where feature vectors are 
extracted from the speech signal. Subsequently, the feature vectors are matched with the 
succession of acoustic models associated with the items, usually words, in the internal 
lexicon. For each feature vector the degree of fit between the feature vector and each of the 
models is determined. Ultimately, the word that belongs to the sequence of acoustic models 
for which the degree of fit with the feature vectors in the input is best is hypothesised. An 
ASR system can only recognise those words that are included in its lexicon. Unless the 
system comes with a ‘reject’ option, an unknown word in the input will always be 
recognised as one of the words in its lexicon; this will result in an incorrect recognition. 

For recognition, most ASR systems use an integrated search: all information (from the 
acoustic model set, lexicon, and language model) is used at the same time. Together these 
information sources form the search space. Speech recognition, then, is finding the best 
path through the search space. The likelihood of a number of hypothesised word sequences 
(paths) through the complete graph is computed, and then a trace back is performed to 
identify the words that were recognised on the basis of the hypothesis with the highest 
score at the end of the utterance. ASR systems are usually evaluated in terms of accuracy, 
the percentage of the input words that is recognised correctly, or in terms of word error rate 
(WER), the number of inserted, deleted, and substituted words divided by the total number 
of words in the input. 
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ASR systems do not adhere to a theory of HSR like computational models of human 
speech recognition do. Thus, a standard ASR system cannot be used as a computational 
end-to-end model of human speech recognition. But an ASR system is able to make a 
segmental representation of the speech signal. In this thesis, an adapted ASR system, an 
automatic phone recogniser (APR), is used as the missing front-end that converts the 
acoustic signal into a symbolic representation that can be used in current HSR models. An 
APR functions the same as an ASR system with the exception that the lexicon consists of 
phones instead of words. Consequently, the output of an APR consists of (sequences or 
graphs) of phones instead of words. 

The structure of this thesis 
In addition to the introductory chapter which is summarised above, this thesis consists of 
four articles (chapters 2 through 5) and a concluding chapter in which the findings of the 
research presented in Chapters 2 through 5 are discussed and put into perspective. Also, the 
main conclusions are drawn and suggestions for further research are presented. 

The research presented in Chapters 2 and 3 shows the benefit that can be obtained by using 
techniques from the field of ASR for building models of HSR. The experiments described 
in Chapters 4 and 5 show the benefit for ASR of a recognition procedure that makes use of 
key aspects of the human speech recognition process. Below, of each chapter a summary of 
the experiments, results, and conclusions is presented. 

Chapter 2: Extending Shortlist to an end-to-end model of human speech 
recognition 
In Chapter 2, a first attempt was made to create an end-to-end model of human word 
recognition using techniques from the field of ASR. To that end, Shortlist was extended 
with an acoustic front-end in the form of an APR, which created a segmental representation 
of the speech signal in the form of a phoneme string that was used as input for Shortlist. To 
test how well this joint model was able to actually recognise real speech, a recognition 
experiment is carried out. 10,510 utterances consisting of either a Dutch city name or ‘ik 
weet het niet’ ( ‘I don’t know’) spoken in isolation were presented to the joint model. 

The experiments described in Chapter 2 illustrate the consequences of some of the 
simplifying assumptions made in Shortlist and other HSR models, and show the extent to 
which these assumptions need to be revised to produce end-to-end HSR models that are 
able to deal with real-speech input. The biggest shortcoming of the joint model of the APR 
and Shortlist is that it makes ‘hard’ decisions at the level of input phones. Shortlist requires 
a single string of phone symbols as input. This implies that the APR is forced to make 
‘hard’ decisions about the segmental representation of the speech signal based only on the 
acoustic information. The second shortcoming of Shortlist is that the search in the Shortlist 
module of the joint model is a simple lexical look-up: a phone insertion or deletion will 
cause a misalignment of all subsequent phones with the words in the lexicon. The 
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experiments clearly show that a straightforward combination of the APR and Shortlist does 
not yield an end-to-end model of HSR that can deal satisfactorily with real-life input, even 
though Shortlist is a successful model for a specific aspect of the human speech recognition 
process. 

Chapter 3: How should a speech recogniser work? 
As observed before, there is little communication between the research fields of ASR and 
HSR. In Chapter 3 it is suggested that one barrier to communication might be that the 
research is often seen as being about how humans, or how machines, recognise speech 
(according to Marr these questions are addressing the algorithmic and implementational 
levels of an information-processing system) instead of addressing the question why certain 
functions are needed for recognising speech (the computional level according to Marr). 
Chapter 3 describes a computational-level analysis of the word recognition process which 
made the close parallels between HSR and ASR explicit. The computational parallels were 
further illustrated by the development of SpeM (Speech-based model of HSR): a 
computational model of HSR, based on the theory underlying Shortlist, that was built using 
techniques from ASR. SpeM is not just a re-implementation of Shortlist; it represents an 
important advancement over existing models of HSR in that it is able to recognise words 
from acoustic speech input at reasonably high levels of accuracy, while currently existing 
models of HSR almost invariably assume a (error-free) symbolic representation of the 
acoustic signal as input.  

In SpeM, the ‘hard decisions problem’ at the input level the joint model presented in 
Chapter 2 suffered from was solved by representing the speech signal as a probabilistic 
phone lattice containing multiple phone-string hypotheses instead of a one-dimensional 
phone string. This allows, in a natural way, the postponement of a hard decision to a point 
later in the word search process. The second shortcoming of the combination of the APR 
and Shortlist, the implementation of the lexical search, is solved in SpeM by using a search 
algorithm based on dynamic programming techniques that tolerates misalignments between 
the input and canonical phonemic lexical representations (at a certain cost).  

Two types of experiments carried out with SpeM are presented in Chapter 3. The first 
experiment is identical to the recognition experiment with the joint model of Chapter 2. 
The results of this experiment show that SpeM strongly outperforms Shortlist in its ability 
to recognise words from real-life speech, spoken by a large number of different talkers in 
the type of acoustic environments found in normal life, largely due to the phone-lattice 
representation of the input in SpeM. 

In the second type of experiment, SpeM’s computational power with respect to the 
simulation of the human speech recognition process is addressed. For these simulations, 
word activations are necessary, but SpeM calculates path-based scores. In Chapter 3, a 
method is presented that converts the path-based scores of SpeM into word-based 
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activation scores. Three simulations carried out with SpeM show that the model, with the 
acoustic signal as input, is able to simulate the same aspects of the human speech 
recognition process as Shortlist, which has a phoneme string as input. 

Chapter 4: ‘Early recognition’ of polysyllabic words in continuous speech 
Humans are well able to identify and recognise a word before its acoustic realisation is 
complete. This in contrast to conventional ASR systems, which compute the likelihood of a 
number of hypothesised word sequences, and identify the words that were recognised on 
the basis of the hypothesis with the highest score at the end of the utterance to maximise 
performance. Furthermore, in contrast to conventional integrated search methods used in 
ASR systems, SpeM uses an incremental search. This incremental search gives a ranked 
list of hypotheses at each moment in time during the speech recognition process and is 
therefore able to recognise a word before its acoustic offset. Chapter 4 investigates how 
SpeM’s incremental search can be used for the recognition of a word before its acoustic 
realisation is complete; this is referred to as ‘early recognition’. 

Experiments on 1,463 polysyllabic ‘focus’ words in 885 utterances showed that 64.0% 
(936 utterances) were recognised correctly at the end of the utterance. For 81.1% of the 936 
correctly recognised focus words (51.9% of all focus words) the local word activation 
allowed us to identify the word before its last phone was available, and 64.1% of those 
words were already recognised one phone after the uniqueness point. 

We investigate two types of predictors for deciding whether a word is considered as 
recognised before the end of its acoustic realisation. The first type is related to the absolute 
and relative values of the word activation, Actmin and , respectively. The results show that 
the actual values of Actmin and  should not be set too high or too low, since both function 
as filters: The higher the values for both predictors, the fewer words are recognised, and 
vice versa. The second type of predictor is related to the number of phonemes of the word 
that have already been processed and the number of phonemes that remain until the end of 
the word. The results show that SpeM’s performance increases if the amount of evidence in 
support of a word increases and the risk of future mismatches decreases. 

Chapter 5: A two-pass approach for handling OOVs in a large vocabulary 
recognition task 
In Chapter 5, SpeM’s capability of recognising word-initial cohorts is used to address the 
problem of recognising a large vocabulary of over 50,000 city names within a telephone 
access spoken dialogue system. The experiments are conducted on spontaneous utterances 
within a joint domain of two spoken dialogue systems, a weather domain (Jupiter) and a 
flight reservation (Mercury) domain. Very large lexicons do not necessarily pose a problem 
for ASR systems, but the combination with a weak language model, which only has 
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virtually equal prior probabilities associated with each word, usually results in poor 
performance.  

We adopt a two-stage framework in which only the 500 major cities are explicitly 
represented in the lexicons of both stages. In the first stage, we rely on an unknown word 
model encoded as a phone loop to detect out-of-vocabulary (OOV) city names (also 
referred to as rare city names). Of each rare city name the underlying phone graph is 
extracted. Subsequently, SpeM is used to extract words and word-initial cohorts from these 
phone graphs on the basis of a large fallback lexicon, to provide an N-best list of promising 
city name hypotheses. This N-best list is then inserted into the second stage lexicon for a 
subsequent recognition pass. 

Experiments are conducted on a set of spontaneous telephone-quality utterances from both 
domains. These utterances were selected because they each contain a rare city name. The 
first experiment shows that SpeM is able to include nearly 75% of the correct rare city 
names in an N-best hypothesis list of 3000 city names. 

In addition to the N-best lists of most likely words, the lexicon of the second stage also 
contains the so-called ‘base’ lexicon (which covers the other words in the utterance). In the 
second recognition experiment, we test two methods to create this base lexicon. The first 
method uses the same base lexicon as in the first stage, whereas the second method utilises 
a greatly pruned lexicon, based on the contents of the outputs of the first stage. The 
accuracy of the baseline recognition system (which excluded the N-best lists provided by 
SpeM) is 69.3%. Adding the N-best lists created by SpeM (method 1) increases the 
accuracy to 77.3%, a relative improvement of 11.5%. While the system with the pruned 
general lexicon (method 2) does not outperform the other system in terms of overall 
recognition error rate, it is able to correctly recognise up to 5% more rare city names. The 
final recognition results show that about one third of the rare city names that were found by 
SpeM are correctly recognised. So, work still remains to be done to improve on the second 
stage recogniser. 

Chapter 6: General discussion and concluding remarks 
The central goal of this research was to narrow the gap that has existed between the 
research fields of human and automatic speech recognition. The research described in this 
thesis showed that despite the differences in goals and research methods, close parallels 
between ASR and HSR exist. 

These close parallels between the two research fields were made explicit by the 
development of the end-to-end computational model of HSR created using techniques from 
the field of ASR, SpeM. The presented simulations and experiments carried out with SpeM 
showed that SpeM is able to simulate aspects of the human word recognition process while 
using the acoustic signal as input. The close parallels between the two research fields were 
further revealed by the development of the word activation scores used by SpeM. I showed 
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that it is possible to calculate a word-based continuous activation score from path-based 
ASR scores that is comparable to the activation scores used in HSR. The results showed 
that a left-to-right path-based decoding strategy as used in ASR systems (and in SpeM) is 
able to model the word-based competition effects found in behavioural studies of human 
speech recognition. 

In conclusion, the most obvious contribution that ASR can make to HSR is to assist in the 
development of models that are able to account for the complete human speech recognition 
process from the acoustic analysis to the recognition of words in continuous speech. SpeM 
has proven to be a successful first step in that direction. The contribution of HSR to ASR is 
not yet as clear-cut. However, if a model of the complete human speech recognition 
process would exist, it could lead to interesting new ideas for the development of better 
ASR systems. 
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Samenvatting (Summary in Dutch) 

In het dagelijkse leven is spraak overal om ons heen, op de radio, televisie, en in menselijk 
contact. Mensen worden voortdurend geconfronteerd met nieuwe uitingen die sprekers 
selecteren uit een oneindige verzameling van mogelijke uitingen in een taal. En normaal 
gesproken hebben wij als luisteraars geen enkel probleem met het verstaan en begrijpen 
van de deze uitingen. Er zijn verschillende wetenschapsgebieden die onderzoek doen naar 
(delen van) het spraakherkenningsproces. In dit proefschrift concentreer ik me op twee van 
deze gebieden, namelijk de automatische spraakherkenning (ASH) en de menselijke 
spraakherkenning (MSH). 

Ondanks dat beide onderzoeksgebieden sterk gerelateerd zijn (ze bestuderen immers allebei 
het spraakherkenningsproces), zijn hun doelen verschillend. In menselijke 
spraakherkenning is het doel om tot een volledig begrip te komen van het menselijke 
spraakherkenningsproces. Voor ASH is het doel het minimaliseren van het aantal fout 
herkende woorden. Als gevolg van de verschillen in doelen tussen de twee 
onderzoeksgebieden maken ze ook gebruik van verschillende onderzoeksmethoden. 

Het belangrijkste verschil tussen beide onderzoeksgebieden voor dit proefschrift is echter 
dat zowel ASH als MSH claimt het volledige spraakherkenningsproces vanaf het 
akoestische signaal tot aan de herkende woorden te onderzoeken, terwijl de ASH dit als 
enige ook daadwerkelijk doet. Er bestaan geen computationele modellen van MSH die in 
staat zijn om het hele traject van het akoestische signaal naar de herkende woorden te 
simuleren. Het gedeelte van het spraakherkenningsproces dat in zo goed als alle 
computationele modellen ontbreekt, is de omzetting van het akoestische signaal naar een 
segmentele representatie. Met andere woorden, bestaande modellen van MSH kunnen geen 
echte spraak herkennen. Deze tekortkoming maakt het moeilijk om te testen of de 
assumpties die ten grondslag liggen aan de computationele modellen ook geldig zijn voor 
echte spraak. 

Ondanks de grote verschillen tussen beide onderzoeksgebieden is er een groeiende 
interesse in mogelijke samenwerking. Het centrale doel van dit proefschrift is om de 
afstand tussen de wetenschapsgebieden van de ASH en de MSH te verkleinen en dus de 
twee onderzoeksgebieden dichter tot elkaar te brengen. Deze uitdaging wordt gestart vanuit 
het oogpunt van de MSH door een end-to-end computationeel model van menselijke 
spraakherkenning te implementeren met behulp van technieken gebruikt in het veld van de 
ASH. Een end-to-end model van MSH is in staat om het hele spraakherkenningsproces 
vanaf het akoestische signaal tot aan de herkende woorden te simuleren.  

Menselijke spraakherkenning 
In MSH worden laboratoriumexperimenten met menselijke luisteraars uitgevoerd om de 
eigenschappen van het menselijke spraakherkenningsproces bloot te leggen. Tijdens deze 
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experimenten worden verschillende soorten metingen verricht, zoals reactietijdmetingen en 
aantallen foutieve responsies. Op basis van deze metingen worden theorieën over bepaalde 
aspecten van het menselijke spraakherkenningsproces geformuleerd en verfijnd. Om deze 
theorieën vervolgens te testen worden er computationele modellen geïmplementeerd voor 
het simuleren en verklaren van menselijke spraakherkenning. Vrijwel alle bestaande 
computationele modellen van menselijke spraakherkenning modelleren slechts bepaalde 
aspecten van het menselijke spraakherkenningsproces. Voor dit proefschrift is het 
computationele model voor menselijke woordherkenning Shortlist van belang. 

Volgens symbolische theorieën van MSH beelden menselijke luisteraars het 
binnenkomende akoestische signaal af op prelexicale representaties, bijvoorbeeld in de 
vorm van fonemen. Vervolgens worden deze prelexicale representaties afgebeeld op 
lexicale representaties, in de vorm van woorden. Volgens symbolische theorieën van MSH 
bestaat het menselijke spraakherkenningsproces dus uit twee niveaus: het prelexicale en het 
lexicale niveau. Een belangrijke eis voor een symbolisch computationeel model is dus een 
segmentele representatie van het spraaksignaal. Aangezien computationele modellen van 
MSH geen echte spraak kunnen verwerken, wordt er gebruik gemaakt van een 
handgemaakte segmentele representatie van het spraaksignaal als input van het lexicale 
niveau. Deze segmentele representatie van het spraaksignaal moet zo goed als foutloos zijn, 
in de zin dat deze perfect oplijnt met de segmentele representaties van de woorden in het 
lexicon. Met andere woorden, in de meeste symbolische computationele modellen wordt 
het prelexicale proces dat de prelexicale representaties maakt op basis van het akoestische 
signaal verondersteld en is het niet fysiek aanwezig. 

Automatische spraakherkenning 
De input van een automatisch spraakherkenningssysteem bestaat uit het akoestische 
signaal. Gedurende het spraakherkenningsproces wordt het akoestische signaal eerst door 
een akoestische preprocessor bewerkt waar featurevectoren geëxtraheerd worden uit het 
akoestische signaal. Vervolgens worden deze featurevectoren vergeleken met de 
opeenvolging van akoestische modellen geassocieerd met de woorden in het interne 
lexicon van het ASH systeem. Voor iedere featurevector wordt berekend hoe goed het past 
op ieder van de akoestische modellen. Uiteindelijk wordt het woord dat correspondeert met 
de sequentie van akoestische modellen die het best past op de featurevectoren in de input 
als hypothese aangenomen. Een ASH systeem is alleen in staat die woorden te herkennen 
die voorkomen in zijn lexicon. Tenzij het ASH systeem een mogelijkheid heeft om een 
stukje input als ‘geen woord’ aan te merken, wordt een onbekend woord aan de input zal in 
principe altijd herkend worden als een van de woorden in het lexicon. Dit levert dus een 
foute herkenning op. 

De meeste ASH systemen gebruiken een geïntegreerde zoekmethode voor het 
spraakherkenningsproces: alle beschikbare informatie (van de akoestische modellen, het 
lexicon en de taalmodellen) wordt tegelijkertijd gebruikt. Deze informatiebronnen vormen 
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samen de zoekruimte. Spraakherkenning is dus in feite het zoeken van het beste pad door 
de zoekruimte. Voor ieder pad (van een sequentie van woorden) door de zoekruimte wordt 
berekend hoe goed het past op de input; aan het einde van de input wordt het spoor terug 
gevolgd om de padhypothese met de beste score te bepalen en de woorden die op het pad 
liggen te identificeren. ASH systemen worden geëvalueerd in termen van accuraatheid, het 
percentage van de input uitingen dat goed herkend is, of in termen van word error rate 
(WER), het aantal geïnserteerde, gedeleerde en gesubstitueerde woorden gedeeld door het 
totale aantal woorden in de input. 

ASH systemen zijn niet gebaseerd op theorieën van menselijke spraakherkenning zoals 
computationele MSH modellen. Daarom zal een ASH systeem nooit gebruikt kunnen 
worden als een end-to-end computationeel model van menselijke spraakherkenning. Een 
ASH systeem is echter wel in staat om een segmentele representatie van het spraaksignaal 
te maken. In het onderzoek beschreven in dit proefschrift wordt een aangepast ASH 
systeem, een automatische foonherkenner (AFH), gebruikt als het ontbrekende deel van 
huidige computationele modellen van MSH dat het akoestische signaal omzet in een 
segmentele representatie. Een AFH is vergelijkbaar met een standaard ASH systeem 
behalve dat het lexicon fonemen bevat in plaats van woorden. De output van een AFH is 
dan ook een representatie in de vorm van fonemen in plaats van woorden. 

De opbouw van het proefschrift 
Naast een inleidend hoofdstuk dat hierboven in het kort samengevat is, staat bestaat dit 
proefschrift uit een viertal publicaties (hoofdstukken 2 tot en met 5) en een afsluitend 
hoofdstuk waarin de gevonden resultaten uit de vier publicaties aan elkaar gerelateerd 
worden en waarin de algemene conclusies getrokken op basis van dit proefschrift verwoord 
staan.  

Het onderzoek beschreven in hoofdstuk 2 en 3 maakt duidelijk hoe MSH bij het bouwen 
van een end-to-end computationeel model van menselijke spraakherkenning kan profiteren 
van de technieken gebruikt in het veld van de ASH. Hoofdstuk 4 en 5 laten zien hoe een 
zoekmethode die gebaseerd is op menselijke spraakherkenning van nut kan zijn voor ASH. 
Hieronder volgen van ieder hoofdstuk kort de probleemstelling, doelstellingen, 
belangrijkste resultaten en conclusies.  

Hoofdstuk 2: Het uitbreiden van Shortlist naar een end-to-end model van 
menselijke spraakherkenning 
Hoofdstuk 2 beschrijft de eerste poging om een end-to-end computationeel model te 
bouwen van MSH met behulp van technieken gebruikt in het veld van de ASH. Daartoe 
wordt Shortlist uitgebreid met een AFH die een segmentele representatie in de vorm van 
een foneemstring van het spraaksignaal maakt die vervolgens aan Shortlist als input wordt 
gegeven. Om te testen hoe goed dit gecombineerde model van een AFH en Shortlist echte 
spraak kan herkennen wordt een experiment uitgevoerd. Aan het gecombineerde model 
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worden 10.510 uitingen bestaande uit een Nederlandse plaatsnaam of ‘ik weet het niet’ 
uitgesproken in isolatie aangeboden. 

De experimenten laten duidelijk de consequenties zien van sommige vereenvoudigde 
aannames die gemaakt worden in Shortlist en andere modellen van MSH. Verder wordt 
duidelijk in hoeverre deze aannames aangepast moeten worden om tot een end-to-end 
model van menselijke spraakherkenning te komen dat in staat is om spraak te herkennen 
vanaf het akoestische signaal. De grootste tekortkoming van het gecombineerde model van 
een AFH en Shortlist is dat het ‘harde’ beslissingen neemt op het niveau van de 
inputfonemen. Shortlist verlangt een een-dimensionale foonstring als input. Dit betekent 
dat de AFH gedwongen wordt om ‘harde’ beslissingen te nemen met betrekking tot welke 
fonemen er in het signaal aanwezig zijn, gebaseerd op alleen maar de akoestiek. De tweede 
tekortkoming is de eenvoudige zoekmethode gebruikt in Shortlist: een deletie of een 
insertie van een foneem in de input veroorzaakt een foutieve oplijning van alle volgende 
fonemen met de woorden in het lexicon. 

Concluderend, een combinatie van een AFH en Shortlist leidt niet tot een end-to-end model 
van MSH dat goed genoeg om kan gaan met echte spraakinput, ondanks dat Shortlist een 
succesvol computationeel model is van een specifiek aspect van het menselijke 
spraakherkenningsproces. 

Hoofdstuk 3: Hoe zou een spraakherkenner moeten werken? 
Zoals eerder al is opgemerkt is er weinig communicatie tussen de onderzoeksgebieden van 
de ASH en de MSH. In hoofdstuk 3 wordt gesuggereerd dat dit gebrek aan communicatie 
komt doordat beide onderzoeksgebieden focussen op hoe spraak herkend kan worden (dit 
worden het algoritmische en het implementatieniveau genoemd door Marr (1982)) in plaats 
van welke functies er nodig zijn om spraak te kunnen herkennen en waarom deze functies 
nodig zijn (het computationele niveau volgens Marr). In hoofdstuk 3 wordt een 
computationele analyse gegeven van het spraakherkenningsproces die de parallellen tussen 
beide vakgebieden duidelijk laat zien. Deze parallellen worden verder verduidelijkt door de 
implementatie van een nieuw computationeel model van MSH, SpeM (Speech-based 
model of HSR), dat gebouwd is met technieken van ASH. SpeM is gebaseerd op de theorie 
die de basis is voor aan Shortlist. In tegenstelling tot huidige computationele modellen van 
MSH is SpeM met redelijk veel succes in staat om woorden te herkennen op basis van het 
akoestische signaal. 

Het probleem van de ‘harde’ beslissingen op het niveau van de inputfonemen waar het 
gecombineerde model in hoofdstuk 2 problemen mee had is in SpeM opgelost door de een-
dimensionale foonstring te vervangen door een probabilistische foongraaf die meerdere 
foonstring hypotheses naast elkaar bevat. Door deze representatie van het spraaksignaal 
wordt op een natuurlijke manier de beslissing over een foneem verschoven naar een later 
punt in het woordherkenningsproces. De tweede tekortkoming van het gecombineerde 
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model beschreven in hoofdstuk 2, de lexicale zoekmethode, is opgelost in SpeM door 
gebruik te maken van een zoekmethode gebaseerd op dynamische programmeermethoden. 
Hierdoor worden inserties en deleties in de input ten opzichte van de woorden in het 
lexicon beter afgehandeld. 

Er worden twee typen experimenten uitgevoerd met SpeM. Het eerste experiment is een 
kopie van het experiment uitgevoerd met het gecombineerde systeem van hoofdstuk 2. Dit 
experiment laat zien dat SpeM veel beter in staat is om de juiste woorden te herkennen op 
basis van de akoestiek dan het gecombineerde systeem. Dit komt voornamelijk doordat 
SpeM geen een-dimensionale foonstring gebruikt maar een probabilistische foongraaf. 

In het tweede type experiment wordt de kracht van SpeM met betrekking tot het simuleren 
van menselijke spraakherkenning onderzocht. Voor de simulaties van menselijke 
spraakherkenning zijn woordactivaties nodig, terwijl SpeM padgebaseerde scores berekent. 
In hoofdstuk 3 wordt een methode gepresenteerd om de padgebaseerde scores van SpeM 
om te schrijven naar woordgebaseerde activaties. De drie simulaties uitgevoerd met SpeM 
lieten zien dat SpeM, met het akoestische signaal als input, in staat is om dezelfde aspecten 
van het menselijke spraakherkenningssysteem te simuleren als Shortlist, dat een 
foneemstring als input heeft. 

Hoofdstuk 4: ‘Vroege herkenning’ van polysyllabische woorden in continue 
spraak 
Mensen zijn in staat om een woord te herkennen voordat de akoestische realisatie van het 
woord compleet is. Dit in tegenstelling tot ASH systemen die een woord pas na een frase of 
een zin herkennen om de herkenprestatie van het ASH systeem te optimaliseren. Verder, in 
tegenstelling tot de traditionele geïntegreerde zoekmethoden gebruikt in ASH systemen 
maakt SpeM gebruikt van een incrementele zoekmethode. Deze incrementele zoekmethode 
geeft een geordende lijst van hypotheses voor ieder moment in de tijd gedurende het 
spraakherkenningsproces aan de output en is daarom in staat om een woord voor het einde 
van zijn akoestiek te herkennen. In hoofdstuk 4 wordt onderzocht hoe de incrementele 
zoekmethode van SpeM gebruikt kan worden voor het herkennen van een woord voordat 
de akoestiek behorende bij het woord gehoord is. Dit noemen we ‘vroege herkenning’.  

Experimenten op 1.463 polysyllabische focuswoorden in 885 uitingen laten zien dat 64.0% 
van de focuswoorden correct herkend waren aan het einde van uiting. 81.1% van deze 
correct herkende focuswoorden (51.9% van alle focuswoorden) had een 
woordactivatiescore die hoger was en bleef dan die van de andere hypotheses voor het 
einde van het akoestische signaal dat hoort bij het woord. 64.1% van de correct herkende 
focuswoorden was 1 foneem na het uniekheidspunt al herkend. 

Verder zijn er twee types voorspellers onderzocht die gebruikt kunnen worden tijdens het 
herkenproces om te bepalen hoe groot de kans is dat de hypothese correct is. De eerste is 
gebaseerd op de absolute en de relatieve woordactivatie berekend door SpeM, 
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respectievelijk de minimum activatie (Actmin) en  genaamd. De resultaten laten zien dat de 
waardes van Actmin en  niet te hoog noch te laag moeten zijn aangezien ze beide werken 
als filters: hoe hoger de waardes van de twee voorspellers, hoe minder woorden er herkend 
worden en vice versa. Het tweede type voorspeller is gerelateerd aan het aantal fonemen 
van het woord dat al verwerkt is en hoeveel fonemen er nog niet verwerkt zijn tot aan het 
einde van het woord. Deze resultaten laten zien dat de prestatie van SpeM verbetert als de 
hoeveelheid fonemen die al verwerkt zijn groter wordt en het aantal fonemen tot aan het 
einde van het woord dat nog niet verwerkt is kleiner wordt. 

Hoofdstuk 5: Een twee-staps methode voor het verwerken van OOVs in een 
herkenningstaak met een groot lexicon 
In hoofdstuk 5 wordt het vermogen van SpeM om woorden voor het einde van de 
bijbehorende akoestiek te herkennen aangewend om woordinitiële cohorten te herkennen 
die vervolgens gebruikt worden om het probleem van woorden die niet in het lexicon 
voorkomen, en dus niet herkend kunnen worden, aan te pakken. Meer specifiek, hoofdstuk 
5 behandelt het probleem van het herkennen van de woorden in een groot lexicon met meer 
dan 50.000 plaatsnamen in twee telefoongestuurde dialoogsystemen: een 
weerinformatiesysteem (Jupiter) en een vluchtreserveringssysteem (Mercury).  

Het probleem met extreem grote lexicons (in combinatie met zwakke taalmodellen) in 
spraakherkenningssystemen is dat ze zorgen voor veel foute herkenningen. De oplossing 
voorgesteld in hoofdstuk 5 is om een twee-staps methode te gebruiken die in beide stappen 
een spraakherkenningssysteem gebruikt met een klein lexicon. Daartoe worden in het 
spraakherkenningssysteem van de eerste stap alleen de 500 hoogst-frequente plaatsnamen 
expliciet opgenomen in het lexicon. Met behulp van een onbekend-woordmodel worden in 
de spraakherkenner van de eerste stap alle woorden die niet in het lexicon voorkomen, dus 
de laag frequente woorden, of ‘infrequente plaatsnamen, afgevangen en gemerkt. Van deze 
infrequente plaatsnamen wordt de onderliggende foonstructuur in de vorm van een 
foongraaf opgeslagen. Vervolgens wordt met behulp van SpeM op basis van het grote 
lexicon met 50.000 woorden een selectie gemaakt van de meest waarschijnlijk 
plaatsnaamhypotheses op basis van de foongraaf onderliggend aan de infrequente 
plaatsnaam. SpeM levert deze meest waarschijnlijke plaatsnaamhypotheses in de vorm van 
een N-best lijst. Tot slot wordt deze N-best lijst toegevoegd aan het lexicon van de 
spraakherkenner in de tweede stap. 

Experimenten worden uitgevoerd op een set van spontane uitingen van telefoonkwaliteit uit 
zowel het Mercury als het Jupiter domein. Iedere uiting in de testset bevat één zeldzame 
plaatsnaam. Het eerste experiment laat zien dat SpeM in staat is om bijna 75% van de 
goede zeldzame plaatsnamen in de 3000-best lijst te selecteren. Naast de N-best lijst 
gegenereerd door SpeM bevat het lexicon van de spraakherkenner van de tweede stap ook 
een zogenaamd ‘basis’lexicon (dat alle overige woorden van de uiting bevat). In het tweede 
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herkenexperiment worden twee methodes om het basislexicon te maken getest. De eerste 
methode gebruikt hetzelfde lexicon als de spraakherkenner in de eerste stap; de tweede 
methode gebruikt een sterk gereduceerd lexicon gebaseerd op de output van de eerste 
herkenstap.  

Het baseline herkensysteem (zonder de N-best lijsten gegenereerd door SpeM) is in staat 
om 69.3% van alle woorden correct te herkennen. Het toevoegen van de N-best lijsten van 
SpeM (methode 1) verhoogt het percentage goed herkende woorden naar 77.3%, een 
relatieve verbetering van 11.5%. Ondanks dat het systeem met het gereduceerde lexicon 
(methode 2) een gelijke herkenprestatie haalt, is het in staat om 5% meer van de zeldzame 
plaatsnamen te herkennen. Het laatste experiment laat zien dat ongeveer eenderde van de 
zeldzame plaatsnamen die gevonden waren door SpeM correct herkend worden door 
gebruikmaking van de twee-staps methode. Het is duidelijk dat de herkenprestatie van de 
spraakherkenner van de tweede stap verbeterd moet worden. 

Hoofdstuk 6: Discussie en algemene conclusies 
Het centrale doel van dit proefschrift was om de grote verschillen tussen de 
onderzoeksgebieden van de automatische en menselijke spraakherkenning te verkleinen. 
Het in dit proefschrift beschreven onderzoek heeft laten zien dat ondanks de grote afstand 
tussen beide onderzoeksgebieden in doelen en onderzoeksmethoden er veel parallellen zijn 
tussen ASH en MSH.  

Deze parallellen tussen beide onderzoeksgebieden zijn ten eerste expliciet gemaakt door de 
ontwikkeling van het end-to-end computationele model van MSH, SpeM, dat 
geïmplementeerd is met gebruikmaking van technieken van ASH. De simulaties en 
experimenten uitgevoerd met SpeM hebben laten zien dat SpeM in staat is om het 
menselijke spraakherkenningsproces te simuleren vanaf het akoestische signaal tot aan de 
uiteindelijk herkende woorden. Ten tweede zijn de duidelijke parallellen zichtbaar gemaakt 
door de ontwikkeling van de woordactivatiescores die gebruikt worden door SpeM. In dit 
proefschrift hebben we laten zien dat het mogelijk is om een woordgebaseerde maat te 
berekenen op basis van de padgebaseerde scores die gebruikt worden in standaard ASH 
systemen. De resultaten van de experimenten uitgevoerd met SpeM laten zien dat SpeM in 
staat is om de woordgebaseerde competitie-effecten die gevonden worden in 
gedragsstudies naar menselijke spraakherkenning te simuleren. 

Concluderend, de meest duidelijke bijdrage die ASH kan leveren voor MSH is assistentie 
bij het ontwikkelen van computationele modellen die het hele spraakherkenningsproces 
vanaf het akoestische signaal tot aan de uiteindelijk herkende woorden kunnen simuleren. 
SpeM is een succesvolle stap in de goede richting. De bijdrage van MSH voor ASH is niet 
zo duidelijk. Echter, als er een computationeel model van MSH zou bestaan, zou dit 
kunnen leiden tot interessante nieuwe ideeën voor de ontwikkeling van betere ASH 
systemen. 
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