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Abstract 

Listeners outperform automatic speech recognition systems at 

every level, including the very basic level of consonant 

identification. What is not clear is where the human advantage 

originates. Does the fault lie in the acoustic representations of 

speech or in the recognizer architecture, or in a lack of 

compatibility between the two? Many insights can be gained 

by carrying out a detailed human-machine comparison. The 

purpose of the Interspeech 2008 Consonant Challenge is to 

promote focused comparisons on a task involving intervocalic 

consonant identification in noise, with all participants using 

the same training and test data. This paper describes the 

Challenge, listener results and baseline ASR performance.  

Index Terms: consonant perception, VCV, human-

machine performance comparisons 

1. Motivation 

In most comparisons of human and machine performance on 

speech tasks, listeners win [1][2][3] (but see [4]; for an 

overview, see0[5]). While some of the benefit comes from the 

use of high-level linguistic information and world knowledge, 

listeners are also capable of better performance on low-level 

tasks such as consonant identification which do not benefit 

from lexical, syntactic, semantic and pragmatic knowledge. 

This is especially the case when noise is present. For this 

reason, understanding consonant perception in quiet and noisy 

conditions is an important scientific goal with immediate 

applications in speech perception (e.g. for the design of 

hearing prostheses) and spoken language processing [6]. A 

detailed examination of confusion patterns made by humans 

and computers can point towards potential problems at the 

level of speech signal representations or recognition 

architectures. For example, one compelling finding from a 

number of recent studies has been that much of the benefit 

enjoyed by listeners comes from better perception of voicing 

distinctions [7][8][9]. 

A number of corpora suitable for speech perception 

testing exist [7][10], although few contain sufficient data to 

allow training of automatic speech recognizers. However, the 

main motivation for the Interspeech 2008 Consonant 

Challenge was not solely to make available a corpus large 

enough for human-machine comparisons, but also to define a 

number of varied and challenging test conditions designed to 

exercise listeners and algorithmic approaches. In addition, by 

providing software for perceptual testing and scoring, the aim 

was to support a wide range of comparisons, for both native 

and non-native listeners. 

This paper describes the design, collection and post-

processing of the Consonant Challenge corpus and specifies 

the test conditions as well as the training and development 

material. It provides results for native listeners and for  two 

baseline automatic speech recognition systems. 

2. Corpus 

2.1. Design 
The corpus consists of intervocalic English consonants 

(VCV), for a number of vowel and stress combinations. The 

24 consonants (/b/, /d/, /g/, /p/, /t/, /k/, /s/, /sh/, /f/, /v/, /dh/, 

/th/, /ch/, /z/, /zh/, /h/, /dj/, /m/, /n/, /ng/, /w/, /r/, /y/, /l/) were 

combined with nine vowel contexts consisting of all possible 

combinations of the three vowels /i:/ (as in "beat"), /u:/ (as in 

"boot"), and /ae/ (as in "bat"). Each VCV was produced using 

both initial and final stress (e.g. 'aba versus ab'a) leading to a 

total of 28 (speakers) * 24 (consonants) * 2 (stress types) * 9 

(vowel contexts) = 12,096 tokens. 

2.2. Speakers 
Twelve female and 16 male native English speakers aged 

between 18-49 contributed to the corpus. Speakers originated 

from various regions of the UK, although most were born 

within 50 km of Sheffield. None had a strong regional accent.  

2.3. Recording 
Recordings were made in an IAC single-walled acoustically 

isolated booth at the University of Sheffield. Speech material 

was collected from a single Bruel & Kjaer (B & K) type 4190 

½ -in. microphone placed 30 cm in front of the talker. The 

signal was pre-amplified by a B & K Nexus model 2690 

conditioning amplifier prior to digitisation at 50 kHz by a 

Tucker-Davis Technologies System 3 RP2.1.  

Speakers produced VCVs in isolation by reading out 

tokens presented on a computer screen, and were given both 

verbal and written instructions on how to interpret token 

names, with a particular focus on /th/, /dh/, /dj/, and /zh/. 

Speakers ran through a practice with the experimenter before 

speaking alone in the booth. Speakers produced all VCVs 

with initial stress, followed by final stress. Collection of 

speech material was under computer control. Although VCV 

tokens are not “normal”, speakers were asked to produce them 

at a “normal” speaking rate, to avoid problems with lengthy, 

drawn-out productions sometimes found in VCV corpora. 

2.4. Post-processing 
Signals were high-pass filtered at 50 Hz to remove low 

frequency noise, endpointed, downsampled to 25 kHz and 

normalized to have the same RMS level. Tokens were 

screened to check for poor or mispronunciations, endpointing 

problems or extraneous noise. This led to the identification of 

301 unusable tokens (2.5% of the corpus), of which 16% were 

irrecoverable endpointing errors and 4% contained noise. 

Rejection of the remaining 80% was due to pronunciation 

problems, mostly for the consonants /th/, /dh/ and /zh/.  

Screening uncovered several other phenomena: /ng/ was 

sometimes realized as /n/+/g/; complete vowel reduction was 

occasionally observed, principally for /ae/; there was some 

centralization of /i:/ and /u:/; and frequent incorrect stress 

assignment. These tokens were retained in the corpus. 
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test set noise type SNR (dB) 

1 clean  

2 competing talker -6 

3 8-speaker babble -2 

4 speech-shaped noise (SSN) -6 

5 factory noise 0 

6 modulated SSN -6 

7 3-speaker babble -3 

Table 1. Test sets for the Consonant Challenge 

2.5. Test, development and training sets 
To facilitate comparisons of human and machine performance 

using identical material, subsets of the corpus for testing, 

training and development purposes were specified. Different 

speakers were used for each of the three subsets. 

Seven test sets were produced to accommodate clean and 

6 noise conditions, using material from 4 male and 4 female 

talkers. Each test set contains 2 instances of each of the 24 

consonants from each speaker (i.e. 384 tokens per test set).  

Table 1 summarises the seven test conditions. The 6 noise 

types were chosen to provide a varied range of challenging 

conditions, which, with the exception of SSN, are 

nonstationary. All noises apart from factory noise have a 

long-term spectrum equivalent to that of speech. Many noises 

can be expected to induce informational [11] as well as 

energetic masking. In particular, 8-talker babble has been 

shown to be a particularly effective informational masker of 

VCV tokens [12]. Modulated SSN (test set 6) was produced 

by multiplying a speech-shaped noise signal with the short-

term envelope of sentence material. Modulated SSN 

introduces the temporal fluctuations of a speech masker but is 

not intelligible, so has little or no informational masking 

effect. 

Signal-to-noise ratios were chosen via pilot tests to 

produce similar overall identification scores in the range 65-

75% in each condition (in the event, the range 66-79% was 

obtained). The aim was to avoid ceiling performance for 

listeners and floor effects for algorithms. Tokens were added 

to noise samples of duration 1.2s. Rather than co-gating the 

VCV and noise, the onset time of the VCV relative to the 

noise was varied in order to make the appearance of the VCV 

unpredictable in the noise. Onsets took one of 8 values 

linearly-spaced in the range 0 to 400 ms. Each consonant 

occurred the same number of times at each of the 8 onsets. 

For each token, the noise signal was scaled to produce the 

required SNR in the region where the speech was present. 

For the noisy conditions, test material for the Challenge is 

available in both single-channel and dual-channel versions. 

The former contains the mixed VCV plus noise, while the 

latter provides the VCV and noise on separate channels. The 

dual-channel versions are provided to allow the evaluation of 

models which make assumptions about some stages of human 

consonant perception, or to allow the estimation of “ideal” 

performance ceilings for algorithms. 

After the removal of unusable tokens, a training set of 

6664 clean tokens was created using material from 8 male and 

8 female speakers. Seven development sets consisting of 192 

tokens each (2 of each consonant from 4 male speakers) was 

produced using the same noise types as used in the test sets. 

3. Human consonant identification 

3.1. Listening tests 
Twenty seven native English listeners aged between 18 and 

48 who reported no hearing problems identified the 384 

VCVs of the test set. Listeners were drawn from the staff and 

students at the University of Sheffield and were paid for their 

participation. Perception tests ran under computer control in 

the IAC booth. Listeners were presented with a screen layout 

( Figure 1) in which the 24 consonants were represented using 

both ASCII symbols and with an example word containing 

the sound. Listeners were phonetically-naive and were given 

instructions as to the meaning of each symbol. They 

underwent a short practice session prior to the main test. Two 

listeners failed to reach a criterion level of 85% in a practice 

session using clean tokens. Another failed to complete all 

conditions, while a fourth was an outlier on most of the test 

conditions. Results are reported for the remaining 23 listeners. 

For the main test, listeners started with the clean condition. 

The order of the noisy conditions was randomised. 

 

 

Figure 1. Screen layout for perception tests. 

Test set 1 2 3 4 5 6 7 

Rec. rate 93.8 79.5 76.5 72.2 66.7 79.2 71.4 

Std. err. 0.57 0.78 0.79 0.75 0.77 0.61 0.74 

Table 2. Native listener scores. 

3.2. Results 

3.2.1. Overall identification scores 
Recognition rates and standard errors are shown in Table 2. 

Note that comparisons across some subsets of noise 

conditions are not meaningful since noises were mixed at a 

variety of SNRs. However, comparisons between those noises 

presented at an SNR of -6 dB confirm trends found in 

previous studies. For instance, a competing talker is a 

significantly weaker masker than stationary speech-shaped 

noise [13] and, for this task, performance was 

indistinguishable for competing speech and noise modulated 

by speech, a result which suggests that informational masking 

is not a major factor for the competing speech masker on a 

VCV task, confirming [12]. The factory noise background, 

presented at the least severe SNR, proved the most 

challenging type of noise. Comparison of its long-term 

average spectrum with that of speech suggests that, when both 

are normalized to have the same overall energy, factory noise 

has less energy than speech in the region below 800 Hz but 

substantially more in the 800-3500 kHz region where 

perceptually-important speech information lies.  

3.2.2. Consonant error rates 
Figure 2 depicts error rates for individual consonants in each 

test condition. For the quiet condition, a small group of 

consonants accounted for most of the errors. Listeners had 

particular problems with the dental fricatives, /dh, th/, the 

labiodentals fricatives /f, v/ and the palatals /zh/ and /dj/. 

Some of these sounds were also responsible for a large 



number of production errors, suggesting that poor 

orthographic-phonemic correspondence during production 

was part of the problem, although the relatively low error rate 

for /dj/ and /zh/ in noise suggests that orthography was not a 

limiting factor for these sounds.  

The second panel of figure 2 shows the mean error rate 

per consonant across all noisy conditions. As a group, the 

sibilants were typically well identified while /f, v, th, dh, b, 

ng/ presented most difficulties. These rankings are very 

similar to those found in a recent study which employed 

stationary speech-shaped noise [14].   

 

 

Figure 2. Averaged listener error rates per consonant. 

3.2.3. Confusions 
Confusion matrices for the clean test set and averaged over 

the noisy conditions are shown in figure 3. In both quiet and 

noise, most confusions occur within the set /f, v, th, dh/. In 

quiet, /dj/ and /zh/ are frequently confused, perhaps due to 

symbol confusion, while in both quiet and noise /ng/ is 

sometimes heard as /g/, probably reflecting incorrect 

realisations. In noise, /b/ and /v/ are often confused, as found 

elsewhere [15]. /v/ is the most reported sound in noise (1.56 

times its actual rate of occurrence), followed by /g/ (1.33), 

while /dh/ (0.74) and /ng/ (0.81) are least reported. 

3.2.4. Transmitted information analysis 
A standard way to summarise perceptual confusions since 

Miller and Nicely [15] is to measure the proportion of 

transmitted information (TI) for consonantal features. Figure 

4 shows TI measures for manner, place and voicing. For 

quiet, voicing is least well transmitted (that is, listeners report 

a voiced sound when an unvoiced sound was present, and vice 

versa), largely due to confusions amongst the dental and 

labiodental fricatives. However, averaged over most of the 

noisy test sets, the three features are equally-well transmitted. 

The TI analysis suggests that place confusions, perhaps based 

on spectral masking, are in the main responsible for the 

difficulty listeners had with factory noise. Voicing 

information is particularly adversely affected by stationary 

noise. Place is less confused for modulated speech shaped 

noise than for competing speech while for manner and 

voicing the opposite is true.  
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     p  b  t  d  k  g ch dj  f  v th dh  s  z sh zh  h  m  n ng  l  r  y  w 

 p  99  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 
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 k   .  .  .  . 99  1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 g   .  .  .  .  1 97  .  .  .  .  .  .  .  .  .  .  1  .  .  1  .  .  .  . 

ch   .  .  2  .  .  . 97  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

dj   .  .  .  2  .  4  2 86  .  .  .  .  .  .  .  7  .  .  .  .  .  .  .  . 

 f   .  .  .  .  .  .  .  . 86  1 11  3  .  .  .  .  .  .  .  .  .  .  .  . 

 v   .  .  .  .  .  .  .  .  4 85  3  7  .  .  .  .  1  .  .  .  .  .  1  . 

th   .  .  .  .  .  .  .  .  6  . 79 11  4  .  .  .  .  .  .  .  .  .  .  . 

dh   .  .  .  .  .  .  .  .  . 17 23 58  .  1  .  .  .  .  .  .  .  .  .  . 
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zh   .  .  .  .  .  .  .  8  .  .  .  .  .  .  . 91  .  .  .  .  .  .  .  . 

 h   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98  .  .  .  .  .  1  1 

 m   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99  .  .  .  .  .  . 

 n   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 98  .  2  .  .  . 

ng   .  .  .  .  .  4  .  .  .  .  .  .  .  .  .  .  .  .  1 95  .  .  .  . 

 l   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99  .  .  . 

 r   .  .  .  .  .  .  .  .  .  1  .  .  .  .  .  .  .  .  .  .  . 98  .  1 

 y   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99  . 

 w   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1  2 97 

 

   HEARD 

     p  b  t  d  k  g ch dj  f  v th dh  s  z sh zh  h  m  n ng  l  r  y  w 

 p  69  6  2  1  6  3  .  .  2  3  2  1  1  .  .  .  3  1  .  1  1  1  .  1 

 b   5 64  .  1  1  3  .  .  1 14  1  2  .  .  .  .  1  1  .  1  1  1  .  2 

 t   1  . 89  1  4  .  1  .  .  .  1  .  .  .  .  .  1  .  .  .  .  .  .  . 

 d   .  1  4 76  .  6  .  1  .  1  1  3  1  1  .  .  .  .  2  1  1  1  1  . 

 k   4  1  2  . 82  7  .  .  .  1  .  .  .  .  .  .  2  .  .  1  1  .  .  . 
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Figure 3. Confusion in for clean (top) and averaged over 

the noise conditions (bottom) expressed as percentages. Rows 

represent sounds ‘sent’ and columns ‘heard’. 

 

 

Figure 4. Proportion information transmitted for 

manner, place and voicing. Results for the baseline 

recognisers are also shown (m=MFCC,r=ratemap). 

4. Baseline recognizer 

4.1. Recognizer structure and training 
The performance of various acoustic features and recognizer 

architectures (monophone, triphone, gender-dependent/ 

independent) was investigated. Two representative 

combinations were chosen as baselines for the Consonant 

Challenge. The best performance on the clean test set (88.5%) 

was obtained using a 24-mixture CDHMM system with 3 

state monophone models, based on the “standard” 39-

dimensional MFCC_0_Z_D_A feature. Separate HMMs for 

initial and final vowels were used. Ratemaps, an auditory 



filterbank-based representation (see [8] for more details), was 

chosen as an alternative acoustic feature vector. These   

achieved a score of 84.4% using 64-dim feature vectors and 

the same model architecture. HMMs were trained from a flat 

start using HTK [17]. 

4.2. Results 
Figure 5 compares consonant error rates for listeners and the 

two baseline recognisers on the clean test set. Listener-

machine errors are strongly-correlated for MFCCs  (r=0.81, p 

< 0.0001) and less so for ratemaps (r=0.54, p < 0.01), with 

both humans and machines having most difficulty with the 

dental fricatives. Differences in human and machine 

performance are highest for the plosives (apart from /b, p/) 

and the nasals.  

The errors for /d/ and /g/ for MFCCs are due to manner 

confusions (with /dj/ and /ng/, respectively). As with humans, 

/d/ is also confused with /g/. The errors for ratemaps for /d/ 

are due to confusions with /dj/ (manner), while the /g/ errors 

are place related (confusions with /b/). For the nasals, the 

confusions for the MFCC system are mainly within the nasal 

class, but for ratemaps /ng/ is most often confused with /l/ 

(manner+place confusion). While humans confuse /ng/ most 

often with /g/, machines seem to have fewer problems with 

/ng/. However, in interpreting confusions it should be noted 

that listener scores are averaged over 23 listeners, whereas the 

baseline systems are equivalent to a single „listener‟. 

A transmitted information analysis (figure 4, column „m‟) 

showed that the MFCC baseline outperformed listeners on the 

voicing feature but was significantly worse for place. As 

expected on the basis of the overall recognition performance, 

ratemaps have the lowest transmitted information scores 

(figure 4, column „r‟), although the performance for the 

voicing feature is only slightly lower than for humans. 

 

 

Figure 5. Human and baseline ASR error rates. 

5. Concluding remarks 

The Interspeech 2008 Consonant Challenge aims to promote 

human-machine, machine-machine and human-human 

(native/non-native) comparisons on a consonant identification 

task which avoids the use of high-level speech knowledge. A 

VCV corpus was collected consisting of a number of varied 

and challenging test conditions specifically designed for 

performance comparisons. Listener and baseline recogniser 

results are reported. For certain features such as voicing, an 

MFCC-based HMM baseline outperformed listeners in the 

noise-free condition, but fell far short of listeners for the place 

feature. Understanding the basis for these differences is a goal 

for future research.  

 All materials associated with the Consonant Challenge 

can be accessed at [18]. 
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