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ABSTRACT 
 

The ultimate goal of our research is to develop a computational 

model of human speech recognition that is able to capture the 

effects of fine-grained acoustic variation on speech recognition 

behaviour. As part of this work we are investigating automatic 

feature classifiers that are able to create reliable and accurate 

transcriptions of the articulatory behaviour encoded in the acous-

tic speech signal. In the experiments reported here, we compared 

support vector machines (SVMs) with multilayer perceptrons 

(MLPs). MLPs have been widely (and rather successfully) used 

for the task of multi-value articulatory feature classification, 

while (to the best of our knowledge) SVMs have not. This paper 

compares the performances of the two classifiers and analyses the 

results in order to better understand the articulatory representa-

tions. It was found that the MLPs outperformed the SVMs, but it 

is concluded that both classifiers exhibit similar behaviour in 

terms of patterns of errors.  

 

1. INTRODUCTION 
 

In everyday speech it is quite common for there to be no pauses 

between lexical items; words flow smoothly one in to another 

with adjacent sounds often coarticulated. This means that, if 

words are assumed to be constructed from a limited set of abstract 

‘phonemes’, virtually every phoneme string is compatible with 

many alternative word sequence interpretations. Human listeners, 

however, appear to be able to recognise intended word sequences 

almost effortlessly. Even in the case of fully embedded words 

such as “ham” in “hamster”, listeners can make the distinction 

between the two interpretations even before the end of the first 

syllable “ham”. There is now considerable evidence that sub-

segmental (i.e. acoustic-phonetic) and supra-segmental (i.e. pro-

sodic) cues in the speech signal modulate human speech recogni-

tion (HSR), and help the listener segment a speech signal into 

syllables and words (e.g. [5],[10],[19]). However, currently no 

computational models of HSR exist that are able to model this 

‘fine-phonetic variation’ [8].  

Our ultimate goal is to refine an existing computational 

model of HSR (SpeM [20]) such that it is able to capture and use 

fine-grained acoustic-phonetic variation during speech recogni-

tion. In this study, we investigate the use of ‘articulatory fea-

tures’ (AFs) that describe properties of speech production and 

that can be used to represent the acoustic signal in a compact 

manner. Furthermore, AFs offer the possibility of representing 

coarticulation and assimilation effects as feature value changes. 

In automatic speech recognition (ASR), there has also been a 

growing interest in the use of articulatory features for improving 

the performance of current ASR systems. AFs are often put for-

ward as the solution (e.g. [12],[23],[24]) to the problem of mod-

elling the variation in speech using the standard ‘beads-on-a-

string’ paradigm [17], in which the acoustic signal is described in 

terms of phones, and words as phone sequences. 

Over the years, many different approaches have been inves-

tigated for incorporating AFs into ASR systems. Artificial neural 

networks (ANNs), for instance, have shown high accuracies for 

classifying AFs ([11],[12],[23]). Frankel et al [7] provide a short 

overview of other modelling schemes, such as hidden Markov 

models (HMMs) [12], linear dynamic models (LDMs) [6] and 

dynamic Bayesian networks (DBNs) [15]. However, for smaller 

(and simpler) tasks, support vector machines (SVMs) offer two 

favourable properties: (i) good generalisation and (ii) the ability 

to learn from a relatively small amount of high-dimensional data. 

For these reasons, SVMs have also been applied to the classifica-

tion of articulatory features [9],[16]. For instance, Juneja [9] 

developed SVM-based landmark detectors for classifying binary 

place and voicing features in TIMIT [14] where he reported accu-

racies ranging from 79% to 95%. Also, Niyogi and Sondhi [16] 

used SVMs to detect stop consonants in TIMIT.  

However, the research reported so far using SVMs to clas-

sify articulatory features have been mainly concerned with binary 

decision tasks, or with a limited domain. In the area of visual 

automatic speech recognition, however, SVMs have been used 

successfully for the automatic classification of multi-level articu-

latory features [18]. This leads us to suspect that SVMs could 

also be used for the classification of multi-level acoustic articula-

tory features.  

In the work reported here, we investigate the possibility of 

classifying multi-level acoustic articulatory features using SVMs 

in the context of the larger goal of developing a computational 

model of HSR that is able to model the effect of fine-grained 

acoustic variation on HSR. For this computational system, we are 

in search of feature classifiers that are able to create reliable and 

accurate feature transcriptions of the acoustic signal. Given the 

existing high performance of ANNs on the task of AF classifica-

tion, this paper reports on an in-depth comparison between the 

performances of the ANNs and the SVMs and analyse the results 

to better understand the articulatory features. 

In order to allow a direct comparison between the ANN and 

the SVM systems, both systems have been trained on the same 

material (see Section 2.1) using the same AF set (see Section 

2.2). Section 2 outlines details of the two classification systems 

that were used, Section 3 presents and analyses the results for 



both systems, then Section 4 discusses the results. Conclusions 

are presented in the final section. 

 

2. EXPERIMENTAL SET-UP 
 

2.1. Material 

 

The training and testing material used in this study are taken from 

the TIMIT corpus [14]. TIMIT consists of reliably hand labelled 

and segmented data of quasi-phonetically balanced sentences read 

by native speakers of eight major dialect regions of American 

English. Of the 630 speakers in the corpus, 438 (70%) were male. 

We followed TIMIT’s standard training and testing division, in 

which no sentence or speaker appeared in both the training and 

test set. The training set consisted of 3,696 utterances. The test set 

(excluding the sa sentences) consisted of 1,344 utterances.  

 

2.2 Articulatory features 

 

In this research, we used the set of seven articulatory features 

shown in Table 1. The names of the AFs are self-explanatory, 

except maybe for static, which gives an indication of the rate of 

acoustic change, e.g., during diphthongs.  

The set is based on the six AFs proposed in [23]. After ini-

tial experiments, we added a seventh AF to replace the corre-

sponding values in place: high-low. This improved the accuracies 

for the AF values in both AF classes compared to when the high-

low AF values were in place. For the training and testing data, the 

frame-level phonemic TIMIT labels were replaced by the canoni-

cal AF values using a table look-up procedure. The mappings 

between the phonemes and the AF values are based on [13].  

 

2.3. Multilayer perceptron AF classification 

 

For the first experiment, seven multilayer perceptrons or MLPs 

(one for each AF) were trained using the NICO Toolkit [21]. All 

MLPs consisted of three layers. Each MLP’s input layer, with 

273 nodes, was presented with 12 MFCC coefficients plus log 

energy (for 25 ms frames, with a 10 ms frame shift), their first and 

second derivatives and a context window of plus and minus 3 

frames. The hidden layers had hyperbolic tan transfer functions 

and a different number of nodes depending upon the AF. To de-

termine the optimum network size, networks with various num-

bers of hidden units were trained in an initial experiment. The 

network configurations that gave the best performance in the 

initial tests are used in the experiments and results presented be-

low. The output layer was configured to estimate the posterior 

probability of the AF value given the input. The number of output 

nodes for each MLP is listed in Table 3.  

When training each MLP the performance on a validation 

set (consisting of 100 utterances randomly selected and taken 

from the training material) was monitored and training was termi-

nated when the validation set’s error rate began to increase. Dur-

ing classification, the class with the highest associated posterior 

probability is chosen. 

 

2.4. Support Vector Machine AF classification 

 

SVMs (for an introductory text, the reader is referred to [1]) are 

binary classifiers which make their decisions by constructing a 

hyper-plane  that separates the two classes such that the boundary  

Table 1. Specification of the AFs and their respective 

quantised values. 

AF Values 

manner approximant, retroflex, fricative, nasal, stop, 

vowel, silence 

place bilabial, labiodental, dental, alveolar, velar, 

nil, silence 

voice voiced, unvoiced 

high-low high, mid, low, nil, silence 

fr-back front, central, back, nil 

round rounded, unrounded, nil 

static static, dynamic 

 

is geometrically furthest away from both classes. Unlike MLPs, 

SVMs are not statistical classifiers and do not estimate posterior 

probabilities. The decision hyper-plane is defined by x⋅w + b = 0 

where w is the normal to the hyper-plane and x is a d-dimensional 

vector.  For  linearly  separable  data labelled  by  y, {xn,yn} for  

xn ∈ ℜd, yn ∈ {−1,+1}, n = 1…N, the optimal decision hyper-

plane is found by maximising the margin between the two 

classes, which in turn is achieved by minimising ||w||2 subject to 

the inequalities (xn⋅w + b) yn ≥ 1 for all n. The solution for the 

optimal hyper-plane w0 is a linear combination of a small subset 

of the training data xs, s ⊂ {1…N}, which are known as the sup-

port vectors.  These support vectors also satisfy the equality 

(xs⋅w0 + b) ys = 1. 

When the data is non-separable then no hyper-plane exists 

for which all points satisfy the inequality above. To overcome 

this problem slack variables ξn are introduced into the inequalities 

relaxing them so that some points are allowed to lie within the 

margin or be misclassified completely.  The resulting problem is 

then to minimise 

 

||w||2 + cΣnξn      subject to (xn⋅w + b) yn ≥ 1 − ξn     ∀ n      (1) 

 

The solution for w0 is then a linear combination of all points 

that have ξ > 0 as well as those that lie on the margin. 

SVMs are easily extended to construct non-linear bounda-

ries. This is achieved by mapping the data non-linearly onto a 

manifold embedded in a higher dimensional space and construct-

ing the decision hyper-plane there. A practical way to demon-

strate this is to fold a flat sheet of paper (a 2D space) into a 3D 

shape, cut it linearly and unfold to reveal the non-linear cuts. 

Such transformations are implemented easily by the use of kernel 

functions. The optimisation procedure for w0 is expressed entirely 

in terms of the inner product between pairs of vectors. Kernel 

functions compute the corresponding inner product in the higher 

dimensional space as a function of the original vectors without 

explicitly applying any mapping. The most basic and common 

kernel functions are the polynomial kernel,  
 

Kpoly( x1 ⋅ x2 ) = ( A x1 ⋅ x2 + B ) p                                        (2) 
 

and the radial basis function (RBF) kernel,  
 

KRBF( x1 ⋅ x2 ) = exp −0.5 ⋅ γ
 (x1 − x2) 

2                               (3) 
 

In our experiments, we used LIBSVM, which achieves 

multi-class classification by error correcting codes [2]. In an ini-

tial experiment, we tested both the polynomial and the RBF ker-

nel on the same task. Since the RBF kernel showed a better result  



Table 2.  SVM AF classification accuracies (Acc; decreasing from left to right) for each AF and the percentage of support vec-

tors (SV) used for each SVM. 

voice round fr-back manner static high-low place #utts 

SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) SV(%) Acc(%) 

2K 30.2 89.54 61.6 83.16 41.8 80.25 60.7 73.78 92.4 73.34 58.5 73.14 76.4 69.68 

10K 26.8 90.32 48.7 84.81 36.9 82.26 51.2 77.02 85.4 76.05 53.1 75.93 66.7 73.51 

50K 25.1 90.80 40.4 86.08 34.0 83.43 46.8 78.91 76.4 77.98 48.7 77.63 57.5 76.39 

100K 24.2 90.95 37.3 86.57 33.3 83.72 44.6 79.64 72.0 78.63 47.8 77.98 53.8 77.55 

 

Table 3. MLP AF classification accuracies (Acc; in de-

creasing order), the number of hidden nodes, and the 

number of output nodes  used for each MLP. 

AF Acc. (%) #hidden 

nodes 

#output 

nodes 

voice 92.4 100 2 

round 87.2 100 3 

manner 84.6 300 7 

fr-back 84.3 200 4 

static 82.9 100 2 

place 81.9 200 7 

high-low 80.2 100 5 

 

than the polynomial kernel, we used the RBF kernel for the ex-

periments reported in this paper.  

The input of the SVMs consisted of 12 MFCC coefficients 

plus log energy, and their first and second derivatives, resulting in 

39-dimensional acoustic feature vectors for 25 ms frames, with a 

10 ms frame shift. Unlike the MLP experiments, no context win-

dow was used. 

 

3. RESULTS 
 

3.1. Classification results per AF 

 

Table 3 shows the MLP classification results in terms of percent-

age frames correctly classified for each AF separately. Further-

more, the sizes of the hidden and output layers of each MLP are 

listed. The best results are obtained for the voice AF, followed by 

the round AF. The results in Table 3 are similar (though slightly 

worse, with the exception of the performances for place and high-

low) than the results presented in [23]. 

From Table 3, it is not possible to deduce a clear relation-

ship between the number of output nodes (or the difficulty of the 

classification task) and the accuracy of the AF classifier. For in-

stance, static has two output nodes, like voice, but the perform-

ance of static is almost 10% lower. On the other hand, manner 

has seven output nodes, but gets a relatively high accuracy. 

Table 2 shows the classification results of the SVM system 

for varying amounts of training utterances. The results are re-

ported in terms of the percentage frames correctly classified, for 

each AF separately. Also, the number of training frames and the 

percentage of support vectors for each are listed. The percentage 

of support vectors can give an indication of the relative difficulty 

of the task and/or separability of the AF values: A larger percent-

age suggests either more complex decision boundaries or highly 

overlapping data. The values for γ  (see Eq. 3) and c (see Eq. 1) 

for each SVM are listed in Table 4. A large γ  implies narrower 

RBFs and c sets the amount of regularisation (simpler decision 

boundaries vs. fitting the training data): If c is large then the 

SVM constructs more complex decision boundaries to better fit  

 Table 4. Values of the 
γ
 and c parameters for each SVM. 

AF γ  c 

manner 0.01 15 

place 0.1 3 

high-low 0.01 100 

voice 0.5 5 

fr-back 0.01 300 

round 1.5 1 

static 10 10 

 

Table 5. AF value classification accuracies and differ-

ences for the MLP and the SVM systems. 

Accuracy (%) AF value 

MLP SVM Diff 

manner 

approximant 54.9 43.2 11.7 

retroflex 70.2 65.1 5.1 

fricative 86.7 81.7 5.0 

nasal 79.0 73.3 5.7 

stop 86.3 70.9 15.4 

vowel 91.0 91.9 -0.9 

place 

bilabial 68.3 55.1 13.2 

labiodental 67.4 57.8 22.8 

dental 19.7 21.8 -2.1 

alveolar 78.3 75.2 3.1 

velar 63.1 50.8 12.3 

high-low 

high 70.2 70.4 0.2 

mid 55.4 45.3 10.1 

low 76.2 71.3 4.9 

voice 

+voice 93.8 91.3 2.5 

-voice 89.8 90.4 -0.6 

fr-back 

front 76.8 82.0 -5.2 

central 35.5 12.5 23.0 

back  58.3 48.2 10.1 

round 

+round 54.0 49.2 4.8 

-round 85.0 81.8 3.2 

static 

static 84.5 81.0 3.5 

dynamic 81.0 75.6 5.4 
 

the training data but may result in poor generalisation. 
The results in Table 2 show increasing accuracies (and per-

centage of support vectors) for increasing number of training 

utterances. The best performance is (similar to the MLPs) ob-

tained for voice, followed by round.  



Comparing the results of the MLP classifiers in Table 3 with 

the results of the SVM classifiers in Table 2 shows that the two 

systems have similar performance; the overall rankings for the 

best performing classifiers are very much alike, with manner and 

fr-back swapping places, just like place and high-low. Neverthe-

less, MLPs outperform SVMs for each AF. It must be noted that 

the SVMs were trained on much less training material than the 

full set of training frames used for training the MLPs: 100K 

frames are only 8.8% of the full training set. Furthermore, the 

SVMs did not use a context window. 

 

3.2. Classification results per AF value 

 

As pointed out above, our ultimate goal is to build a computa-

tional model of HSR that is able to recognise fine-grained acous-

tic-phonetic variation, and to use it during speech recognition. 

Therefore, we are not only interested in overall classification 

scores, since these also include the classification of ‘nil’ or ‘si-

lence’ (except for static and voice), but also in the classification 

of each AF value separately. 

Table 5 lists the classification accuracies in terms of frames 

correctly classified for each AF value for the two classification 

systems as well as the difference in accuracy. A first quick glance 

at the results shows that the MLPs also outperform the SVMs on 

an AF value level, with the exception for the AF values ‘vowel’, 

‘dental’, ‘-voice’, and ‘front’. The differences in accuracies can 

be as high as 23.0% (for ‘central’). The higher AF accuracies for 

the MLPs – as reported in Tables 2 and 3 – are thus not simply a 

result of a better classification of ‘silence’ and ‘nil’. For both 

types of system, the three easiest  AF values to  classify are  

‘+voice’,  ‘-voice’, and ‘vowel’, while the three most difficult are 

‘dental’, ‘central’, and ‘+round’ for the MLP system, and ‘den-

tal’, ‘central’, and ‘approximant’ for the SVM system. These 

latter observations are discussed in Section 4. 

The great diversity in AF value classification accuracy is re-

markable: ranging from 19.7% (‘dental’) to 93.8% (‘+voice’) for 

the MLPs and from 12.5% (‘central’) to 91.9% (‘vowel’) for the 

SVMs. Furthermore, even though the overall classification results 

for round are second highest for both systems, the classifications 

for ‘+round’ and ‘-round’ differ by more than 30%. 

 

3.3. AF value confusions 

 

Figure 1 shows the graphical representations of the confusion 

matrices for each of the classifiers in order of decreasing accuracy 

listed in Table 3. The left hand side of the figure shows the con-

fusion matrices for the MLPs and the right hand side for the 

SVMs. The vertical axis of each confusion matrix denotes the 

label of the frame being classified in the reference transcription, 

while the horizontal axis denotes the label given by the classifier 

for that frame. The shade of each cell in the matrix refers to the 

percentage of the reference labels classified as each of the labels 

on the horizontal axis: white is 100%, black is 0%. Ideally, all 

cells on the diagonal should be white, and black elsewhere.  

The confusion matrices show that voice, manner, static, place, 

and high-low overall have few confusions (with the exception of 

manner where a lot of frames have been misclassified as vowel). 

For these confusion matrices, the diagonal has indeed the lightest 

colour. The confusion matrices for round and fr-back, however, 

are a bit ‘messier’ (see also Section 4). 
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Figure 1. AF value confusion matrices for the MLP (left 

hand) and SVM (right hand) systems in order of decreas-

ing accuracy (following Table 3).  



Table 6. AF value confusions for the MLP and SVM sys-

tems, where more than 21% of the frames for a ‘from’ AF 

value were labelled as the ‘to’ AF value. 

MLP SVM 

from to % from to % 

dental alveolar 41.1 approx vowel 46.6 

approx vowel 35.5 dental alveolar 41.2 

+round -round 30.9 central front 40.4 

central front 26.2 +round -round 30.4 

central nil 24.2 central nil 29.5 

retroflex vowel 23.5 retroflex vowel 29.0 

   back front 27.3 

   dynamic static 24.4 

   back central 22.9 

   bilabial alveolar 21.5 

 

What is striking in Figure 1 is that the MLP and SVM con-

fusion matrices are so alike. Both systems tend to make the same 

((relative) number of) confusions: The shading in the cells differs 

only slightly between the two systems.  

Table 6 provides more detail on Figure 1. It shows an over-

view of the AF value confusions for both the MLP and the SVM 

systems, where more than 21% of the frames for a ‘from’ AF 

value were labelled as the ‘to’ AF value. The most important 

thing which is immediately evident is that the AF values that 

scored the lowest accuracies as listed in Table 5 appear within the 

top 4 highest confusions in Table 6. Furthermore, the six most 

often occurring MLP confusions are also the six most often oc-

curring SVM confusions, but with a slightly different ranking. 

Table 6, thus, backs up what could already be seen in Figure 1; 

both systems make the same confusions the most often. The mis-

classifications made by the two AF classification systems are thus 

not ‘random’, but contain some structure, as was already sug-

gested by Figure 1. This suggests that there might be something 

wrong with the description of the AF value itself, instead of 

something inherently wrong with the classification systems we 

chose, which are very different: MLPs estimate posterior prob-

abilities, whereas SVMs estimate the optimum decision boundary 

by maximising the margin between AF values. 

 

4. DISCUSSION 
 

During training, significantly fewer examples of ‘dental’ were 

encountered than for the other place AF values – just over 15,000 

frames in the full training set (1.4%). The poor classification 

results for ‘dental’ are thus likely caused by a poor estimation of 

the posterior probability for ‘dental’, which leads to a bias to-

wards the other AF value classes. Note that, although the SVM 

for place only received 1,356 frames for ‘dental’ (in the 100K 

training frames set), it detects ‘dental’ better than the MLP, which 

is expected as SVMs tend to generalise better to sparse data. As 

shown in Table 6, for both the MLP and the SVM systems, ‘den-

tal’ is most often classified as ‘alveolar’. The places of articula-

tion of ‘dental’ and ‘alveolar’ are very close to one another, lead-

ing to a small articulatory difference between the two. Both ‘den-

tal’ and ‘alveolar’ consonants have a concentration of energy in 

the higher frequency regions of the spectrum, so the acoustics 

seem to be similar. Furthermore, the percentage of ‘alveolar’ 

frames in the training material is the highest (27.7%) in the train-

ing material, thus it is to be expected that ‘alveolar’ has a better 

estimated posterior probability distribution or decision boundary 

than ‘dental’. 

From Tables 5 and 6 it can be deduced, that the poor classi-

fication of ‘central’ is contributable to the high number of confu-

sions with ‘front’ and, surprisingly, ‘nil’. Looking at the training 

material distribution shows that 62.3% of the training frames are  

labelled as ‘nil’, 5.4% as ‘back’, 20.4% as ‘central’, and 11.9% as 

‘front’. As explained above, this will result in a good classifier 

(distribution) for  ‘nil’,  but poorer ones for the other three AF 

values. This might explain the ‘central’-‘nil’ confusions. Within 

this same AF class, there is, however, also a high number of 

‘back’-‘front’ and ‘back’-‘central’ confusions. An explanation 

might be that the confusability of these AFs is contributable to 

the fact that ‘back’, ‘central’, and ‘front’ are positions along a 

continuum. Thus, the continuous positions had to be quantised. 

On top of that, people have different lengths and shapes of the 

vocal tract. The high number of confusions of ‘central’ with 

‘front’ combined with the high number of confusions of ‘back’ 

with ‘central’ also suggests that the distribution of ‘central’ 

frames is rather broad.  

Table 5 shows a more than 30% difference in AF value ac-

curacies for ‘+round’ (8.9% of the training frames) and ‘-round’ 

(28.7% of the training frames). As Table 6 and Figure 1 show, 

this is almost totally contributable to the labelling of ‘+round’ 

frames as ‘-round’. We suspect there to be a mismatch between 

the articulatory description as derived from TIMIT and the behav-

ioural reality. This needs further investigation. 

Finally, the poor classification results for ‘approximant’ 

(Table 5) are contributable to the fact that approximants are in 

many ways comparable to vowels, making it difficult to distin-

guish between approximants and vowels (see also Table 6). In our 

classification scheme (based on [13]), [w], [j], and [l] are marked 

as ‘approximant’, but the acoustic properties of [w] and [j] differ 

little from high vowels. Approximants, however, are usually clas-

sified phonetically as consonants due to their functional role in 

syllabic structure rather than because of their acoustic properties 

[3]. 

Although the performances obtained with the static AF clas-

sifiers are not too bad, what is conspicuous – at least from the 

SVM system – is the relatively high percentage of support vectors 

used. This might give an indication as to why this simple two-

class classification task performs so much worse than the other 

two-class task: voice. Following [7], the value ‘dynamic’ in the 

static class is assigned to frames that come from various diverse 

(groups of) phonemes, which have spectral change occurring 

during production in common. These include, e.g., diphthongs, 

laterals, trills, fricatives (e.g., [�]), and plosives. The SVMs might 

be at a disadvantage here, since rate of spectral change is better 

determined with a context window. Our SVMs get only one 

frame presented at a time, unlike the MLPs which have a context 

window of -3 and +3 frames. Classifying static is thus a difficult 

task for SVMs. A deeper analysis of the SVMs showed that the 

support vectors had Lagrange multipliers that did not reach c, 

which means that they are able to completely separate the training 

data. However, the width of the RBFs is also small (indicated by 

the large value for γ ). This, coupled with the large number of 

support vectors, suggests that the clusters representing ‘static’ 

and ‘dynamic’ are irregularly distributed and highly localised, 

resulting in poor generalisation compared to the MLP system. 

This can be explained by the great diversity of the (groups of) 

phonemes assigned with the ‘dynamic’ label. 



5. CONCLUSION AND FUTURE WORK 
 

In our search for automatic AF classifiers that are able to create 

reliable and accurate AF transcriptions of the acoustic signal, we 

compared SVMs with MLPs. MLPs have been widely used for 

this task and have a reasonable level of performance, while SVM 

classifiers had up till now (to the best of our knowledge) not been 

used for the task of multi-value acoustic AF classification. 

Both the SVMs and the MLPs are trained discriminatively, 

but use different optimisation criteria; MLPs estimate posterior 

probabilities, whereas SVMs estimate the optimum decision 

boundary by structural risk minimisation. Despite this difference, 

both systems show similar classification behaviour as is shown by 

our analyses of the performances of the two systems. Neverthe-

less, the MLPs outperformed the SVMs on most AF classifica-

tions. However, we believe that there is room for improving the 

SVM (and MLP) classifiers: 

1. The MLP systems are trained on more training data than the 

SVM systems. Although SVMs are known for their ability 

to work with sparse data, Table 2 suggests that the SVM 

systems might benefit from more training data; the SVM ac-

curacies are still rising – although they are somewhat flat-

tening for higher number of training frames – indicating that 

a higher number of training frames will further improve the 

classification accuracies.  

2. The MLP systems used a +3 and –3 frames context window, 

while the SVM systems did not. Using a context window or 

more advanced sequence kernels [22] for the SVM systems 

should improve the performance.  

3. In our experiments, we used MFCC features as input for the 

two classification systems. In follow-up research, we will 

investigate whether acoustic features based on the human 

auditory system [4] will improve the performance of the 

SVMs and MLPs. 

4. Use a different set of articulatory or acoustic-phonetic fea-

tures to describe the acoustic signal. 
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