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Abstract 

In this paper, we illustrate the close parallels between the 
research fields of human speech recognition (HSR) and 
automatic speech recognition (ASR) using a computational 
model of human word recognition, SpeM, which was built 
using techniques from ASR. We show that ASR has proven to 
be useful for improving models of HSR by relieving them of 
some of their shortcomings. However, in order to build an 
integrated computational model of all aspects of HSR, a lot of 
issues remain to be resolved. In this process, ASR algorithms 
and techniques definitely can play an important role.  

1. Introduction 
Two research fields that investigate (parts of) the speech 
recognition process are automatic speech recognition (ASR) 
and human speech recognition (HSR). Although the two 
research areas are closely related their aims and research 
approaches are different. In ASR, the central issue is 
minimising the number of recognition errors. Much research 
effort in ASR has therefore been put into the development of 
systems that generate accurate lexical transcriptions of 
acoustic speech signals. In HSR research, the goal is to 
understand how listeners recognise spoken utterances. This is 
done by creating theories and building computational models 
of HSR, which can be used for the simulation and explanation 
of the human speech recognition process. In this paper, the 
focus is on symbolic theories and models of HSR. 

Although both ASR and HSR claim to investigate the 
whole recognition process from the acoustic signal to the 
recognised units, an ASR system necessarily is an end-to-end 
system – it must be able to recognise words from the acoustic 
signal – while most models of HSR describe only parts of the 
human speech recognition process. An integral model 
covering all stages of the human speech recognition process 
does not yet exist. One part of the recognition process that 
virtually all models of human speech recognition lack is the 
part that converts the acoustic signal into some kind of 
discrete symbolic representation. Consequently, most existing 
HSR models cannot recognise real speech. This makes it hard 
to evaluate the theoretical assumptions underlying models of 
HSR in real-life test conditions.  

Despite the gap that seperates the two fields, there is a 
growing interest in possible cross-fertilisation (e.g., [1]). 
Some strands in HSR research hope to deploy ASR 
approaches to integrate partial modules into an end-to-end 
model [2]. From the point of view of ASR, there is some hope 
to improve performance by incorporating essential knowledge 
about HSR into current ASR systems ([3], [4]).  

The aim of this paper is two-fold. The first aim is to 
reveal the close parallels between the fields of HSR and ASR 
with respect to the speech recognition process. The second 
aim of this paper is to illustrate in more detail how ASR can 
contribute to building a convincing end-to-end computational 

model of all aspects of the human speech recognition process.  
We will illustrate the close parallels by comparing the 

implementations of current computational models of HSR and 
SpeM. SpeM is a computational model of human word 
recognition built using techniques from the field of ASR that 
is able to recognise real speech [5]. We will further illustrate 
the existence of the close parallels by explaining important 
issues that need to be dealt with when building an integrated 
model of HSR, and we will describe how this is done in 
SpeM. In the second part of this paper, we will describe 
several of the issues that remain to be solved in order to build 
an integrated model of all aspects of the human speech 
recognition process, and how algorithms and techniques 
known from ASR may contribute to solve these issues. This 
endeavour will further narrow the gap that has existed for 
decades between the research fields of HSR and ASR.  

2. Revealing the close parallels 
2.1. The prelexical level  

Symbolic theories of HSR claim that human listeners first 
map the incoming acoustic signal onto prelexical 
representations, e.g., in the form of phonemes, after which the 
prelexical representations are mapped onto the lexical 
representations (e.g., [6], [7], [8]). According to symbolic 
theories, the speech recognition process thus consists of two 
levels: the prelexical level and the lexical level. A central 
requirement of symbolic computational models is thus an 
intermediate segmental representation of the speech signal. 
However, as explained before, most HSR models lack a 
module that converts the speech signal into a segmental 
representation; instead they use a handcrafted ‘error-free’ 
discrete representation of the input – in the sense that the 
input always perfectly aligns with the segmental 
representations of the words in the lexicon. Thus in effect, in 
most symbolic computational models, the process of creating 
the prelexical representations is only assumed, and not 
physically present. The output of the prelexical process is 
available in the form of the handcrafted segmental 
representation of the speech signal.  

This property could, however, be irrelevant if such an 
‘error-free’ representation of the speech signal could be 
generated automatically. The handcrafted input could then be 
replaced by the ‘real’ representation of the speech signal. But 
is it at all likely that such an ‘error-free’ discrete 
representation of the speech signal can be (automatically) 
created? There are reasons to believe that a unique segmental 
representation of the speech signal does not exist. One of 
these reasons is that no absolute truth exists as to what phones 
a person has produced; therefore, it is not possible to obtain a 
unique and ‘true’ symbolic transcription of a given speech 
signal [9]. Furthermore, studies in phonetics “suggested that 
the more detailed a transcription is, the less reliable it tends to 
be” [10]. This statement is backed-up by experiments 



described in, e.g., [11]. They report on a consensus 
transcription procedure. Two experienced transcribers created 
a narrow consensus transcription of continuous speech 
samples. Six weeks after the last tape had been transcribed 
they created a new narrow consensus transcriptions of 25 
utterances for each of eight randomly selected speech 
samples. Four weeks later, another eight speech samples were 
randomly selected and transcribed. Comparing the original 
consensus transcriptions and the retest transcriptions segment 
by segment yielded an agreement of 68%. However, the 
percentage agreement went up to 76% when the diacritics 
were removed from the transcriptions. Therefore, it seems 
that the ideal segmental representation of the speech signal 
cannot be generated, and thus that the ‘error-free’ discrete 
segmental representation of the speech signal required by 
most models of HSR cannot be created on the basis of real 
speech. On top of that, HSR experiments (see [12], for an 
overview) have shown that the representations at the 
prelexical level should be probabilistic rather than 
categorical.  

In short, when trying to build an integrated computational 
model of human speech recognition, the first two issues that 
need to be resolved are that the integrated model should 
contain a real module that simulates the prelexical level, and 
the output of the prelexical level should be probabilistic 
instead of categorical. 

As a first step towards an integrated model of human 
speech recognition, SpeM (SPEech-based Model of human 
speech recognition, [5]) was developed. SpeM is an end-to-
end model of human word recognition based on the theory 
underlying the Shortlist model [8], and was built using 
techniques from ASR. SpeM is not just a re-implementation 
of Shortlist; it represents an important advancement over 
existing models of HSR in that it is able to recognise real-life 
speech input at reasonably high levels of accuracy (see [5] for 
experimental results). 

 
 
 
 
 
 
 
 
 

Figure 1. Graphical representation of the SpeM model. 

Figure 1 shows a graphical representation of the SpeM 
model. SpeM consists of three modules that operate in 
sequence. The first module is an automatic phone recogniser 
(APR) which represents the prelexical level. The subsequent 
modules represent the lexical level. The input to the 
prelexical level is the acoustic signal. Using statistical 
acoustic models used in standard ASR systems, the acoustic 
signal is converted into a segmental representation of the 
speech signal (for more information on ASR systems and 
search, e.g., [13]). However, in contrast to the categorical 
linear representation of the speech signal used in most 
existing models of HSR, SpeM creates a probabilistic 
representation of the speech signal in the form of a 
probabilistic phone graph (Shortlist uses phonemes to 
represent the speech signal). The lexical search module 

searches for the word (sequence) that corresponds to the best 
path through the probabilistic phone lattice and a lexicon 
represented in the form of a lexical tree. The output is in the 
form of a list of the N-best paths through the phone lattice. 
The third module compares these alternative paths and 
computes a measure of the probability that, for a given input, 
individual words will be recognised. (The two modules 
associated with the lexical level will be discussed in more 
detail in the following section.) 

In conclusion, the existence of the probabilistic prelexical 
processing in SpeM in the form of an APR built with ASR 
techniques solves the two issues (the need for the categorical 
input representation and the absence of a physically-present 
prelexical level) described in this section. It shows how HSR 
can benefit from techniques known from the field of ASR. 

2.2. The lexical level 

According to symbolic theories of HSR, the prelexical 
representations are mapped onto lexical representations by 
some kind of lexical processing. During the human speech 
recognition process, each incoming phoneme (or, 
alternatively, a set of phonetic features) is matched against 
the segmental representations of all words in an internal 
lexicon. By this process, all words that are roughly consistent 
with the bottom-up input are activated. The amount of 
activation of each word hypothesis is based on its degree of 
fit with the input. Finally, the word hypotheses that overlap in 
time in the input inhibit each other. This process is referred to 
as (lexical) competition. The activation of a word at a certain 
point in time is based on its initial activation and the 
inhibition caused by other activated words.  

Data obtained in HSR experiments mostly involve 
measures of how quickly or accurately words can be 
identified. A central requirement of any model of human 
word recognition is, therefore, that it is able to provide a 
measure (usually referred to as ‘(word) activation’) associated 
with the strength of different lexical hypotheses over time. 
The word activation score, then, can be compared to the 
performance of listeners in experiments where they are 
required to make word-based decisions. The word with the 
highest activation is ultimately recognised. 

Probabilistic 
phone graph APR Search 

The search module of SpeM computes the bottom-up 
goodness-of-fit of different lexical hypotheses to the current 
input, while the evaluation module acts to compare those 
hypotheses with each other. During the search process, the 
best path (the optimal sequence of words) is derived using a 
time-synchronous Viterbi search through a search space. The 
search space is defined as the product of a lexicon 
(represented as a lexical tree) and the probabilistic phone 
graph. In a single forward pass, all nodes of the phone lattice 
are processed from left-to-right, and all hypotheses are 
considered in parallel. The words hypothesised by the search 
module are each assigned a score that corresponds to the 
degree of match of the word to the current input. Whenever 
the mismatch between the hypothesised word (and its history) 
and the input becomes too large, the hypothesis drops out of 
the beam, i.e., it is pruned away. As in ASR systems and 
similar to human speech recognition: only the most plausible 
paths are therefore considered. The output of the search 
module in SpeM is a ranked N-best list of alternative paths, 
each with an associated path score.  
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The evaluation module provides a procedure to derive a 
measure of word activation from the path scores calculated by 
SpeM. In SpeM, the word activation of a word W is closely 
related to the probability P(W|X) of observing a word W, 
given the signal X. This can be rewritten using Bayes’ Rule: 
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in which P(W) is the prior probability of W, and P(X) 
denotes the prior probability of observing the signal X (for 
details, see [14]). Bayes’ Rule and the probability P(W|X) 
play a central role in the mathematical framework on which 
statistical pattern matching techniques are built (i.e., most 
ASR implementations). The Bayesian decomposition of the 
probability P(W|X) is the foundation on which we based the 
calculation of word activation.  

The word activation as calculated by SpeM is not based 
on ‘active’ inhibition (like the inhibition between lexical 
representations in the Shortlist model). It models competition 
between words in a ‘static’ way. In [5], three simulations 
were run. The first simulation was based on research 
presented in [8] concerning the lexical embedding problem 
(the fact that any stretch of speech is likely to be consistent 
with several different lexical hypotheses) and the 
segmentation problem (how can continuous speech be 
segmented into words when there are no fully reliable cues to 
word boundaries?). The second and third simulations were 
concerned with lexical competition [15] and the Possible 
Word Constraint [16] (a parse that contains a (sequence of) 
phone(s) occurring between a target word and a boundary that 
is not phonotactically well formed, and thus not a possible 
word, is penalised), respectively. The results of these three 
simulations showed that SpeM was able to model correctly 
the outcomes of these three psycholinguistic studies. 

The question remains, however, as to whether the current 
way of modelling competition suffices or whether an active 
inhibition is indeed necessary. It may be that the results of 
previous and certainly of future psycholinguistic studies can 
only be accounted for by assuming active inhibition. If that 
happens, the word activation calculation procedure in SpeM 
must be adapted and the issue that arises then is how this 
active inhibition should be implemented. 

In conclusion, the successful implementation of a word 
activation score based on the path-based scores used in ASR 
search implementations, again shows the close ties between 
ASR and HSR. Additionally, almost all psychological models 
assume that human listeners can perform the search for words 
in parallel, but existing HSR models usually use a serial 
search. SpeM, however, is able to perform the search in 
parallel. 

3. Towards an integrated model of HSR 
The development of SpeM already showed the important 
contributions of ASR algorithms and techniques to the 
implementation of an end-to-end model of human word 
recognition. There are, however, more aspects to human 
speech recognition than those associated with word 
recognition. If one wants to build an integrated computational 
model of the human speech recognition process, all aspects of 
the human speech recognition process should be covered by 
one computational model. Since SpeM is able to recognise 
real speech (and is thus able to model a larger part of the 
human speech recognition process than most models of HSR), 

we take SpeM as the starting point of the next discussion 
about the development of an integrated model of all aspects 
of the human speech recognition process.  

So far, we have only discussed research concerning word 
recognition. A different strand of HSR research is concerned 
with phoneme recognition. Experiments, in which listeners 
are required to make explicit phonemic judgements, show that 
lexical knowledge is used to make those judgements. For 
instance, phonemes are easier to spot in a real word than in a 
non-word (e.g., [17]). Secondly, an ambiguous phoneme 
stimulus on a word/non-word continuum is more likely to be 
classified in agreement with the word than the non-word [18]. 
For SpeM to be able to model the processes involved in 
phoneme recognition, and the lexical effects on phonetic 
perception, it has to be extended, for instance by adding a 
phoneme decision layer similar to the one implemented in 
Merge [19]. In Merge, both lexical and prelexical information 
can be used to make a judgement about the identity of a 
phoneme. In [14], SpeM was extended with a decision layer 
that was used to recognise a word before its acoustic offset. 
This decision layer could be adapted to account for the effects 
that are described here. 

In [20], it is shown that the [raɪp] in ‘right berries’ where 
the /t/ is assimilated to a [p] is not identical to the [raɪp] in 
‘ripe berries’. Human listeners showed priming of the word 
‘right’ but not of ‘ripe’ when the [raɪp] derived from ‘right’ 
was presented. Apparently, the assimilation process preserves 
usable acoustic-phonetic evidence about the unassimilated 
form of the word. These subphonemic cues appear to 
influence lexical activation. In the current version of SpeM, 
the subphonemic differences are implicitly available as log 
likelihood scores associated with the phones on the arcs of the 
phone graph generated by the APR. A lower log likelihood 
score means that the phone on the arc is less of a prototype of 
that phone class, perhaps due to assimilation processes. If one 
wants to model the influence of subphonemic cues on lexical 
activation explicitly, one possible solution would be to 
change the output of the APR into a graph of phonetic 
features (e.g., [21]) instead of phones. 

As research by Goldinger [22] has shown, human 
listeners are able to remember details of specific tokens of 
words that they have heard. These memories for not only 
words but also speaker characteristics have shown to 
influence subsequent speech processing. One way for SpeM 
to be able to model the influence of these memories on the 
speech recognition process is to adapt the APR module such 
that it is able to use information about the speaker in building 
the phone graph and to pass speaker information to the lexical 
search module. A simple first step would be to train gender-
dependent phone models for the APR, which can be used in 
parallel during the search. Gender-dependent phone models 
will improve the phone graph output by the APR. 
Furthermore, the output of the prelexical level then would 
contain information about the gender of the speaker. If a word 
has been spoken by a male, the acoustic models trained on 
male speech match the input better, resulting in a higher word 
activation for the target word. Secondly, the lexical influence 
of the memory of a word could be implemented using a 
‘dynamic’ type of language model (LM), i.e., during speech 
recognition, for each previously recognised word the 
probability score in the LM could be increased. When the 
word is encountered for a subsequent time, it will receive a 



higher word activation because of the higher probability of 
the word. If this method proves to work, it could be extended 
to specific groups of persons or individuals. 

Humans are able to use contextual information in the 
speech recognition process. This contextual information is not 
just restricted to word frequency and/or the probability of co-
occurrence of the current and the previous word (e.g., [23]). 
Experiments [24] have shown that context information is used 
after lexical access. For an integrated model of HSR to be 
able to simulate these results, LMs should be included. SpeM 
is able to use unigram and bigram LMs, which model the 
probability of co-occurrence of the current and the previous 
word. SpeM should thus be able to model effects found due to 
word frequency and the co-occurrence of two words (this, 
however, has not been tested yet). But, to be able to model 
the effects due to context information further away in the 
sentence (or even a previous sentence), SpeM should be 
extended such that it is able to use higher-order LMs. One 
could think of a strategy in which the recognition of a word 
boosts the probability of another word, as is found for 
humans.  

The issues described in this section are not exhaustive, 
but they do illustrate the wide range of issues that remain to 
be solved in order to build an integrated model of all aspects 
of the human speech recognition process, and how algorithms 
and techniques from the field of ASR can contribute. 

4. Concluding remarks 
In this paper, several close parallels between the research 
fields of HSR and ASR were revealed. We showed that ASR 
has proven to be useful for improving models of HSR by 
relieving them of some of their shortcomings. We, therefore, 
believe that techniques and algorithms from the field of ASR 
can play an important role in order to build an integrated 
model of all aspects of the human speech recognition process. 
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