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Abstract 

This paper addresses the issue of large-vocabulary 
recognition in a specific word class. We propose a two-pass 
strategy in which only major cities are explicitly represented 
in the first stage lexicon. An unknown word model encoded as 
a phone loop is used to detect OOV city names (referred to as 
rare city names). After which SpeM, a tool that can extract 
words and word-initial cohorts from phone graphs on the 
basis of a large fallback lexicon, provides an N-best list of 
promising city names on the basis of the phone sequences 
generated in the first stage. This N-best list is then inserted 
into the second stage lexicon for a subsequent recognition 
pass. 

Experiments were conducted on a set of spontaneous 
telephone-quality utterances each containing one rare city 
name. We tested the size of the N-best list and three types of 
language models (LMs). The experiments showed that SpeM 
was able to include nearly 85% of the correct city names into 
an N-best list of 3000 city names when a unigram LM, which 
also boosted the unigram scores of a city name in a given 
state, was used. 

1. Introduction 
This paper addresses the issue of large-vocabulary 
recognition for a specific class of words, in the context of 
telephone-access spoken dialogue systems. The practical 
interest of this work is illustrated using two on-line systems 
which offer flight (Mercury, [1]) and weather (Jupiter, [2]) 
information worldwide. The weather source has recently been 
updated to handle over 38,000 city names (hereafter referred 
to as ‘rare’ city names). The flights system would also be able 
to handle any city that has an airport, if it only could 
recognize the city name. A big issue, then, is how to handle a 
large set of city names effectively and efficiently in the 
speech recognizer. A straightforward strategy is to expand the 
recognizer's lexicon. However, this will result in a large 
search space, with only a back-off prior probability associated 
with each of the rare city names. Very large lexicons in 
combination with a weak language model (LM) usually 
results in poor performance for automatic speech recognition 
(ASR) systems.  

In this paper, we propose a two-stage ASR system. To 
overcome the problem of a weak language model, we adopt a 
novel strategy that uses small lexicons in combination with a 
generic phone-based out-of-vocabulary (OOV) word model to 
represent a rare city name in the form of a phone graph. This 
approach licenses in a second stage only those city names that 
match the proposed phone graph sufficiently well.  

In the literature, a variety of solutions to handle OOV 
words have been proposed, e.g. [3],[4]. In [5], in accordance 
with [3], we built a two-stage recognizer that detects OOV 

intervals in the first stage, and that adapts the lexicon of the 
second stage recognizer by selecting a subset from a large 
fallback lexicon, which in our case consists of city names. To 
select the subset of city names from the fallback lexicon, we 
use SpeM [6]. The aim of the second stage is to recognize as 
many of the rare city names that were marked as OOV by the 
first stage recognizer as possible. Since an ASR system can 
only recognize those words that are included in its lexicon, it 
is clear that the performance of the second stage recognizer 
on recognizing the OOV words is crucially dependent on 
whether the correct word is included in the second stage 
recognizer’s lexicon. Optimizing the coverage of the second 
stage lexicon is the main focus of this work. 

Initial experiments with the proposed two-pass system 
were presented in [5]. SpeM was able to select nearly 60% of 
the correct rare city names (in 399 utterances) from a fallback 
lexicon containing 52,595 city names in an N-best hypothesis 
list of 3000 city names. In those experiments, no language 
model for SpeM was available: All words in the fallback 
lexicon had equal probability. It was suggested that it might 
be possible to improve the performance of SpeM and the two-
pass recognition system by using population statistics (in the 
form of unigram counts) as unigram scores for the city names. 
In this paper, we put this suggestion to the test. 

Figure 1. Overview of proposed the two-stage recognition 
system. 

2. Recognition system 
The proposed two-stage recognition system is schematically 
depicted in Figure 1. The acoustic signal is fed into the first 
stage recognizer, which uses a lexicon that captures ‘general’ 
words in addition to the 500 most frequent city names. An 
OOV model that is intended to mark all city names not in the 
lexicon as being OOV is integrated into the first stage. The 
hypothesized phone graphs underlying the stretches of speech 
signal marked as OOVs can be extracted. These OOV phone 
graphs are used by the SpeM module to select the most likely 
city names from the fallback lexicon for that specific 
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utterance. This subset of most likely city names is then added 
to the ‘utterance-dependent’ lexicon of the second stage. The 
second stage recognizer then does a new recognition on the 
basis of the same acoustic models as were used in the first 
stage. 

2.1. The automatic speech recognizer 
The two-stage recognizer used in this study is the segment-
based speech recognition system SUMMIT [7], which uses 
Finite State Transducers (FSTs) to represent its search space.  

The procedure used to mark the OOV words and generate 
the OOV phone graphs is described in detail in [4]: The 
generic word model is implemented as a phone loop that 
allows for phone sequences of arbitrary length. This OOV 
model is included in the lexicon. The transition into the 
generic word model is controlled via an OOV penalty. This 
OOV penalty can be considered as a unigram score: It 
controls how easily the OOV ‘word’ is selected.  

For each utterance in which an OOV was hypothesized in 
the word lattice, only one OOV phone graph was generated 
(due to the current implementation of the procedure to extract 
the OOV phone graphs – this procedure can be adapted). Note 
that it is possible that the phone graph does not match exactly 
with the stretch of speech that contains the rare city, because 
preceding and trailing garbage phones may be present, or the 
phone graph may be cut off too early. Also, phone 
recognition errors in the city name itself can cause problems. 
Furthermore, it is possible that the first stage recognizer 
recognizes the rare city name as an in-vocabulary word or 
maps an in-vocabulary word on the OOV.  

The recognizers in the first and second stage are identical, 
with the exception of the lexicon: The second stage 
recognizer also has a ‘dynamic’ lexicon [8] that is supplied 
with the list of rare city names extracted by SpeM from the 
fallback lexicon. 

In the LMs, frequent and rare city names are treated as 
different classes and separate LM scores are calculated for 
them. 

2.2. SpeM 
SpeM was originally implemented to serve as a tool for 
research in the field of human speech recognition (HSR). It is 
a new and extended implementation of the theory underlying 
the Shortlist model, a computational model of human word 
recognition [9]. The main advance of SpeM over pre-existing 
computational models of HSR is that SpeM uses the acoustic 
speech signal as input, while Shortlist and other 
computational models of HSR only take handcrafted 
symbolic representations as input.  

SpeM consists of two modules: An automatic phone 
recognizer (APR) and a word search module. The word 
search module parses the probabilistic phone graph created by 
the APR in order to find the most likely (sequence of) words, 
and computes for each word its activation based on the 
accumulated acoustic evidence for that word [6]. In the 
experiments described in this paper, the phone graphs are 
created by the first stage recognizer. In the remainder of this 
paper, whenever the word ‘SpeM’ is used, this actually only 
refers to the word search module of SpeM. 

In SpeM, the sequence of words with the smallest 
phonemic distance between the sequence of phones on the 
path through the OOV phone graph and the phonemic 
representations of the words in the fallback lexicon is 

determined using a time-synchronous and breadth-first DP 
algorithm. Each phone insertion, deletion, and substitution is 
penalized according to independent penalties which can be 
tuned separately [6]. Furthermore, a garbage phone model is 
included in the lexicon. This garbage phone model is mapped 
onto phones appearing at the start and end of the phone graph 
that belong to the preceding or following word. The output of 
SpeM consists of an N-best list of hypothesized parses. Each 
parse contains words, word-initial cohorts (words sharing 
phone prefixes), garbage, silence, and any combination of 
these, except that a word-initial cohort can only occur as the 
last element in the parse. Thus, in addition to recognizing full 
words, SpeM is able to recognize partial words.  

3. Material 
The experiments were conducted on a set of continuous 
speech utterances, recorded from telephone conversations 
with the Jupiter and the Mercury system. The independent 
test set consisted of 241 utterances taken from both domains, 
each utterance containing exactly one rare city name.  

The fallback city name lexicon used by SpeM contains 
16,916 city names, which were harvested from the World 
Wide Web [10]. Many of the cities were non-existent in our 
lexical base forms resource file, and pronunciations were 
therefore automatically generated for them using the letter-to-
sound system described in [8],[11]. The automatically 
generated pronunciations have been manually corrected, but 
errors may still remain.  

The data sets used in these experiments are subsets of the 
data sets used in [5]. To investigate the influence of 
population statistics on the performance of our two-pass 
system, we only used those (utterances containing) city names 
for which population statistics were available. 

The lexicon of the first stage consisted of the ‘general’ 
words from both domains, a list of the 500 most frequent city 
names, all US state names, and a set of 1,326 partial and short 
city names with a phonemic representation of three phones or 
less, such as ‘los’ and ‘new’ – this to simplify SpeM’s task, 
since short words are difficult to find in a phone lattice. This 
resulted in a lexicon of 2,802 words. 

Following [5], the lexicon of the second stage consisted 
of all words of a specific utterance in the 50-best list of that 
utterance created by the recognizer in the first stage, the 100 
words that were most often deleted by the recognizer in the 
first stage (see also [5]), and the subset of most likely city 
names selected from the fallback lexicon by SpeM. 

4. Experimental set-up 
4.1. Extracting the subset from the fallback lexicon 
In the first experiment, we tested two variables to improve the 
selection of the rare city names from the fallback lexicon:  
• The size of the utterance-dependent N-best lists generated 

by SpeM. 
• The effect of adding different types of LMs. 

The results of these experiments are presented in terms of 
coverage: The percentage of the test set utterances for which 
the target rare city name (which was presumably marked as 
OOV by the first stage recognizer) is present in the N-best list 
generated for that utterance by SpeM. 

4.1.1. The language models 
In our unigram LM for SpeM, all identical city names are 



mapped onto the same item and their unigram counts are 
summed. Because the first stage lexicon handles the frequent 
cities explicitly, we excluded their unigram counts from the 
calculations, but did not exclude the city names from the 
lexicon if they exist elsewhere. For example, ‘Boston’ exists 
in three states, and ‘Boston, MA’ is a ‘frequent’ city. 
Therefore, we compute the unigram score for ‘Boston’ by 
summing only ‘Boston, GA’ and ‘Boston, IN’. 

The reasoning behind the second type of LM is that if a 
city name is more likely on the basis of the context of the 
utterance, it should receive a higher probability. An obvious 
cue is the state name. It is highly likely that a city, which is 
uttered in the same utterance as a state name, lies in that state. 
To that end, we built utterance-dependent LMs for SpeM for 
those utterances in which a state name was present. If a state 
name is present in the N-best list generated by the first stage 
recognizer, all city names in that state receive a higher 
unigram score (identical to the one used in [5]). Of course, 
only those utterances in which a state name is present might 
benefit from this approach. This LM type is referred to as 
‘unigram+state’. 

The performance of SpeM while using the two types of 
LMs is compared to the results of our baseline set-up in 
which an LM with equal probability for all city names was 
used to guide the search of SpeM (‘zerogram LM’). 

4.2. The second stage  
In the second experiment, the N-best lists generated by SpeM 
were included in the dynamic lexicon of the second stage 
recognizer. We examined the effect of varying sizes of the N-
best list on the recognition performance of the full recognition 
system. An N-best list of 0 is used to serve as a baseline. 

Furthermore, we compared a system in which all words in 
the dynamic list have equal probability (‘Zerogram LM’) with 
a system in which the unigram scores (see previous section) 
are added to the words in the dynamic list (‘Unigram LM’). 
The results of this experiment are presented in terms of word 
accuracy and, since we are mainly interested in the 
recognition of the rare city names, the number of correctly 
recognized rare city names.  

Table 1. Coverage results for varying sizes of the N-best lists 
generated by SpeM for the 241 utterances of the test set. 

Zerogram LM Unigram LM Unigram+state N 
# % # % # % 

500 166 68.9 168 69.7 175 72.6 
1000 180 74.7 179 74.3 184 76.3 
1500 187 77.6 185 76.8 189 78.4 
2000 192 79.7 190 78.8 193 80.1 
2500 193 80.1 196 81.3 199 82.6 
3000 194 80.5 200 83.0 203 84.2 
 

5. Results 
5.1. Extracting the subset from the fallback lexicon 
The results of the first experiment are shown in Table 1. The 
column ‘Zerogram LM’ presents the results of the baseline 
set-up (all words have equal probability) in terms of absolute 
number of utterances for which the correct rare city name was 
present in the N-best list (‘#’) and as a percentage of the total 
number of 241 utterances of the test set (‘%’). Likewise, the 
results for the set-up using the unigram LM and the set-up 
using the LM that boosted the counts of city names in a given 

state are shown in the columns ‘Unigram LM’ and 
‘Unigram+state’, respectively. 

5.1.1. Baseline: Zerogram LM 
The coverage results of our baseline set-up show that already 
over 68% of the rare city names that were missing from the 
lexicon of the first stage recognizer are present in the lexicon 
of the second stage. This is an encouraging result, bearing in 
mind that all 16,916 words in the fallback lexicon have equal 
probability, and that the generated OOV graphs are far from 
perfect. Comparing the coverage for the N-best sizes 500 and 
3000 clearly shows that increasing the length of the N-best 
list 6-fold does not increase the coverage proportionally. But 
still 28 more correct rare city names were present when the N-
best list size was 3000. Note that the coverage in [5] for the 
3000-best list was only 59.9%. The task SpeM faces in this 
experiment is easier than the task in [5], due to the smaller 
fallback lexicon. 

5.1.2. Unigram LM 
Using an LM that incorporates the unigram probabilities for 
the city names, on average improves the coverage, but the 
improvements are only small and do not occur for all sizes of 
the N-best list. The biggest improvement is obtained for the 
3000-best list, while the performance slightly deteriorates for 
sizes 1000 through 2000. Analysis of the unigram counts 
shows that the mean unigram count of the city names in the 
test set is 14,836, while the mean unigram count of the city 
names in the fallback lexicon is 8,221. The deterioration in 
performance for sizes of N between 1000 and 2000 is thus not 
likely due to a low mean word count. Those words that were 
included in the N-best list when using the zerogram LM and 
that were no longer included when using the unigram LM 
most probably have a high number of confusable words in the 
fallback lexicon which, on top of that, probably have a larger 
population than the ‘correct’ city.  

Table 2. Analysis of the utterances with/without a state name 
and for each how often the correct city name is (not) 
included in the 500-best list generated by SpeM. 

#utts 
State name present in utterance: 202 
 State name present in output 1st stage recognizer: 171 

    - City name present in 500-best list 116 
    - City name not present in 500-best list  55 
 State name not present in output 1st stage recognizer: 31 
    - City name present in 500-best list 18 
    - City name not present in 500-best list 13 
State name not present in utterance: 39 
    - City name present in 500-best list 32 
    - City name not present in 500-best list 7 
 
5.1.3. Unigram+state LM 
Next, we built utterance-dependent LMs for SpeM for those 
utterances in which a state name was present. To determine 
the maximum gain that can be obtained with this approach, 
we tabulated how many of the 241 utterances contained a 
state name, and how often the correct city name was included 
in the 500-best list generated by SpeM. Table 2 shows the 
details of this analysis: In 202 of the 241 utterances, a state 
name was present. The 39 utterances in which no state name 
was present will not benefit from adding utterance-dependent 
LMs. Looking closer at this set of utterances, however, 



revealed that for 32 utterances of these 39 utterances, the city 
name was already present in the 500-best list.  

For 171 of the 202 utterances for which a state name was 
present in the utterances, the first pass recognizer found a 
state name. Of these 171 utterances, the 55 utterances for 
which the city name was not present in the 500-best list might 
benefit from adding the ‘unigram+state’ LM. This is the 
maximum gain possible. 

The column denoted ‘Unigram+state’ in Table 1 shows 
the coverage results when using the utterance-dependent 
unigram+state LMs: There is an increase in coverage. Nine 
more correct rare city names (compared to the baseline set-
up) are selected in the 500-best and the 3000-best lists, 
resulting in a coverage of 72.6% and 84.2%, respectively.  

5.2. The second stage 
The N-best lists generated by SpeM when using the 
unigram+state LMs to guide the search were included in the 
dynamic lexicon of the second stage recognizer. 
Subsequently, a new recognition was carried out. Table 3 
shows the performance of the two-stage recognizer in terms 
of accuracy (‘Acc. (%)’) and number of rare city names that 
are correctly recognized (‘#cities’).  

Table 3. Results of the two-stage recognizer for varying 
sizes of the N-best list generated by SpeM. 

N 0 500 1000 1500 2000 2500 3000 
Acc.(%) 65.5 75.6 75.9 76.0 76.2 76.2 76.4 
#cities 0 87 87 87 88 88 88 

 
What is immediately clear from Table 3 is that adding 

city names to the dynamic list increases the accuracy of the 
system by 10.1%, and 87 more city names are correctly 
recognized, while further adding city names does not increase 
the performance of the two-stage recognizer much. Analyzing 
the correctly recognized city names for the varying sizes of N 
revealed that 84 of the utterances correctly recognized for 
N=500, 1000, and 1500 are the same. For two utterances, the 
city name was correctly recognized when N=500, and not for 
N=1000 and 1500, and vice versa. For N>1500, one 
additional utterance was correctly recognized. Thus, although 
more of the correct city names are included in the N-best lists 
generated by SpeM; this does not result in an increase in 
performance. This matter is subject for further research. 

In [5], it was also suggested that adding unigram scores to 
the city names in the dynamic list of the second stage 
recognizer might improve the performance of the second 
stage recognizer. To that end, we added the unigram scores to 
the city names in the dynamic list in the final experiment, and 
subsequently a new recognition was carried out. We used the 
3000-best list; since it gave the best results (see Tables 1 and 
3). The accuracy of the two-stage recognition system when 
using unigram scores in the second-stage recognizer was 
75.9%, a decrease in accuracy of 0.5% absolute, but the 
number of correctly recognized city names increased with 2 
to 90 (of the 203 city names found by SpeM (44.3%)). 

6. Discussion and conclusions 
In this work, we presented a two-stage recognition system for 
handling OOVs in a large vocabulary speech recognition task. 
We showed that SpeM, when using the 3000-best list, is able 
to retrieve over 84% of the rare city names that were missing 
from the first stage lexicon. Once the rare city names selected 

by SpeM were added to the lexicon of the second stage an 
increase in accuracy was obtained of 10.9% compared to the 
baseline in which no rare city names were added to the 
dynamic lexicon of the second stage. 

The experiments presented in this paper showed that if no 
unigram counts are available, the two-stage recognition 
system still works reasonably well even though all words in 
the lexicon have equal probability. Adding state information 
when selecting the city names from the fallback lexicon, 
however, does improve the performance of the recognition 
system.  

The eventual recognition results showed that just over 
40% of the rare city names that were found by SpeM were 
correctly recognized. Analysis of the results showed that the 
city name that was not recognized correctly was often 
substituted by a city name with which it is highly confusable, 
e.g., ‘Merryville’ was substituted by Merrillville’. These 
errors can be tackled by improving the phone graph 
underlying the OOV intervals, and by improving the second 
stage recognizer. 
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