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Abstract 
This paper investigates the interaction between acoustic 
scores and symbolic mismatch penalties in multi-pass speech 
decoding techniques that are based on the creation of a 
segment graph followed by a lexical search. The interaction 
between acoustic and symbolic mismatches determines to a 
large extent the structure of the search space of these multi-
pass approaches. The background of this study is a recently 
developed computational model of human word recognition, 
called SpeM. SpeM is able to simulate human word 
recognition data and is built as a multi-pass speech decoder. 
Here, we focus on unravelling the structure of the search 
space that is used in SpeM and similar decoding strategies. 
Finally, we elaborate on the close relation between distances 
in this search space, and distance measures in search spaces 
that are based on a combination of acoustic and phonetic 
features. 

1. Introduction 
Both the research areas of automatic speech recognition 
(ASR) and human speech recognition (HSR) investigate the 
recognition process from the acoustic signal to a sequence of 
recognised units. For ASR, the target is to automatically 
transcribe the speech signal in terms of a sequence of items 
as close as possible to a reference transcription (e.g., [1], 
[2]). In HSR, the focus is on understanding how human 
listeners recognise spoken utterances. Based on HSR 
experiments, theories about specific parts of the HSR system 
are refined. To put the theories to further test, they are 
implemented in the form of computational models for the 
simulation and explanation of HSR (e.g., Shortlist, [3], 
Trace, [4]). 

Recently, a computational model of human word 
recognition has been developed that makes use of techniques 
developed in the area of ASR [5]. The model, called SpeM, 
provides a successful and concrete demonstration of the 
computational parallels between HSR and ASR, by making 
the links between HSR and ASR as explicit as possible. 
SpeM decodes speech based on the theory underlying 
Shortlist; its implementation, however, is entirely different 
(see section 2). 

SpeM works as a multi-pass decoder. A phone graph that 
is produced in the first pass is input for a lexical search in 
the second pass. The ability of SpeM to simulate data from 
human word recognition experiments is ultimately based on 
the structure of its search space. In multi-pass speech 
decoding, this search space is determined by the interaction 
between acoustic scores of segments on the one hand, and 
penalties for symbolic mismatches (phone insertions, 
deletions and substitutions) on the other. In order to better 
understand the mechanisms underlying SpeM-like decoding, 

and its potential usefulness for ASR we will investigate the 
interaction between acoustic and symbolic mismatches in 
more detail. Finally, we will show that the decoding can be 
linked to approaches in ASR that use phonetic features in 
combination with acoustic features. In order to introduce 
these issues, we first give a brief overview of the SpeM 
model. 

2. SpeM 
The SpeM model is implemented as a multi-pass decoder 
(see Figure 1). 

 
 
 
 
 
 
 
 
 

Figure 1. An overview of the implementation of the SpeM 
model (figure adapted from [5]). 

In the first pass, an automatic phone recogniser (APR) 
processes the input speech signal and generates a (weighted) 
phone lattice. This lattice provides a probabilistic phone 
representation of the speech signal, and is input for the 
second pass which deals with the lexical search. Because the 
phone lattice is ultimately interpreted via the search 
algorithm, we will first pay attention to the search algorithm 
itself, before we discuss the search space (which is spanned 
by the phone lattice and the lexicon) in more detail in the 
next section. 

The SpeM search module performs a search for 
sequences of lexical items such that the phonemic 
representation of these sequences (as determined by a 
vocabulary) is optimally matching the phone sequences in the 
lattice. The search is a node-synchronous Viterbi-like 
forward pass through a graph that is the product of the phone 
graph and the lexical graph (tree). This product graph is the 
actual search space. Each arc π in the product graph 
corresponds to an arc α(π) in the phone graph and an arc 
β(π) in the lexical graph, and has a weight equal to the sum 
of the weights of α(π) and β(π). The weight of α(π) is the 
acoustic score calculated by the APR; the weight of β(π) 
consists of the unigram and bigram language model (LM) 
scores. Unlikely hypotheses are pruned away. 

A ‘garbage’ phone model is included in the lexicon, 
which can be mapped onto phones that do not belong to a 
lexical item. The search is able to deal with symbolic 
mismatches between phone sequences in the phone graph 
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and the lexicon, by allowing (symbolic) insertions, deletions, 
and substitutions. Each type of mismatch has its own penalty, 
which can be tuned independently. Thanks to this flexibility, 
each parse may therefore consist of lexical items, word-
initial cohorts (words sharing phone prefixes), non-lexical 
items, silence, and any combination of these (except that a 
word-initial cohort can only occur as the last element in the 
parse). The output of the search is an N-best list of 
hypothesised parses, with the (acoustic and LM) costs.  

The last module of SpeM performs the evaluation. In this 
module, the N-best list of parses is processed to generate, for 
each hypothesised word, a ‘word activation’ measure that 
varies over time. Since the word activation measure and its 
potential for use in ASR have been described elsewhere ([5], 
[7]), the evaluation module will not be further discussed 
here.  

3. The search space 
As indicated above, the APR creates a weighted phone graph 
as a phonetic probabilistic representation of the acoustic 
signal. From the perspective of the search following the 
APR, an important issue is to what extent the phone graph 
must capture the phonetic detail in the signal in order to 
maximise the likelihood of containing phone sequences that 
are easy to map to lexical solutions. The basic assumption is 
that the APR is able to produce a phone lattice that is an 
accurate phonetic representation of the speech signal, 
including locally phonetically plausible variations, without 
being guided or constrained by lexical information. 

The search space in a multi-pass decoder as described 
here is the product graph of the phone graph and the lexical 
graph. While looking for optimal paths through this search 
space, the precise decisions of the search algorithm depend 
on the interaction between acoustic scores (from the phone 
lattice) and symbolic mismatch scores (handled by the search 
mechanism). Therefore, in order to understand the 
mechanisms underlying the search in multi-pass decoders, 
we need to investigate the interaction between these scores 
and to relate this interaction to the eventual goal of the 
search for lexical solutions in the phone graph. 

Several factors determine the structure of the phone 
graph, and thereby the chance that a phone sequence related 
to a sequence of lexical items can be found along a path 
through this graph. Apart from evident factors such as the 
quality of the acoustic models and (implementation) details 
concerning splitting and recombination of arcs during the 
phone search, three factors have a decisive impact on the 
structure and contents of the resulting phone lattice: a) the 
phone insertion penalty; b) the beam width during the phone 
search by the APR; c) the use (and weighting) of a phone N-
gram during the phone search. The details of the search in 
the second pass depend on the global characteristics of the 
graph. For example, one would expect a close –but 
potentially complex – relation between the phone insertion 
penalty in the APR and the insertion and deletion penalties 
in the search.  

The interaction between acoustic scores and symbolic 
mismatches is fully determined by their balance during the 
search. For the search module to be able to find a lexical 
sequence with associated phone sequence Pc, there must be a 

phone sequence on a path Q through the phone lattice with 
the following property: 
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This expression is the mathematical formulation of the 

forward pass in the search. The term score(Q) is a shorthand 
for –log(P(X|Q)). The signal X is given, P is the hypothesised 
lexical path, and Q is a path variable, running over the set of 
all paths available in the phone lattice. The term score(Q) 
denotes the total path score of Q as defined by the phone 
lattice, while d(P, Q) denotes the sum of all penalties for 
symbolic mismatches between the phone sequences P and Q. 
The final term LM(P) denotes the language model score of 
the word sequence associated with P.  Evidently, the 
minimising path Q depends on the hypothesised P. 

Eq. 1 implies that the penalties for symbolic insertions, 
deletions, and substitutions are not free model parameters, 
but instead must be closely related to the distribution of 
acoustic path scores in the lattice. For example, let P denote 
a specific (arbitrary) hypothesis, and assume that for some 
path Q the term d(P, Q) is made up by I insertions, D 
deletions, and S substitutions. In that case, the application of 
Eq. 1 has the very same effect as the evaluation of the score 
of the canonical path P in a new lattice L’ that is obtained 
from the original lattice L by expanding all possible paths in 
L by allowing exactly I insertions, D deletions, and S 
substitutions with their corresponding costs. This new lattice 
L’ (which does not physically exist, but is virtually 
constructed and explored during the search) depends on I, D, 
and S and, by construction, contains the sequence P. 
Repeating the same argument for any hypothesis P, it follows 
that the eventual search space where all canonical sequences 
can be found is effectively the union of virtual lattices L’(I, 
D, S) such that I, D, S >= 0. As a consequence, the entire 
distribution of the path scores in this union lattice is the 
union of the original score distribution H and shifted copies 
of this distribution: {H, H+cost(I), H + 2*cost(I),…, 
H+cost(I) + cost(D), …, H + cost(D), …, H + cost(S), …}. 
And the only thing that really counts in the search is how 
‘far’ in this union lattice any canonical phone sequences are 
alive. Since the structure of the union lattice is fully 
determined by L and by the symbolic mismatch costs, this 
means that the penalties for substitution, insertions, and 
deletions must be considered in relation to the structure of L, 
in particular to the distribution of the acoustic scores of paths 
in L that are canonical or almost canonical (i.e., with a small 
number of mismatches). 

It is therefore of importance to know more about the 
score distribution of the phone lattice itself. To that end, we 
have examined a set of phone lattices from 669 utterances 
with read speech, selected from the Spoken Dutch Corpus 
(CGN, [8]). The phone lattices have been created using the 
HTK recogniser with acoustic monophone 3-state left-to-
right HMMs with 8 gaussians/state, and a phone zerogram. 
The values for the phone insertion penalty and the beam 
width have been chosen such that the resulting phone lattices 
are phonetically plausible. First, the phone insertion penalty 
was adjusted such that the resulting average number of 
phones in the best path was equal to the number of phones in 



the canonical phone transcription defined by the orthographic 
transcription and the vocabulary (the resulting average 
number of phones per second is about 13). Second, the beam 
width has been adjusted such that the time-averaged number 
of arcs with different phone labels is close to 3, i.e. a 
plausible number of realistic phonetic alternatives. 

Given these choices, it appears that the number of arcs 
crossing a certain moment is on average 12 (minimum 2, 
maximum 48). The high number of local options implies that 
the number of paths through the lattice might be huge. 
Indeed, the relation between the number N of paths in the 
lattice and the duration L of the utterance can be 
approximated by 

 
 10log(N) = C * L              (2) 
 
with C equal to about 5.5. The equation implies that an 

utterance of 2 seconds may have a phone graph with as many 
as 100 billion paths. The constant C depends on the beam 
width and on the phone insertion penalty: the larger the beam 
and the lower the insertion penalty, the larger C will be. This 
implies that for utterance of a few seconds, even reasonably 
long N-best lists of phone sequences (of, say, length 50,000) 
capture only a negligible fraction of the information in the 
graph. An N-best list is interesting because it captures local 
information about probabilistic segmentation (e.g., [9]), but 
it has hardly any relevance for capturing the canonical 
sequence (actually, the probability that the complete graph 
contains the canonical correct phone sequence decreases 
rapidly with the length of the utterance, and is for our data 
set smaller than 1 percent for utterances longer then 1.5 sec). 

Much more relevant for the structure of the search space 
in SpeM-like decoding is the minimum number of 
substitutions, insertions, and deletions required to construct 
the canonical sequence from a path through the phone graph, 
because this gives the ‘distance’ between the graph and the 
canonical phone sequence. Table I shows this number (the 
minimum Levenshtein distance) as a function of the 
utterance duration for the 669 utterances. The first column 
refers to the duration category, the second column presents 
the total number of utterances per category, while the third 
column contains the Levenshtein distance between the given 
canonical sequence and its best-matching path through the 
lattice, averaged over all utterances in the category. (This 
best-matching path minimises the Levenshtein distance with 
the canonical phone sequence – it is not necessarily the path 
with the highest acoustic score.) The fourth column presents 
the average location of this best-matching path in the phone 
graph, expressed in percentiles of the entire score 
distribution of acoustic scores of the paths in the phone 
graph. ‘0’ means the cheapest path, ‘10’ means at the 10th 
percentile, etc. 

According to table I (last column) the phone graph could 
be made much smaller, the top 10-15 percent would have 
been sufficient for this data set. By comparing the 
Levenshtein distance and the duration, we conclude that the 
canonical path is about two repairs per second away from its 
best-matching solution in the graph. Given that the canonical 
path contains 13 phones/sec, on average 2 out of 13 phones 
must be ‘repaired’.  

Table I. The minimum Levenshtein distance and the location 
of the path that minimised the Levenshtein distance as a 
function of the utterance duration. 

Duration 
cat. (sec) 

#utt Average 
Levenshtein 

distance 

 Location of 
found path 
(percentile) 

0.50-0.75 6 1.2-1.4 <5  
0.75-1.0 19 2.2 <7 
1.0-1.5 54 2.5 <6 
1.5-2.0 73 3.3 <4 
2.0-3.0 150 3.6-4.2 <6 
> 3.0 367 > 4.1 - 

 
Figure 1 shows in another way how the information in N-

best lists is only of marginal value for finding complete 
sequences. It shows the number of different phone sequences 
among the 5,000-best as a function of the duration of the 669 
utterances. Silence arcs have been discarded. As expected, 
for longer utterances, all phone hypotheses in the 5,000-best 
list tend to be unique. The ‘hockey stick effect’ for low 
durations is due to the fact that short utterances relatively 
contain more silence than longer utterances which evidently 
reduces the number of different phone paths.  
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Figure 1. This figure shows, for 669 utterances, the number 
of different phone paths in the 5,000-best list as a function of 
the duration of the utterance. 

3.1. Adding Phonetic Features 

The final observation that we want to make is about an 
interpretation of Eq. 1 that enables us to establish a close 
link with phone decoding strategies that are based on 
acoustic feature representations augmented with phonetic 
features. Minimising the right-hand side of Eq. 1 can be 
thought of as looking for a path Q = {q1, q2…} in such a 
way that it optimally matches X (by minimising –
log(P(X|q))) and at the same time minimises d(P,Q). The 
resulting alignments between the speech frames {x1, x2, …}, 
the phones in Q {q1, q2, …}, and in the canonical phone 
sequence P {p1, p2, …} are schematically shown in Figure 2 
(top). However, d(P, Q) is a sum of local symbolic distances 
between {p} and {q}, a sum which can be represented by the 
sum of distances between symbolic phonetic feature vectors. 
Furthermore, the alignment between X and Q implicitly 
assigns to each frame in X a phonetic representation 



inherited from the phones {q}. So we can rewrite the sum of 
score(Q) and d(P, Q) in Eq. 1 as one single distance between 
two augmented sequences: one sequence augX of feature 
vectors {x} augmented (via the alignment) with phonetic 
features from {q}, and a sequence augP of {p} augmented 
with their own phonetic features (Fig. 2, bottom displays the 
new situation).  

 

Figure 2. Top: Association between speech frames {x}, 
phone sequence {q} and {p} by alignment via Eq.1. Bottom: 
The same association, with one single distance between 
augmented representations.  

This implies that the search for lexical parses in the 
phone lattice can be interpreted as a search for a match 
between an augmented representation of the frames in X and 
an augmented representation of the segments in P. The 
correspondence is not always exact, since in Eq. 1, the 
minimising Q is dependent on P, while here it is assumed 
that each frame in the speech signal can be assigned a static 
phonetic feature representation. But we know from other 
research (e.g., [10], [11]) that such a feature assignment can 
be done with reasonable plausibility. Furthermore, although 
the number of different paths in the phone lattice may be 
large, the local variations are mostly within one phonetic 
class. This means that speech recognition approaches based 
on combinations of acoustic and phonetic information in the 
search can be linked in a natural way with a SpeM-like 
speech decoding. It also shows how the symbolic penalties 
and acoustic scores can be brought into one framework. 

4. Conclusions  
The search problem in SpeM that combines bottom-up 
acoustic scores with penalties for symbolic mismatches has 
been studied by considering the interaction between the 
distribution of acoustic scores and operations on symbols in 
the phone lattice.. The search space can be regarded as the 
union of the original phone lattice and virtual lattices that are 
related to symbolic insertions, deletions, and substitutions. 
The penalties for symbolic mismatches are closely related to 
the distribution of the acoustic scores of (near-)canonical 
paths in the lattice. Phone lattices built with a phone loop 
with zerogram phone-LM and plausible values for beam 
width and phone insertion penalty show that the probability 
of observing the ‘correct’ phone sequences (i.e., the sequence 
that is identical to the canonical phone sequence according to 
the lexicon) decreases rapidly with the length of the 

utterance. In order to be able to find the correct lexical 
solution, the flexibility to deal with the symbolic mismatches 
is absolutely essential. Given the canonical correct phone 
path, the path through the lattice that minimised the 
Levenshtein distance has always been found in the top 7 
percent of all paths, and the required minimum number of 
repairs (substitutions or insertions or deletions) was found to 
be about 2 per second. A SpeM-like search with an 
acceptable proportion of search errors appears to be feasible 
in ASR applications. 

Finally, we have indicated the close resemblance 
between the lexical search in SpeM on the one hand, and the 
approaches in ASR using phonetic features on the other. This 
relation opens possibilities to integrate the acoustic/phonetic 
approaches in ASR and the computational modelling of 
human speech recognition in a more unified paradigm. 
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