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ABSTRACT 

Due to pronunciation variation, many insertions and deletions 
of phones occur in spontaneous speech. The psycholinguistic 
model of human speech recognition Shortlist is not well able to 
deal with phone insertions and deletions and is therefore not 
well suited for dealing with real-life input. The research 
presented in this paper explains how Shortlist can benefit from 
pronunciation variation modelling in dealing with real-life 
input.  

Pronunciation variation was modelled by including variants 
into the lexicon of Shortlist. A series of experiments was 
carried out to find the optimal acoustic model set for 
transcribing the training material that was used as basis for the 
generation of the variants. 

The Shortlist experiments clearly showed that Shortlist 
benefits from pronunciation variation modelling. However, the 
performance of Shortlist stays far behind the performance of 
other, more conventional speech recognisers. 

1. INTRODUCTION 

In spontaneous speech, many insertions, deletions, and 
substitutions of phones occur (cf. [1]). It is common knowledge 
that the performance of an automatic speech recogniser (ASR) 
degrades if this pronunciation variation is not properly 
accounted for. But not only automatic speech recognisers have 
to deal with pronunciation variation. In this paper, we wil l 
explain how we expect the psycholinguistic model of human 
speech recognition Shortlist [2] to benefit from pronunciation 
variation modelling in order to deal with real-life input. 

Shortlist is a model of human speech recognition that is 
able to account for a wide range of results from 
psycholinguistic experiments related to word recognition. In its 
present implementation, the recognition process in Shortlist is a 
two-stage process. In the first stage, an exhaustive lexical 
search yields a shortlist of (typically) maximally 30 word 
candidates that are roughly consistent with the phonemic input. 
This search is repeated from scratch for each phoneme in the 
input when an utterance is processed in a strict left-to-right 
manner. The activation of the words in the shortlist is 
determined by their degree of fit with the phonemic input. If a 
phoneme in a word matches the input, the word activation is 
increased; for each mismatching phoneme the word activation 
is reduced. In the second stage, the activated words in the 
shortlists compete with each other by means of their initial 
activation and the inhibition of other words in the list. During 
the processing of the phonemic input, the activation as a 

function of time of each word in the shortlist can be observed. 
These activation functions are used for the simulation and 
explanation of human speech recognition. In this research 
however, we do not deal with the simulation process of 
Shortlist; we use Shortlist solely as a speech recogniser. To this 
end, we only use the output of Shortlist after all phonemes are 
processed. We take the word with the highest activation as the 
recognised word. Note that if a word is not included in the 
shortlist generated in the first stage, it can never be recognised 
as a result of the competition process.  

Despite its explanatory power, the current version of 
Shortlist suffers from two unrealistic simplifications. The first 
is that the input should consist of a single string of phoneme 
symbols instead of an acoustic signal. Not only Shortlist suffers 
from this simplification, virtually all psycholinguistic models 
start from a discrete segmental representation instead of the 
acoustic signal; and therefore, cover only parts of the human 
speech recognition process. To enable Shortlist to deal with an 
acoustic signal as input and thus cover a larger part of the 
human speech recognition process, we developed an automatic 
phone recogniser (APR) that converts the acoustic signal into a 
discrete segmental representation. This APR is used as an 
acoustic front-end for Shortlist. The second simplification in 
Shortlist is that the current implementation makes it diff icult to 
deal with insertions and deletions. So, in the present 
implementation there is a large premium for inputs with a 
number of phones identical to the number of phones in the 
lexical representation of that word in the internal lexicon of 
Shortlist. Consequently, the current version of Shortlist has 
difficulty in dealing with input consisting of ‘ accurate’ 
phonetic transcriptions of the acoustic signal, even if these are 
made by expert phoneticians, because transcriptions that 
closely represent acoustic signals of ‘normal’ speech tend to 
contain insertion, deletion, and substitution ‘errors’ compared 
to the canonical phonemic representations of the words in the 
internal lexicon of Shortlist.  

The discrepancy between accurate phonetic transcriptions 
on the one hand, and the preference for unique canonical 
representations of words in linguistic theory on the other, forms 
a fundamental problem that ASR as well as (Psycho-) 
linguistics need to deal with. ‘Normal’  listening is listening for 
content/meaning, and for this aim a phonetic representation that 
is closer to canonical lexical representations than to the 
idiosyncratic acoustic signal might be preferred. At the same 
time it is clear that every realistic lexicon should be able to 
account for some degree of pronunciation variation. The final 
goal of the research reported in this paper is to improve our 



understanding of the optimal trade-off between phonetic 
accuracy and the requirements of symbolic processing. 

Shortlist’s problem concerning insertions and deletions can 
be approached from two directions. One may try to find the 
optimal balance between generating an input phoneme string 
that is close to the signal and generating an input phoneme 
string that contains the least possible number of insertions and 
deletions. Alternatively, Shortlist could be adapted so that it is 
capable of dealing with accurate phonetic transcriptions. In this 
paper, we investigate the second approach by modell ing 
pronunciation variation in the lexicon of Shortlist. This paper 
describes the generation of the pronunciation variants and the 
effect of adding pronunciation variants to the lexicon of 
Shortlist on the performance of Shortlist as a recogniser.  

The research presented in [3] has shown that to obtain the 
best automatic phonetic transcriptions, the APR used to create 
the transcriptions should be optimised on this specific task. In 
our study, this optimisation takes place in two steps. First, 
before the pronunciation variants can be generated, a proper set 
of acoustic models for the automatic phonetic transcription of 
the training material should be found. Section 3 describes the 
three methods we investigate to find the best possible acoustic 
models for the APR on the task. The transcriptions generated 
by the best performing model set are then used to generate the 
pronunciation variants in a procedure that is described in 
Section 4. The pronunciation variants are then used to improve 
the transcriptions of the training and test material (cf. Section 
5). With these improved transcriptions the final acoustic 
models are trained that are used to generate the final phonetic 
transcription of the test corpus. By optimising the transcriptions 
of the training material, we try to derive cleaner acoustic 
models that describe the acoustic signal more closely. This is 
the second step in the optimisation of the acoustic models. The 
pronunciation variants derived in the first step are also used to 
extend the lexicon of Shortlist, to make it more suitable for the 
processing of ‘r eal speech’ . The results of the experiments with 
the Shortlist lexicon containing pronunciation variants are 
presented in Section 6. 

In Section 2, the corpora, lexicons, and language models 
that are used throughout all experiments will be described. 
Finally, Section 7 will present our conclusions. 

2. MATERIAL 

2.1. Corpora 

For training and testing the APR, data from the Dutch 
Directory Assistance Corpus (DDAC) were used [4]. The 
material to train the acoustic models of the APR comprises 
24,559 utterances. The total duration of the speech frames is 4 
hours and 40 minutes. Each utterance consists of one Dutch 
city name or ‘ ik weet het niet’ (‘I don’ t know’ ) pronounced in 
isolation, although audible hesitations like ‘eh’ were allowed. 
All utterances were recorded through the telephone. The reason 
for this strict selection is that we wanted to obtain the cleanest 
possible phone models with a training corpus for which 
initially only canonical transcriptions of the words were 
available. Including longer utterances in the training corpus 
would probably yield more contaminated models, since longer 
utterances contain more variation, resulting in a larger 
mismatch between the acoustic signal and the phonetic 
transcription.  

A second set of utterances used for training the APR 
consists of 42,101 short utterances of the Dutch Polyphone 
database (SHUTT) [5]. The total duration of the speech is 9 
hours and 32 minutes. The Polyphone short utterances consist 
of no more than three words per utterance and contain various 
types of items, e.g. digits, ZIP codes, times, application words 
and city names recorded through the telephone. The speaking 
styles are read and extemporaneous speech.  

The independent test set consists of 10,643 utterances from 
the DDAC corpus with a total number of 11,890 words. These 
utterances may also contain disfluencies and connected speech 
responses like ‘haarlem noordholland’ (i.e., a city name plus 
the name of a province). 

2.2. Lexicons and language models 

The DDAC training lexicon consists of 2,392 entries: 2,381 
city names and alternative expressions for some city names, as 
well as 8 entries for (alternative expressions of) ‘ ik weet het 
niet’ (‘ I don’ t know’ ). Also entries for hesitation sounds (‘eh’ 
and ‘ehm’ ) and noise were present. For each entry in the 
lexicon a unique canonical phonemic representation was 
available.  

The SHUTT training lexicon consists of 10,242 distinct 
words including 22 spelled letters. Also an entry for noise was 
present. For each entry in the lexicon a unique canonical 
phonemic representation was available. 

The standard lexicon of Shortlist consists of all entries of 
the DDAC training lexicon extended with the names of the 
Dutch provinces and the words ‘de’ , ‘plaatsnaam’ , and ‘ is’ 
(‘ the’ , ‘city name’ , ‘ is’ , respectively). This makes a total of 
2,404 entries.  

The uni- and bi-gram language models (LMs) used in the 
APR experiments were trained on the phonetic transcriptions of 
the DDAC training utterances. So, the ‘words’ in these LMs 
were in fact phones.  

3. OPTIMISING  THE ACOUSTIC MODELS 

The optimisation of the acoustic models is a two-step 
procedure. In the first step, described in this section, we 
determine the number of Gaussians per state (G/s) and the units 
to be modelled. Furthermore, we determine the training corpus 
that should be used to train the phone models. In the second 
step, we try to further improve the acoustic models by 
modelling pronunciation variation at the level of the 
transcriptions of the training corpus (Section 5). The reason for 
this two-step approach is the need to limit the number of 
conditions in the experiments to a reasonable maximum. 

The APR was optimised using the following procedure. 
The test set was split into 4 subsets, after which the optimal 
values of the language model factor (LMF) and the insertion 
penalty (IP) were determined on each of the 4 subsets and 
tested on the remaining 3 subsets on which they were not 
optimised. IP determines the trade-off between insertions and 
deletions; LMF determines the weighting of the acoustic and 
the language model contribution to the total probability of a 
phoneme. The values of LMF and IP obtained from the tuning 
set that produced the lowest Phone Error Rate (PER) for the 4 
test sets were regarded as optimal. The PER is defined as: 
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with S, I, D, and N the number of substitutions, insertions 
and deletions, and total number of phones in the canonical 
phonetic transcriptions of the test corpus, respectively. 

Concerning the optimal number of G/s to be modelled, all 
model sets were trained with maximally 32, 64, and 128 G/s to 
examine the effect of varying the maximum number of G/s. 

3.1. Filled pauses 

In our search to what units to model, we concentrated on the 
schwa (/ � /). The schwa pronounced in a word and the schwa 
pronounced in a filled pause (‘eh’ or ‘ehm’) can be treated as 
two instantiations of the same phone and can accordingly both 
be mapped on the same model of the / � /. This is referred to as 
‘ -FP’ in the remainder of this paper. Secondly, it is also 
possible to treat them as separate sounds. In this case, we 
trained a separate model for filled pauses in order to minimise 
the contamination of the phone model of the / � / (‘+FP’) . Since 
there were too few instantiations of ‘ehm’ to train two separate 
models, only one model was trained for both ‘eh’ and ‘ehm’. 

In the -FP condition, the lexicon in the APR only contains 
the 36 trained phones and an additional model for noise and 
silence. In the +FP condition, the new model for filled pauses 
was also added to the APR recognition lexicon and the LM was 
retrained accordingly. 

3.2. Extra training material 

The third parameter we investigated is the material for training 
the acoustic models. The amount of DDAC training material is 
not very large. By using more training material it is assumed 
that the performance of the APR will improve. To increase the 
amount of training data, the training corpus is expanded with 
the SHUTT corpus. 

In the remainder of this paper, the acoustic model sets only 
trained on the DDAC material will be indicated as ‘DDAC’ . 
The acoustic model sets also trained on the Polyphone short 
utterances will be indicated as ‘+SHUTT’ . 

For the APR experiments, the Phicos recognition system 
was used [6]. 36 context independent phone models, 1 silence 
model, and 1 noise model were trained on the two training 
corpora: DDAC and +SHUTT. Of course, in the case of +FP, 
one extra model for filled pauses was trained. Each phone 
model and the noise (and filled pause) model consist of 3 pairs 
of 2 identical states, one of which can be skipped. The silence 
model consists of 1 state. 

3.3. Results and discussion 

Figure 1 shows the results of the recognition experiments with 
the various model sets. The PERs in Figure 1 are the average 
PERs calculated after the optimisation procedure; the PER 
obtained on the subset on which it was optimised was not taken 
into account. 

Figure 1 clearly shows that adding training material 
significantly reduces the performance. A possible explanation 
for this decrease is that the utterances in the added material are 
not optimally matched to the requirements of the test set. It is 
not yet clear whether the mismatch is primarily acoustic (i.e. 
due to other types of background noise, handsets, transmission 

lines) or rather ‘phonetic’ in nature (for example due to the fact 
that the large majority of the Polyphone short utterances are 
read, while all DDAC utterances are extemporaneous).  

Furthermore, it is clear in Figure 1 that the +FP model sets 
outperform the  -FP model sets. This confirms our intuition that 
schwas in fil led pauses and words are acoustically different, 
and thus that the / � / model is less contaminated in the +FP 
condition. 

Figure 1: The PER plotted against the (maximum) number of 
G/s for the four types of model sets: DDAC+FP, DDAC-FP, 
+SHUTT+FP, and +SHUTT-FP. 

Finally, increasing the number of maximally trained G/s 
significantly improves the recognition performance. The best 
performing model set is the DDAC+FP model set with 
maximally 128 G/s (DDAC+FP:128). However, the difference 
with DDAC-FP:128 is not significant. The fact that the 
difference in performance between DDAC+FP:128 and 
DDAC-FP:128 is not significant indicates that the extra 
Gaussians in the / � / model will model the filled pauses. Since 
the difference in PER between DDAC+FP:xx and DDAC-
FP:xx is significant for all models with fewer G/s, the 
transcription produced by the DDAC+FP:128 model set will be 
used for the generation of the pronunciation variants. 

4. GENERATING THE PRONUNCIATION 
VARIANTS 

There are several ways to obtain pronunciation variants. These 
can roughly be divided in knowledge-based, e.g. using 
linguistic rules  [7], and data-derived, e.g. using decision trees 
described for example in [8]. See for an overview of the 
various methods [9]. In this research, we used the data-derived 
decision tree (d-tree) approach, mainly because we were not 
sure that we could derive linguistic rules that have suff icient 
coverage -without too much over-generation- for the 
extemporaneous speech in the DDAC test corpus.  

 In the case of data-derived pronunciation variation 
modelling, an information source is needed. We used the 
training utterances phonetically transcribed by the APR using 
the DDAC+FP:128 model set. These sequences of phones 
output by the APR can be regarded as pronunciation variants. 
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Potential over- and under-generation of variants is also a 
problem with data-derived approaches [10]. In order to 
generalise from observed variants and at the same time keep 
the number of pronunciation variants manageable, the d-tree 
approach is used to smooth the output of the phone recognition 
before creating the lexicon.  

The d-trees were built using the Weka d-tree tools [11], 
also described in [12]. In building the d-trees, only the left and 
right neighbours of the phones were used as input to the d-tree 
algorithm. For each phone a d-tree was buil t. d-trees predict 
pronunciation variants on the basis of an alignment between the 
reference phonetic transcription of the training utterance and 
the transcription obtained with the phone recognition. Before 
building the d-trees, the data were pruned by removing very 
low frequency contexts. If the combination of the phone in 
focus with its left of right neighbour occurred less than five 
times in the data, this combination was not taken into account 
when building the d-tree.  

Next, using the distributions in the d-trees, a Finite State 
Grammar (FSG) was built for each training utterance. A second 
type of pruning occurred during the creation of these FSGs: 
transitions with a probability lower than 0.01 (default value) 
were not allowed. An FSG can be considered to represent all 
potential pronunciation variants for that utterance. 
Furthermore, the FSGs attach a probabil ity to all pronunciation 
variants they produce, which is an estimate of the prior 
probability of a variant on the basis of the training material. 
These priors are later used to decide which pronunciation 
variants to include in the lexicon of Shortlist. The 
pronunciation variants that are created consist (mainly) of 
fewer phones than the canonical transcriptions. 

5. IMPROVING THE TRANSCRIPTIONS 
AND THE ACOUSTIC MODELS 

Previous research on automatic continuous speech recognition 
has shown that the best results are obtained when pronunciation 
variation is modelled on three levels, viz. at the level of the 
lexicon, the language model and the acoustic models (cf. [7]). 
For the phonetic transcription task, we use an automatic phone 
recogniser instead of a continuous speech recogniser for words; 
therefore, our lexicon consists of phones instead of words. This 
makes it harder – though not impossible – to model 
pronunciation variation at the level of the lexicon. Therefore, 
we only model pronunciation variation at the level of the 
acoustic models. To this end, the transcriptions of the training 
material were improved (see Section 5.1), after which new 
acoustic models were trained (see Section 5.2). Furthermore, 
we retrained the LM on the ‘ improved’ transcriptions of the 
training material to improve the model of the phonotactic 
constraints found in the training material. 

5.1. Improving the transcriptions 

The transcriptions of the training material were improved using 
the following procedure. A lexicon was created consisting of 
the most likely pronunciation variants. In order to select the 
most likely pronunciation variants, all variants produced by the 
FSGs were ranked according to their prior probability. The 
pronunciation variants with a prior probabili ty above the pre-
set threshold of 0.063 were then added to the lexicon. This 
resulted in an average of 77 variants per word. Subsequently, 

an ASR trained on the canonical transcription of the training 
corpus, running in forced recognition mode, was used to find 
the most likely variant for each word in the training corpus 
from the lexicon with the new pronunciation variants. In the 
last step, the phonemic transcriptions of the corpus were 
updated by replacing the canonical transcriptions by the most 
likely variant as found by the forced recognition.  

In order to obtain transcriptions of the test material that 
more closely match the acoustic signal, the same procedure 
was followed for the test material.  

5.2. Retraining of the acoustic models 

These ‘ improved’ transcriptions of the training material were 
then used to train new, and presumably cleaner acoustic 
models. The new acoustic models were trained on the 
‘ improved’ transcriptions starting from a linear segmentation 
(NEW). 

The maximum number of Gaussians trained per state was 
128. Also, a separate model for filled pauses was trained. 

5.3. Results and discussion 

Figure 2 shows the PERs of the model sets described in Section 
3 measured against the improved transcriptions of the test 
material. The number of phones in the test material was 83,614. 
As can be observed, the PER for the baseline system 
DDAC+FP:128 drops from 37.81% when measured against the 
canonical transcriptions (see Figure 1) to 34.73% when 
measured against the improved transcriptions. This decrease in 
PER is observed for all model sets. Whether this gain is caused 
by a tuning of the transcriptions to the idiosyncrasies of the 
recogniser or by the fact that the new transcriptions are really 
closer to the acoustic signal – and thus closer to what a 
phonetician would have transcribed – is as yet unclear. 
However, inspection of the pronunciation variants that were 
used to improve the transcription of the train and test corpora 
suggests that all added variants are reasonable. Therefore, we 
are confident that the updated transcriptions are indeed closer 
to acoustic signals than the canonical representations that yield 
a PER of about 38%.   

To examine whether the improvement of the transcriptions 
of the training material resulted in improved acoustic models, a 
recognition experiment with the new trained model set was 
conducted on the test material. The lexicon used in the 
recognition experiment contained all 36 phones, and additional 
models for silence, noise, and filled pauses; the LM used was 
trained on the improved transcriptions of the training material. 
The APR was optimised using the procedure described in 
Section 3. 

Table 1 shows the PER of the new model set. The PER was 
measured against the improved transcriptions of the test 
material. As a reference, the PER obtained for the baseline 
system DDAC+FP:128 on the improved transcriptions is also 
given. Table 1 shows that the performance of the model set 
trained on the improved transcriptions is indeed slightly better 
than the performance of the baseline, but the gain is quite 
small . This is in accordance with results found in other 
experiments. A possible reason for this only small gain is that 
the models are too much tuned to the training data. 

 
 



30 40 50 60 70 80 90 100 110 120 130
32

33

34

35

36

37

38

39

40

41

42

P
E

R
(%

)

#Gaussians/State

PERs obtained with the various model sets on the improved transcriptions

+SHUTT−FP
+SHUTT+FP
DDAC−FP  
DDAC+FP  

Figure 2: The PER obtained on the optimised transcriptions of 
the test set plotted against the (maximum) number of G/s for the 
four types of model sets: DDAC+FP, DDAC-FP, +SHUTT+FP, 
and +SHUTT-FP. 

Model set PER (%) 
DDAC+FP:128 34.73 
NEW 34.42 

Table 1: PERs for baseline and NEW on the test set. 

6. SHORTLIST EXPERIMENTS 

In order to improve Shortlist’s ability to deal with real-life 
speech, its lexicon should be adapted to include pronunciation 
variants next to the canonical transcriptions. The pronunciation 
variants to be added to Shortlist' s lexicon were selected from 
the lexicon used for improving the transcriptions of the training 
material. Several independent ASR studies (cf. [10],[13]) have 
shown that it is difficult to determine how many and which 
pronunciation variants to include in the lexicon in order to 
obtain the best result. One of the most important findings of 
these studies is that including a high number of variants wil l 
cause a deterioration of the recognition performance unless the 
prior probabilities of the variants can be used in the recognition 
process. If no prior probabil ities are known, the research in e.g. 
[13] shows that an average of 2.5 variants per word gives the 
best performance on a continuous speech recognition task. 
Although the task we present to Shortlist is more like an 
isolated word recognition task than a continuous speech 
recognition task, we followed this finding, since it is 
impossible to include prior probabilities of the variants in 
Shortlist. A threshold was determined on the prior probabilities 
such that adding all variants with a higher probability to the 
Shortlist lexicon resulted in an average of 2.5 variants per 
word. 

As already pointed out in the introduction, Shortlist is a 
simulator of human speech recognition. In order to make 
correct simulations, it is necessary that Shortlist recognises the 
correct words. In this experiment, we present Shortlist input 
containing phoneme sequences that do not match exactly with 
phonemic representations in the lexicon, but that are assumed 
to be a close symbolic representation of acoustic speech 

signals. It is interesting to know to what extent Shortlist is able 
to recognise the ‘scrambled’ input strings correctly.   

As input, Shortlist was given the phonetic transcriptions of 
the test utterances obtained with the phone recognition with the 
NEW model set. Two experiments were carried out. In the first 
experiment, the original lexicon (no pronunciation variants) 
was used; in the second experiment the lexicon expanded with 
pronunciation variants was used. The performance was 
measured in terms of percentage of utterances for which the 
correct word did not have the highest activation, which means 
that the correct word was not recognised: the Word Error Rate 
(WER). 

6.1. Results and discussion 

With the original lexicon the WER obtained with Shortlist was 
64.45%. The WER decreased to 48.2% with the expanded 
lexicon. Thus, adding pronunciation variants to the lexicon of 
Shortlist greatly improves its performance as a speech 
recogniser. However, the performance is still far from what a 
conventional automatic speech recogniser would obtain on the 
same test set. For instance, WERs in the ASR systems 
described in [14] range from 10 to 15%.  

The question that immediately arises is why Shortlist is 
such a bad recogniser. In order to answer this question, we 
have to look at the current implementation of Shortlist. As 
already pointed out, if a word is not included in the shortlist 
generated in the first stage of the model, it can never be 
recognised. An analysis of the output of Shortlist reveals that 
there are few cases where the correct word is in the shortlist, 
but that a competitor receives a higher final activation. Thus, 
the problem appears to be in the initial selection phase. Adding 
pronunciation variants with (mainly) fewer phonemes improves 
the selection, but it is not sufficient. 

The next question that arises is whether the performance of 
the APR is highly inaccurate, or whether Shortlist is not able to 
deal with accurate transcriptions. The current implementation 
of the first stage, the search, in Shortlist does not use 
sophisticated weighting of substitutions, insertions and 
deletions. Consequently, Shortlist has difficulties making a 
correct match between the phone string with ‘errors’ and the 
phonetic representation of the words in the internal lexicon. 
Furthermore, it is well-known that there is a considerable 
variety in the transcriptions created by human transcribers. In  
[15], it was shown that automatically generated transcriptions 
of read speech are very similar to manual phonetic 
transcriptions created by expert phoneticians. In the research 
reported here, the APR processed extemporaneous speech, 
which is likely to be more difficult to transcribe – both for 
machines and humans. Although the performance of the APR 
is far from perfect most of the transcriptions in the output of 
the recogniser are sensible and intell igible. Thus, it seems safe 
to assume that even if the transcriptions of the material used in 
our experiments had been created by human transcribers, the 
performance of Shortlist would not have been much better. So, 
the problem of the inadequate performance of Shortlist is most 
probably not due to a poor performance of the APR, but rather 
to the current implementation of the first stage of the model. To 
put this assumption to the test we are currently working on a 
more sophisticated version of the first stage of Shortlist, that 
should be better able to deal with transcription ‘errors’ .  



7. CONCLUSIONS 

In this research, we showed that modelling pronunciation 
variation improves the ability of the psycholinguistic model of 
human speech recognition Shortlist to deal with real-life input. 
We modelled pronunciation variation by including variants into 
the lexicon of Shortlist.  

A series of experiments was carried out to find the optimal 
model set for transcribing the training material that was used as 
basis for the generation of the variants. The best model set for 
the transcription task was trained with maximally 128 
Gaussians per state and had a separate model for filled pauses. 
Furthermore, a new acoustic model set was trained on the 
'improved' transcriptions of the training material. This showed 
a slight improvement compared to the baseline system.  

Adding pronunciation variants to Shortlist’ s lexicon 
increased its performance with 16.25% absolute, but still the 
error rate is high compared to state-of-the-art ASR systems. 
The disappointing performance of Shortlist as a recogniser is 
most probably due to the current implementation of the search 
in the first stage of the model. In order for Shortlist to better 
deal with real-life input, its implementation should be 
improved. Therefore, we are currently working on a more 
sophisticated version of the first stage of Shortlist. 
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