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ʺForty-two!ʺ yelled Loonquawl. ʺIs that all youʹve got to show for seven and a half
million yearsʹ work?ʺ

ʺI checked it very thoroughly,ʺ said the computer, ʺand that quite definitely is the
answer. I think the problem, to be quite honest with you, is that youʹve never

actually known what the question is.ʺ
- Douglas Adams, The Hitchhikerʹs Guide to the Galaxy..

Ὧ ἡ ί ά ἰ ὴ ῦ ὅ ίν  σοφ α παρασκευ ζεται ε ς τ ν το  λου β ου µ ό ὺακαρι τητα πολ  µέ ό ἐγιστ ν στιν
ἡ ῆ ί ῆ τ ς φιλ ας κτ σις. 

- Epicurus, Principal Doctrines: 27
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Chapter 1

Introduction





Categorization is a fundamental cognitive process. It enables us to structure an

otherwise unstructured world. With categorization, the continuous stream of

perceptions becomes a series of separate and discrete ones with each percept labeled

as belonging to a category. Categorization and category learning are involved in a

surprisingly large number of cognitive processes. Without categories, we would be

unable to recognize the colors of the rainbow, to appreciate tonal music, to talk about

kinds of animals at the zoo, to recognize friends or to read someoneʹs handwriting.

In other words, categorization is present in all situations where previous experience

guides our present interpretations. Understanding spoken language is a prime

example of such a situation. It involves categorization at multiple levels, ranging

from recognizing consonants and vowels to interpreting grammatical structures and

context. In this thesis, we consider the process of acquiring the ability to categorize

speech sounds, in other words, the learning of phonetic categories.

The first learning of phonetic categories takes place in infancy, as we tune in to

the linguistic sounds around us. Later in life, if we try to acquire a second language,

we again need to master new sounds. This time the sounds may be sounds that do

not occur in our native language. Although a lot is known about the abilities of

infants to discriminate native and non-native phonemes, exactly how they develop

these abilities is not well understood. An important observation is that because
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listening abilities precede speaking abilities, infant learning of phonetic categories

cannot be explicitly supervised. Supervision, defined as feedback on performance,

can only be given when there is something to be (positively or negatively)

reinforced. Without observable language behavior in infants, this feedback is

difficult to imagine. From there, the idea follows that infant phonetic category

learning must involve some sort of statistical pattern recognition (Saffran, Aslin, &

Newport, 1996; Jusczyk 1997; Lotto, 2000). This distinction between supervised and

unsupervised learning of phonetic categories is central to this thesis.

An important difference between first language learning by infants and second

language learning by adults, therefore, is the availability of feedback. In adult

learning, involving mature speaking and listening abilities, there is at least the

possibility of supervision in the form of feedback on verbal or non-verbal responses.

This thesis examines both kinds of learning. In all experiments, the presence or

absence of feedback will be manipulated alongside the kind of probabilistic

information contained in the category structures presented to the listeners.

Categorization and category learning

Three closely related but fundamentally different cognitive processes need to be

distinguished: categorization, identification, and discrimination. Categorization is the

mapping of many stimuli varying along continuous dimensions to a (usually much

smaller) set of categories where all the members that fall into the same category are

interpreted as being equivalent (Nosofsky, 1986, 1990). For example, humans map a

wide range of wavelengths of the electromagnetic spectrum to the same color name,
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and the number of colors is limited compared to the range of wavelengths the

human eye can perceive. (400 to 700 nm).

In contrast to categorization, identification is the one to one mapping of stimulus

and label. Face recognition, for instance, involves identifying family members by

their facial features. Recognizing the gender of individuals by their facial features, on

the other hand, involves categorization.

Discrimination involves processing whether stimuli are the same or different and

lies at the basis of both categorization and identification. If we were unable to

reliably discriminate two stimuli we could not reliably assign them to two different

categories either. All colors would merge to one and all family members would

effectively have the same face. This is the sad lot of brain damaged patients who are

suffering from proposagnosia: the inability to recognize faces (Hecean & Anelergues,

1962). Our ability to discriminate is limited, however. The difference between

electromagnetic radiation with a wavelength of 450 nm and electromagnetic

radiation with a wavelength of 451 nm, for example, is impossible to discriminate for

a human. 

In categorization, there are two kinds of categories: conceptual categories and

perceptual categories (Medin & Barsalou, 1987). Conceptual categories are usually

defined in language terms and are differentiated from each other by discrete

features: “round head versus oval head” or “long versus short legs” (see for example

Minda & Smith, 2001, 2002). Examples include concepts like mammal, bird, politics,

and democracy. These conceptual categories are not the subject of this thesis,

although sometimes the theory concerning them does come into play. Perceptual

categories are defined in psychophysical terms (they map the physical world onto

the psychological) and have continuous dimensions rather than discrete features.
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Examples include color categories, phonetic categories, and faces. Although both

category conceptions are sometimes assumed to be two ends of a continuum

(Goldstone & Barsalou, 1998) and to share a common background in terms of

similarity (Gureckis & Love, 2003), the processes involved in learning conceptual

categories may differ from those involved in learning perceptual categories.

Irrespective of the validity of the difference, here, the learning of perceptual and not

conceptual categories is considered the relevant process.

An important theoretical concept in the perception and representation of

categories is that of a perceptual space. A perceptual space is best viewed as an n-

dimensional space spanned by psychophysical axes, such as loudness and

(perceived) duration. An incoming stimulus is mapped to a point in this space, i.e.,

receives a value on each of the n dimensions. For example, a well-known way to

represent physical colors is the RGB- coding. Each color receives three values

ranging from 0 to 255: One value is for red, one is for green and one is for blue. Pure

red would, for example, receive (255 0 0), pure blue (0 0 255) and pure green (0 255

0). White would receive (0 0 0) and black (255 255 255). Different combinations of the

three dimensions represent all other available colors. With regard to perceptual

representations, Shepard (1957; 1987) developed a similar logic. The idea that stimuli

could be viewed as points in a space proved to be extremely fruitful. The

dissimilarity of stimuli that is so important in their discrimination and hence

classification is defined as a function of the distance between the two stimuli in such a

space. A greater distance between the coordinates of two stimuli in their perceptual

space makes them easier to discriminate (Shepard, 1962a, 1962b). Thus, in the

(physical) RGB example, it would be much easier to discriminate white (255 255 255)
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from yellow (255 255 0) than it would be to discriminate white from ivory (255-255-

240). 

Tversky (1977) and Tversky and Gati (1982) challenged the concept of a

perceptual space when they showed that not all the required underlying

assumptions hold in all situations. Tversky (1977) showed that similarity judgments

can be asymmetric: North Korea is often judged more similar to China than China to

North Korea. This asymmetry is difficult to account for in a metric conception of

(dis)similarity based on distance. Furthermore, Tversky & Gati (1982) showed that

certain situations violate an important assumption of any distance based space, the

triangle inequality. The triangle inequality states that the distance between two

points is smaller or equal to the summed distance between those two points and a

third point1. This holds in physical spaces, but it is not always true of similarity.

William James already pointed to violations of the triangle inequality in The

Principles of Psychology (1890): The moon is similar to a gas-jet; it is also similar to a

football; but a gas-jet and a football are not similar to each other. 

Because of these and other challenges, the concept of a perceptual space has been

subject to various modifications. Shepard (1987) pointed out that independent

dimensions are orthogonal, but when dimensions interact with one another, the

perceptual space becomes oblique. Nosofsky (1986), following Shepard et al. (1960)

and Getty, Swets, Swets, & Green (1979) further developed the idea of dimensional

weights to allow the perceptual space to expand or shrink depending on the

perceptual saliency of each dimension. If these weights may shift across

comparisons, violations of the triangle inequality can be accounted for. General

Recognition Theory (Ashby & Townsend, 1986; Ashby & Gott, 1988) combines the

concept of perceptual space with probability theory. There, the perceptual effect of

1 Mathematically this is expressed as: d(x,z) ≤ d(x,y) + d(y,z).

19



repeated presentations of a stimulus is a probability density function instead of a

point (Ashby & Perrin, 1988) and the similarity between two stimuli is based on the

overlap of the stimulusʹ probability density functions instead of on their metric

distance (Ashby & Lee, 1992).

There are several possible representations of categories in perceptual space based

on the considerations above: e.g., prototype theories, exemplar theories, decision

bound theories (Ashby & Maddox, 1993; 2005) and distribution-based theories

(Nearey & Hogan, 1986; Nearey, 1997; Smits, Sereno & Jongman, 2006). These

theories of categorization all have different accounts of the representation of

categories in perceptual space. Prototype models (Rosch, 1973) represent a category

by its prototype, typically the mean stimulus. In categorization, a new stimulus is

compared to all available prototypes (means) and is assigned to the category with

the best matching prototype. Exemplar models, on the other hand, do not use means

to represent categories, but instead represent them by storing all the exemplars that

have been encountered before (Nosofsky, 1986). When a new stimulus has to be

categorized, its similarity to all available exemplars of each category is determined.

It then is assigned to the category with which it shares the greatest amount of

similarity. Decision bound models (Ashby & Gott, 1988, Maddox & Ashby, 1993),

partition perceptual space into response regions whose boundaries are stored in

memory. Each region represents a different category. An incoming stimulus will fall

on one side of the decision bound and is then assigned to the corresponding

category. Thus, decision bound models can be viewed as a multidimensional

generalization of signal detection theory. Distributional accounts originated

primarily in phonetic research (Nearey & Assman, 1986). As is the case in exemplar

theory, categories are not represented by a mean value, but also incorporate
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information about the distribution of the stimuli in the category. In contrast with

exemplar theory, the distributions are stored in a summarized parametric form in

distribution theory, rather than as previously encountered exemplars.

How are categories learned? It is widely assumed that statistical learning lies at

the heart of category learning (Diehl, Lotto & Holt, 2004) as well as at the heart of

language acquisition (Holt, Lotto & Kluender, 1998). Acquiring categories is then

equivalent to recognizing the statistical patterns present in the incoming signals.

Repeated exposure to stimuli originating from distinct categories will lead to the

formation of “clouds” of points in perceptual space. If, after a period of exposure,

several more or less distinct clouds emerge, listeners may start to identify each cloud

with a category. Note that trial-by-trial feedback can also be considered as a

distributional cue, one that totally correlates with category membership.

Statistically based category learning has been most intensively studied with

visually presented stimuli (Ashby & Maddox, 1993; Nosofsky, 1990). Of particular

interest for present purposes are the differences between learning a unidimensional

and a multidimensional category distinction, and the role of supervision in this

learning. 

Figure 1.1 illustrates the difference between a unidimensional and a

multidimensional categorization problem. All four panels display category

structures with variation in two dimensions. However, in two panels the optimal

solution is unidimensional, while in the other two panels the solution is two-

dimensional. Solving the categorization problem presented in the top left panel in

Figure 1.1 requires the use of only dimension 1, whereas the problem presented in

the bottom left panel requires dimension 2. In contrast, the categorization problems

on the right side of Figure 1.1 require participants to use both dimensions when
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making their category judgments. The use of only one dimension would lead to

many incorrect categorizations in those cases.

The distinction between supervised and unsupervised category learning has been

extensively studied in adults. Human adults have proven adept at acquiring both

unidimensional and multidimensional categories when given regular and immediate

feedback about the validity of their judgments on a trial-by-trial basis (Ashby &

Alfonso-Reese, 1995; Ashby, Maddox, & Bohil, 2002; Gureckis & Love, 2003). Such

feedback is not always required (Fried & Holyoak, 1984; Fiser & Aslin, 2001),

however, and is seldom provided by everyday experience. When confronted with

complex multidimensionally varying stimuli, learners must rely on the distributional

22
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structure of the objects and events they perceive. When categorization is successful,

those stimuli that occupy nearby regions of perceptual space come to be regarded as

the same, and as distinct from things that occupy different regions of the same

perceptual space. If the correlated structure of category members can be used by the

observer, there is a basis for forming a category without external feedback.

Studies of unsupervised category learning have revealed characteristic limits to

observers’ abilities (Ahn & Medin; 1992; Regehr & Brooks, 1995). Generally, less

complex (unidimensional) categories are much easier to learn than complex

(multidimensional) ones. Ashby, Queller, and Beretty (1999) showed that

participants confronted with a multidimensional categorization problem initially opt

for unidimensional solutions (using only one dimension of variation in their

categorizations). Their subjects had to categorize lines differing in length and

orientation without the aid of supervision. Two groups of subjects encountered

categories that were separable using only length or only orientation and where the

other two dimensions displayed irrelevant variation. For the other two groups both

dimensions were relevant; the categories differed both in length and orientation (for

a graphical illustration, see Figure 1.1). By the end of the experiment, observers in

the unidimensional conditions responded almost perfectly, whereas those in the

multidimensional conditions were still not able to use both stimulus dimensions.

Only in a follow-up experiment, in which trial-by-trial feedback was present, could

subjects entertain a solution that used more than one dimension in their

categorization.

In line with this result, unsupervised learning of unidimensional rules under

conditions where there is irrelevant variation in other dimensions appears to be

restricted to situations that are highly structured. Homa & Cultice (1984) had
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observers categorize connected dot patterns that differed in their level of distortion

of the prototype with and without feedback. Only the condition with low distortion

of the dot patterns’ prototypes provided enough structure in the stimuli to make

unsupervised learning possible. Love (2002) investigated unsupervised learning

with the category learning problems constructed by Shepard, Hovland & Jenkins

(1961)2. Performance was best with Shepard et al.ʹs type I categorization problem

where only one dimension is relevant. With two relevant dimensions (type II),

accuracy dropped from 73% correct to 56% correct (Love, 2002).

Most of the evidence supporting the above generalizations derives from

experiments testing categories with simple visual stimuli such as lines varying in

length and orientation, the size of a circle or the position of dots relative to a mid line

(Ashby & Maddox, 1993; Nosofsky, 1990; Feldman, 2000). In these studies, the

dimensions of variation are readily identifiable to participants. Artificial categories

involving distributions of more complex stimulus patterns whose dimensions of

variation are less obvious have not, to our knowledge, been used in unsupervised

learning experiments, and, as noted previously, few studies have used these

methods to test the learning of auditory categories. Two notable exceptions are

Wade and Holt (2005) and Holt and Lotto (2006).

Wade and Holt (2005) had participants play a computer game where sounds

originated from different unidimensionally varying categories. The dimensions of

variation were the increase and decrease of the spectral frequency at either the onset

or the offset of the stimulus. These categories were predictive of the emergence of

2 Shepard et al. constructed six category learning problems with eight stimuli varying in three
binary dimensions (for example, round-square, black-white, small-large). The type I problem has
only one relevant dimension. In type II, two dimensions are relevant and the other dimension
varies irrelevantly. In type VI, all three dimensions are equally relevant and solving the category
problem basically means memorizing each categories members. Types III, IV and V are between II
and VI in complexity.
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different characters in the game. Playing the game became progressively more

difficult without paying attention to auditory cues. After 30 minutes of play,

participants showed reliable learning at a categorization task showing that

participants were able to incidentally (and thus unsupervised) pick up on the

statistical information available to them in the auditory input (Wade & Holt, 2005).

Holt & Lotto (2006) showed listener biases toward certain dimensions when learning

a two-dimensional category distinction. In their experiments, they trained listeners

to categorize stimuli differing in two equally salient and equally informative

frequency measures (the center frequency and modulation frequency of a sine

wave). Despite Holt and Lottoʹs efforts to equalize the dimensions, listeners

displayed an initial preference for one dimension (center frequency). The preference

for the center frequency dimension could only be altered by increasing the variance

and thus decreasing the informativeness of that dimension. Decreasing the

informational weight associated with the preferred dimension was not sufficient to

alter the learning strategies of the listeners. Dimensions of equal salience and

importance are thus not always considered equal in a categorization task by listeners

(Holt & Lotto, 2006).

Acquiring speech categories

The acquisition of the sound categories of a language can occur in two situations: the

situation where the infant acquires its first language without any categories being

present and the situation of learning a second language while there is already at least

one language in place. Infants have to learn to categorize the incoming sounds into

the sound categories of their native tongue; learners of a second language face the
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problem that the sound categories of the new language can be different from their

native language. They have to attempt to integrate the new sound categories into the

existing system.

Despite the possible differences between the situation of the infant and the

learner of a second language, we hypothesize some of the underlying processes to be

the same. After all, the task faced by infants learning a first language and adults

learning a second language is the same. Both have to recognize statistical patterns in

stimuli that vary on many relevant dimensions. Speech, we argue, is an inherently

multidimensional phenomenon. Although there have been significant attempts,

notably by Blumstein and Stevens (1979, 1981), to find unidimensional invariants

that differentiate between phonetic categories, almost all aspects of the speech signal

are now considered relevant for the listener (Diehl & Kluender, 1987). Depending on

context and conditions, different parameters of the speech signal come to be the

most relevant ones (Cutler & Broersma, 2005). Listeners will generally use all the

potentially relevant cues available to them (Diehl & Kluender, 1987; Diehl, Lotto &

Holt, 2005).

Thus, the infantʹs task of acquiring phonetic categories seems hard: the sounds

they have to acquire vary on many relevant dimensions, and display considerable

overlap between and variability within categories. On top of this, infants are unable

to get feedback when trying to learn these categories. Nevertheless, infants are well

on their way to learning the phonetic categories of their native language within the

first year of life (Jusczyk, 1997). Numerous experiments have demonstrated the

ability of infants to discriminate a broad range of speech sound contrasts early in

development (in fact, from directly after birth). Over the course of the first year,

infants begin to lose the ability to discriminate phonetic contrasts that are not
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phonetically relevant in their native language (see Aslin, Jusczyk, & Pisoni, 1998, or

Jusczyk, 1997, for reviews). Studies by Werker and colleagues found decrements in

non-native phoneme discrimination in English infants at the age of 10-12 months but

not at the age of 8-10 months (Pegg & Werker, 1997, Werker & Tees, 1983, Werker &

Lalonde, 1988). They concluded that the decline in the ability to discriminate non-

native vowels happens in the first year of life and is a function of language-specific

experience. Studies investigating non-native vowel discrimination have found

decrements in discrimination even earlier in development (Kuhl, Williams, Lacerda,

Stevens, & Lindblom, 1992; Polka & Werker, 1994). These changes in discrimination

ability are seen as adaptive for native language understanding.

It has already been pointed out that corrective feedback of any kind cannot be

responsible for infantsʹ perceptual knowledge of their native language, because

infants display evidence of this knowledge before they can articulate any words.

Moreover, learning the relevant phonetic contrasts on the basis of semantically

contrasting minimal pairs (words differing in exactly one phonological feature or

segment like /bear/ and /pear/) is also excluded for infants, because their

vocabularies contain at best a few meaningful words when they start acquiring

phonetic categories (Swingley, 2003). As a result, it is generally assumed that infants

acquire their knowledge about phonetic categories by an analysis of the

distributional properties of the speech they hear, i.e., through statistical learning.

Supporting this notion, experimental studies have shown that infants are extremely

sensitive to the statistical properties of incoming speech signals (Kuhl, 2000; Saffran

et al., 1996). Simply by being exposed to speech, infants acquire their native-

language phonetic categories and lose the ability to discriminate non-native speech

contrasts.
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Maye, Werker, and Gerken (2002) demonstrated this sort of learning in a

laboratory setting in a study of 6- and 8-month old infants. They exposed two groups

of infants were exposed to /da/-/ta/ stimuli. One group listened to stimuli in which

the voice onset time (the dimension differentiating /d/ and /t/) followed a unimodal

distribution, encouraging the infants to group the sounds into one category, while

the other group listened to stimuli in which the VOT followed a bimodal

distribution, encouraging them to group the sounds into two categories. In a

preferential looking procedure, infants exposed to a bimodal distribution listened

longer to trials with alternating stimuli (two different stimuli) compared to trials

with non-alternating stimuli (the same stimulus repeated), while infants exposed to

a unimodal distribution did not show this differential looking. The differential effect

of the stimulus distributions on the infantsʹ looking behavior shows the sensitivity of

infants to the distributional properties of the stimuli.

Adults displayed a similar sensitivity to distributional information in

experiments that used similar stimuli (Maye & Gerken, 2000, 2001), which points to

similar principles underlying infant and adult categorization (see also Gureckis &

Love, 2004). Although Pierrehumbert (2003) doubts the generality of this extremely

rapid distributional learning in infants (see also Tyler & Johnson, 2006), there is little

doubt that statistical learning underlies the formation of phonetic categories in

infants as well as adults.

The literature on adults second language learning (for a review, see Strange,

1995) has demonstrated that it is extremely difficult for adult listeners to master non-

native phonetic distinctions at a native level (Burnham, Earnshaw & Clark, 1991).

One reason is that the already present native phonological system heavily

determines the phonetic category learning problem faced by adults learning a
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second language (Cutler & Broersma, 2005). Bestʹs Perceptual Assimilation Model (Best,

McRoberts & Sithole, 1988; Best, 1995) provides an account of why adult learning of

non-native phonetic categories is so difficult. Once the native language categories

have been acquired in infancy, the model distinguishes five situations with regard to

learning a new phonetic distinction.

The most difficult learning situation described in the Perceptual Assimilation

Model is when two distinct non-native phonemes map equally well onto one single

native phonetic category. For example, Japanese listeners experience extreme

difficulty distinguishing /r/ from /l/ because these phonemes map to a single

Japanese phonetic category. It has proven very difficult for Japanese listeners to

learn to distinguish these contrasts at a native or near native level (Logan, Lively &

Pisoni, 1991; Lively, Pisoni, Yamada, Tokura & Yamada, 1994).

When one non-native category maps reasonably well onto one non-native

category and the other non-native category does not, learning depends on the

relative goodness of fit of both categories to that native category. A large difference

in goodness of fit results in better non-native category learning.

Learning is easier in the two category case, where two non-native phonetic

categories map onto two more or less corresponding native phonetic categories. The

correspondence between the native and non-native categories does not have to be

total; as long as the native and non-native categories map consistently onto each

other they can be easily distinguished.

The final two cases represent situations where mapping to the native phonetic

system does not happen. Either the non-native phonemes cannot be categorized in

the native phonetic system because the non-native phonemes are too far removed

from any native category in phonetic perceptual space, or the non-native phonemes
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cannot be assimilated into the native phonetic system because they are not perceived

as speech. This non-assimilable case is rare. A well-known example is the learning of

Zulu clicks by English speakers. Non-native listeners do not consider clicks speech,

but find them as easy to discriminate as natives do (Best, McRoberts & Sithole, 1988;

Best, McRoberts & Goodell, 2001).

The Perceptual Assimilation Model has received considerable support from

studies investigating Japanese native listenersʹ perceptions of English (Best &

Strange, 1992) and English native listenersʹ perceptions of German (Polka, 1995) and

Dutch listeners perceiving English (Broersma, 2005). Experiments reported by

Broersma (2005) show that the perceptual effects of listening to non-native phonetic

categories can be dependent on phonological rules, something not predicted by the

Perceptual Assimilation Model. For example, while Dutch native listeners are

perfectly able to distinguish voiced from unvoiced phonemes, this is never necessary

in Dutch at the end of words, because of the final devoicing rule in that language.

Consequently, Dutch listeners experience difficulty distinguishing English minimal

pairs like bride and bright that differ in final voicing (Broersma, 2005).

Norris, McQueen & Cutler (2003) investigated a category learning strategy

available to adults but not to infants. In adults, perceptual adaptation to, for

example, a foreign accent can be mediated by lexical support. When a shift in a

category boundary between [f] and [s] resulted in perceiving a word instead of a

nonword, listeners quickly started to shift this boundary. This perceptual flexibility

displayed by adults has been shown to be very talker and context-specific (Eisner &

McQueen, 2005), and is stable across at least 12 hours (Eisner & McQueen, 2006).

Thus, although there are lexical as well as statistical sources of information

available to adults when adjusting their phonetic categories, their learning
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performance with acquiring new phonetic categories is not nearly as impressive as

that of infants. A longitudinal study trying to train Japanese listeners on the

perception of the English /r/-/l/ contrast showed that some improvement is possible,

but only after huge amounts of training (Logan, Lively & Pisoni, 1991; Lively, Pisoni,

Yamada, Tokura & Yamada, 1994). Moreover, even when non-native categories have

been acquired successfully, the contrast between non-native categories is never as

quite as sharp as that between native categories (Burnham, Earnshaw & Clark, 1991)

and the representations of non-native categories are more talker-specific and

contextdependent than in the native language (Lively, Logan & Pisoni, 1993).

This thesis

The experiments presented in this thesis expose adult listeners to categories of

sounds, which were either not speech-like (Chapter 2 and 3) or originated from a

non-native language (Chapter 4). Because speech categories can differ in more than

one dimension, the categorization problems our listeners faced had either one

relevant dimension and one irrelevant dimension of variation (a unidimensional

categorization problem) or two relevant dimensions of variation (a multidimensional

categorization problem). In both cases, the dimensions that varied between the

categories were the duration of the sound and the frequency of the spectral peak.

These dimensions have been shown to be very important in the perception of vowel

sounds (Ainsworth, 1972; Peterson & Barney, 1952).

To construct our stimuli, we defined a two-dimensional perceptual space

spanned by perceptual equivalents of duration and formant frequency. The

categories were defined as two-dimensional probability density functions in this
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space. The distributional characteristics (mean and standard deviation) of the

probability density functions governed the relevance of each dimension for making

sensible category judgments (see Figure 1.1).

All experiments used a basic procedure with a learning phase and a maintenance

phase. In the learning phase, participants listened to stimuli that contained

distributional information from the two probability density functions (the

categories). Listeners faced the task of partitioning their perceptual space by using

one or two dimensions. If participants were to use a unidimensional categorization

strategy, all stimuli below a certain criterion value would be assigned to one

category and all stimuli above the criterion value to the other category. If a

multidimensional categorization strategy were chosen, all stimuli above a criterion

value based on a combination of the two dimensions would be assigned to one

category and all stimuli below this value would be assigned to the other category

(Ashby & Maddox, 1990).

After the training phase, listeners entered a maintenance phase with stimuli that

did not contain distributional information (with the exception of the maintenance

phase of condition 4 in Chapter 2). With this change in stimulus properties, we

wanted to assess listeners’ use of each dimension of variation more accurately and to

evaluate whether participants would maintain their category identification criteria

once the distributional cues to category membership were no longer present in the

input. To investigate possible a priori categorization tendencies, the experiments with

speech stimuli also contained a pretest with stimuli identical to those in the

maintenance phase.

Chapters 2 and 3 report experiments studying an analog of the acquisition of a

first language, by investigating the learning of nonspeech categories. Chapter 2

32



investigates supervised learning of nonspeech sounds. Supervision consisted of a

visual message indicating whether the response was right or wrong. The results

show that it is indeed possible to learn and maintain a unidimensional category

distinction. Learning a multidimensional category distinction, in contrast, is much

harder, and maintaining this distinction without feedback or distributional cues is

very difficult. With distributional cues, however, learning is more easily maintained,

illustrating that listeners are sensitive to multidimensional distributional cues in the

input.

Chapter 3 deals with unsupervised learning of the same stimulus material as in

Chapter 2. The feedback that constituted the supervision was no longer provided.

With unidimensional category structures, listeners are sensitive to the distributional

information in the input, although performance is not as good as in the supervised

case. With a multidimensional problem, the lack of trial-by-trial feedback really

hampers listeners, and most of them opt for a unidimensional solution. Chapter 3

also compares listenersʹ performance in supervised and unsupervised learning.

Chapter 4 is concerned with second language learning. Speakers of Spanish and

American English learn to categorize non-native speech using the supervised and

unsupervised learning paradigms from Chapters 2 and 3 with unidimensionally and

multidimensionality varying stimuli.

Chapter 5 discusses the results obtained and their implications for our

knowledge of phonetic category acquisition.
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Chapter 2

Supervised learning of phonetic categories3

3 Chapter 2 and 3 will be jointly submitted to The Journal of Experimental Psychology as
“Supervised and unsupervised learning of auditory categories.





Introduction

Learners of a second language and infants acquiring a first language are faced with

the task of learning to categorize the sounds of the language’s phonetic system. To

succeed in this task, the learner must use phonetic information in the speech signal

to determine how many categories there are, and how to categorize additional

tokens of sounds as they are heard. Despite a consensus that this process should be

conceptualized as a distributional learning problem (e.g., Guenther & Gjaja, 1996;

Kuhl et al., 1992; Werker & Yeung, 2005), little is known about the mechanisms by

which category learning proceeds, or about what constraints on category learning

are present. The experiments presented in this chapter are the first steps in a larger

attempt to lay out general principles of auditory category learning, with particular

reference to problems posed by phonetic categories.

Our approach is similar to that taken in studies of visual category learning

(Ashby & Maddox, 1993; Nosofsky, 1990), in which perceptual categories are defined

as existing in a psychophysical space with continuous dimensions. Thus, we assume

that when listeners hear a sound, this sound is evaluated on a number of dimensions

and mapped onto a point in a multidimensional space. Repeated exposure to sounds

originating from distinct categories leads to the formation of “clouds” of points. If,

37



after a period of exposure, distinct clouds emerge, listeners can start to associate

each cloud with a different category4.

Most research on the learning of categories defined as clusters in perceptual

space has investigated simple visual dimensions: the length and orientation of line

segments, the slope of a line bisecting a circle and the size of the circle, the horizontal

and vertical position of dots relative to a midline and so forth. Here, we focus on the

learning of auditory categories. Determining whether similar processes underlie

category learning in different sensory modalities is itself of interest. In addition, it is

hoped that a better understanding of auditory category formation in tightly

controlled experimental situations will inform theories of language perception and

acquisition.

Infants have been shown to discriminate a wide range of speech-sound contrasts

in the first few months of life, but over the course of the first year begin to conflate

similar sounds if those sounds are not phonologically contrastive in the infant’s

native language (see, e.g., Aslin, Pisoni, & Jusczyk, 1998, or Jusczyk, 1997, for

reviews). Several studies have found decrements in non-native consonant

discrimination by the age of 12 months (e.g., Werker & Tees, 1984) and analogous

decrements in non-native vowel perception even earlier (Kuhl, Williams, Lacerda,

Stevens, & Lindblom, 1992; Polka & Werker, 1994).

Infants’ lexical knowledge is almost certainly too meager for language-specific

phonological tuning to be driven by semantic contrast in phonologically similar

words; thus, infants are generally assumed to learn their language’s phonetic

categories via a bottom-up distributional analysis of the speech they hear. A

4 This conceptualization of the category learning process was implemented by, among others,
Behnke (1998) in an neural network that recognizes patterns and creates a phonetic map. In a
similar approach, Kornai (1998) modeled the data of Peterson and Barney (1952) in a neural
network.
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demonstration of such learning in a laboratory setting was provided in a study of 6-

and 8-month-olds by Maye, Werker, and Gerken (2002). In their study two groups of

infants were exposed to stimuli on an artificial voice-onset-time (VOT) continuum

extending from [da] to unaspirated [ta], a distinction not made in English. One

group listened to stimuli in which the VOT followed a unimodal distribution (most

sounds were from the middle of the continuum) whereas the other group was

presented with stimuli following a bimodal distribution (most sounds were from

near the edges). Following this familiarization, infants were given the opportunity to

listen to alternating stimulus sets (both of the endpoint stimuli) or non-alternating

sets (the same stimulus repeated). Only the infants in the Bimodal familiarization

group evinced a preference for alternating over non-alternating stimuli at test,

revealing discrimination; infants in the Monomodal group showed no preference.

Maye and Gerken (2000, 2001) found a similar sensitivity to distributional

characteristics for adults with similar stimuli. However, the generality of this

extremely rapid distributional learning is not clear at present (Peperkamp, Pettinato,

& Dupoux, 2003; Pierrehumbert, 2003).

In the present chapter we describe experiments in which adult listeners were

tested on their ability to learn auditory categories. The categories comprised novel

not speech-like sounds with speechlike properties, to simulate processes of phonetic

category learning while minimizing effects of native-language phonological

knowledge. Listeners’ exposure to the category structures was given through

experience with category exemplars, in a forced-choice decision task with feedback

on each trial. 

Our use of artificial categories exemplified by sampling a distribution of variants

of category prototypes ultimately descends from the pioneering studies of Attneave
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(1957) and Posner and Keele (1968), who laid out a range of hypotheses that are still

of empirical interest. Among these are whether categories are abstracted as

prototypes or stored as sets of experienced exemplars (or something in between),

and when verbal descriptions of categories guide learners’ decisions (see e.g.,

Goldstone & Kersten, 2003, for a review). Here, we focused on two issues: first, how

well listeners can learn two similar, distributionally-defined auditory categories

given limited training; and second, how this learning is influenced by whether the

category structures demand attention to one versus two dimensions of variation.

We assume that statistical learning lies at the heart of auditory category learning;

acquiring auditory categories is equivalent to recognizing the statistical patterns

present in the incoming signal. For the purpose of generating experimental stimuli,

we specified a psychophysical space spanned by two acoustical dimensions known

to be relevant in vowel perception, namely frequency and duration. Categories were

defined as two-dimensional probability density functions (pdfs) in this space.

Exemplars generated from these functions formed “clouds” in perceptual space. The

nature of the pdfs (their means and covariance matrices) governed the relevance of

each dimension for making category judgments (see Figure 1.1 in Chapter 1). For

example, exposure to the structure in the top left cell in Figure 1.1 in Chapter 1

should encourage subjects to categorize using only dimension 1, whereas exposure

to the structure in the bottom left plane should encourage subjects to use only

dimension 2. However, exposure to the structures in the right-hand column should

encourage the use of both dimensions in categorizing, because the use of only one

dimension would lead to many incorrect categorizations. Experiments in visual

category learning have shown that subjects initially prefer a unidimensional solution

(Feldman, 2000) and only with the help of feedback start using a two dimensional
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strategy (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Ashby et al (1998)

distinguish between verbal and procedural-based category learning. In their model,

the verbal system has initial priority and this system tries to categorize using a

relatively simple (unidimensional) rule (e.g., long sounds in category A, short

sounds in category B). Rules that are more complex and more difficult to verbalize

like “all long and high frequency sounds go into category A” only enter the verbal

system after the unidimensional rules have failed. The other category learning

system in their model is an implicit or procedural learning system that does not have

such a preference for unidimensional solutions, but learns (much) more slowly.

The notion that learning categories defined over multiple dimensions could be

more difficult than learning unidimensional categories may seem counterintuitive.

Indeed, category learning is sometimes facilitated by the presence of multiple

dimensions of variation. When multiple cues are available to aid in the identification

of a category member, or when nominally distinct dimensions’ values are

interpreted holistically, redundancy gain may be obtained (e.g., Egeth & Mordkoff,

1991; Garner, 1974; Pomerantz & Lockhead, 1991). In addition, the mere presence of

correlated attributes among some members of a set of objects can lead observers to

form a category that includes those members and excludes the rest—an effect that

has been demonstrated even in 10-month-olds (Younger, 1985). However, these

advantages of correlations among stimuli depend upon redundancy. Note that in the

“diagonal” categories in the right-hand column of Figure 1.1, the value of only one

dimension is not a reliable predictor of category membership; good performance

requires use of both dimensions. Relative to unidimensional “filtering” tasks (left-

hand column), any advantage due to correlations among the dimensions may be

outweighed by the fact that listeners must attend to two dimensions rather than one.
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The multidimensional-categorization task (sometimes referred to as a condensation

task) is more difficult than analogous unidimensional tasks (Posner & Keele, 1970;

Gottwald & Garner, 1972).

Distinguishing “diagonal” and non-“diagonal” category distributions

presupposes the psychological reality of the axes and a particular interpretation of

the axes’ orientation. This notion has been studied in attempts to understand the

separability or integrality of pairs of dimensions. Broadly speaking, two separable

dimensions can be attended to exclusively without mutual interference, while

integral dimensions cannot (Garner, 1974). This leads to the prediction that if two

category sets defined along separable dimensions are rotated in stimulus space (e.g.,

converting the left column of Figure 1.1 to the right column), categorization should

become substantially more difficult, because observers are deprived of the effective

strategy of ignoring the irrelevant dimension (or, conversely, because any tendency

to rely on a single dimension leads to many errors). This prediction has been upheld

in a number of studies, although the situation is complicated by the fact that

classification of dimension pairs as separable or integral is not always maintained

consistently over tasks (more thorough discussion of these issues may be found in

Grau and Kemler Nelson, 1988; Kemler Nelson, 1993; Melara and Marks, 1990;

Shepard, 1991). To anticipate our results, the present experiments reveal a large axis

rotation effect, revealing that the speechlike dimensions under study are

“psychologically real” in Grau and Kemler Nelson’s sense.

Here, learning of multidimensionally varying categories with relevant variation

in one dimension was tested in Experiment 1 and learning of multidimensional

categories with relevant variation in two dimensions was tested in Experiments 2

and 3. In all experiments, learning was supervised: participants were given feedback
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about their category decisions. This contrasts with the situation of the infant in

which supervision is absent. We wanted to investigate the role of supervision and

make contact with the bulk of the visual perception studies in which such feedback

is used. Chapter 3 presents experiments with unsupervised learning and is thus

more in line with the infant situation.

All three experiments used the same basic procedure with a learning phase and a

maintenance phase. In the learning phase, listeners were presented with stimuli

drawn from two probability density functions and received feedback on their

category judgments. Listeners were faced with the problem of partitioning the

psychophysical space by using a criterion based on one or more dimensions, in the

absence of explicit guidance regarding the relevance of the dimensions. Listeners’

use of a unidimensional criterion would be reflected in their assignment of all

stimuli below a criterion value on that dimension to one category, and all stimuli

above it to another. The use of a multidimensional criterion would be reflected by

listeners’ allowing dimensions to trade off: for example, a low value on one

dimension might be compensated by a low value on the other (or a high value on the

other, depending on the orientation of the category’s “diagonal” in perceptual

space). This compensation entails interpretation of one dimension relative to the

value of the other in assigning category membership – a process that is a hallmark of

speech perception (e.g., Repp, 1982). Solving the categorization problems in

Experiment 1 required the use of one dimension, while the categorization problems

of Experiments 2 and 3 required the use of both dimensions. 

After the learning phase, subjects entered a maintenance phase, intended to

characterize their division of psychophysical space. In Experiments 1 and 2 the

stimuli for this maintenance phase were drawn from an equidistantly spaced grid
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that was intended to “scan” the subjects’ psychophysical space in a neutral way,

without continued distributional information. In Experiment 3, the maintenance

stimuli were identical to those used in the learning phase. In the maintenance phases

listeners did not receive trial-by-trial feedback.

The stimuli were inharmonic tone complexes filtered by a single resonance. The

two dimensions of variation were the frequency of the spectral peak at which the

sound complex was filtered (formant frequency) and the duration of the stimulus

(duration). These dimensions are important in the perception of vowel sounds (e.g.,

Ainsworth, 1972; Peterson & Barney, 1952). We chose to use non-speech sounds as

stimuli to prevent subjects’ native-language phonetic categories from unduly

influencing their category learning (Best & Strange, 1992); however, because these

dimensions (or closely related ones) are necessary for speech interpretation, there is

no reason to expect that success in the task would require the development of

genuinely novel features or stimulus dimensions (see Francis and Nusbaum, 2002,

for discussion and evidence bearing on this point for speech sounds, and Schyns,

Goldstone, and Thibaut, 1998, regarding feature creation more generally). For

example, given that the native language of the participants was Dutch, all subjects

were fully accustomed to distinguishing the vowels in words like maan (“moon”),

man (“man”), and men (“people”). The first two words’ vowels differ primarily in

their duration (Nooteboom & Doodeman, 1972), while the last two words’ vowels

differ in their formant frequencies. Thus, although the inharmonic tone complexes

did not sound like spoken words, the dimensions of variation themselves were not

new.
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Experiment 1

Method

Subjects

Twenty-four subjects (twelve in each condition), all students from the University of

Nijmegen (Netherlands), participated in the experiment in return for a small

payment. None of the subjects reported any history of hearing problems.

Stimuli

The stimuli were inharmonic sound complexes, 112 in each category. All stimuli

were created by modifying a base signal. This base signal was an inharmonic sound

complex made by adding several sinusoids with exponentially spaced frequencies.

The base signal was defined by the following formula:

(1) B t=A∑
n=0

N
1

sin 2 f 0 F
n t 

In this formula, A represents the amplitude of the signal, f 0  is the frequency of the

lowest sinusoid (500 Hz), t is time in seconds, and F n  is the frequency ratio between

two successive sinusoids (1.15). Thus, the frequencies of the base signal were not

spaced linearly, as they are in harmonic sounds. Finally, N is the total number of

sinusoids that were added together; this was set to 17.

After the base signal was constructed, it was filtered with a single resonance

peak, implemented as a second order Infinite Impulse Response (IIR) filter. The

filter’s bandwidth was 0.2 times that of its resonance frequency. Each sound was
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truncated at the desired duration, applying linear onset and offset ramps of 5 ms to

avoid the perception of clicks.

In all experiments, the stimuli varied in two dimensions: the frequency of the

spectral peak at which the sound complex was filtered (the non-speech analogue of

formant frequency) and the duration of the sound. The psychophysical scale

commonly accepted for the perception of frequency is the Equivalent Rectangular

Bandwidth scale (Glasberg & Moore, 1990). With this scale, physical frequency f

expressed in Hertz is transformed to “psychological frequency” e expressed in ERB

units as follows (f refers to frequency in Hertz):

(2) e=21.4 log10 0.00437∗ f 1

Psychological duration D (measured in DUR), the psychological counterpart of

physical duration in seconds, is converted from stimulus duration according to the

following transformation:

(3) D=10 log t

This transformation was proposed by Smits, Sereno, and Jongman (2006) based on

data published by Abel (1972). To ensure that both dimensions would be equally

salient and discriminable, they were normalized using their respective just

noticeable differences (jnd). The relevant jnd in this frequency region for formant

frequency is 0.12 ERB (Kewley-Port & Watson, 1994). For duration, experiments by

Smits et al. (2006) and subsequent piloting with multidimensional stimuli varying in

duration and frequency indicated that a jnd of 0.25 DUR resulted in a
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discriminability comparable to 0.12 ERB. We used these values to equalize the range

of variation between the stimulus dimensions, so that the difference between the

category means and the in the training distributions and between the highest and the

lowest stimulus value in the grid used in the maintenance phase was 20 jnds for both

frequency and duration.

Table 2.1.
Distributional characteristics of the stimuli for the two learning conditions (relevant variation in one
dimension) of Experiment 1.

Category A Category B
Means σ ρ Means σ ρ

Condition 1
(duration
relevant)

47.7 D
117 ms

0.65 D
1.07 ms

18.80 ERB
1501 Hz

1.88 ERB
51.3Hz

-0.05

52.53 D
205.0 ms

0.65 D
1.07 ms

18.90 ERB
1520 Hz

1.88 ERB
51.3 Hz

-0.10

Condition 2
(frequency
relevant)

50.1 D
149.6 ms

6.45 D
1.91 ms

17.6 ERB
1295 Hz

0.31 ERB
7.76 Hz

0.05

49.73 D
144.5 ms

6.46 D
1.91 ms

20.0 ERB
1737 Hz

0.31 ERB
7.76 Hz

0.10

Table 2.2.
Distributional characteristics of the maintenance phase (equidistantly spaced grid).

Mean Min Max Step-size

Duration 50.1 DUR
150 ms

47.6 DUR
117 ms

52.6 DUR
193 ms

Formant frequency
18.8 ERB
1499 Hz

17.6 ERB
1288 Hz

20.00 ERB
1739 Hz

0.45 D/step

Solving the categorization problem in Experiment 1 required the use of only one

dimension. The difference between Conditions 1 and 2 was in the relevant

dimension of variation. In Condition 1, the stimuli manifested relevant variation in

duration and irrelevant variation in formant frequency (see the upper middle panel
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of Figure 2.1). In Condition 2, the stimuli manifested relevant variation in formant

frequency and irrelevant variation in duration (see the middle panel of Figure 2.1).

Table 2.1 shows the perceptual and physical characteristics of the distributions of the

learning stimuli of each condition.

The maintenance stimuli were the same for both conditions, with items taken

from an equidistantly spaced grid (see the upper right panel of Figure 2.1 and Table

2.2). Their values ranged between the mean values of both categories. The test

stimuli were intended to “scan” the subjects’ psychophysical space in a neutral way,

with distributional information no longer present.
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middle panel) and Experiment 3 (lower right panel).



Procedure

Subjects were seated in a soundproof booth in front of a computer screen and a two-

button response box. In the learning phase, they listened to 448 stimuli (2 categories

times 112 stimuli per category times 2 repetitions) through Sennheiser headphones.

The stimuli from the two categories were presented in a random order in two blocks

separated by a brief rest period. All 112 stimuli from each category were presented

once in each block.

The listeners’ task was to assign each stimulus to group A or B, using the button

box. When their categorization was correct, the monitor displayed (the Dutch

equivalent of) “right” in green letters for 700 ms; when the categorization was

incorrect, the monitor displayed (the Dutch equivalent of) “wrong” in red letters for

700 ms immediately following the response. After the visual feedback disappeared, a

200 ms blank screen preceded the next stimulus.

In the maintenance phase subjects categorized sounds from the test continuum

(see the upper rightmost panel of Figure 2), as belonging to group A or B. There

were 49 test stimuli that were randomly ordered in four blocks, totaling 196

presentations. Once a participant had selected a category label on a trial, the monitor

would display (the Dutch equivalent of) “next” for 700 ms and the next stimulus was

played after a 200 ms delay. No feedback was given on maintenance trials. 

Results and discussion

The results were analyzed using percentage correct, d’ and logistic regression. Both

d’ and percentage correct are straightforward measures of performance that are easy

to interpret. A disadvantage is that they are based on category membership, ignoring
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the coordinates of the stimuli in the multidimensional plane and consequently

yielding less fine-grained information about participants’ strategies. In addition,

they cannot be applied to the data of the maintenance phase, because “correctness”

of a response does not apply straightforwardly in the region between the trained

category exemplars. Logistic regression, on the other hand, is sensitive to the

coordinates of the stimuli, and also may be applied to the data of the maintenance

phase. 

Agresti (1990) argued for logistic regression as the appropriate analysis for

categorical response data with continuous stimulus dimensions. In every regression

analysis linear and interaction terms can be entered into the analysis. Because in

linear regression the interpretation of an interaction term is often problematic it is

usually left out. The present results were analyzed both with and without the

interaction term. Of the 72 analyses in Experiment 1 (12 subjects times 2

experimental conditions times 3 experimental parts) only 2 had a significant

interaction term and of the 72 analyses of Experiment 2 and 3 only 10 had a

significant interaction. Furthermore, the fit of the models with interaction term

hardly improved compared to those without. Based on these results and the needless

complexity of models with an interaction term we present here only the model

without the interaction term. 

Signal detection analysis

Listeners’ performance in Experiment 1 was fairly good. The four bars on the left-

hand side of Figure 2.2 show the percentages correct of the first and second part of

the learning phase Condition 1 (duration relevant) and 2 (frequency relevant). Recall
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that only the data from the learning phase is analyzed because only there can “right”

and “wrong” be clearly assigned. 

Figure 2.3 shows the same with d’ as the dependent measure, where d’ = 0 equals

chance. In both conditions and both learning phases, percentages correct and d-

primes were significantly above chance (all p < 0.05) using t-tests with correction for

multiple comparisons.

An ANOVA with Part of the Experiment (Learning phase 1 versus 2) as a within-

subjects variable and Condition (duration relevant versus frequency relevant) as a

between-subjects variable revealed significant improvements in performance from

the first phase to the second, whether considering the percent correct measure (F

[1,22] = 7.14, p < .05) or the d’ measure (F [1,22] = 8.31, p < .05). Performance did not

vary significantly by Condition (percent-correct and d’, F<1, ns), nor were there any

significant interactions (both F < 0.1). See also Table 2.3.
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Figure 2.2. Percent correct measures for
Experiment 1 to 3.
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Figure 2.3. d’ values for Experiment 1 to 3.
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Table 2.3.
Signal detection results; mean percentage correct (“pc”) and d’, with their standard deviations, for all
three experiments.

Learning phase 1 Learning phase 2
pc σ dʹ σ pc σ dʹ σ

Experiment 1, Condition 1 0.81 0.04 1.39 0.21 0.93 0.02 2.59 0.27
Experiment 1, Condition 2 0.80 0.03 1.32 0.17 0.89 0.03 2.07 0,25

Experiment 2 0.59 0.01 0.33 0.05 0.63 0.01 0.50 0.05
Experiment 3 0.58 0.02 0.28 0.08 0.62 0.03 0.45 0.11

Thus, listeners were able to perform the categorization task, and improved from the

first phase to the second. In the next section, logistic regression is used to investigate

the category learning process in more detail.

Logistic regression

Logistic regression yields, among other things, two β-weights that are similar to the

weights in a linear regression. Like the weights in a linear regression the β-weights

reflect the influence of the independent variables on the dependent variable. A β-

weight of large magnitude indicates a strong influence of the associated dimensions

on the dependent variable (the listeners’ choice of category). The β-weights were

calculated separately for each subject. Table 2.4 and Figure 5 display the mean β-

weights for the relevant and irrelevant dimension for the first half of the learning

phase (“Learning phase 1”), the second half of the learning phase (“Learning phase

2”) and the maintenance phase (“Maintenance phase”). 

In addition to β-weights, the logistic regression gives significance levels of the

hypothesis that each β-weight differs from zero. If a β-weight did not differ

significantly from zero at the p = .05 level, we concluded that subjects did not make

use of that dimension.
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Table 2.4 displays the full results of the logistic regression analysis. The columns

labeled “Uni” and “Multi” show how many subjects used either one or both

dimensions significantly. Numbers of subjects who did not use any dimension

significantly are not shown (note that the total number of subjects in each group was

always 12). 

Table 2.4.
Logistic regression results of Experiment 1 for each condition. Mean β-weights are shown for both
dimensions and the number of subjects out of 12 using one (Uni) or both (Multi) dimensions
significantly.

Condition 1 Condition 2
Learning phase 1

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.65 0.13 10
Irrelevant 0.05 0.04 0

0
1.37 0.73 11
0.02 0.03 0

1

Learning phase 2
µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.50 0.27 11
Irrelevant 0.10 0.10 0

0
2.28 1.11 11
0.02 0.04 0

1

Maintenance phase
µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.54 0.14 12
Irrelevant 0.10 0.06 0

0
0.20 0.18 9
0.07 0.06 0

1

Table 2.4 and Figures 2.4 and 2.5 confirm that in both conditions subjects learned

to use the relevant dimension. Both the mean β-weights and the number of subjects

using that dimension were higher than those of the irrelevant dimension. This also

shows that subjects were able to ignore irrelevant variation in making their

judgments, as the values of the irrelevant dimensions remained close to zero

throughout the experiment. The higher mean β-weights and number of listeners

using the relevant dimension in Condition 2 compared to Condition 1 suggest that

53



formant frequency was an easier dimension to learn to attend to. In the maintenance

phase, when feedback was no longer given and the stimulus grid was used, listeners

persisted in their use of the relevant dimensions. Oddly, however, although formant

frequency was easier to learn, it also appeared easier to unlearn, as was evidenced

by the large drop in the average β-weight for formant frequency.

To statistically test these effects, we carried out an ANOVA with Part of the

experiment (Learning Part 1, Learning Part 2, or Maintenance phase) and Dimension

(Relevant versus Irrelevant) as within-subjects variables, and Condition (duration

relevant versus formant frequency relevant) as between-subjects variable and the β-

weights as dependent measures.
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Figure 2.4. Mean β-weights of Experiment 1 for Condition 1 and Condition 2 for the relevant and
irrelevant dimensions for each part of the experiment. In Condition 1, duration was the relevant
dimension of variation; in Condition 2, formant frequency was relevant. Vertical line segments
indicate plus one standard error.



Because of a significant three-way interaction between Dimension, Part of the

Experiment and Condition, the results were further analyzed separately for each

condition5. For Condition 1 (duration relevant), the β-weight for the relevant

dimension was higher than that for the irrelevant dimension (F [1,11] =61.06, p <

0.05), which confirmed that listeners learned to attend to the relevant dimension. The

significant main effect for Part of the Experiment (F [2,22] = 12.83, p < 0.05) shows

that subjects improved over the course of the experiment. The interaction between

Part of the Experiment and Dimension (F [2,22] = 14.40, p < 0.05) indicates that the

learning effect depended on whether a dimension was relevant or irrelevant: the

effect for Part of the Experiment was present for the relevant dimension (F [2,22] =

13.78, p < 0.05), but not the irrelevant dimension (F [2,22] = 1.69, p > 0.20).

5 The main effects of Part of the Experiment (F [1, 22] = 187.98, p < 0.05 ), Dimension (F [2, 44] =
13.85, p < 0.05) and Condition (F [1, 22] = 199.55, p < 0.05) and all interactions were all significant.
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Figure 2.5. Number of subjects using a dimension (duration or formant frequency)
significantly in Condition 1 (duration relevant) and Condition 2 (Formant frequency
relevant) for all parts of the experiment. Dimensions that have no subjects using them in
any condition in any part are not shown.



In Condition 2, the same main effects and interactions as in Condition 1 were

present. The β-weight for the relevant dimension (frequency) was higher than that of

the irrelevant dimension (F [1,11] = 175.04, p < 0.05) and this advantage for the

relevant dimension increased during the learning phase (Part of Experiment effect, F

[2,22] = 15.61, p < 0.05). The interaction between Part of the Experiment and

Dimension was also present; post-hoc analysis showed a significant effect of Part of

the Experiment for the relevant dimension (F [2,22] = 17.34, p < 0.05), and a much

smaller effect for the irrelevant dimension (F [2,22] = 3.54, p < 0.05). This difference

between the conditions reflects the differences in the Maintenance phase. In

Condition 1, when duration was the relevant condition, its β-weight remained high

in the Maintenance phase and the β-weight for frequency remained small. In

Condition 2 however, the β-weight for frequency dropped in the Maintenance phase

and that of duration rose. Thus, when presented with an evenly spaced stimulus

grid and without feedback, listeners had a tendency to start using duration again

even when they had previously correctly used formant frequency.

Differences in the numbers of subjects using a given dimension were statistically

evaluated using a binominal test. We wanted to compare the counts of the two

relevant dimensions with equal probabilities (0.5) This difference between the counts

was significant (p < 0.05), confirming that listeners preferred using the relevant

dimension over the irrelevant dimension.

Experiment 1 showed a clear learning effect in the learning phase. Subjects

learned to attend to the relevant stimulus dimension despite irrelevant variation in

the other dimension. A decline in the use of the relevant dimension during the

maintenance phase was found for formant frequency, but not for duration. Although

listeners who were taught to use formant frequency continued to use it, as evidenced
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by the high number of subjects using solely this dimension (10 out of 12 subjects),

their performance dropped considerably in the maintenance phase, presumably

because feedback fell away and the uniform distribution of the test stimuli no longer

supported a distributional distinction between categories. When duration was the

relevant dimension, subjects had no problem generalizing the learning to the

maintenance phase, as evidenced by the high number of subjects using solely this

dimension (12 out of 12) and the consistently high β-weights. The results show that

the difficulty in learning to attend to a dimension and maintaining this attention

may not be the same for every acoustic dimension. Learning to attend to formant

frequency when distributional information was present was easier than doing the

same for duration. Maintaining the learned distinction in the absence of feedback

and distributional information, on the other hand, was more feasible with duration.

This difference for duration and formant frequency between learning and

maintaining a category distinction is surprising given our attempt to equalize the

tested dimensions by scaling the variability of the stimuli to empirically determined

jnds. Apparently, equal just noticeable difference obtained in same/different

experiments varying one dimension in a two-dimensional formant frequency x

duration space do not guarantee equal categorization behavior. Smits et al. (2006)

found a similar difference in their experiments and hypothesized that this may be

due to a difference in stimulus dimensions introduced by Stevens and Galanter

(1957). Stevens and Galanter argued that dimensions like duration are prothetic

dimensions, where an increase in value means adding more of the same, while

dimensions like formant frequency are metathetic dimensions, where an increase

does not necessarily mean more of the same. A higher pitch does not mean more

frequency, but a longer stimulus duration does mean “more” duration. According to
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the model proposed by Smits et al., storing a category representation or comparing a

stimulus with a stored category based on a prothetic dimension is noisier than

storing a category representation or comparing a stimulus with a stored category

based on a metathetic dimension and thus more difficult in the absence of feedback.

Another possibility is that duration and frequency were differentially available to

the subjects in these stimuli. That is, to a first approximation the duration of a signal

bounded by silence may be measured in a similar way regardless of the spectral

characteristics of the signal; but extracting the peak frequency of these tone

complexes may have been intrinsically more difficult, or may have profited less from

subjects’ background experience in processing auditory signals. Although speech

makes use of frequency peaks broadly similar to those tested here (and listeners are

exquisitely sensitive to variations in these speech features), the present stimuli were

not speech signals. If the participants’ estimation of frequency was noisier than their

estimation of duration, this could have led to their relative disregard for frequency

in the maintenance phase (see, for example, Zwicker & Fastl, 1990, pp 265-271). We

will return to this issue in Experiments 2 and 3.

In summary, these data show that listeners can, relatively quickly, learn a

unidimensional categorization in a two-dimensional space and generalize this

learning to untrained exemplars, though this learning is not always robustly

maintained.

Experiment 2 addressed learning of multidimensional categories with two

relevant dimensions of variation. Instead of what was effectively a unidimensional

distinction in Experiment 1, subjects of Experiment 2 had to learn a

multidimensional distinction: both duration and formant frequency had to be used

in order to obtain a high level of correct responding. This manipulation was
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motivated by results from the visual category learning literature, in which learners’

performance in unidimensional and multidimensional categorization differ in

several ways (e.g., Ahn & Medin, 1992; Ashby, Queller, & Berretty, 1999; Feldman,

2000; Maddox, Ashby, Ing, & Pickering, 2004).

Experiment 2

Method

Subjects

Twelve subjects, students from the University of Nijmegen, participated in the

experiment in return for a small payment. None of the subjects had participated in

Experiment 1 and none had a history of hearing problems.

Stimuli

In Experiment 2 the main axis of variation of the probability density functions was

oriented diagonally (see the lower leftmost panel of Figure 2). To ensure a large

enough incentive for participants to actually use both dimensions, we chose the

mean and covariance matrices of the two distributions such that using a

unidimensional solution to the categorization problem resulted in a much lower

optimal percentage of correctly categorized stimuli (70%) than using the optimal

two-dimensional solution (100%). Subjects were tested using the same equidistantly

spaced grid as in Experiment 1 (see the lower middle panel of Figure 2). Table 2.5

shows the perceptual and physical stimulus characteristics of the learning stimuli for

this experiment.
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Table 2.5.
Distributional characteristics of the stimuli of the learning condition of Experiment 2 and the learning
and maintenance phase of 3 (relevant variation in two dimensions).

Category A Category B

Means σ ρ Means σ ρ

48.38 DUR
126.2 ms

2.80 DUR
1.32 ms

17.79 ERB
1322 Hz

1.34 ERB
35.5 Hz

-0.98

51.66 DUR
175.2 ms

2.82 DUR
1.33 ms

19.70 ERB
1977 Hz

1.33 ERB
35.2 Hz

-0.98

Procedure

The procedure was identical to that in Experiment 1. Note that subjects again did not

receive feedback during the maintenance phase.

Results and discussion

Signal detection analysis

As in Experiment 1, the data of the learning phases were analyzed first using the

(signal detection theoretic) measures percentage correct and dʹ. T-tests confirmed

that percentage correct exceeded 50, and d’ significantly exceeded 0, in both learning

phases (all p < 0.05, corrected for multiple comparisons). The bars right of the middle

in Figure 2.2 show the percentages correct in Experiment 2, while the same is shown

for d’ in Figure 2.3. Performance was clearly inferior to that of Experiment 1, but

performance was above chance.

An ANOVA with Part of the experiment as within-subjects variable confirmed

subjects’ improvement in the second phase relative to the first, both for the
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percentage correct measure (F[1,11] = 8.78, p < 0.05) and for d’ (F[1,11] =

6.23,p < 0.05). 

Logistic regression

As in Experiment 1, the ß-weights as well as the numbers of listeners that used a

particular dimension were analyzed using logistic regression. First, we consider the

number of subjects who used one or two dimensions above chance levels (see Table

2.6, columns “D”, “F”, and “Multi”). 

This analysis illustrated the difficulty of learning a multidimensional category

distinction. At most 6 out of 12 subjects learned to use both dimensions during

learning and only 4 subjects maintained this ability in the maintenance phase. The

increase in number of subjects using both dimensions (from 4 in Learning Part 1 to 6

in Learning Part 2) was due to two subjects who were initially using only duration,

but who then learned to also use formant frequency. In the Maintenance phase,

subjects generally used duration. To test these effects we compared the use of both

dimensions with the use of no dimension at all using a binomial test (with 0.0025

and 0.9975 as a priori probabilities). This showed a significant preference of listeners

for the use of both dimensions (p < 0.05).
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Table 2.6.
Mean values and stand deviations of the polar coordinates φ and A of the β weights for duration and
formant frequency in the three phases of Experiment 2 and 3, as well as the numbers of subjects using
only duration (D), only formant frequency (F) or both (Multi). Subjects using no dimension are not
shown.

Experiment 2
(Maintenance with equidistant grid)

Experiment 3
(Maintenance with learning stimuli)

Learning phase 1
N = 6 N = 7

φ
(σ)

A
(σ)

D F Multi φ
(σ)

A
(σ)

D F Multi

0.26
(0.12)

0.21
(0.10)

3 0 3 0.30
(0.09)

0.29
(0.14)

2 1 4

Learning phase 2
N = 8 N = 8

φ
(σ)

A
(σ) D F Multi

φ
(σ)

A
(σ) D F Multi

0.32
(0.18)

0.34
(0.13) 1 1 6

0.37
(0.03)

0.18
(0.21) 0 1 7

Maintenance phase
N = 12 N = 8

φ
(σ)

A
(σ) D F Multi

φ
(σ)

A
(σ) D F Multi

-0.22
(0.31)

0.76
(0.29)

8 0 4 0.24
(0.34)

0.42
(0.18)

0 0 8

The left column of Figure 2.6 presents the β-weights for duration and formant

frequency for each listener in each part of the experiment. The abscissa shows the β-

weight for duration, while the ordinate shows the β-weight for formant frequency

(see Nearey, 1997). The data points are divided into four groups: listeners who used

both dimensions (identified by asterisks), listeners who used only formant frequency

(plus-signs), listeners who used only duration (crosses), and listeners who did not
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use any dimension significantly (circles). Optimal performance corresponds to a

point in the upper right hand corner of the Figure, at an angle of 45º (when both

dimensions are given equal weight) and far away from the origin (reflecting

consistent behavior).
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Figure 2.6. Number of subjects using a dimension (duration or formant
frequency) significantly in Experiment 2 (two relevant dimensions
tested using an equidistantly spaced grid).



The two panels of the left column of Figure 2.6 show performance in the first and

second halves of the learning part of Experiment 2. Judging by the number of

subjects who used both dimensions in their categorization judgment (the asterisks) a

number of listeners picked up on the information provided by the shapes of the

categories’ distributions and by the feedback. Improvement in the second part is

evident in the higher beta values (i.e., asterisks closer to the upper right corner).

However, the third panel shows that listeners in the maintenance phase had trouble

maintaining their learned categorization strategy (only four asterisks remain) and

started using a unidimensional rule with duration as the relevant dimension (the

crosses).

Some subjects succeeded in using one or more dimensions above chance levels,

and others failed to use any dimensions significantly. For the purpose of comparing

the performance of the successful subjects across conditions and experiments, it

would be desirable to have a measure of these subjectsʹ central tendency and

variability. Simply computing the across-subjects average β weights for each of the

dimensions would not be an effective way to characterize overall performance. For

example, if half of these subjects used duration exclusively, and the others formant

frequency, the average β weights might both exceed chance even though no

individuals used both dimensions. These considerations suggest that a measure that

integrates performance on both dimensions would be useful.

Here, we derive such a measure by computing the angle formed by the line

connecting each subjectʹs Beta weights to the origin, on a graph where the x axis

represents duration, and the y axis formant frequency (as in Figure 2.6), and also

computing the length of this line. These computations were done first by

transforming the Cartesian coordinates of the β-weights for duration and formant
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frequency into the polar coordinates φ (the angle with the horizontal axis in radians)

and A (the distance to the origin) by the following transformations:

(4) A=dur
2  freq

2 

(5a) =arctan  freq /dur if dur≤0

(5b) =arctan  freq /dur  if dur0 ;
2 if 

In our analysis, φ ranges between π and -π radians. When φ equals ½π, listeners

purely use formant frequency, when φ equals 0, listeners use only duration, and

when φ is close to ¼π subjects are in between those two angles and use duration as

well as formant frequency. As can be seen from Figure 2.6, listeners who used both

dimensions fall in the upper right plane, somewhere between 0 and ½π.

The other polar coordinate, A, ranges between zero and infinity. A large A

indicates that a subject was internally consistent (though a large average A over

subjects need not reflect consistent weights of each dimension); while a small A

indicates that listeners’ categorizations tend not to be internally consistent. In Figure

2.6, the listeners that categorized using both dimensions (indicated by the asterisks)

are farther removed from the origin, while listeners that do not use any dimension

significantly (the circles) are all very close to the origin.

The left hand column of Table 2.6 lists the values of φ for each phase of the

experiment, considering all subjects who in a given phase used one or more

dimensions above chance levels. The mean φ of the first part of the learning phase

differed significantly from 0 (t [5] = 5.12, p < 0.01) as well as from ½π (t [5] = -4.73, p <

0.01). In the second part of the learning phase, the mean φ was again significantly

different from both 0 (t [7] = 4.96, p < 0.01) and ½π (t [7] = -2.88, p < 0.05). In the
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maintenance phase, listeners used only duration. The mean φ among subjects using

any dimension was not significantly different from 0 (t [11], = -0.243, p > 0.20), but

did differ significantly from ½π (t [11] = -5.850, p < 0.01)6

An analysis of variance with A as the dependent measure and Part of the

Experiment as within-subjects variable revealed a significant effect of Part (F [2,10] =

5.863, p < 0.05). Pairwise comparisons showed this effect to be due to a significant

difference between the second7 learning phase and the maintenance phase (p < 0.05).

Thus, subjects did become more internally consistent in their categorization (higher

β weights), but as we have seen, many were becoming consistent in a

unidimensional way.

To sum up, learning a multidimensional category distinction was difficult. Where

the analysis of percentage correct and d’ data did show a learning effect, the values

for A and φ did not increase significantly from the first learning phase to the second.

Moreover, in the maintenance phase both φ and A showed that most listeners opted

for a unidimensional solution instead of the multidimensional solution suggested by

their prior experience. Only half of the subjects used both dimensions significantly

during the last learning phase and only four of them retained this ability in the

maintenance phase. 

Another striking phenomenon is that the advancement of listeners using both

dimensions towards the upper right corner is tilted. The line that can be drawn from

the origin through the scatter plot is steeper than 45˚.This indicates that the mean β-

weight for formant frequency is higher that that for duration. 

6  Correction for multiple t-tests did not substantially alter the results.
7 The difference between the first learning phase and the maintenance phase is marginally

significant at p < 0.06.
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Most of the subjects who had used both dimensions in their categorizations in

phase 2 began to weight duration more heavily in the maintenance phase. Recall that

a similar pattern was found between-subjects in the two conditions of Experiment 1:

subjects learned to use formant frequency (when it was relevant) more reliably than

duration (when it was relevant), but tended to shift toward using duration in the

maintenance phase (see Table 2.4). 

It is not clear at present why participants were better able to use formant

frequency than duration when both feedback and distributional information were

present, but appeared to use duration more successfully (Experiment 1) or to a

greater degree (Experiment 2) when feedback and distributional information were

withheld. As described previously, there are reasons to suppose that duration might

be easier to estimate accurately (because it is a prothetic dimension, or because

listeners’ previous experience makes it easier to measure in these stimuli than

formant frequency), but neither suggestion predicts this particular pattern, whose

explanation must make reference to differences in the demands of the training and

maintenance phases. Although this is not an issue we will resolve in these

experiments, Experiment 3 will help clarify the characteristics of the maintenance

phase that lead to this result.

There are two possible explanations for participants’ change in categorization

strategies when they reached the maintenance phase: the absence of feedback in the

maintenance phase, and the absence of distributional information (due to the use of

an equidistantly spaced grid). Experiment 3 investigated whether the absence of

trial-by-trial feedback is in itself enough to disturb the previously learned category

boundaries. In Experiment 3 the stimuli of the maintenance phase were no longer

taken from the equidistantly spaced grid of Experiments 1 and 2 but were identical
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to those in the learning phase. The only remaining difference between the learning

and the maintenance phase was the absence of trial-by-trial feedback.

Experiment 3

Method

Subjects

Twelve subjects, students from the University of Nijmegen, participated in the

experiment in return for a small payment. None of the subjects had participated in

Experiment 1 or 2 and none had a history of hearing problems.

Stimuli

The learning stimuli were identical to those in Experiment 2. The test stimuli were

identical to the learning stimuli. 

Procedure

The procedure was identical to that in Experiment 3. Again, subjects did not receive

feedback during the maintenance phase. In the maintenance phase, like in one of the

two learning phases, all stimuli from both categories were presented once in random

order.
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Results and discussion

Signal detection analysis

In line with Experiments 1 and 2, the data were first analyzed with percentage

correct and dʹ as dependent measures. Both measures differed significantly from

chance levels. The rightmost bars of Figure 2.2 and 2.3 show a small difference

between the first and second part of the learning phase in the expected direction,

though contrary to Experiment 2 this difference between learning phases was not

quite statistically significant (ANOVAs, percent correct: F [1,11] = 2.41, p=0.149; d’: F

[1,11] = 3.24, p=.099)8

This difference between the learning phases of Experiment 2 and 3 calls for an

explanation, because these experiments only differ in their maintenance phases, not

in their learning phases. To test whether behavior during the learning phases of

Experiment 2 and 3 was significantly different, they were entered together in an

ANOVA with Part of the Experiment as within-subjects variable and Experiment as

between-subjects variable. This did not yield any significant main effects for

Experiment, neither for percentage correct (F [1,22] = 0.50, p > 0.20) or for dʹ (F [1,22]

= 0.30, p > 0.20).

Logistic regression

The right-hand column of Figure 2.6 displays the β-weights of each listener in the

formant frequency - duration plane. As in the learning phases of Experiment 2, the

asterisks show that some listeners learned to use both dimensions in the first

learning phase, and that performance improved on this measure in the second

8 An ANOVA examining the learning phases of Experiments 2 and 3 yielded no effects of
Experiment nor an Experiment x Phase interaction.
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learning phase. This learning was maintained in the maintenance phase of

Experiment 3, contrary to the maintenance phase of Experiment 2.

As in Experiment 2, the β-weights were transformed into the polar coordinates φ

(the angle with the ordinate) and A (the distance to the origin). The right hand side

of Table 6 displays the mean values of φ and A for each phase of the Experiment.

The value for φ again lies between 0 and ½π, suggesting, on average, the use of both

dimensions. 

Among those subjects using at least one dimension significantly in each phase of

the experiment, mean φ differed significantly from 0 (t [6] = 8.60, p < 0.05) as well as

from ½π (t [6] = - 5.60, p < 0.05). This was also true for the second learning phase,

where mean φ differed from 0 (t [7] = 35.65, p < 0.05) and from ½π (t [7] = -0.854, p <

0.05). 

Mean φ values exceeded ¼π (the value that would reflect an unbiased use of

duration and formant frequency), indicating more use of the frequency dimension.

In the maintenance phase this preference for formant frequency was lost. However,

the presence of an outlier in the lower-left quadrant complicates this analysis. With

the outlier included, φ was marginally significantly different from 0 (duration) (t [7]

= 1.98, p < 0.09) and from ½π (formant frequency) (t [7] = -2.19, p < 0.07).  With the

outlier collapsed to the upper right quadrant (on the reasonable assumption that the

learner retained his or her knowledge of the categories, but inverted the category

assignments), mean φ rose from 0.24 to 0.36, reflecting a preference for formant

frequency. In this analysis, mean φ was significantly different from both 0 (t [7] =

12.37, p < 0.01) and from ½π (t [7] = -3.59, p < 0.01) 9. This is in sharp contradiction

with Experiment 2, where consistent maintenance of learning was not found, and in

9 Removing the outlier entirely also yielded a significant difference between mean φ for both
duration (t [6] = 40.03, p < 0.01) and formant frequency (t [6] = -16.01, p < 0.01).
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which many subjects shifted to using duration. In Experiment 3, those participants

using any dimensions significantly in the maintenance phase all used both

dimensions. This difference between two experiments was tested in an ANOVA

with Experiment (2 versus 3) as a between-subjects factor and φ as the dependent

variable. The effect of Experiment was significant (F[1,17] = 10.24, p < .01).

To test whether listeners became more self-consistent over time, we conducted an

ANOVA with the distance parameter A as dependent measure and Part of the

experiment as within-subjects variable. This did not yield significant effect of Part of

the experiment (F [2,10] = 0.82, p > 0.20). Pairwise comparisons showed the

difference between the first and second learning phases to approach significance (p <

0.06), but not the differences between each learning phases and the maintenance

phase (p > 0.20). 

The number of subjects using both dimensions in categorizing the stimuli

steadily increased during the experiment from 4 to 7 and remained high in the

maintenance phase (8). Compared to the maintenance phase of Experiment 2, the

performance of subjects in the maintenance phase of Experiment 3 greatly improved.

Analysis with a binomial test comparing the number of subjects using both

dimensions significantly with the number of subjects using no dimension at all,

showed a significant advantage for the use of both dimensions.(p < 0.01).

We investigated the effect of the difference between Experiment 2 and 3 (the

change in maintenance phase stimuli) by performing an ANOVA on the results of

the maintenance phases with Experiment (2 versus 3) as between-subjects factor and

A and with φ as the dependent variables. For φ the analysis (without the outlier)

yielded a significant difference between Experiment 2 and 3 (F [1, 17] = 10.24,

p < 0.05) showing the effect of the different maintenance phases. In the maintenance
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phase of Experiment 3, φ is significantly different from both 0 π (t [6] = 40.03, p <

0.05) and from ½π (t [6] = -16.01, p < 0.05) whereas in the maintenance phase of

Experiment 2, it only differs significantly from ½π (t [11] = -5.850, p < 0.05) and not

from 0 (t [11], = -0.243, p > 0.20).

In a final analysis, we compared learning of unidimensional (Experiment 1) and

multidimensional (Experiments 2 and 3) categorization problems. Because

multidimensional category learning yields two relevant beta’s and unidimensional

yields one, they are not comparable. Hence, we used the performance measures

percentage correct and d’ to compare these experiments. An ANOVA with either

percentage correct or d’ as dependent variable was conducted.  Each ANOVA had

Part of the Experiment as within-subjects variable and Experiment (unidimensional

versus multidimensional, collapsing over Conditions 1 and 2 of Experiment 1) as a

between-subjects variable. Significant main effects for percentage correct (F [1,34] =

6.014, p < 0.02) and for d’ (F [1,34] = 6.278, p < 0.02 were found. Learning a

multidimensional distinction was thus significantly more difficult than learning a

unidimensional distinction.

General discussion

Listeners provided with trial-by-trial feedback readily learned to differentiate two

novel auditory categories that could be distinguished by a single auditory dimension

(duration or formant frequency) despite irrelevant variation in the other dimension.

Learning a truly multidimensional auditory categorization, on the other hand,

proved relatively difficult, even though listeners had at their disposal two sources of
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information about the category structure: the distributional characteristics of the

category exemplars, and feedback regarding their category judgments.

Participants’ success in generalizing to a maintenance phase without supervision

depended on whether the relevant dimension was formant frequency or duration,

possibly a reflection of processing differences between prothetic or metathetic

dimensions (Stevens & Galanter, 1957; Smits et al., 2006) or differences in subjects’

ability to extract estimates of duration and of formant frequency from the

inharmonic complexes used as stimuli. Performance also depended upon whether

the stimuli in the maintenance phase still contained distributional information. If the

stimuli in the maintenance phase lacked distributional information, subjects quickly

left their learned strategy and reverted to a one-dimensional solution, using the least

noisy, i.e. the metathetic, dimension of duration. This result has implications for

speech research that uses similar equidistant continua to investigate newly

established speech contrasts (Repp & Libermann, 1987), which might be susceptible

to rapid degradation resulting from the lack of distributional information at test.

Multidimensional auditory category learning appears to be more difficult than

visual category learning, at least based on gross levels of achievement in the present

study and analogous visual studies (e.g., Ashby & Maddox, 1993, Nosofsky, 1990). It

might be that the stimulus dimensions we chose were particularly difficult ones.

Although this possibility is hard to exclude, it seems unlikely given the importance

of both frequency and duration for speech

Another difference between the present studies and previous experiments testing

visual category learning was the introduction of a maintenance phase without

feedback or distributional information. In this maintenance phase, multidimensional

category learning performance was notably worse than that in the training phases of
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both our and visual category learning experiments. Even very successful

unidimensional category learning appeared to be fragile. The lack of trial-by-trial

feedback, of distributional information or the amount of training the listeners

received to learn the category distinctions are all factors that could be responsible for

the difference we observe between performance in the maintenance phases and the

learning phases of both visual and auditory category learning.

There are several important issues that remain to be addressed. First, what

accounts for the difference between the learning phases and the maintenance phase,

especially in multidimensional learning. Second, why do listeners (mostly) prefer

duration over formant frequency when left to their own devices? Third, why are

there such extensive differences between individuals? Fourth and finally, what do

these experiments tell us about infant language learning?

One possible explanation for the difference between the learning phase and the

maintenance phase is the absence of feedback in the maintenance phase. When

feedback was absent, participants simply “started over”, ignoring their previous

learning. However, this is unlikely given the lack of such an effect in Experiment 3.

A second possibility is that it was the testing of new tokens per se, and not the

distributional characteristics of those new tokens, that led to changed performance.

This possibility would be more likely if fewer stimuli had been used; however, given

that each of the 224 category exemplars was presented only twice during training, it

is not plausible to assume that participants had learned to respond to only the set of

exemplars themselves; rather, they learned to respond to the categories, with a

response strategy generalizable over new exemplars. 

We suggest two related accounts of the change. First, in the grid of test stimuli of

Experiment 2, the two categories showed no separation; indeed, many of the test
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stimuli fell in the region between the trained categories. Such exposure in sufficient

quantity should count as evidence to the learner that in fact the two categories are

one and the same, for precisely the same reason that distributional learning of

categories is possible in the first place. What counts as a “sufficient quantity” should

depend on how readily the learner allows new evidence to override earlier, well-

supported assumptions. A second factor that may have contributed to the

disappearance of multidimensional categorization in the maintenance phase of

Experiment 2 is the relatively restricted range of stimulus values in that phase. It is

conceivable that the more extreme stimuli of the learning phase “anchored” subjects’

memory representations of the dimensions of variation, particularly for formant

frequency, and once this variation was reduced, they had more difficulty recovering

frequency information from the maintenance stimuli.

The overall pattern of results is consistent with a bias in favor of using duration,

except when the distributional characteristics of the presented exemplars contradict

duration’s diagnostic value. 

The definite answer to the question concerning individual differences will be

difficult to give. However, there are lots of individual differences in other category

learning studies (see, for example, Seger, Poldrack, Prabhakaran, Zhao, Glover, &

Gabrieli, 2000). Francis, Baldwin, and Nusbaum (2000) used feedback training to

encourage subjects to modify their relative attention to two different cues signaling

consonant identity; most of them responded to the training, but several did not. Also

in the auditory domain, individual differences have been found in informational

masking tasks, in which listeners are required to “listen through” sets of distractor

tones in detecting target tones (e.g., Lufti, Kistler, Oh, Wightman, & Callahan, 2003).
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Learning a multidimensional category structure is, we argue, a task infants face

when acquiring their native phoneme repertoire. Recent studies have suggested that

under some circumstances infants can learn unidimensional speech categories

without feedback (Maye, Werker, & Gerken, 2002), even when given only 96

stimulus exposures. All current theories of infant phonetic category learning assume

that infants can compute categories from phonetic distributions; the Maye et al.

(2002) result suggested that this learning might in fact be extremely rapid, helping to

account for infants’ precocious acquisition of native phonetic categories (e.g., Polka

& Werker, 1994). Although there are obviously a number of important differences

between the present study and the infant experiments, the current results invite

consideration of the possibility that infants’ discovery of phonetic categories defined

over multiple auditory dimensions is a greater accomplishment than the Maye et al.

(2002) results imply. In addition, we suggest that infants, like some of the adults in

the present studies, might at first favor unidimensional solutions to

multidimensional phonetic problems, or show delayed category learning when the

distributional evidence contains trade offs among distinct dimensions. Note that

although phonetic cue-trading experiments with infants now have a long history

(e.g., Eimas & Miller, 1980), relatively little developmental work has attempted to

discover how infants’ learning of native-language speech categories is affected by

dimensional structure.

Multidimensional learning appeared to be fragile. In the maintenance phase of

Experiment 2, we observed that some of the subjects stopped using the

multidimensional categorization rule when the distributional information was no

longer present. We suggested above that this resulted from the stimulus

configuration with which listeners were presented in the maintenance phase. The
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use of a grid with equidistantly spaced stimuli to assess the psychophysical space of

a listener is a standard technique in the field of phonetics and phonology. The lack of

information in the distribution of the stimuli is intended to neutrally probe the

subjects’ psychophysical space and prevent subjects from changing their

categorization tendencies. However, this is not what happened in our experiments;

our listeners picked up on the fact that in the maintenance phase the category

structure was no longer present, and altered their categorizations. When

continuously confronted with stimuli that contained distributional information, their

performance level hardly dropped when feedback was discontinued.

Studies of auditory perceptual learning with respect to already known phonetic

categories have shown that adult listeners exhibit flexibility in adjusting the

boundaries of native language phoneme categories (Eisner & McQueen, 2005; Evans

& Iverson, 2004; Francis, Baldwin, & Nusbaum, 2000; Norris et al., 2003; Repp &

Liberman, 1987). Such adjustments enable listeners to adapt to new speakers and

new dialects. 

A positive interpretation of our results would be that our listeners seemed to

maintain analogous flexibility towards use of auditory information in the input in

our experiments. 

The categories which were most speech-like, in that they were defined by truly

multidimensional variation, were the hardest for these adult listeners to acquire. By

contrast, the categories with only one relevant dimension of variation were well

learned despite substantial irrelevant variation in a second dimension.

Our data show that this task is not at all easy for adult listeners, even when they

receive feedback. There are several possible explanations for this discrepancy

between infant and adult achievement.
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First, as Ashby and colleagues (Ashby et al., 1998) have argued, adult

participants faced with a new categorization problem will generally start solving the

problem in a unidimensional fashion. Only after some training, in which feedback

reveals to the learner that the unidimensional approach is not working, will

participants switch to a multidimensional strategy (Ashby et al., 1998; Maddox,

Ashby, & Waldron, 2002; Maddox, Bohil, & Ing, 2004). In Chapter 3, experiments in

which listeners learn the same categories but without explicit feedback that can test

this explanation will be presented. A second possibility is that auditory category

learning is equally difficult for infants and adults, but that infants simply received

much more exposure than the adults had in our experiments. Though short-term

modification of infants’ speech categories using distributions of unidimensionally-

varying exemplars is possible with little training (Maye, Werker, & Gerken, 2002),

infants’ natural exposure to speech dwarfs our subjects’ exposure to the tested

categories. On the other hand, categories in natural speech probably exemplify much

more variation than our stimuli, because of contextual variability and talker

characteristics. 

All current proposals for how infants spontaneously learn phonetic categories are

distributional learning accounts in which infants are argued to perform statistical

clustering over large numbers of isolated tokens of speech sounds. Experimental

evidence with infants comports with this notion in broad outline, but in fact

surprisingly little is known about the learning of auditory categories, either in

infancy or in adulthood. The present experiments used techniques borrowed from

related studies in the visual modality, presenting subjects with extensive exposure to

distributionally defined categories with dimensions of variation known to be

discriminable. Even with stimuli varying along two dimensions over a range of 20
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just-noticeable differences, though, and with supervised training, multidimensional

category learning performance collapsed soon after the close of the learning phase.
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Chapter 3

Unsupervised learning of phonetic categories





Introduction

The human capacity for resolving the categories of spoken language provides a

particularly interesting example of perceptual learning, because the acquisition of

language-specific categories begins in infancy (Aslin, Juszcyk, & Pisoni, 1998;

Jusczyk, 1997) and because this learning is necessarily unsupervised in nature. This

last observation is the starting point of this chapter.

The distinction between supervised and unsupervised category learning has been

explored extensively in adults. Human adults have proven adept at acquiring

perceptual categories when given regular and immediate feedback about the validity

of their judgments (Ashby & Alfonso-Reese; 1995, Ashby, Maddox, & Bohil, 2002;

Gureckis & Love, 2003), but such feedback is not always required, and is seldom

provided by everyday experience. When confronted with complex

multidimensionally varying stimuli, learners must rely on the distributional

structure of the objects and events they perceive. In successful categorization, those

things that occupy nearby regions of perceptual space come to be regarded as the

same, and as distinct from things that occupy different regions of this space. If an

observer can detect the correlated structure of category members, that observer has a

basis for forming a category without external feedback.

Unsupervised category learning studies have revealed characteristic limits in

observers’ abilities. Ashby, Queller, & Beretty (1999) showed that participants
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initially opt for unidimensional solutions (ignoring every dimension of variation but

one) and can only be brought to entertain multidimensional solution with the aid of

supervision. The studies of Homa and Cultice (1984) and Love (2002) also show the

preference for the use of one dimension or category structures with relatively minor

prototype distortions.

Most of the evidence supporting these generalizations derives from experiments

testing simple visual categories in which the dimensions of variation are readily

identifiable to participants (e.g., lines varying in length and orientation; the size of a

circle or the horizontal and vertical position of dots relative to a midline). Artificial

categories involving distributions of more complex stimulus patterns whose

dimensions of variation are less obvious have not, to our knowledge, been used in

unsupervised learning experiments, and, as suggested previously, few studies have

used these methods to test the learning of auditory categories (cf., Holt & Lotto,

2006). 

The literature on visual category formation suggests that in all likelihood, speech

sound categories should be extremely difficult to learn. Not only do speech stimuli

vary on many relevant dimensions, there is also considerable overlap between

categories and variability within categories (e.g., Peterson & Barney, 1952;

Hillenbrand, Getty, Clark, & Wheeler, 1995). Yet it is now well-known that infants

are well on their way to learning the phonetic categories of their native language

within the first year of life. Numerous experiments demonstrate the ability of infants

to discriminate a broad range of speech sound contrasts early in development. Over

the course of the first year infants begin to lose their ability to discriminate phonetic

contrasts that are not phonologically relevant in their native language (see, e.g.

Aslin, Jusczyk, & Pisoni, 1998, or Jusczyk, 1997, for reviews). The decrements in
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discrimination of non-native consonants (Werker and Tees, 1984) and vowels (Kuhl,

Williams, Lacerda, Stevens, & Lindblom, 1992; Polka & Werker, 1994) illustrate this

point. These changes in discrimination ability are seen as adaptive for native

language understanding because the failure to discriminate non-native speech

contrasts is taken to imply an improved understanding of the available speech

categories in the native language (see Kuhl, et al., 2006, for discussion). In other

words, the improved recognition of speech categories of the native language may

explain the loss of the infantʹs ability to discriminate non-native phonemes, possibly

because of changes in infants’ attention to different phonetic cues. Once two non-

native sounds have become part of the same native category, it becomes more

difficult to differentiate them from each other and their category co-members (Best,

1995). Within-category discrimination is more difficult than between-category

discrimination, because within category sounds are heard as more similar to each

other than between category sounds (Cameron Marean, Werner, & Kuhl, 1992; Kuhl,

1985). Given that infants show evidence of perceptual knowledge of their native

language before they can articulate any words, corrective feedback cannot be

responsible for this learning. Retention of linguistically relevant phonetic contrasts

based on semantically contrasting minimal pairs (words phonologically matching in

all but one feature or segment) is also excluded for infants whose vocabularies may

contain only a few meaningful words (see, e.g., Swingley, 2003, for discussion). As a

result, it is generally assumed that infants acquire their knowledge about phonetic

categories via an unsupervised bottom-up distributional analysis of the speech they

hear (e.g., Pierrehumbert, 2003). This sort of learning was demonstrated in a

laboratory setting with infants (Maye, Werker & Gerken, 2002) as well as adults

(Maye & Gerken, 2001, 200210). The similar results obtained in the Maye, Werker and

10 For a detailed description of these studies, see Chapters 1 and 2.
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Gerken studies for infants and adults points to similar principles underlying infant

and adult categorization (see also Gureckis and Love, 2004). Though the generality

of this extremely rapid distributional learning in infants and adults has not been

determined (Johnson & Tyler, 2006; Pierrehumbert, 2003), there is little doubt that

distributional analyses of infant-directed speech provide the foundation of early

phonetic category formation.

As in the supervised experiments in Chapter 2, the stimuli were two-dimensional

probability density functions in a two-dimensional psychophysical space, as shown

in Figure 1.1. The statistical properties of the probability density functions

determined the relevance of each dimension for assigning a stimulus to a category.

For example, mere exposure to the structure in the top left cell in Figure 1.1 should

encourage subjects to categorize using only dimension 1, and exposure to the

structure in the bottom left cell should encourage subjects to use only dimension 2.

In these ʺunidimensionalʺ situations, the dimension that does not differentiate the

categories is irrelevant to category assignment, although it contributes just as much

to the variance of the probability density functions. However, exposure to one of the

structures in the right-hand column should encourage listeners to use both

dimensions when categorizing the stimuli, because the use of only one dimension

would lead to many incorrect categorizations. We assume that recognition of the

statistical patterns in the emerging clouds of points in multidimensional space is

equivalent to category acquisition. This can be done with feedback (Ashby &

Alfonso-Reese, 1995) but learning of perceptual categories without trial-by-trial

feedback has also been reported (Fried & Holyoak, 1984; Fiser & Aslin, 2001, Wade &

Holt, 2006).
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In the experiments presented in this chapter, adult subjects were exposed to

categories of non-speech sounds. Although in principle models of adult second

language acquisition might best be developed using novel speech categories (such as

phonetic categories not present in the language of the participants), it is well known

that users of a given language tend to interpret sounds from non-native languages in

terms of the perceptual categories of their native language (Best, McRoberts, &

Sithole, 1988; Best & Strange, 1992; Flege, 1995; Polivanov, 1931), which complicates

efforts to model category acquisition in naïve listeners. Hence, in the present studies

the non-speech categories were used here in an attempt to minimize effects of the

listeners’ native language. Chapter 4 presents experiments that use non-native

speech sound in similar supervised and unsupervised learning paradigms.

The stimuli were identical to those used in Chapter 2: inharmonic tone complexes

that were filtered by a single resonance. The two dimensions of variation were again

the frequency of the spectral peak at which the sound complex was filtered (formant

frequency) and the duration of the stimulus (duration).

Both experiments used the same procedure as that presented in Chapter 2 with a

learning phase and a maintenance phase. In the learning phase, subjects listened to

the stimuli drawn from the two probability density functions. Listeners were faced

with the task of partitioning their perceptual space based on one or more

dimensions. The use of a unidimensional criterion would be reflected in listenersʹ

assignment of all stimuli below a criterion value to one category and all stimuli

above the criterion to another category. A multidimensional strategy would be

reflected in listenersʹ assignment of all stimuli exceeding a criterion value based on a

combination of the two dimensions and all stimuli below this value to another

(Ashby & Maddox, 1990). In Experiment 1 the categorization problems could be
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solved completely (no miscategorized stimuli) by using one dimension, while the

problem presented in Experiment 2 required the use of both dimensions. Contrary to

the situation in the experiments in Chapter 2, listeners did not receive any trial-by-

trial feedback on their categorization in any experiment. After the learning phase,

listeners entered the maintenance phase. In the maintenance phase the stimuli were

drawn from the same equidistantly spaced grid as in Chapter 2. This change in

stimulus properties permitted more accurate assessment of listeners’ use of each

dimension of variation, and also allowed evaluation of whether participants would

maintain their category identification criteria once the distributional cues to category

membership were no longer supported in the input. 

To investigate the differences between supervised and unsupervised learning,

the data from the unsupervised experiments will be compared with their supervised

counterparts from Chapter 2.

Experiment 1

Method

Subjects

Twenty-four students from the University of Nijmegen (twelve per condition)

participated in the experiment. All subjects were drawn from the Max Planck subject

pool and participated in return for a small payment. None of them reported hearing

difficulties.
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Stimuli

In the preparations for this experiment, a dimension different from duration was at

first used in combination with spectral peak frequency, namely the steepness of a

rise in fundamental frequency, “sweep”. After an extended period of same-different

scaling and pilot experiments, the use of this dimension was abandoned. Spectral

peak frequency and steepness of the rise in fundamental frequency proved

unsuitable for our experimental purposes because their relative salience in the

categorization task, which was not predictable from just noticeable differences,

almost exclusively determined the categorization behavior of listeners. Appendix A

describes the experiments with these stimulus dimensions and the results that led to

the present choice of the dimension duration and frequency of the spectral peak.

Thus, the stimuli were identical to those used in Chapter 2: inharmonic sound

complexes that varied along the frequency of the spectral peak at which the

inharmonic complex was filtered (formant frequency) and the duration of the

stimulus (duration). See Table 2.1 and 2.2 in Chapter 2 for detailed stimulus

characteristics.

Design

Conditions 1 and 2 differed solely in the relevant dimension of variation. In

Condition 1, the stimuli manifested variation in such a way that solving the

categorization problem could be done based on duration alone and not on formant

frequency (see the leftmost panel of Figure 3.1). In other words, the stimuli in

Condition 1 exhibited relevant variation in duration and irrelevant variation in

formant frequency. In Condition 2, the stimuli manifested relevant variation in

formant frequency and irrelevant variation in duration (see second panel of Figure
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3.1) so that solving the categorization problem requires the use of formant frequency

only. The maintenance phase of both conditions was identical: listeners categorized

stimuli from an equidistant continuum (see the rightmost panel of Figure 3.1) as

belonging to either group A or B. This continuum was intended to neutrally “scan”

the listenersʹ perceptual space, as distributional information was no longer present.

Procedure

The procedure was identical to that of Chapter 2, but without trial-by-trial feedback.

The listeners were seated in a soundproof booth in front of a computer screen and a

two-button response box. In the training phase, they listened to 448 stimuli (2

categories times 2 repetitions times 112 stimuli per category) through Sennheiser

headphones. The stimuli from the two categories were presented in a random order

in two sessions separated by a brief rest period. All 112 stimuli from each category

were presented once in each session.

The listenersʹ task was to assign each stimulus to group A or B, using the two-key

button box. Once participants had selected a category label on a trial, the monitor

would display (the Dutch equivalent of) “next” for 700 ms and the next stimulus was
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played after a 200 ms blank screen. No trial-by-trial feedback was provided in the

training.

In the maintenance phase the task was to categorize the sounds from the

maintenance continuum (see the rightmost panel of Figure 3.1). These consisted of 49

different stimuli randomly presented in four blocks (totaling to 196 stimuli). The

maintenance stimuli ranged between the mean values of both categories. No trial-by-

trial feedback was given on maintenance trials.

Results and discussion

The results of Experiment 1 were analyzed using percentage correct and the signal

detection measure d’ as well as measures derived from logistic regression.

Percentage correct and d’ have the advantage of being easy to interpret measures of

overall performance. However, they are based on category membership and not on

the coordinates of each individual stimulus in the duration - formant frequency

plane. They also cannot be applied to the data of the maintenance phase, as there is

no unambiguous criterion for “correctness” of a response there. Logistic regression

compensates for these shortcomings, because it is sensitive to the coordinates of the

stimuli in the multidimensional plane, which also makes it applicable to the data of

the maintenance phase, in contrast to percentage correct and d’.

Logistic regression is the appropriate analysis for categorical response data with

continuous stimulus dimensions (Agresti, 1990). As with every regression analysis,

logistic regression analysis can deal with linear terms as well as with interaction

terms. In logistic regression, this interaction term is difficult to interpret and is

therefore usually left out. With our dataset, we ran a logistic regression analysis with
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and without the additional interaction term. Of the 72 analyses of Experiment 1 (2

conditions times 3 parts times 12 listeners) only 5 had a significant interaction term.

Moreover, the fit of the models with an interaction term was hardly an improvement

over those without an interaction term. Due to these observations and the difficulty

in interpreting models with an interaction term, we decided to exclude the

interaction term in our analysis and to use the linear terms only.

Signal detection analysis

As stated above, percentage correct and d’ are easy to interpret summary measures

of performance. The two upper rows of Table 3.1 as well as the four left columns of

Figures 3.2 and 3.3 list the percentages correct and d’s as well as their standard

deviations for the two learning phases of both conditions of Experiment 1. The

maintenance phase is analyzed in detail using logistic regression.

Table 3.1.
Percent correct and d’ for Experiment 1 (Condition 1 and 2) and Experiment 2.

Learning phase 1 Learning phase 2
pc σ dʹ σ pc σ dʹ σ

Experiment 1, Condition 1 0.67 0.17 0.78 0.88 0.76 0.20 1.36 1.16
Experiment 1, Condition 2 0.62 0.13 0.52 0.65 0.71 0.20 0.99 1.04

Experiment 2 0.57 0.05 0.24 0.20 0.59 0.05 0.34 0.19

In both conditions, dʹ exceeds zero for both learning phases: Condition 1, both

phasesʹ t (11) > 3, p < 0.05; Condition 2, both t (11) > 2.7, p <0.05.  To test whether

percentage correct differed from chance, we first calculated the chance level, which,

in an unsupervised learning paradigm, is not equal to 50%. When there is feedback,

the mapping of a response to a category can be done a priori and the percentage

correct can be calculated accordingly. Without feedback, however, the mapping of
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the listener has to be inferred based on her categorization performance. A response

most associated with a category is considered to be the one indicating that category.

This way, listeners always perform at or above the traditional chance level of 50%.

To find the resulting expected value of the assignment of responses to categories

they are most associated with, a binomial distribution with this transformed

percentage correct was used. This resulted in a test value of 0.5266. With these

values, the statistical analysis of percentage correct yield results similar to the

analyses of dʹ. The first learning phase (t [11] = 2.89, p < 0.05) and second learning

phase (t [11] = 4.04, p < 0.05) of Condition 1 differ significantly from chance and the

same held for the first (t [11] = 2.47, p < 0.05) and second (t [11] = 3.14, p <) learning

phase of Condition 2.

To investigate the effect of learning over time, d’ and percentage correct were

entered into an ANOVA as dependent variables with Part of the experiment as

within-subjects variable and condition as between-subjects variable. For d’ there was

a significant main effect of Part of the experiment (F [1,22] = 8.29, p < 0.05) indicating
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Figure 3.3. d’ values in the first and second
learning phase of Experiment 1 for Condition
1 (duration relevant) and 2 Condition 2
(formant frequency relevant).
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Figure 3.2. Percentages correct in the first and
second learning phase of Experiment 1 for
Condition 1 (duration relevant) and
Condition 2 (formant frequency relevant).
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a higher d’ in the second learning phase compared to the dʹ of the first learning

phase. Similar results were, again, found with percentage correct as a dependent

variable. The main effect of Part of the experiment was significant (F [1,22] = 7.14, p <

0.05) showing a significant increase in percentage correct from the first learning

phase to the second learning phase.

For both measures, there was no significant interaction between condition and

Part of the experiment nor was there a significant main effect of condition. This

means that these performance measures are indifferent to whether duration or

formant frequency is the relevant dimension.

Logistic regression

Just like a standard linear regression analysis, a logistic regression yields, among

other things, β-weights for each independent variable in the equation. These β-

weights are comparable to the β-weights in a linear regression in that they modify

the influence of the independent variables on the dependent variable (here, the

listenerʹs choice of category). A large β-weight indicates that the influence of the

independent variable in question is strong, while a small β-weight indicates the

opposite. Table 3.2 and Figure 3.5 display the mean β-weights for the relevant and

irrelevant dimensions of Condition 1 and Condition 2 for the first part of the

learning phase (“Learning phase 1”), the second part of the learning phase

(“Learning phase 2”) and the maintenance phase (“Maintenance phase”).
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Table 3.2.
Logistic regression results of Experiment 1 for each condition. Mean β-weights are shown for both
dimensions and the number of listeners out of 12 using one (Uni) or both (Multi) dimensions
significantly.

Duration relevant Frequency relevant

Learning phase 1

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.38 0.46 5
Irrelevant 0.03 0.03 0

0
0.47 0.32 6
0.02 0.01 0

0

Learning phase 2

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.75 0.70 7
Irrelevant 0.06 0.05 0

0
1.03 1.25 6
0.02 0.01 0

0

Maintenance phase

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.98 0.65 9
Irrelevant 0.33 0.47 2

1
0.75 0.69 5
0.75 0.74 4

3

The logistic regression analysis also indicates whether a β-weight is significant or

not. Again, this is identical to the results of a regular linear regression analysis. If a

β-weight did not differ from zero at the p = 0,05 level, we concluded that this

particular listener did not use that dimensions significantly in categorizing. Table 2.3

lists the β-weights as well as how many listeners use the relevant or irrelevant

dimension, or both, significantly. The columns labeled “Uni” and “Multi” convey

this information. Listeners who did not use any dimension significantly are not

shown, but can be easily calculated, as N is always 12. Figure 3.4 and Figure 3.5

display these results in a bar chart.
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Judging by Table 3.2 and Figure 3.4 and 3.5, listeners’ performance shows that

they learn to use the relevant dimension. The mean β-weight of the relevant

dimension is consistently higher than that of the irrelevant dimensions. The same

holds for the number of listeners using the relevant dimension compared to those

using the irrelevant one. The low mean β-weights for the irrelevant dimensions as

well as the small number of listeners using the irrelevant dimension significantly,

indicates that listeners not only learned to use the relevant dimension, but also

learned to ignore the irrelevant dimension.
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Figure 3.4. Mean β-weights of the relevant and irrelevant dimensions for Condition 1 (duration
relevant) and Condition 2 (formant frequency relevant) for each Part of the experiment.



The higher β-weights of the relevant dimension in Condition 2 where formant

frequency was relevant compared to those of Condition 1 where duration is relevant

suggest that formant frequency was somehow the dimension of choice. The same

was true of the numbers of listeners using the relevant dimension. More listeners

learned to attend to the relevant dimension when formant frequency is relevant,

suggesting that this dimension was an easier dimension to learn to attend to. In the

maintenance phase trial-by-trial feedback was no longer present and listeners had to

categorize stimuli from the equidistant grid. Here, the β-weight and number of

listeners using the relevant dimension (formant frequency) showed a drop in

Condition 2, but not in Condition 1. Also, in the maintenance phase of Condition 2,
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Figure 3.5. The number of subject using the relevant or irrelevant dimension of both for
Condition 1 (duration relevant) and Condition 2 (formant frequency relevant) for each Part of
the experiment.



listeners start using the irrelevant dimension duration much more than in the

maintenance phase of Condition 1, where formant frequency was the irrelevant

dimension. So although formant frequency appeared easier to learn, it is also seemed

easier to unlearn.

To test these observations statistically, we carried out an ANOVA with Part of

the experiment (Learning phase 1, Learning phase 2, and Maintenance phase) and

Dimension (Relevant versus Irrelevant) as within-subjects variables, and Condition

(duration relevant versus formant frequency relevant) as between-subjects variable

and the β-weights as dependent measures. 

The advantage of the relevant over the irrelevant dimension was evidenced by a

significant main effect of Dimension (F [1,22] = 25.17, p < 0.05). The improvement of

listenersʹ categorization judgments over time was reflected in a significant main

effect of Part of the experiment (F [1,22] = 18.79, p < 0.05). Pairwise comparisons

showed that each Part of the experiment differed significantly from every other part

(p < 0.05). There was no significant effect of Condition, nor were there significant

interactions. The observed difference between Condition and Part of the experiment,

where formant frequency was easier in the learning phase, while there seemed to be

a preference for duration in the maintenance phase, did not result in a significant

interaction.

We again used a binomial test to assess whether the difference between numbers

of listeners using the relevant and irrelevant dimension would differ from chance

level (0.5 versus 0.5). In all phases of Condition 1 (duration relevant) the difference

between the relevant and irrelevant dimension exceeded chance levels (p < 0.05). The

same was true in the learning phases of Condition 2 (formant frequency relevant). In

the maintenance phase of Condition 2, however, there was no statistically significant
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difference between the number of listeners using the relevant (5) versus the

irrelevant (4) dimension reflecting the drop in use of the relevant dimension formant

frequency. 

These data show that listeners can relatively quickly learn a unidimensional

category distinction, even in the presence of irrelevant variation in another

dimension. The learning effect was most clear in the training phases. In Condition 2,

where formant frequency was the relevant dimension, learning was not very robust

in the maintenance phase. This difference in dimensions with regard to how easy it

was to generalize the learned distinction to the maintenance stimuli was surprising

in the light of our effort to equalize the saliency of the dimension in terms of their

just noticeable differences. Apparently, equal just noticeable differences obtained in

same/different pilot experiments in a two-dimensional formant frequency/Duration

space did not lead to equal saliency in a multidimensional categorization task. The

same difference between dimensions was found in our previous supervised learning

experiments with the same stimuli. There, we pointed to an explanation involving

prothetic and metathetic dimensions (Stevens & Galanter, 1957). An increase in

value on a prothetic dimension means ”more of the same”, whereas an increase in

value on a metathetic dimension often means a change in quality. A higher pitch

does not mean more pitch, whereas a longer duration does mean more duration

(Smits, Sereno, & Jongman, 2006). Storing a category representation of a stimulus

based on a metathetic dimension is a noisier process than storing or comparing a

category representation of a stimulus based on a prothetic dimension. In the absence

of feedback, be it trial-by-trial feedback or distributional information, listeners have

more difficulty recalling and categorizing a prothetic dimension (Smits et al., 2006).
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This brings us to the comparison of supervised and unsupervised learning. Table

3.3 shows the difference scores of both conditions in the supervised and

unsupervised learning experiment (supervised minus unsupervised for each

performance measure). An overall ANOVA with the signal detection measures

(percent correct and dʹ) as dependent variables and the presence or absence of

supervision and condition as independent between-subject measures and Part of the

experiment as within-subject measure indicated supervised learning to be superior

for both percentage correct (F [1,44] = 20.14, p < 0.05) and dʹ measures

(F [1, 44] =18.26,  p < 0.05).

Table 3.3.
Difference scores of the unidimensional supervised (Chapter 2) and unsupervised learning (this
chapter) experiment. β-weights are shown for both dimensions as well as the signal detection analysis
measures for the two learning phases. Positive values indicate an advantage for supervised learning. 

Duration relevant Frequency relevant

Learning phase 1

µ(β) pc dʹ µ(β) pc dʹ

Relevant 0.28
Irrelevant 0.02

0.14 0.61
1.08
0.00

0.18 0.80

Learning phase 2

µ(β) pc dʹ µ(β) pc dʹ

Relevant 0.75
Irrelevant 0.04

0.17 1.23
1.23
0.02

0.18 1.08

Maintenance phase

µ(β) µ(β)

Relevant 0.55 0.51
Irrelevant 0.23 0.67
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The effect of supervision on the β-weights was also investigated. An ANOVA

with Part of the experiment (Learning phase 1, Learning phase 2, and Maintenance

phase) and Dimension (Relevant versus Irrelevant) as within-subjects variables and

Category structure (duration relevant versus formant frequency relevant) and

Learning mode (Supervised versus Unsupervised) as between-subjects factor

showed a significant advantage for supervised over unsupervised learning (F [1, 44]

= 9.56, p < 0.05). Separate analyses per Category structure were warranted by the

significant three-way interaction between Part of the experiment, Learning mode

and Category structure. Again, there was an advantage of supervised learning, as

evidenced by an effect of Learning mode in Condition 1, when duration was the

relevant dimension (F [1, 22] = 5.07, p < 0.05) as well as in Condition 2, when formant

frequency was the relevant dimension (F [1, 22] = 4.51, p < 0.05). The only difference

between Condition 1 and Condition 2 was in the interaction between Learning mode

and Part of the experiment. When duration was the relevant dimension, this

interaction was not significant, whereas when frequency was the relevant

dimension, it was (F [1, 44] = 17.14, p < 0.05). This interaction reflects the difficulty

listeners experience in the maintenance phase of Condition 2 in both Learning

modes. With supervised learning, maintaining formant frequency as the relevant

dimension was difficult, whereas with unsupervised learning, it was difficult to

suppress the irrelevant dimension duration in the maintenance phase.

The results from these two conditions showed that learning of a unidimensional

category distinction is possible without the aid of supervision. This is a rather

surprising result. Listeners learned to recognize the properties of the probability

density functions of the stimuli they listened to, without the aid of trial-by-trial

feedback. The extent to which this learning was retained depended largely on which
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dimension was relevant. With duration as the relevant dimension, listeners had no

problem categorizing the maintenance stimuli according to the learning

distributions. When formant frequency was the relevant dimension, listeners were

much more sensitive to the distributional properties of the maintenance phase and

started using duration more compared to Condition 1. This difference between

formant frequency and duration was due, we argue, to noisier encoding of the

metathetic dimension (cf. Smits et al., 2006). 

The category distinctions in Experiment 1 were all unidimensional in nature. This

is in sharp contrast with most speech sounds that have more than one relevant

dimension of variation. Lisker (1979) lists seventeen relevant dimensions of variation

in his inventarisation of the acoustic features that are involved in the difference

between the words rabid and rapid.  Investigating the learning of auditory categories

with more than one relevant dimension of variation is quintessential to a better

understanding of how people learn to categorize the sounds of their language.

Experiment 2 investigated learning of a multidimensional category structure with

two relevant dimensions of variation. Listeners had to learn a multidimensional

distinction: in order to obtain a high percentage correct, both duration and formant

frequency had to be used in the categorization.

102



Experiment 2

Method

Subjects

Twelve students from the University of Nijmegen participated in return for a small

payment. None of them had participated in Experiment 1. All subjects were drawn

from the Max Planck subject pool and participated in return for a small payment.

None of them reported hearing difficulties.

Stimuli

Table 2.5 (learning phase) and Table 2.2 (maintenance phase) in Chapter 2 list the

distributional characteristics of the learning and maintenance stimuli of Experiment

2. Whereas the main axis of variation in Experiment 1 was oriented either

horizontally of vertically, in Experiment 2 it was oriented diagonally (see the third

panel of Figure 3.1). Listeners were implicitly encouraged to use both dimensions

because the mean and covariance matrices we chose resulted in a much lower

optimal percentage correct when subjects used a solution with only one dimension

(such a solution yielded maximally 70% correct) compared to a solution with two

dimensions (which yielded maximally 100% correct). The stimuli in the maintenance

phase were identical to those used in Experiment 1 (see the rightmost panel of

Figure 3.1).
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Procedure

The procedure was identical to that in Experiment 1. Listeners were asked to

categorize the stimuli as they saw fit and did not receive trial-by-trial feedback.

Results and discussion

Signal detection analysis

Figures 3.6 and 3.7 display the mean percentage correct and mean d’ of Experiment

2. Although performance in terms of these measures obviously was not as good as it

was in Experiment 1, the percentage correct of the first learning phases (t [11] = 2.74,

p < 0.05) as well as that of the second learning phase (t [11] = 3.82, p < 0.05) differed

significantly from the appropriate chance level (0.53%). The same was true of

listeners’ performance in terms of the d’ values of the first learning phase (t [11] =

4.10, p < 0.05) and second learning phase (t [11] = 6.27, p < 0.05). It should be noted,

however, that the d’ did not reach the value traditionally associated with good

performance in psychophysical experiments (a dʹ of 1). The distributions of the d’

did not overlap completely, but were difficult to separate.
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Figure 3.6. Percentage correct for the first and
second learning phase of Experiment 2
(multidimensional learning).
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Figure 3.7. d´ values for the first and second
learning phase of Experiment 2
(multidimensional learning).
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The above results already indicate that listeners did notice the distributional

information available to them. A significant difference between the first and second

phase of the learning phase would be even more evidence of learning. A paired

samples t-test did not show a significant difference between the percentages correct

of the first and second phase (t [11] = 1.32, p > 0.20). However, the difference between

the d’ values of the first and second phase, was marginally significant (t [11] = 1.93,

p < 0.08). 

Logistic regression

As in Experiment 1, we conducted a logistic regression analysis with and without an

interaction term. Out of 36 regressions, only 4 contained a significant interaction

term. Based on this, we decided to use the analysis without the interaction term.

Figure 3.7 and the Table 3.4 display the results of Experiment 2. Figure 3.7 plots

the β weights of duration and frequency against one another. Asterisks indicate

listeners who used both dimensions, crosses indicate listeners who use duration,

pluses indicate listeners who solely use formant frequency and zeros indicate

listeners who did not use any dimension significantly at all. In Table 3.4, the columns

on the right side display the number of listeners using a given dimension (“D” for

the number of listeners using only duration in their categorization, “F” for using

only formant frequency and under “Multi” listeners using both dimensions are

listed. Table 3.4 does show an increase in the use of two dimensions. Four of our

listeners used a multidimensional categorization strategy in the first learning phase

and this rose by 4 in the second training phase to 7 in the maintenance phase. There

clearly was some sensitivity in our listeners to the distributional properties of the

stimuli. Comparing the number of listeners using both dimensions with the numbers
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of listeners not using two dimensions significantly (hence, all listeners using either

only duration, only formant frequency, or no dimension at all) in a binomial test

showed that the number of subjects using a multidimensional solution did indeed

differ from chance (p < 0.05). Due to the relatively small number of subjects and the

small odds 0.025 (0.052) for the multidimensional solution versus 0.975 (1-(0.052))for

the other category), expected values sometimes drop below 1, which makes these

results difficult to interpret.

To analyze the multidimensional results presented in Figure 3.7, we transformed

the β-weights to polar coordinates. These coordinates represent the angle (Φ) of each

individual listeners score with the abscissa and the distance (A) to the origin. When a

point in the upper right quadrant is considered, an angle of ¼π indicates a perfectly

balanced use of both dimensions, whereas a Φ of ½π indicates the use of only

frequency and a Φ of 0 that of only duration (for a detailed description of the logic

behind polar coordinates, see Chapter 2). Because listenersʹ β-weights were often in
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the lower left quadrant (which represent a valid multidimensional but mirrored

categorization), we recoded the Φ values in that quadrant to Φ values in the upper

right quadrant. The left side of Table 3.4 displays these mean polar coordinates for

each phase of the experiment.

Table 3.4.
Mean values and stand deviations of the polar coordinates φ and A of the β weights for duration and
frequency in the three phases of Experiment 2 (multidimensional learning), as well as the numbers of
subjects using a only duration (D), only frequency (F) or both (Multi). Subjects using no dimension
are not shown.

Learning phase 1 (N = 6) 2

Φ (σ) A (σ) D F Multi

0.25 (0.21) 0.31 (0.14) 2 3 1

Learning phase 2 (N = 7)

Φ (σ) A (σ) D F Multi

0.20 (0.14) 0.28 (0.10) 1 2 4

Maintenance phase (N = 12)

Φ (σ) A (σ) D F Multi

0.20 (0.35) 1.2 (0.42) 5 2 5

We tested whether the values for Φ differed significantly from the two purely

unidimensional solutions (represented by Φʹs of 0 and ½π). In the first learning

phase there was too much variation for mean Φ to significantly differ from either 0 (t

[5] = 3.022., n.s.) or from ½π (t [5] = -3.27, n.s.). In the second learning phase,

however, mean Φ differed significantly from both 0 (t [6] = 3.76, p < 0.05)11 or from

½π (t [6] = -5.64, p <0.05). Hence, (some of the) listeners did learn to categorize using

both dimensions in the learning phases. In the maintenance phase, the mean Φ

differed significantly from ½π (t [11] = -2.95, p < 0.05) but not from 0 (t [11] = 1.99,

11 All results incorporate adjustments for multiple comparisons.
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n.s.), reflecting a similar preference of the listeners for duration as was found in the

maintenance phase of Experiment 1.

To investigate whether the categorizations of the listeners got more consistent

over time, the polar coordinate A (reflecting the distance to the origin) is an

appropriate measure. An ANOVA with A as the dependent variable and Part of the

experiment as a within-subjects variable did not reveal a significant effect of Part of

the experiment (F [1,22] = 1,68, n.s.).

Although not all measures reflected multidimensional learning in Experiment 2,

listeners were shown to be sensitive to the distributional information in the stimuli,

both in the signal detection theoretic measures, the mean β-weights (as expressed in

Φ) and in the numbers of subjects using a dimension. Listeners do perform better

with unidimensional category learning problems. An ANOVA with percentage

correct and dʹ as dependent measures, Part of the experiment as within-subjects

measure and Orientation (unidimensional versus multidimensional) as between-

subjects measure showed a significant effect of Orientation for both percentage

correct (F [1,34] = 6.01, p < 0.05) and dʹ (F [1,34] = 6.29, p < 0.05).

Table 3.5.
Difference scores of the multidimensional supervised (Chapter 2) and unsupervised (this chapter)
learning experiments. Signal detection analysis measures are shown for the two learning phases and
A is shown for all three phases of the experiment. Positive values indicate an advantage for
supervised learning.

pc dʹ A

Learning phase 1 0.02 0.09 -0.10

Learning phase 2 0.02 0.16 0.06

Maintenance phase -0.44
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Finally, multidimensional unsupervised learning was compared with

multidimensional supervised learning. Table 3.5 lists the difference scores for the

measures that can be compared; percentage correct and dʹ from the signal detection

theoretic analysis and the consistency measure A from the logistic regression

analysis. With percentage correct as dependent measure, there was a significant

advantage for supervised learning in an ANOVA with Part of the experiment as

within-subjects variable and Experiment (Supervised learning versus Unsupervised

learning) as between-subject variable (F [1,22] = 4.98, p < 0.05). For dʹ no such effect

was found (F [1,22] = 3.55, p < 0.07). A similar ANOVA with the consistency measure

A as dependent measure also did not reveal a difference between supervised and

unsupervised learning (F [1,22] = 1.50, n.s).

In summary, Experiment 2 showed it to be possible, but much harder to benefit from

distributional information when learning a multidimensional category distinction.

General discussion

The results from both Experiment 1 and Experiment 2 make it clear that

unsupervised learning of auditory multidimensional categories is feasible. There

were important differences between the learning of unidimensional category

distinctions and multidimensional category distinctions as well as between

supervised and unsupervised learning. 

When there were two relevant dimensions of variation, learning to use both

dimensions to correctly categorize the stimuli was much more difficult, but there

was not as much difference between supervised and unsupervised learning as was

found for unidimensional category learning problems. Listeners were clearly
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sensitive to the distributional information present in the stimuli, but not all reached a

suitable categorization strategy during the 440 training stimuli. It might be that there

were not enough trials to show a larger learning effect, but the absence of a

difference between Learning phase 1 and Learning phase 2 suggests either that

learning is very slow or that our listeners were already at ceiling. Listeners had a

preference for duration over formant frequency when they incorrectly chose a

unidimensional solution.

With only one relevant dimension of variation, learning was surprisingly good in

the training phase, despite the absence of trial-by-trial feedback. The robustness of

this learning depended largely on which dimension was the relevant one. When

duration was the relevant dimension, most listeners were able to generalize their

successful categorization strategy to the maintenance phase, where distributional

cues were no longer present. When formant frequency was the relevant dimension,

listeners found it much more difficult to suppress the use of the irrelevant dimension

duration in the maintenance phase. The emerging use of the irrelevant dimension in

the maintenance phase in both conditions of unidimensional learning can be

interpreted as a loss of previously learned category distinctions, but also can be

considered as evidence of the sensitivity of listeners to the absence of the

distributional cues that were present in the training phase.

In both Experiment 1 and Experiment 2 there was a differential effect of

dimension, particularly in the test phase. There, duration seemed to be the

dimension of choice. In the absence of distributional cues, subjects were more prone

to use duration than formant frequency in their categorization. In the results and

discussion section of Experiment 1 we hinted at an explanation for this preference in

terms of Stevens and Galanterʹs (1957) distinction between prothetic and metathetic
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dimensions. Smits et al. (2006) argue that the storing and representation of

metathetic dimensions as formant frequency is noisier than that of a prothetic

dimension like duration. Another possible explanation is to extend Ashby et al.ʹs

(1999) distinction between rules that are easy to verbalize and rules that are hard to

verbalize. Especially in Experiment 2, numerous participants reported being at a loss

in the test phase and opting for the duration distinction because it was easier to

distinguish the sounds based on duration. Further, when asked for the two

dimensions of variation, most subjects find it harder to describe the timbre

dimension compared with the durational dimension. Formulating a rule in the test

phase would accordingly be easier with duration as the relevant dimension.

Deciding between these two explanations would require an experiment with two

dimensions that are similar in terms of Stevens and Galanter’s prothetic/metathetic

distinction or that are similar in terms of verbalizability. It is not self-evident,

however, how to find a good measure of how easy it is to use a certain dimension to

verbalize a rule.

Compared to visual category learning of similar and even more complex

category structures (Ashby & Waldron, 1999s) auditory category learning appears to

be even more difficult. This could be due to an unlucky selection of particularly

difficult stimulus dimensions, although it seems unlikely given the importance of

both formant frequency and duration in the perception of speech. 

Another important difference of our approach with visual category learning is

the unidimensional grid that listeners had to categorize in the test phase. Although

performance with auditory categories in the multidimensional category learning

experiment was also below expectations based on visual category learning results in

the training phase, the test phase yielded the most surprising declines in
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performance. Even very successful unidimensional category learning appeared to be

fragile in the test phase. The degree of success in generalizing to a test phase without

distributional information may depend on whether the relevant dimension is

prothetic or metathetic. Confronted with a unidimensional grid, subjects quickly left

their learned strategy and reverted to a one-dimensional solution, using the least

noisy, i.e. the prothetic, dimension. The use of a test grid with equidistant stimuli is a

well-known technique in auditory categorization research, the absence of

distributional information is intended to neutrally probe the subjects’

psychophysical space and prevent them from changing their newly acquired

categorization tendencies. This was not what happened here. Our listeners

apparently noticed the change in the distribution of the stimuli in the test phase and

altered their categorization behavior to reflect this change. We know of no studies in

the field of visual category learning that use a procedure with a training phase

where distributional information is present and a test phase where it is absent. These

discrepancies warrant further research into the robustness of visual (and auditory)

category learning.

The comparison of the supervised and unsupervised learning experiments

showed an overall advantage for supervised learning. This was especially clear in

the unidimensional learning experiments. There, supervision helped suppress the

tendency to use the irrelevant dimension in the test phase. Performance in

unsupervised learning of a unidimensional category structure was still surprisingly

good, considering that listeners’ only source of information was the distribution of

the stimuli in perceptual space. When learning of a multidimensional category

structure is concerned, the large advantage for supervised learning that was found

for unidimensional learning was not present for multidimensional learning. There
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was a small advantage for unsupervised learning in the test phase, which might

have been due to the similar procedure for the training and the test phase in the case

of unsupervised learning. With supervised learning, subjects were faced with the

sudden withdrawal of trial-by-trial feedback in the test phase, whereas this was not

the case in the unsupervised learning experiments. 

Love (2002) compares supervised and unsupervised learning and concludes that

unsupervised learning is multifaceted. The variety studied in this paper is best

described as intentional unsupervised learning, because listeners were aware of the

goal of the experiments. Intentional unsupervised learning is not qualitatively

different from supervised learning according to Love. Although our results are not

particularly suitable to test this conjecture, there does not seem to be a large

qualitative difference between our unsupervised and supervised learning results. Our

data showed a quantitative difference between supervised and unsupervised

learning of unidimensional category structures with better performance with

supervised learning, but did not support a difference between the supervised and

unsupervised learning of multidimensional category structures.

Learning to categorize auditory stimuli with more than one relevant dimension

of variation is, we think, the task infants (and learners of a second language) face

when they acquire the sounds of their native language. We have also argued that

this learning process is almost certainly unsupervised in nature. However, our data

show a large discrepancy between adult and infant achievement. Learning to

categorize multidimensional acoustic categories is not at all an easy task for adult

listeners, whereas infants all succeed seemingly effortlessly. This discrepancy

between our findings and the results from infant research can be explained in several

ways. 
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First, both Ashby et al. (1999) and Love (2002) have argued that subjects will

initially opt for a unidimensional solution when they are faced with a new

categorization problem. Only when there is sufficient negative feedback will they

switch to a multidimensional strategy. Most studies construe this negative feedback

as trial-by-trial feedback (Ashby et. al, 1998, Maddox, Ashby & Waldron, 2002,

Maddox, Bohil, & Ing, 2003). However, our previous experiments with supervised

learning showed similar poor learning of multidimensional categories. Apparently,

learning multidimensional auditory categories is not as much influenced by

supervision as learning multidimensional visual categories. In the approach of

Gureckis & Love (2003) trial-by-trial feedback is not necessary. A surprising event

will also change the categorization behavior of the model. Although our listeners

clearly were sensitive to the distributional information in the stimuli, the

discrepancy between their categorizations and the probability density functions may

not have been surprising enough to switch to a multidimensional rule.

A second explanation is that infants receive much more exposure than adults did

in our experiments. Though Maye, Werker, and Gerken (2002) have shown that

short-term modification of infants’ speech categories is possible with very little

training, it remains the case that infants’ day-to-day exposure to speech dwarfs the

440 stimuli our participants listened to. The everyday speech input infants receive,

on the other hand, is much more complex in terms of contextual variability and

talker characteristics than our stimuli. Hence, it is difficult to compare the relative

difficulties of the learning task faced by infants and the one faced by our listeners.

The third possibility is that the difference in learning capacities between infants and

adults is simply greater than we thought it was.
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Surprisingly little is actually known about the learning of auditory categories in

infancy, or even in adulthood. The current experimental evidence about how infants

learn phonetic categories points to some sort of distributional learning account in

which infants perform a statistical analysis over large numbers of speech sounds and

eventually cluster these together in clouds of points. 

The experiments presented here studied unsupervised learning of auditory

categories by combining techniques borrowed from categorization research in the

visual modality with procedures from phonetics and phonology. Listeners were

presented with extensive exposure to distributionally defined categories. When

faced with a truly speech like categorization problem (a category distinction based

on the integration of two dimensions), performance was low and collapsed quickly

in the test phase, even though the dimensions spanned a range of 20 just noticeable

differences and a unidimensional solution led to 30% more incorrect categorizations.

The poor learning in the training phase awaits explanation, whereas the decline in

the test phase is most likely due to the flexibility of listeners when confronted with

previously unencountered distributional properties. Several studies of perceptual

learning of speech have shown the same flexibility of listeners in adjusting the

boundaries of the native language phoneme categories (Eisner & McQueen, 2005,

2006; Evans & Iverson, 2004; Norris et al., 2003; Repp & Libermann, 1987). Such

quick adjustments enable listeners to adjust to dialectical variation as well as to

speaker variability. The listeners in our experiments showed similar flexibility

towards auditory distributional variation in their input. 

These experiments show that listeners perform well with unsupervised learning

of unidimensional non-speech auditory categories despite another irrelevant

dimension of variation. This learning is fragile judging by the change in
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categorization behavior of listeners when confronted with stimuli without

distributional information. Multidimensional learning of multidimensionally

defined category structures is possible but difficult and even more fragile than

multidimensional learning, despite the fact that these categories are more similar to

real speech.
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Chapter 4

Supervised and unsupervised learning of speech categories





Introduction

Those who have tried to learn sounds of a foreign language as an adult have

undoubtedly sometimes been bewildered by their own inability to grasp a

distinction between two non-native phonetic categories. A distinction so

fundamental and apparently easy that all users of the foreign language in question,

from the oldest adult to the youngest child, take it for granted. What are the

processes behind the process of acquiring the sounds of a second language? This

chapter tries to investigate a number of processes involved; the role played by the

phonology of the first language, the role of the distributional properties of the

phonetic categories, and the role of supervision in phonetic category learning.

The literature on the acquisition of non-native phonetic distinctions (for a review,

see Strange, 1995) has shown that it is extremely difficult for adults to learn a non-

native category distinction, especially at the native or near native level (Burnham,

Earnshaw and Clark, 1991). One important reason for the difficulty adults

experience in learning a second language is the interference of the native phonology

that is already present (Cutler & Broersma, 2005; Best & Tyler, 2006). The native

phonological system determines to a great extent how speech sounds are perceived

and is thus responsible for the difficulties that arise in distinguishing two non-native

speech sounds. A model that describes the various situations encountered in
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learning of second language is the Perceptual Assimilation Model (PAM) by Best (1995;

Best, McRoberts, & Sithole, 1988).

The Perceptual Assimilation Model assumes an adult-like native phonology and

distinguishes three options: non-native speech sounds are categorized within the

phonological system of the first language, are left uncategorized but still perceived

within the native speech system or, a rare case, are not assimilated and are thus not

considered to be speech. These three options branch into five situations for the non-

native listener. First, when two non-native speech categories are categorized within

the native phonological system, the two non-native phonemes might (imperfectly)

map to two native phonetic categories (a situation labeled the Two Category case in

the PAM). Discriminating the two non-native sounds is easy in this case. The native

and non-native categories do not have to be identical, as long as there is a

sufficiently consistent mapping between the two native and non-native categories,

they can be easily distinguished. 

Second, when both categories are categorized within the native phonological

system but map onto the same native phoneme (the Single Category case),

discrimination is very difficult. A well-known example is the extreme difficulty

Japanese listeners experience in distinguishing /r/ from /l/ because these two non-

native phonemes map to a single native Japanese phonetic category. Even after

extensive training, discriminating these non-native categories is extremely difficult

for Japanese listeners (Logan, Lively, & Pisoni, 1991; Lively, Pisoni, Yamada, Tokura

& Yamada, 1994).

Third, both categories can be categorized within the native phonological system

but one category is mapped to a native phonetic category better than the other

category.  In this case (The Category Goodness case), non-native category learning

120



depends on the relative goodness of fit of both non-native categories to the native

category. If the difference in fit is large, discrimination and non-native category

learning become easier. The categorization of Hindi stops by English listeners is an

example of this case. The dental stop matches well its English counterpart, while the

retroflex stop is a very poor match. Consequently, the contrast between Hindi dental

and retroflex stops is in principle learnable for the English listener.

The fourth case (called the Uncategorized case) is when the non-native speech

categories are left uncategorized (i.e., they are not mapped to native speech

categories), but are still incorporated into the native phonological system (i.e., they

are considered speech). This happens when there are no native phonetic categories

that are sufficiently similar to the non-native ones to make mapping possible. The

distance in phonetic space between the non-native phonemes and the nearest native

phonemes is too large for the native phonemes to successfully assimilate the non-

native phonemes. According to Best and Tyler (2006) either one non-native category

or both could be left uncategorized. When only one category is left uncategorized,

discrimination can be very good because one non-native category is mapped to a

native one and the other is not. When both non-native categories are left

uncategorized, discrimination is poor or reasonable, depending on the distance of

both non-native categories to the closest native phoneme categories.

The fifth and final case is when the non-native phonetic categories are not

mapped onto the native phonological system and are thus not considered speech by

the non-native listener. In this infrequent case, category discrimination is good to

excellent For example, Zulu clicks are usually not considered speech by non-native

ears, but non-native listeners discriminate them as well as native listeners (Best,

McRoberts & Sithole, 1988).
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The Perceptual Assimilation Model has received considerable support from

various studies investigating the perception of non-native speech sounds. For

example, the perceptions of native Japanese listeners of English (Best & Strange,

1992) of native English listeners of German (Polka, 1995) and that of native Dutch

listeners listening to English (Broersma, 2002; 2005) conform to the predictions of the

Perceptual Assimilation Model. However, Broersma also showed that the

phonological rules of the native language can alter the perception of non-native

phonemes. Dutch listeners experience difficulty in distinguishing English minimal

pairs that differ in final voicing. In Dutch, the voicing distinction is never relevant at

the end of words because of the final devoicing rule in that language (Booij, 1995).

Dutch listeners consequently have trouble distinguishing words like peas and peace.

In an attempt to account for the perceptions of listeners that are not naive anymore

but have mastered some of the sounds of a second language within the Perceptual

Assimilation Model, Best and Tyler (2006) state that perception of non-native

phonemes is not only determined by the native phonology but also by phonotactic

biases, coarticulatory patterns and allophonic variation.

The Perceptual Assimilation Model shows the importance of the native

phonology in learning new phonetic categories. Another important factor in the

acquisition process are the distributional properties of the stimuli. The effects of this

variation have been extensively studied in visual category learning (Ashby &

Maddox, 1993; Nosofsky, 1990). We frame the learning of phonetic categories in a

way similar to these studies. There perceptual categories are defined as points in a

psychophysical space with continuous dimensions. When a listener hears a sound,

this sound is evaluated on a number of dimensions (e.g., duration, frequency) and

mapped onto a point corresponding to its values in multidimensional space. Sounds

122



originating from distinct categories are consistently mapped to the same points and

repeated exposure to these categories leads to the formation of distinct “clouds” that

listeners can start to associate with a phonetic category.

We assume that, in essence, auditory category learning is equivalent to

recognizing the statistical patterns that are present in the signal (Pierrehumbert,

2003). For example, exposure to the stimulus structure in the upper left panel of

Figure 4.1 should encourage listeners to categorize using only dimension 1 and

ignore dimension 2, whereas exposure to the stimulus structure in the lower left

panel should encourage listeners to categorize using only dimension 2 and ignore

dimension 1. Exposure to the structures on the right hand column should encourage

listeners to use both dimensions in their categorization. A categorization strategy

that uses only one dimension in categorizing the stimuli in the panels of the right

hand column would lead to many incorrect decisions.

Visual category learning experiments have shown that subjects initially opt for a

solution involving only one dimension (Feldman, 2000) and that they need the help

of trial-by-trial feedback to start using more than one dimension in their

categorizations (Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Ashby et al.

(1998) argue that there are two category learning systems, a verbal learning system

and a procedural based learning system. Initially, the verbal system has priority and

tries to categorize the stimuli according to a relatively simple, verbalizable, rule

involving only one dimension (e.g., high frequency sounds in category A, low

frequency sounds in category B). Rules that are more complex and more difficult to

verbalize such as “all short high frequency sounds in category A” only enter the

verbal system after all unidimensional options have been tried. The other category

learning system is a procedural or implicit learning system that does not have the
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same preference for unidimensional rules. This system is also not as dependent on

feedback as the verbal system for learning but learns much more slowly.

Studies of unsupervised learning of visual categories have shown that trial-by-

trial feedback is not always necessary, but that there are characteristic limits to

performance in unsupervised category learning. Ashby, Queller, and Beretty (1999)

showed the initial preference of listeners for unidimensional solutions (using one

dimension and ignoring the other(s)) in unsupervised learning. Only when their

subjects got trial-by-trial feedback they were able to learn a distinction based on

more than one dimension. Homa and Cultice (1984) also showed the preference of

subjects for relatively simple (easily verbalizable) distortions of dot-pattern stimuli
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in unsupervised learning. When the distortions got too large, subjects were unable to

classify the stimuli correctly without supervision. Furthermore, Love (2002) showed

that learning performance with unidimensional categorization problems in

unsupervised learning is far superior to their performance with more complex

problems.

Considering the predictions of the Perceptual Assimilation Model, the native

language of the listeners becomes an important issue in any perceptual learning

experiment. The cleanest case for the study of second language acquisition would be

the situation where assimilation does not happen but sounds are still recognized as

speech in the native phonological space. This is the case when the sounds are located

in a relatively empty area of phonetic space. We argue that this is the case for

Spanish listeners and the Dutch high front vowels /Y/ (as in /fYt/, “fut”; “energy”), /y/

(as in /fyt/, “fuut”; “grebe”) and /ø/.(as in /føt/, “feut”; “freshman”). These vowels

differ from each other primarily in the frequency of their first formant (formant

frequency) and their duration. The sounds /Y/ and /y/ do not differ greatly in length,

but /y/ has the lower first formant frequency, while the sounds /ø/ and /Y/ have

similar spectra but /ø/ has a longer duration.

The Spanish language has a relatively small vowel inventory of five vowels: /i/,

/e/, /a/, /o/, and /u/. These vowels differ in height, backness and roundedness

(Hammond, 2001; Bradlow, 1995). These articulatory dimensions correlate with the

first and second formants of the acoustic signal in a F1/F2 vowel space. The high

vowels /i/ and /u/ have low values for F1, whereas the higher values of F1 are

associated with the mid (/o/ and /e/) and low (/a/) vowels. Backness and

roundedness are associated with low values for F2 (/u/, /o/, and /a/) whereas front

and unrouded vowels (/e/ and /i/) have a high value for F2 (Bradlow, 1995).
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Dutch has a large vowel inventory of sixteen simple vowels and three

diphthongs (Booij, 1995). An important difference with Spanish for our purposes is

the existence of a durational contrast between certain vowels in Dutch, for example,

/Y/ is a short version of /ø/. Furthermore, while the Spanish vowels are all situated at

the outside of the F1/F2 vowel space, Dutch also has some vowels situated in the

center of this space, notably, /Y/ and /ø/. These vowels thus constitute an example of

Bestʹs Uncategorized case for a Spanish listener because they occupy an empty part

of Spanish vowel space. They are too far removed from any native Spanish vowel

category to be assimilated.

In Experiments 3 and 4, listeners of a language with a bigger vowel inventory,

American English, categorize the same vowels as the Spanish listeners in

Experiments 1 and 2. Although American English, like Dutch, has a large vowel

inventory with fifteen vowels (Ladefoged, 1999), the area in vowel space that

corresponds to the three Dutch vowels /Y/, /y/, and /ø/ is empty. All are unknown

sounds in American English.

All experiments had a similar design with a pretest, a learning phase and a

maintenance phase. The first panel of Figure 4.2 shows the distributional structure of

the pretest. The stimuli are drawn from an equidistant grid with an equal range of

variation in both stimulus dimensions. In the pretest, this grid is intended to

neutrally scan the listenerʹs initial categorization tendencies.
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The second through fourth panel show the learning phases of the various

experiments. The second and third panel depict category structures called

“unidimensional learning” These consist of one relevant dimension of variation and

one irrelevant dimension of variation. For optimal performance, listeners have to

learn to use one dimension in their categorizations and learn to ignore the other

dimension. In the second panel, listeners are trained to use duration as a relevant

dimension, while in the third panel, listeners have to learn to use formant frequency

in their categorization while simultaneously learning to ignore duration. This type of

category structure is contrasted with that in panel four (“Multidimensional

learning”), where both dimensions exhibit relevant variation. For optimal

performance, listeners have to learn to use both dimensions in their categorization.

The use of only one dimension would lead to a high proportion of incorrect

categorizations. The learning phase of each experiment was analyzed in two parts

(Learning phase 1 and learning phase 2) to investigate possible changes in

categorization behavior over time. 

All experiments ended with a maintenance phase that had the same stimuli as

the pretest and was again intended to scan the listenersʹ perceptual space in the
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absence of distributional information. If listeners learned a new category structure in

the learning phase and if they are able to transfer this learning to the maintenance

phase, performance in the maintenance phase should resemble that of the learning

phase, especially in comparison with performance in the pretest.

The experiments presented in this chapter investigate the role of the native

phonology, the role of the distributional information provided to listeners and the

role of supervision in phonetic category learning. Experiment 1 investigates

supervised learning of Spanish listeners who are being trained either on the

distinction between /ø/ (longer duration) and /Y/ (shorter duration), where duration

is the relevant dimension of variation or on the distinction between /Y/ (higher F1)

and /y/ (lower F1), where formant frequency is the relevant dimension of variation.

Experiment 2 investigates unsupervised learning of the same distinction. To

investigate the possible role of the native phonology, Experiment 3 examines the

difference between Spanish and American English listeners learning the distinction

between /ø/ (longer duration) and /Y/ (shorter duration) with the aid of trial-by-trial

feedback. Experiment 4 trains American English listeners with the aid of trial-by-trial

feedback on the distinction between /ø/ (longer duration and high F1) and /y/

(shorter duration and lower F1 ). To categorize the stimuli successfully, listeners will

have to use both dimensions in their categorizations, something that has been shown

to be difficult for listeners of various language groups (Flege & Hillenbrand, 1986).
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Experiment 1

Method

Subjects12

Twenty (ten in each condition) Spanish exchange students from the Radboud

University of Nijmegen participated in the experiment. None of them spoke another

language besides English, but most of them were engaged in learning Dutch. Their

proficiency in Dutch was extremely low. All listeners reported normal hearing. After

the experiment they filled in a questionnaire about their listening experiences to

assess whether the stimuli were recognized as vowels. All listeners qualified the

stimuli as such.

Stimuli

The categories of both conditions had one relevant dimension of variation (see the

second and third panel of Figure 4.2). In condition 1, the variation in duration was

relevant, whereas formant frequency varied irrelevantly. The means of the two

categories corresponded roughly to the Dutch vowels /Y/ and /ø/ as in the Dutch

words “fut” (/fYt/, 388 Hz and 120 ms) and “feut” (/føt/, 392 Hz and 162 ms). These

vowels differ from each other primarily in the duration dimension with /ø/ being a

lengthened version of /Y/ Booij, 1995). In condition 2, the duration was kept constant

and formant frequency was systematically varied. The means of the two categories

corresponded roughly to the Dutch vowels /Y/ and /y/ as in the Dutch words “fut”

(/fYt/, 388 Hz, 102 ms) and “fuut” (/fyt/, 328 Hz 113 ms). These vowels differ from

12 Laurence Bruggeman is kindly acknowledged for her assistance in recruiting and testing the
Spanish listeners. 
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each other primarily in the frequency of their first formant (formant frequency) with

y being a higher (more frontal) version of/Y./ (Booij, 1995). All vowels occur

frequently in Dutch and were synthesized using the PRAAT Speech synthesis

program (Boersma, 2001).

Careful listening by native Dutch listeners confirmed that the means of the

categories qualified as good examples of the two Dutch vowels. The values for the

learning stimuli were obtained by random sampling from the two stimulus

distributions.

The pretest and maintenance stimuli were identical in both conditions. The

stimulus values for the pretest and the maintenance phase were obtained from an

equidistantly spaced grid with duration and formant frequency as the dimensions

(see the rightmost panel of Figure 4.2). The formant frequency values in the grid

ranged between the means of the stimuli from the learning phase. The range of

stimulus duration expressed in just noticeable differences (jnds) was equal to the

number of jnds of the frequency range.

Table 4.1 lists the summary statistics for the stimuli used in the pretest, the

learning phase and the maintenance phase. Any differences between category A and

B in formant frequency in Condition 1 or in duration in Condition 2 are entirely due

to sampling variation.
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Table 4.1.
Stimulus characteristics of the phonetic categories used in Experiment1, 2, and 3. The rows presenting
the learning stimuli of Condition 1 (duration relevant) and Condition 2 (formant frequency relevant)
list the mean stimulus duration and standard deviation in D and in ms and the mean value of the first
formant and its associated standard deviation in ERB and in Hz. Any deviation of correlation
coefficient ρ from 0 is due to sampling. Both conditions have the same maintenance phase stimuli.
The mean, minimal, and maximal values of both duration and formant frequency of the maintenance
stimuli are listed. Means for the dimensions that vary in each condition are in boldface. The last row
presents the values of the four fixed formants F2 to F5 used in the generation of all stimuli.
Bandwidths were set at10 % of the frequency.

Learning stimuli

Category A “/ø/” as in feut Category B “/Y/” as in fut

Means σ ρ Means σ ρ

Condition 1 
(duration relevant)

52.2 D
165 ms

0.34 D
12.4 ms

9.1 ERB
392 Hz

1.88 ERB
127.0 Hz

-0.10

50.1 D
102 ms

0.28 D / 6.6
ms

9.1 ERB
388 Hz

1.8 ERB
120 ms

-0.08

Category A “/y/” as in fuut Category B “/Y/”as in fut

Means σ ρ Means σ ρ

Condition 2
(frequency relevant)

50.4 D
113 ms

1.2 D
33 ms

8.16 ERB
328 Hz

1.3 ERB
87.7 Hz

-0.08

50.1 D
102 ms

0.28 D
6.6 ms

9.1 ERB
388 Hz

1.8ERB
120 Hz

-0.10

Maintenance stimuli

Mean Min Max Stepsize

Duration
51.1 D
131 ms

50.0 D
101 ms

52.2 D
166 ms

0.15 D/step
5.9 ms / step

Frequency 9.0 ERB
375 Hz

7.8 ERB
299 Hz

10.2 ERB
457 Hz

0.17 ERB/step
11.7 Hz /step

F2 F3 F4 F5

Fixed formants
19.6 ERB
1657 Hz

22.3 ERB
2292 Hz

26.2 ERB
3607 Hz

28.2 ERB
4845 Hz
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Procedure

Listeners were seated in a soundproof booth in front of a computer screen and a

two-button response box. The listeners’ task was to assign each stimulus to group A

or B, using the two-key button box. 

The experiment again consisted of a pretest, two learning phases and a

maintenance phase. Using a pretest allowed us to detect any preexisting

categorization tendencies. The pretest and maintenance phase both consisted of 196

test stimuli (49 stimuli times 4 repetitions), whose values ranged between the mean

values of both categories (see the “unidimensional learning” panels of Figure 4.2). In

the pretest and maintenance phase no feedback was given on listenersʹ

categorizations. Once a participant had selected a category label on a trial, the

monitor would display (the Spanish equivalent of) “next” for 700 ms and the next

stimulus was played after a 200 ms delay. In the maintenance phase, listeners were

asked to continue to categorize as they saw fit at the end of the learning phase.

The learning consisted of 448 stimuli (2 categories times 2 repetitions times 112

stimuli per category) presented at a comfortable level through Sennheiser

headphones (HD 270).  The stimuli from the two categories were presented in a

random order in two sessions separated by a brief rest period. All 112 stimuli from

each category were presented once in each session.

In contrast to the pretest and maintenance phase, trial-by-trial feedback was

provided during the learning phase. Listeners had to assign the learning stimuli to

category A or B with the two-key button box. Once participants had selected a

category label on a trial and their categorization was correct, the monitor displayed

(the Spanish equivalent of) “right” in green letters for 700 ms; when the

categorization was incorrect, the monitor displayed (the Spanish equivalent of)
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“wrong” in red letters for 700 ms immediately following the response. After the

visual feedback disappeared, a 200 ms blank screen preceded the next stimulus.

After the experiment all participants filled out a questionnaire asking them

whether they recognized the sounds as speech, whether they labeled the groups in

any way and whether they spoke a Germanic language besides English.

Results and discussion

Signal detection analysis

As a first analysis, percent correct and d’ were calculated for the learning phases of

each condition (See Figures 4.3 and 4.4 and Table 4.2). Recall that in the pretest and

maintenance phase a stimulus grid was used without feedback, so correct and

incorrect categorization did not apply in these phases. Pretest and maintenance

phases are analyzed in detail in a later section. Figure 4.3 and 4.4 suggest a learning

effect, judging by the increase in performance from the first to the second learning

phase. 
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phases of Condition 1 (duration relevant) and
2 (frequency relevant) of Experiment 1
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After having confirmed that percentage correct differed significantly from chance

in all phases of the experiment (minimum t [9] = 2.92, p < 0.05), we tested the

learning effect using an ANOVA with Part of the Experiment as within-subjects

variable and Condition as between-subjects variable. This analysis showed the

percentage correct to be significantly higher (F [1,18] = 6.30, p < 0.05) in the second

learning phase. This effect did not interact with Condition, so the learning was equal

in both conditions. Further, the analysis showed there to be a marginally significant

advantage for Condition 2(F [1,18] = 3,066, p < 0.097), where formant frequency was

the relevant dimension, meaning that subjects tended to be better at categorizing

stimuli when formant frequency was the relevant dimension than when duration

was the relevant dimension. 

In all phases of the experiment and for both conditions, dʹ differed significantly

(minimum t [9] = 1.89, p < 0.05) from zero (the value associated with identical

distributions of perceptual effects of two stimuli in signal detection theory,

(Macmillan & Creelman, 1997). As with percentage correct, the main effect of Part of

the experiment was significant for the dʹs (F [1,18] = 7.58, p < 0.05). The difference

between Conditions was again marginally significant (F [1,18] = 4.08, p < 0.06). There

was no significant interaction between Condition and Part of the experiment.

Table 4.2.
Signal detection analysis results for Experiment 1 (supervised learning with relevant variation in one
dimension and irrelevant variation in the other dimension). The mean percentage correct and dʹ
values and their associated standard deviations are displayed for both learning phases of Conditions
1 and 2.

Learning phase 1 Learning phase 2

pc σ dʹ σ pc σ dʹ σ

Condition 1 (duration relevant) 0.66 0.17 0.70 0.83 0.76 0.18 1.06 0.95

Condition 2 (formant frequency relevant) 0.82 0.17 1.53 0.77 0.84 0.16 1.66 0.65
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The signal detection measures thus show a clear picture. There was a learning effect

in the percentages correct and dʹ. There was no robust difference between the

conditions, although the condition in which frequency was the relevant dimension

tended to be preferred. Because these signal detection measures do not differentiate

by dimension, and are not applicable to the pretest or the maintenance phase, the

three phases of the experiment were also analyzed with logistic regression.

Logistic regression

The binary choice design (every answer is either category A or category B) is very

well suited by a logistic regression. A logistic analysis yields two β-weights (which

can be significant or not) which indicate the extent to which each dimension explains

the variation in the data. These β-weights are calculated for each listener

individually and then averaged. To probe for learning, the two learning phases were

analyzed separately.

Figure 4.5 and Table 4.3 show mean β-weights, standard errors (Figure) and

standard deviations (Table) of the dimensions duration and formant frequency for

the pretest (“Pretest”), the first and second learning phase (“Learning phase 1” and

“Learning phase 2”) and the maintenance phase (“Maintenance phase”).
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In addition to β-weights, a logistic regression procedure also gives a significance

level, indicating whether a β weight differs from zero and contributes significantly to

the regression model. If the level was not significant for a given dimension, we

concluded that listeners did not use this dimension in their categorization. The

columns labeled “Uni” and “Multi” of Table 4.3 show how many subjects either

used one or all dimensions significantly. These categories are mutually exclusive and

subjects using neither dimension have been omitted.
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Figure 4.5. Mean β-weights and their respective standard errors of the relevant and irrelevant
dimensions for Condition 1 (duration relevant) and Condition 2 (frequency relevant) for each
Part of the experiment.



Table 4.3.
Logistic regression results of Experiment 1 where Spanish listeners were trained with supervision to
categorize stimuli with relevant variation in one dimension and irrelevant variation in the other
dimension. The table displays the results of the pretest, learning phases and maintenance phase of
Condition 1 (duration relevant) and Condition 2 (formant frequency relevant). The mean β-weights
and their standard deviations as well as the number of Listeners using one (“Uni”) or both (“Multi”)
dimensions significantly are shown. Listeners using no dimension significantly are not shown.

Pretest

Condition 1, duration relevant (N=10) Condition 2, F1 relevant (N=10) 

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.01 0.63 2

Irrelevant 1.55 1.97 2
3

1.16 1.80 2

0.93 0.88 4
2

Learning phase 1

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.71 0.75 5

Irrelevant 0.17 0.1 1
3

1.67 1.74 7

0.24 0.17 0
1

Learning phase 2

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.52 1.55 6

Irrelevant 0.26 0.26 2
2

1.73 1.39 7

0.32 0.31 0
1

Maintenance phase

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.99 1.61 4

Irrelevant 1.06 1.10 2
3

2.94 2.58 5

0.35 0.46 1
2

Figure 4.5 and Table 4.3 both show the sensitivity of listeners to the information

provided to them (trial-by-trial feedback and distributional information). In all

phases except the pretest, the mean β-weights for the relevant dimensions were

higher than those for the irrelevant dimensions. There were some differences

between Conditions 1 and 2, possibly reflecting a preference for formant frequency

as a relevant dimension. First, the β-weight for the relevant dimensional in

Condition 1 was low in the first learning phase, reflecting listenersʹ reluctance to use
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this dimension. Similarly, ignoring duration in the maintenance phase when it is

irrelevant (Condition 2) appears to be easier than ignoring formant frequency in the

maintenance phase when it is irrelevant (Condition 1).

These effects were evaluated with an ANOVA with Part of the experiment and

Dimension (relevant versus irrelevant) as within-subjects variables and Condition as

between-subject variable. The learning effect was present in both the increase in

mean β-weight as the experiment progressed (F [3, 54] = 9.096, p < 0.05) and in the

overall preference for the relevant over the irrelevant dimension (F [1,18] = 7.86, p <

0.05). Performance in Condition 2 was not better than performance in Condition 1 (F

[1, 18] = 0.17, n.s.). The initial preference of our listeners for formant frequency led to

a significant interaction between Part of the experiment and Dimension (F [1,54] =

7.45, p < 0.05) with formant frequency always being the preferred dimension in the

Pretest.

The results of Experiment 1 show that Spanish listeners were clearly able to learn

a non-native category distinction characterized by relevant variation along one

dimension and irrelevant variation along another, when provided with trial-by-trial

feedback. Independent of whether a relatively unfamiliar dimension (recall that

duration does not play a significant role in the Spanish vowel system) is relevant or a

very familiar one (formant frequency), our listeners were sensitive to the information

provided to them and could maintain the distinction they learned in the

maintenance phase. The Dutch listeners of Chapter 2 and 3, much more familiar with

the dimension duration, preferred to use duration in the maintenance phases.

The trial-by-trial feedback provided in this experiment is not often available to

the second (or first) language learner. Usually, when learning a second language, we

have to rely on the same distributional information available to infants learning a
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first language, with the possible inclusion of some lexically driven information

(Eisner & McQueen, 2005) although this type of perceptual learning has only been

shown to be able to fine-tune listenersʹ categories, not to create new ones. In

Experiment 2, unsupervised learning of the same speech categories as in Experiment

1 is investigated.

Experiment 2

Method

Subjects

Fourteen (six in Conditions 1 and eight in Condition 2) Spanish exchange students

from the Radboud University of Nijmegen participated in the experiment. None of

them spoke another language besides English, but most of them were engaged in

learning Dutch. Their proficiency in Dutch was extremely low. All subjects reported

normal hearing. Again, all listeners judged the stimuli to be vowels or very vowel

like on the questionnaire given to them after the experiment.

Stimuli

Both the learning and pretest/maintenance stimuli were identical to those used in

Experiment 1 (see Table 4.1). Synthesized versions of the Dutch vowels from the

words “fut” (/fYt/), “feut” (/føt/) and “fuut” (/fyt/). In Condition 1, the relevant di-

mension of variation was duration and in Condition 2 the relevant dimension of

variation was formant frequency.
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Procedure

The procedure in the pretest and maintenance phase was identical to that in

Experiment 1 (See the “unidimensional learning” panels of Figure 4.2). Contrary to

the procedure of Experiment 1, no trial-by-trial feedback was provided in the

learning phases. In all four phases of the experiment, the subject’s task was to assign

each stimulus to group A or B, using the two-key button box, after which the

monitor would display (the Spanish equivalent of) “next” for 700 ms and the next

stimulus was played after a 200 ms blank screen.

Results and discussion

Signal detection analysis

The signal detection measures percent correct and dʹ are presented in Table 4.4and in

Figures 4.6 and 4.7 respectively.

Table 4.4.
Signal detection analysis results for Experiment 2 where Spanish listeners had to learn to categorize
stimuli with relevant variation in one dimension and irrelevant variation in the other dimension
without supervision. The mean percentage correct and dʹ values and their associated standard
deviations are displayed for both learning phases of Condition 1 (duration relevant) and 2 (formant
frequency relevant).

Learning phase 1 Learning phase 2

pc σ dʹ σ pc σ dʹ σ

Condition 1 (duration relevant) 0.61 0.16 0.71 0.89 0.66 0.19 0.56 0.69

Condition 2 (formant frequency relevant) 0.84 0.13 1.91 1.12 0.85 0.13 1.92 1.12

The figures as well as the table indicate a better performance in Condition 2

compared to Condition 1. The figures show little indication of the learning effect

found in Experiment 1 in the difference between the learning phases.
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Before statistically testing these observations we first tested whether the percent

correct scores differed significantly from chance. The chance level for an experiment

without trial-by-trial feedback is less obvious than in an experiment with

supervision. In order to calculate percent correct, the listenerʹs response must be

labeled “right” or “wrong”, depending on whether he or she assigns a stimulus to

the correct category. In supervised learning, this is done a priori by the

experimenter. In unsupervised learning, however, the experimenter has to infer the

listenerʹs mapping of stimulus and category based on his or her performance. Some

listeners will associate one category with label A and the other with label B, while

others will use the reverse pattern.

For each listener, the category most associated with response A was defined as

category A for subsequent analysis. As a consequence, subjects always perform at or

above chance level. Therefore, chance level is not simply at 50% correct. We

calculated the expected value for chance level for 224 stimuli from a binomial

distribution and the transformed percent correct, leading to a test value of 52.66%.

In Condition 1, when duration was the relevant dimension, percentage correct

did not differ from chance in the first learning phase (t [5] = 1,65, n.s.) or in the
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Figure 4.6. Percentage correct for the two
learning phases of Conditions 1 and 2 of
Experiment 2.
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Figure 4.7. dʹ values of the two learning
phases of Condition 1 (duration relevant) and
2 (frequency relevant) of Experiment 2.
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second (t [5] = 1.47, n.s.). However, in Condition 2, when formant frequency was the

relevant dimension, both the percentage correct of the first learning phase (t [7] =

8.23, p < 0.05) and that of the second learning phase (t [7] =7.66, p < 0.05) differed

significantly from chance. This difference between the two conditions was also

present in the main effect for Condition in the ANOVA (F [1,12] = 7,77, p < 0.05) with

Part of the Experiment as independent within-subject variable. There was no

significant effect of Part of the experiment (F [1,12] = 0.012, n.s.) in Condition 1.

The dʹ results mirror those of the percentage correct. In condition 1 (duration

relevant), none of the d’s differed significantly from zero, whereas in condition 2

(formant frequency relevant) the d’s of both learning phase 1 (t (7] = 4.83, p < 0.05)

and phase 2 (t [7] = 4.84. p < 0.05) differed significantly from zero. The d’s in

Condition 2 were also well above 1, the size traditionally associated with a true

perceptible difference, so subjects were able to distinguish the two categories. In

Condition 1, this was not the case. As with percentage correct, a significant effect of

Condition (F [1,12] = 5.85, p < 0.05)) was found, in the absence of an effect of Part of

the experiment or an interaction.

These analyses show that performance was good when formant frequency was

the relevant dimension, but not when duration was relevant. These effects will be

further explored in the logistic regression analyses.

Logistic regression

Table 4.5 and Figure 4.8 show the mean β-weights of Condition 1 (duration relevant

and Condition 2 (formant frequency relevant) for all four phases of the experiment. 
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Table 4.5.
Logistic regression results of Experiment 2 where Spanish listeners were had to learn to categorize
stimuli with relevant variation in one dimension and irrelevant variation in the other dimension
without supervision.. The table displays the results of the pretest, learning phases and maintenance
phase of Condition 1 (duration relevant) and Condition 2 (formant frequency relevant). The mean β-
weights and their standard deviations as well as the number of Listeners using one (“Uni”) or both
(“Multi”) dimensions significantly are shown. Listeners using no dimension significantly are not
shown.

Pretest

Condition 1, duration relevant (N=6) Condition 2, F1 relevant (N=8) 

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.02 1.47 2

Irrelevant 1.19 1.35 3
0

1.27 1.82 2

1.79 1.23 4
2

Learning phase 1

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.86 1.15 2

Irrelevant 0.66 0.37 3
1

0.74 1.41 6

0.18 0.21 1
0

Learning phase 2

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 0.93 1.35 1

Irrelevant 0.67 0.36 4
1

0.53 0.77 7

0.13 0.12 0
0

Maintenance phase

µ(β) σ(β) Uni Multi µ(β) σ(β) Uni Multi

Relevant 1.38 1.96 2

Irrelevant 0.96 1.25 2
0

3.20 2.30 6

0.68 0.87 2
0

Unsupervised learning of category structures with relevant variation in only one

dimension appears to be difficult. With the variable dimension coded as “relevant”

versus “irrelevant”, there was no significant effect of dimension (F [1,12] = 0.345,

n.s.). This means that participants did not show an overall preference for the relevant

dimensions over the irrelevant one; they all preferred formant frequency over

duration. While there was a significant effect of Part of the experiment (F [3,36] =
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21,04, p < 0.05) this is probably due to the differences between the β-weights of the

training phases and the pretest/maintenance phases of the different conditions, as

significant interactions between Part of the experiment and Condition (F [3,36] =

7,25, p < 0.05) and Part of the Experiment and Dimension (F [3,36] = 3,93, p < 0.05)

indicate. To further investigate this, separate analyses were conducted for each

condition and each combination of pretest/maintenance phase and the two learning

phases. This showed that the interactions were carried by the interaction between

the Dimension and Part of the experiment (Pretest versus Maintenance phase) of

Condition 2 (F [1,7] = 7,928, p < 0.05). Only when formant frequency was the relevant

dimension, it was used more in the maintenance phase compared to the irrelevant

dimension in the pretest.

Although the differences between supervised and unsupervised learning are

considerable, an overall ANOVA with Supervision, Dimension, and Condition as

between-subjects variable and Part of the Experiment as within-subjects variable,

failed to show a significant main effect of Supervision (F [1,33] = 0.27, n.s.) nor was

there any relevant interaction. 
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The results of both the supervised and unsupervised learning experiment

indicate a preference of our Spanish listeners for the dimension of frequency of the

first formant. Especially when considering the percentage correct levels,

performance was better when formant frequency was the relevant dimension. We

hypothesize this was because of the phonological structure of the language, where

duration is not an important phonetic dimension in distinguishing vowels whereas

formant frequency is (Hammond, 2001).

A study by Kawahara (2006) with Japanese and English listeners has shown that

the duration of non-speech stimuli can be perceived differently by listeners with

differing phonologies. Thus we next tested listeners whose phonology differed from

that of the Spanish listeners in Experiments 1 and 2; we examined supervised
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Figure 4.8. Mean β-weights of Experiment 2 for Condition 1 and Condition 2 for the relevant and
irrelevant dimensions for each part of the experiment. In Condition 1, duration was the relevant
dimension; in Condition 2, formant frequency was relevant. Vertical line segments indicate plus
one standard error.



learning of the stimuli of Condition 2 by speakers of American English. While

duration may not be a strict phonetic cue in American English, there is much more

variation in the average duration of these vowels (Hillenbrand, Getty, Clark, &

Wheeler, 1995), the distinction between tense and lax vowels in English is associated

with (allophonic) duration differences with tense vowels being longer and lax

vowels being shorter (Smiljanić & Bradlow, 2005), and vowel duration signals the

difference between some voiced and voiceless consonants (Flege & Hillenbrand,

1986). If the performance of the American English listeners betters that of our

Spanish listeners, this would be evidence of the importance of the native

phonological system in learning new phonetic categories.

Experiment 3

Method

Subjects13

Ten undergraduate students from the University of Wisconsin, Madison participated

in the experiment. All were native speakers of American English and were paid for

their participation. None of the subjects spoke another language besides English and

all reported normal hearing. The questionnaire afterwards again revealed that all

listeners judged the sound to be vowels.

13 Part of this research was carried out with financial support from the Dutch Scientific Council. We
further thank Keith Kluender, University of Wisconsin, Madison for financial and other assistance
with these experiments.
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Stimuli

The stimuli were identical to those used in Condition 1 of Experiments 1 and 2.

Thus, duration was the relevant dimension of variation for categorizing the stimuli,

while formant frequency varied irrelevantly. See Table 4.1.

Procedure

The procedure was similar to that of Experiment 1. The experiment again consisted

of a pretest, two learning phases and a maintenance phase. After the listeners had

received instructions and signed consent, they were seated in a soundproof booth

and pressed a button to start the experiment. The pretest and the maintenance phase

were identical: subjects were asked to categorize the stimuli into two groups. In the

pretest this was done spontaneously, in the maintenance phase subjects had to try to

maintain the rule they had discovered in the learning phase.

In the learning phase listeners assigned sounds to one of two buttons. If a sound

was assigned correctly, a light above the button would light up. If a sound was not

assigned correctly, the light belonging to the other button would light up, giving the

listener trial-by-trial feedback about the correct response. Listeners were asked to

categorize correctly as many stimuli as they could with the feedback given. In the

learning phase, 112 stimuli from each category were presented twice, resulting in 448

trials. The learning phase lasted for about 25 minutes, depending on the response

speed of the subjects.

After the learning phase, listeners categorized the pretest stimuli again in the

maintenance phase according to the rule they had discovered in the learning phase.

Finally, all participants filled out a questionnaire asking them whether they

147



recognized the sounds as speech, whether they labeled the groups in any way and

whether they spoke a language besides English.

Results and discussion

Signal detection analysis

Again, the percent correct and the d’ were calculated for each condition and part of

the learning phase. The upper part of Table 4.6 lists the values for d’ and the percent

correct for Experiment 3. See also Figure 4.9 and 4.10.

Table 4.6.
Signal detection analysis results for Experiment 3 and 4 (American English listeners). The mean
percentage correct, dʹ values and their associated standard deviations are displayed for both learning
phases. 

Learning phase 1 Learning phase 2

pc σ dʹ σ pc σ dʹ σ

Experiment 3 (duration relevant) 0.84 0.12 1.55 0.67 0.88 0.02 1.95 0.89

Experiment 4 (Multidimensional) 0.64 0.09 0.53 0.37 0.65 0.10 0.60 0.41

All d’s differed significantly from zero (minimum t [9] = 6.91, p < 0.05) and all

percentages correct were significantly above chance (minimum t [9] = 8.11, p < 0.05),

this time with 50% as the expected value since the categories are predefined. An

ANOVA with language (Spanish versus English) as between-subjects variable and

Part of the experiment (learning phase 1 versus learning phase 2) as within-subjects

variable was conducted for both the percent correct and the d’.
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The results show a significant difference in performance between the two

language groups. The performance of English listeners exceeds that of Spanish

listeners both in percent correct (F [1,18] = 5.17, p < 0.05) and dʹ (F [1,18] = 5.45, p <

0.05). Together with the absence of any significant interactions between Part of the

experiment and Language, the significant main effect of Part of the experiment for

both percent correct (F [1,18] = 8.71, p < 0.05) and dʹ (F [1,18] = 33.57, p < 0.05 ) show,

however, that both language groups were able to learn to use the dimension

duration.

Hence, there was a difference in performance measures between the two

language groups. English listeners who are more familiar with distinguishing

vowels based on duration due to their native phonology, performed better when

they had to learn to categorize using duration.
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Figure 4.9. Percentage correct for the two
learning phases of Experiment 3 (American
English listeners) and Condition 1 of
Experiment 1 (Spanish listeners). Learning
was supervised and duration was the only
relevant dimension of variation.
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Figure 4.10. dʹ values for the two learning
phases of Experiment 3 (American English
listeners) and Condition 1 of Experiment 1
(Spanish listeners). Learning was supervised
and duration was the only relevant
dimension of variation.
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Logistic regression

As in Experiments 1 and 2, a logistic regression analysis was performed, Figure 4.11

displays the results of this analysis for the pretest (“Pretest”), the first part of the

learning phase (“Learning phase 1”), the second part of the learning phase

(“Learning phase 2”) and the maintenance phase (“Maintenance”) of both the

American English and Spanish language groups. Table 4.7 displays the mean β-

weights, standard deviations as well as the number of subjects using a dimension

significantly for each part of the experiment.

Figure 4.11 as well as the comparison between Table 4.7 and Table 4.5 clearly

show the differences between the two languages. The mean β-weights for the

relevant dimensions were higher for the American English listeners and the mean β-

weights for the irrelevant dimension formant frequency were higher for the Spanish

listeners. It seems that using the relevant dimension as well as suppressing an

irrelevant one is more feasible when those dimensions are a part of the phonological

structure of oneʹs language. This interaction between relevance of the dimension and

language (F [1,18] = 4,55, p < 0.05)14 warranted separate analyses for the relevant and

the irrelevant dimension. For the relevant dimension (duration ), there was no

significant effect of language, but for the irrelevant dimension (formant frequency)

the β-weights of the Spanish listeners were significantly higher (F [1,18] = 14,49, p <

0.05). This shows the difficulty the Spanish listeners experience in suppressing the

use of formant frequency when it is irrelevant.

14 In fact, all main effects and all interactions except the three-way interaction between Part of the
experiment, Dimension, and Language were significant.
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Both dimensions showed a significant effect of Part of the experiment for the

relevant dimension duration (F [3,54] = 13.0, p < 0.05) and for the irrelevant

dimension frequency (F [3,54] = 3,65, p < 0.05). This main effect was modulated by

Language in two significant interactions with Dimension for duration (F [3,54] = 10.4,

p < 0.05 ) and for frequency (F [3,54] = 3.10, p < 0.05). This interaction again points to

the differential preference of Spanish listeners for formant frequency. The lack of a

significant Language effect for the relevant dimension is probably due to the high β-

weights of the Spanish listeners in the pretest (and, conversely, the low β-weights of

the American English listeners in the pretest). When only the training phases are

analyzed with an ANOVA with Language as between-subjects factor and Part of the

experiment (Learning phase 1 and Learning phase 2) as within-subjects variable,
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Figure 4.11. Mean β-weights for each part of the supervised learning experiment with duration as
relevant dimension of variation for American English listeners (left bars) and Spanish listeners
(right bars, taken from Condition 2 from Experiment 1).



there is a significant effect of language for both the relevant dimension (F [1,18] =

5.46, p < 0.05), where American English has the higher β-weights and for the

irrelevant dimension (F [,18] = 7.83, p < 0.05), where Spanish has the higher β-

weights.

Table 4.7.
Results of the logistic regression analysis of Experiment 3 where English listeners were trained with
supervision to categorize stimuli with relevant variation in one dimension (duration ) and irrelevant
variation in the other (frequency of the first formant). The table shows the β-weights for both duration
and frequency of the first formant, their standard deviations as well as the number of listeners
significantly using one (“Uni”) or both (“Multi”) dimensions in their categorizations.

Pretest

µ(β) σ(β) Uni Multi

Relevant 0.30 0.43 3

Irrelevant 0.12 0.11 5
0

Learning phase 1

µ(β) σ(β) Uni Multi

Relevant 1.79 0.05 10

Irrelevant 0.95 0.03 0
0

Learning phase 2

µ(β) σ(β) Uni Multi

Relevant 2.94 0.09 9

Irrelevant 1.70 0.06 0
0

Maintenance phase

µ(β) σ(β) Uni Multi

Relevant 1.16 0.52 9

Irrelevant 0.08 0.06 0
0

The results of Experiment 3 and Condition 1 of Experiment 1 show the

importance of the native language phonology in learning a new phonetic distinction.

Both Spanish and American English listeners were able to learn the distinction based
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on duration, but Spanish listeners experienced more difficulty with ignoring the

irrelevant dimension formant frequency. American English listeners who were more

familiar with the relevant dimension duration were better able to use this dimension

and were also better able to ignore formant frequency.

In all experiments until now, learning was limited to situations where one

dimension of variation was relevant and another dimension displayed irrelevant

variation. This is in contrast to the situation with the phonetic inventory of most

languages, where there is usually more than one relevant dimension of variation

(Lisker, 1979). Furthermore, provided they are detectable, almost all aspects of the

speech signal are considered relevant for phonetic categorization (Diehl & Kluender,

1987). So, attending to multiple relevant dimensions is something experienced

listeners do continuously and it would be extremely important to be able to do when

acquiring new phonetic categories (Flege & Hillenbrand, 1986). In Experiment 4, we

investigate supervised learning of a multidimensional category distinction,

exploiting the same dimensions of variation as in the previous experiments, duration

and formant frequency. For listeners to obtain a high percentage correct, both

duration and formant frequency had to be used in distinguishing the categories.

Experiment 4

Method

Subjects

Eighteen undergraduate students from the University of Wisconsin, Madison

participated in the experiment. All were native speakers of American English (and
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so should be able to use both duration and formant frequency in their

categorizations). They were paid for their participation. None of the subjects spoke

another language besides English and all reported normal hearing. The results of the

questionnaire administered after the experiment were as in the previous

experiments: all listeners judged the stimuli to be vowels or extremely like vowels.

Stimuli

Stimulus construction was identical to that in Experiment 1, except that the

categories now had two relevant dimensions of variation (duration and formant

frequency). See Table 4.8 for the stimulus characteristics of the learning phase. The

pretest and maintenance stimuli were identical to those of Experiment 1, 2, and 3. 

Table 4.8.
Stimulus properties of the multidimensional learning (Condition 2) stimuli of Experiment 4. The
duration in DUR (and ms) and formant frequency in ERB and their respective standard deviations are
presented for both categories. The pretest and maintenance stimuli are identical to those used in
Experiment 1 and can be found in Table 4.3

Category A “/ø/” as in feut Category A “/y/” as in fuut

Mean σ ρ Mean σ ρ

51.8 D
158 ms

1.22 D
45.1 ms

9.9 ERB
441.6 Hz

1.32 ERB
96.1 Hz

-0.95

50.4 D
113 ms

1.21 D
33.4 ms

8.16 ERB
327.6 Hz

1.33 ERB
78.7 Hz

-0.95

The means of/ the two categories corresponded roughly to the Dutch vowels /y/

and /ø/ as in the Dutch words “fuut” (/fyt/ and “feut” (/føt/). Both frequency of the

first formant (formant frequency) and the duration of the sound (duration) were

varied in creating the categories: /y/ is shorter and has a lower F1 than /ø/ (see the

fourth panel of Figure 4.2).
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Procedure

The procedure was identical to that used in Experiment 3: a pretest, two learning

phases and a maintenance phase. In the pretest and the maintenance phase subjects

were asked to categorize the stimuli into two groups. In the pretest listeners chose

category labels as they wished, but in the maintenance phase subjects had to try to

maintain the rule they had discovered in the learning phases. In the learning phase

listeners received trial-by-trial feedback by lights above their response buttons. If a

sound was not assigned correctly, the light belonging to the button that did signify

the correct response would light up. In the learning phase, 112 stimuli times 2

repetitions times 2 categories were presented (448 stimuli). In the pretest and

maintenance phase 49 stimuli were presented 4 times each (196 stimuli). The

experiment lasted for about 40 minutes. Afterwards, all participants filled out a

questionnaire asking them whether they recognized the sounds as speech, whether

they labeled the groups in any way and whether they spoke a Germanic language

besides English.

Results and discussion

Signal detection analysis

The second row of Table 4.6 shows the mean percentage correct and the mean dʹ for

the first and second learning phase of Experiment 4. Figure 4.12 and 4.13 show the

same data. The percentage correct and the d´ differed significantly from their

respective chance levels (50% and 0) in all phases (min t [17] = 6.10, p < 0.05), but the

difference between the first and second phase in the figures does not give a strong

indication for a learning effect. Two ANOVAʹs with Part of the experiment as

155



within-subject variable and percentage correct or dʹ as dependent variables did not

show a significant effect for either percentage correct (F [1,17] = 0.90, n.s.) or dʹ (F

[1,17] = 0.30, n.s.).

The signal detection measures do not present any evidence of learning over time.

Both measures, however, were significantly different from their chance levels,

indicating that listeners were sensitive to the distributional information and the trial-

by-trial feedback presented to them.

Logistic regression

The four panels of Figure 4.14 present the β-weights for duration and formant

frequency for each listener in each part of the experiment. The abscissa shows the β-

weight for duration and the ordinate shows the β-weight for frequency (see Nearey,

1997). Listeners who used both dimensions are identified by asterisks, listeners who

used only formant frequency as plus-signs, listeners who used only duration as

crosses, and listeners who did not use any dimension significantly as circles.
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Figure 4.12. Percentage correct for the two
learning phases of Experiment 4 (American
English listeners). Learning was supervised
and both duration and formant frequency
were relevant dimensions of variation.
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Figure 4.13 dʹ values for the two learning
phases of Experiment 4 (American English
listeners). Learning was supervised and both
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Optimal performance corresponds to a point in the upper right hand corner of the

Figure, with a φ of 45º (both dimensions are given equal weight) and far away from

the origin (reflecting consistent behavior).

The upper left panel of Figure 4.13 shows performance in the pretest. The

majority of the listeners had a preference for using a unidimensional solution with
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Figure 4.14. Scatterplots of individual β-weights for the two dimensions
(duration or formant frequency) in Experiment 4 (two relevant dimensions of
variation). Each of the four panels refers to a different part of the experiment.



frequency (plus signs), which was also the case in the pretest of Experiment 3. The

upper right and lower left panel show the learning phases. Over time, the number of

listeners who use both dimensions in their categorization increases (more asterisks),

as does their consistency (asterisks further away from the origin). In the maintenance

phase, when feedback was no longer given, much of this learning is lost and the

number of listeners using only formant frequency as the relevant dimension is even

larger than in the pretest.

Most subjects succeeded in reliably using one or more dimensions, whereas

others failed to use any dimensions significantly. It would be desirable to have a

measure of the majorityʹs central tendency and variability, because simply

computing the across-subjects average β-weights for each of the dimensions would

not be an effective way to characterize overall performance. For example, if half of

these subjects used duration exclusively, and the others formant frequency, the

average β-weights might both exceed chance suggesting that participants on average

used both dimensions, even though no individuals used did so. A measure that

integrates performance on both dimensions would therefore be useful.

Here, we derive such a measure by computing the angle formed by the line

connecting each subjectʹs β-weight to the origin, on a graph where the x axis

represents duration, and the y axis frequency (as in Figure 4.14), and also computing

the length of this line. These computations were done by transforming the Cartesian

coordinates of the β-weights for duration and frequency into the polar coordinates φ

(the angle with the horizontal axis in radians) and A (the distance to the origin) by

the following transformations:
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(4) A=dur
2  freq

2 

(5a) =arctan  freq /dur  if dur≤0

(5b) =arctan  freq /dur  if dur0 ;
2 if 

In our analysis, φ ranges between π and -π radians. When φ equals ½π, listeners

purely use frequency, when φ equals 0, listeners use only duration, but when φ is

close to ¼π subjects are in between those two angles and use duration as well as

frequency. As can be seen from Figure 4.14, most listeners fall in the upper right

plane, somewhere between 0 and ½π.

The other polar coordinate, A, ranges between zero and plus infinity. A large A

indicates that a subject was internally consistent (though a large average A over

subjects need not reflect consistent weights of each dimension), while a small A

indicates that listeners’ categorizations tend not to be internally consistent. In Figure

4.14, the listeners that categorized using both dimensions (indicated by the asterisks)

are farther removed from the origin, while listeners that do not use any dimension

significantly (the circles) are all very close to the origin. Table 4.9 displays the mean

values for φ, A and their standard deviations as well as the number of listeners (total

N = 18) using one or two dimensions significantly.

The central question is whether the mean φ of each learning phase differed

significantly from 0 (representing a unidimensional duration solution) and from ½π

(representing a unidimensional formant frequency solution). This was tested with

two t-tests corrected for the increased type I error with Bonferroni correction for

every phase of the experiment. This resulted in significant differences with both 0

and ½π in all phases (min t [17] = 2.47, all p < 0,05). Although not all subjects

categorize using a multidimensional rule, the subjects using formant frequency
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balance those using duration, somewhat artificially resulting in an average

multidimensional φ. Nevertheless, the number of listeners preferring the

multidimensional solution over a unidimensional one increased during the learning

phases, showing the capability of our listeners to profit from trial-by-trial feedback

and distributional information.

Table 4.9.
Results of the logistic regression analysis of Experiment 4 where English listeners were trained with
supervision on a category distinction where both dimensions were relevant. The angle φ, the
consistency measure A as well as their respective standard deviations and the number of listeners
significantly using one (“Uni”) or both (“Multi”) dimensions in their categorizations. Listeners using
no dimension are not shown (N =- 18).

Pretest

φ (σ) A (σ) Uni Multi

Duration

F1
0.27 (0.28) 1.08 (0.67)

3

9
4

Learning phase 1

φ (σ) A (σ) Uni Multi

Duration

F1
0.22 (0.20) 0.96 (0.77)

2

3
7

Learning phase 2

φ (σ) A (σ) Uni Multi

Duration

F1
0.34 (0.28) 1.26 (0.89)

1

4
10

Maintenance phase

φ (σ) A (σ) Uni Multi

Duration

F1
0.35 (0.24) 1.07 (0.77)

1

12
3
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The consistency measure A was statistically evaluated in ANOVA with Part of

the experiment as within-subject variable. As with the signal detection measures, the

different phases of the experiment did not differ significantly from each other (F

[3,51] = 0.784, n.s.).

A final interesting comparison is that between unidimensional supervised

learning and multidimensional supervised learning by our American English

listeners. Percentage correct and dʹ were analyzed using an ANOVA with Part of the

experiment as within-subjects factor and Experiment (unidimensional versus

multidimensional) as between-subjects factors. Performance in the unidimensional

learning experiment was consistently better for both percentage correct (F [1,26]

=24.67, p < 0.05 ) and dʹ (F [1,26] = 31.14, p < 0.05).

Experiment 4 showed that listeners were sensitive to the distributional

information and trial-by-trial feedback provided to them in this multidimensional

category learning task. Compared to Experiment 3, however, performance in

Experiment 4 was considerably worse. Learning a category distinction with more

than one relevant dimension was considerably more difficult than learning to use

one dimension while simultaneously learning to ignore the other.

The amount of exposure our listeners received (448 stimuli) was considerable,

but is probably insignificant compared to the exposure received by infants or adults

learning a second language. Despite this relatively small amount of exposure, more

than half of the listeners were able to use both dimensions after the learning phase.

The striking loss of this ability in the maintenance phase is similar to the loss of

learned categorization skills observed in almost all the speech and non-speech

learning experiments presented in this thesis. Listeners almost invariably prefer

unidimensional solutions in category learning (Ashby, Queller & Berretty, 1999).
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Although the learning phases of Experiment 4 showed that this preference can be

modified, listeners reverted to a unidimensional categorization strategy in the

absence of distributional information and trial-by-trial feedback.

General discussion

The experiments presented in this chapter investigated the processes involved in

learning the sounds of a second language: the role of the phonological structure of

the native language, the role of the distributional properties of the category

distinction and the role of supervision in acquiring phonetic categories. The stimuli

displayed tightly controlled variation in dimensions shown to be important in

speech perception, duration and formant frequency. Depending on condition, this

variation was either relevant or irrelevant to the category distinction.

Experiment 1 trained Spanish listeners to categorize non-native speech sounds

with the aid of trial-by-trial feedback (supervision). The sounds listeners had to

categorize varied on two dimensions, duration and formant frequency. Depending

on condition, one of the dimensions was relevant whereas the variation in the other

dimension did nothing to signal category membership. The results showed that

listeners could learn to attend to the relevant dimension while suppressing the

irrelevant one. The degree of success of this learning as well as its robustness in the

maintenance phase depended heavily on which dimension was the relevant one.

Learning and maintaining a distinction based on formant frequency was easier for

our Spanish listeners than learning and maintaining a distinction based on duration.

Experiment 2 trained Spanish listeners to categorize the stimuli from Experiment

1 but now without trial-by-trial feedback. Listeners now had only one source of
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information at their disposal: the distributional properties of the stimuli. With only

this information available to them, performance levels decreased considerably and

depended even more on whether duration or formant frequency was the relevant

dimension. The results showed that without trial-by-trial feedback, listeners

experienced more difficulty in ignoring the dimension relevant in their native

phonology, even though the distributional properties of the stimuli indicated

otherwise. They preferred to use the dimension best known to them, in this case

formant frequency. Nevertheless, performance on several measures did differ from

chance, showing the sensitivity of listeners to the distributional information.

Experiment 3 further tested the influence of the native phonology on

categorization performance. American English listeners were presented with the

same stimuli as in Condition 2 of Experiments 1 and 2 (duration relevant) and given

trial-by-trial feedback in the learning phase. American English listeners are more

acquainted with duration in their native phonology than Spanish listeners and have

outperformed, we argue, the Spanish listeners on the signal detection measures as

well as on the β-weights from the logistic regression.

Finally, Experiment 4 had listeners learn a category distinction with two relevant

dimensions. Although the American English listeners were acquainted with both

dimensions and received trial-by-trial feedback on their categorizations,

performance was considerably impaired compared to supervised learning of a

unidimensional distinction. Nevertheless, as with the impaired performance in the

unsupervised learning of Experiment 2, listeners were certainly sensitive to the

distributional information provided to them and the majority of listeners learned to

use both dimensions in the categorization.
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Taken together, the results show supervised learning to be superior to

unsupervised learning, even when there is only one dimension of variation

(Experiment 1 versus Experiment 2). The results also show that learning to

categorize a category structure with one relevant dimension of variation and one

irrelevant dimension of variation is more feasible than learning to categorize a

category structure with two relevant dimensions of variation (Experiments1 and 3

versus Experiment 4). Nevertheless, even with as little as a few hundred

presentations, listeners were shown to be sensitive to the distributional information

available to them in Experiment 4. Learning to integrate two dimensions to

distinguish two phonetic categories is difficult (in line with previous findings of

Flege and Hillenbrand, 1986), but not impossible. Finally, the results show the

importance of the native phonology in learning a new category distinction. Although

the distinction between /Y/ and /ø/ was new to both the American English and

Spanish listeners, the American English group were much better at learning to

categorize these two vowels. We argue that this is because the American English

group is more acquainted with duration as a phonological dimension from their

native phonology. The influence of the native phonology was also apparent in the

preference of the Spanish listeners for formant frequency, especially in the pretest

and maintenance phases when no distributional cues were present.

Comparing the results obtained in Chapters 2 and 3 with the previous results, we

note a remarkable resemblance between the learning of auditory non-speech

categories and the learning of phonetic categories. In both cases, supervised learning

is superior to unsupervised learning and performance on category structures with

one dimension of variation is significantly better than performance on category

structures that require integration of two dimensions. Furthermore, listeners often
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revert to their dimension of preference in the maintenance phase when distributional

information is no longer present. This dimension of preference is shown to be

dependent on the native language in the acquisition of phonetic categories. With

non-speech auditory categories, the role of the native phonology cannot be

determined because all listeners had the same native language. However, the

preference for duration in the maintenance phases of Chapters 2 and 3 is also

consistent with an important role of this dimension in Dutch phonology.
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Chapter 5

Summary and conclusions





Summary

Acquiring phonetic categories for speech perception is more easily performed by

infants than understood by adult researchers. This dissertation aimed at providing a

better understanding of the processes involved in learning the categories of a first

and a second language. The learning problem was operationalized as a two-category

distinction involving one or two relevant acoustic dimensions. In particular, the role

of supervision in the learning process, the role of the distributional information in

the input and the role of the native phonology were investigated.

Non-speech category learning

The experiments presented in Chapter 2 investigated the supervised learning

(defined as learning with trial-by-trial feedback) of non-speech categories. In

Experiment 1 listeners were trained to categorize stimuli with one relevant

dimension of variation and one irrelevant dimension of variation. The dimensions of

variation in these experiments were always duration of the stimuli or the peak

formant frequency of the stimulus. The results showed that these category structures

were easy to learn with trial-by-trial feedback. However, maintaining the learned
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distinction in a maintenance phase where this feedback was no longer present and

the stimuli did not contain any distributional information anymore was considerably

more difficult, especially when the relevant dimension was formant frequency and

the irrelevant dimension was duration. 

Supervised learning of a category structure where both duration and formant

frequency were simultaneously relevant was investigated in Experiment 2 of

Chapter 2. Learning such a truly multidimensional category distinction proved

much more difficult, even with constant trial-by-trial feedback. Eventually, most, but

not all, listeners mastered the distinction in the learning phase. This learning was far

from robust, however, as in the maintenance phase listeners reverted to the use of

only one dimension. As in Experiment 1, our listeners preferred duration over

formant frequency in their unidimensional solutions of the maintenance phase.

Experiment 3 of Chapter 2 investigated whether the lack of trial-by-trial feedback

or the absence of distributional information in the stimuli was responsible for

participantsʹ inability to maintain the category distinction in the maintenance phase.

The learning phases of Experiment 3 were identical to those of Experiment 2, but the

stimuli in the maintenance phase now were the same stimuli as in the learning

phase. This time, listeners were able to maintain the multidimensional categorization

strategy they had learned. Listeners were apparently very sensitive to the absence or

presence of distributional information in the maintenance phase and adjusted their

categorizations to suit.

The experiments presented in Chapter 3 investigated unsupervised learning (e.g.,

without trial-by-trial feedback) of the same category structures as in Chapter 2, again

using non-speech stimuli. In Experiment 1 of this chapter, the categories exhibited

relevant variation in one dimension and irrelevant variation in the other, as had been
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the case in Experiment 1 in Chapter 2. The range of variation was equal for each

dimension, so the only source of information for the listeners was the category

structure of the stimuli. Irrespective of whether formant frequency or duration was

the relevant dimension, listeners were able to determine the relevant dimension

based on the distributional properties of the stimuli alone and use it in their

categorizations.

In the learning phase of the experiment, performance was slightly better when

formant frequency was the relevant dimension. In the maintenance phase, however,

maintaining formant frequency as the relevant dimension and simultaneously

ignoring duration was more difficult than vice versa. This preference for duration in

the maintenance phase is similar to that found in the maintenance phase of the

supervised learning experiment with the same stimuli in Chapter 2.

Experiment 2 of Chapter 3 investigated unsupervised learning of a category

structure where both duration and formant frequency were relevant. Although the

results were very variable, a significant proportion of listeners was sensitive to the

distributional properties of the stimuli. However, benefiting from this

multidimensional distributional information without trial-by-trial feedback proved

much more difficult than using one dimension and ignoring another.

As was argued, the results of the unsupervised learning experiments from

Chapter 3 do not differ qualitatively from the results of the supervised learning

experiments from Chapter 2. In both learning situations, learning to categorize a

category structure based on one relevant dimension of variation while ignoring the

other was much more feasible than learning to use two dimensions simultaneously.

Although comparatively difficult, learning a multidimensional category structure

was possible, however, both with and without the aid of trial-by-trial feedback.
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Supervised learning was quantitatively different from unsupervised learning;

overall performance was better when learning was supervised.

Speech category learning

The experiments presented in Chapter 4 combined the supervised and unsupervised

learning paradigms of Chapters 2 and 3. In contrast to the experiments from

Chapters 2 and 3, synthesized Dutch vowels were used as stimuli instead of the non-

speech sounds used in those experiments. These vowels, /ø/, /y/ and /Y/, can be

distinguished from each other by using the same dimensions as were manipulated to

create the non-speech sounds used in Chapters 2 and 3, namely duration and

formant frequency. The listeners were speakers of Spanish (Experiments 1 and 2)

and American English (Experiments 3 and 4), languages that do not use these

vowels.

Experiment 1 showed that, with supervision in the form of trial-by-trial feedback,

Spanish listeners were able to learn to categorize speech categories with one relevant

dimension of variation and one irrelevant dimension of variation. Again, they could

use duration as well as formant frequency as the relevant and irrelevant dimension,

but with these listeners there was a preference for formant frequency. This

preference was especially noticeable in the maintenance phases of the two conditions

(duration relevant and formant frequency relevant). We speculate that this

preference is due to the phonological properties of Spanish, where formant

frequency is an important cue to vowel categorization whereas duration is not a

relevant cue to category membership for vowels.
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The preference for formant frequency was even clearer in Experiment 2, where

learning was unsupervised and listeners had to rely solely on the distributional

characteristics of the stimuli. Without supervision, Spanish listeners were not able to

learn to categorize the two vowels based on one relevant and one irrelevant

dimension. Their preference for formant frequency clearly showed in the

maintenance phase of Condition 2 where formant frequency was the relevant

dimension. Listeners used this dimension to great extent in their categorization,

especially when compared to the use of duration in the maintenance phase of

Condition 1 where duration was the relevant dimension but was hardly used in

listenersʹ categorizations.

If the native phonology is responsible for the difficulty our Spanish listeners

experienced in using duration in their categorizations, then speakers of another

language that is more acquainted with duration in its vowel system should

experience less difficulty in using duration in their categorizations. Experiment 3

tested this hypothesis by presenting American English listeners with the stimuli and

paradigm of Condition 1 of Experiment 1 (supervised learning of a category

structure with duration as the relevant dimension and formant frequency as the

irrelevant dimension). Comparing the performance of the American English listeners

with that of the Spanish listeners clearly showed an advantage for the English

language group, thus supporting the hypothesis.

Experiment 4 of Chapter 4 investigated supervised learning by American English

listeners of a category structure where both duration and formant frequency were

relevant dimensions. The results showed that learning a multidimensional

distinction is difficult for these listeners, even with the aid of supervision.

Nevertheless, these listeners were shown to be sensitive to the two sources of
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information (trial-by-trial feedback and the distributional properties of the signal) as

more than half of them learned to use both dimensions by the end of the last

learning phase. In the maintenance phase, just as in the multidimensional and

unsupervised learning experiments of Chapters 2 and 3, listeners lost their ability to

use both dimensions and reverted to a unidimensional solution, mostly preferring

frequency as the dimension by which they categorized. 

Conclusions

Taken together, the experiments presented in chapters 2 through 4 reveal several

interesting and intriguing properties of auditory and phonetic category learning.

Important conclusions can be drawn about the role of supervision and distributional

properties in category learning, the similarities and differences between auditory

and phonetic learning, the connection of the auditory category learning results with

visual category learning results, the importance of sensitivity to distributional

information in the category learning process and the differences between infant and

adult auditory category learning. They will be discussed in the following sections.

Supervision and sensitivity to distributional information

First, success in acquiring auditory and phonetic categories depends both on the

distributional properties of the categories and on the presence of absence of

supervision. When there is only one relevant dimension of variation and the other

dimension varies irrelevantly, listeners are well able to learn non-speech auditory

categories. Whether learning of non-native speech sounds is possible, depends on
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the presence or absence of trial-by-trial feedback. With feedback, our Spanish

listeners are certainly able to learn a unidimensional distinction. Without feedback,

learning a non-native unidimensional distinction is very difficult. For non-speech

sounds, the presence or absence of feedback is relevant only for the degree of

success. With trial-by-trial feedback, performance much better compared with

unsupervised performance. However, even without trial-by-trial feedback, listeners

certainly learn how to categorize the stimuli correctly.

Learning a multidimensional category distinction is much more difficult than

learning a unidimensional one. Even with the aid of trial-by-trial feedback, listeners

have a hard time mastering a distinction based on two dimensions. This holds for

auditory category learning as well as for phonetic category learning. After being

exposed to several hundred stimuli, listeners do show evidence of sensitivity to the

relevance of both dimensions, but only sparsely so. When only one of these

dimensions is relevant, they do not nearly experience as much difficulty. Without

supervision, acquiring such a multidimensional category distinction is even more

difficult. 

This difficulty our listeners experience in learning a multidimensional speech or

non-speech category distinction is surprising given the abundance of phonetic

category distinctions that are based on more than one dimension. Perceptual and

acoustic studies show that in order to reliably categorize vowel multiple dimensions

are necessary (Hillenbrand, Getty, Clark, & Wheeler, 1995). There also is, however, a

high level of redundancy in the signal listeners can use. Our multidimensional

category structure lacked this redundancy. This difference between most speech

category distinctions and our multidimensional category distinction, while necessary

for our experiments, might have artificially made the learning of the
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multidimensional category distinction more difficult. In this respect, the

performance of our listeners is all the more impressive.

The importance of the distributional properties of the stimuli is also evident in

the performance in the maintenance phases when there is no distributional

information in the stimuli anymore. Although listeners were sometimes able to

maintain the categorization strategy they learned, they also showed sensitivity to the

absence of distributional information by starting to reuse the dimension that was

irrelevant in the learning phases. The equidistantly spaced grid in the maintenance

phases is designed to neutrally scan the listenerʹs perceptual space and assigns equal

weight to each dimension. Listeners apparently notice the equality and start using

the irrelevant dimension again, especially when this is their preferred dimension.

The use of a maintenance phase without distributional information or trial-by-

trial feedback is not common in visual category learning research but standard

practice in phonetics and phonology. The difference in performance between the

learning and maintenance phase has implications for speech research that uses

similar equidistant continua to investigate the learning of phonetic categories (Repp

& Libermann, 1987). The differential performance of our listeners in the learning

phase and the maintenance phase is intriguing and shows the sensitivity of listeners

to distributional information. What part of the distributional information is

important is an empirical question. One suggestion is that listeners need the extreme

stimuli that are present in the training distributions but not in the maintenance

phase to keep the dimensions in mind and well calibrated.

This rapid adaptation to change in the input is reminiscent of the results found

by Eisner & McQueen (2005). There, adults listeners were found to be extremely

sensitive to changes in the pronunciation of the fricatives /s/ and /f/ and adjusted
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their category judgments to suit. In contrast to our listeners, the listeners of Eisner

and McQueen (2005) did have a lexical incentive to change their category judgments:

perceiving a neutral fricative in one way (either /s/ or /f/) would result in a real word

whereas perceiving the neutral fricative the other way would receive in perceiving a

non-word. Our listeners stopped using their previously learned categorizations in

the maintenance phase based only on the distributional properties of the stimuli.

Auditory and phonetic categories

A second important issue addressed by our experiments concerns similarities and

differences between learning speech versus non-speech categories. Comparing the

results from Chapters 2 and 3 with those of Chapter 4, the similarities are most

striking. For both auditory and phonetic category learning a distinction based on one

relevant dimension is easier to acquire than a distinction requiring the integration of

two dimensions. Furthermore, the performance of our listeners in the maintenance

phases without trial-by-trial feedback or distributional information was very similar

for both speech and non-speech experiments: in both cases performance is usually

not very robust and listeners tend to revert to a unidimensional solution involving a

dimension of choice.

Auditory and phonetic category learning only differed considerably when there

was no trial-by-trial feedback available in the learning phase. Then listeners were

more sensitive to the distributional properties of the stimuli when they had to learn

to categorize non-speech sounds. When Spanish listeners had to learn to categorize

non-native speech sounds with one relevant dimension of variation and one

irrelevant dimension of variation without the aid of supervision, they were unable to
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determine which dimension was the relevant one, irrespective of whether this was

duration or formant frequency. In the maintenance phases, formant frequency was

shown to be the preferred dimension in their categorizations.

The similarities between auditory non-speech and phonetic category learning

indicate that the complexity of our non-speech sounds is comparable to the

complexity of speech sounds and as a result the non-speech sounds were, to a certain

extent, also analyzed as such. This is an encouraging result, showing the possibility

of conducting experiments relevant to the acquisition of speech categories with non-

speech sounds in adults and thus avoiding all the possible interactions with the

already present phonology of the native language (see also Mirman, Holt &

McClelland, 2003).

Our results showed that in learning phonetic categories the native phonology is

much more difficult to ignore than in learning auditory categories. This difference

can be explained in terms of the Perceptual Assimilation Model. Although the

listeners did consider the non-speech sounds to be speech-like in their complexity,

they did not assimilate them into their native phonology. This situation is similar to

the perceptions of the Zulu clicks by English listeners (Best, McRoberts and Sithole,

1988). Hence, the Dutch listeners categorizing non-speech stimuli were not as

hampered by their preexisting phonological tendencies as the Spanish listeners were

when did listened to non-native Dutch vowels.

Visual and auditory category learning

A third important aspect is the connection made between the literature on visual

category learning (Ashby & Maddox, 1993; Nosofsky, 1990) and auditory category
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learning research. Especially our method of stimulus construction and learning

phases drew heavily from methods used in visual category learning. Compared to

the difficult and complex category structures which subjects in visual category

learning experiments are able to learn (Ashby & Gott, 1988; Ashby & Maddox, 1993),

auditory category learning appears to be more difficult than the learning of visual

categories. 

However, the results also show similarities between auditory and visual category

learning (Ashby, Alfonso-Reese, Turken & Waldron, 1998). The preference for a

unidimensional solution is reminiscent of results from visual category learning

(Ashby, Queller & Beretty, 1999) and the preference of listeners for a particular

dimension in their unidimensional solutions is something also found in auditory

category learning studies by Holt and Lotto (2005).

The initial preference for unidimensional solutions is abundant in visual category

learning research. The category learning models COVIS (Ashby, Alfonso-Reese,

Turken and Waldron, 1998) and SUSTAIN (Love, Medin and Gureckis, 2004) both

incorporate this finding. In COVIS, the explicit (verbal) system is dominant over the

implicit system (that is better able to learn multidimensional category distinctions).

The explicit system is applied first and creates a verbal rule to describe the category

distinction and verbalizing a unidimensional rule is easier than verbalizing a rule

involving multiple dimensions. For example, the rule “Assign a sound to category A

when its duration is less than 85 milliseconds” is less of a computational burden

than the rule “Assign a sound to category A when its value for duration combined

with its value for frequency does not exceed a criterion value”. SUSTAIN also

initially assumes a simple unidimensional category structure. Only when simple

solutions are proven to be inadequate or when it is confronted with a surprising
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event, an additional category is created and the category structure becomes more

complex.

Considering our efforts to equalize the non-speech sounds by scaling their

variability in empirically determined just noticeable differences, the preference of

listeners for (in the non-speech case) duration is surprising. Just noticeable

differences obtained in a same/different discrimination task apparently do not

straightforwardly carry over to a category learning experiment. We explained the

differential use of formant frequency and duration in terms of Stevensʹ and

Galanterʹs (1957) prothetic dimensions (dimensions like duration where an increase in

value means adding more of the same) and metathetic dimensions (dimensions like

formant frequency where an increase in value does not necessarily mean more of the

same). According to Smits, Sereno and Jongman (2006), the encoding of metathetic

categories is noisier, hence the difficulty in maintaining the (weaker) representation

of these dimensions in the maintenance phase.

For the speech stimuli, we argued that the differential preference for a dimension

was based on the native phonology, something that was confirmed by the results of

Experiment 3 from Chapter 4. Although the stimuli used in the experiments in

Chapters 2 and 3 were non-speech, the native phonology could still play an

important role. In Dutch, duration is a very important cue for vowel categorization

and thus could have been the dimension of choice for our Dutch listeners. 

Infant and adult learning of auditory categories

Fourth and finally, the difficulty our listeners experienced in learning without the

aid of supervision and the lack of robust transfer to the maintenance phase makes
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infant learning of phonetic categories (which is necessarily unsupervised) all the

more impressive. Somehow, infants do succeed in robustly learning the sounds of

their native language without the aid of supervision. Of course, the difference in

amount of exposure might be an important factor - infants receive much more

exposure than the 448 learning stimuli our listeners received. The Maye, Werken &

Gerken (2002) study however, has shown that infants are capable of learning a new

(unidimensional) phonetic distinction with only a few hundred exposures. Infants

might have category learning skills that are not available anymore to adults.

In terms of the COVIS model (Ashby, Alfonso-Reese, Turken and Waldron, 1998),

infants also do not have a verbal learning system that hinders adults in acquiring

truly multidimensional auditory category distinction by trying to solve the category

learning problem by searching for a unidimensional solution. The absence of a

verbal category learning system is in this case beneficial to the infant because their

implicit learning system can immediately start learning the multidimensional

category boundary. 

Related to the different situation of our adult listeners are the findings by Eisner

and McQueen (2005) that showed that adults are able to shift their perception of

speech sounds to suit the idiosyncratic or regional peculiarities of a given speaker.

Adults listeners are perfectly able to slightly alter their phonetic category boundaries

and maintain this information in memory (Eisner & McQueen, 2006), but our

experiments showed that creating a totally new phonetic category in their already

existing phonological space is considerably more difficult.

Why is this? In our daily life we constantly have to adapt to new speakers with

different speaking habits and accents. Being able to shift your category boundaries is

useful to adapt to these new speakers. Shifting a category boundary and trying to fit
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an entire new category into the phonological space that is already divided into the

phonetic categories of the native language, however, is a different understating

entirely. A new category boundary that divides a native phonetic category into two

non-native categories would conflict with categorical perception of the native

language. It is thus arguable that the reason that adults find it so hard to learn new

phonetic categories is that new categories in our native phonological space hinder

the perception of our native language.
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Appendix A

Sweep rate experiments15

15 An altered version of this chapter will be published as Goudbeek, M. & Swingley, D. (2006).
Saliency Effects in Distributional Learning. Proceedings of the Eleventh Australasian International
Conference on Speech Science and Technology. 2006. Auckland, New Zealand.





Introduction

As mentioned in Chapter 3, duration and formant frequency were not the only two

auditory dimensions considered for the category learning experiments. This

appendix describes experiments with another dimension that was combined with

formant frequency, the speed of the rise in frequency of the base frequency of the

signal (F0) sweep rate. This dimension was used in a number of unsupervised

learning experiments. Primarily because of the difficulty to equalize sweep rate and

formant frequency in terms of just noticeable differences, duration was preferred in

the experiments presented in the thesis.

First, the same/different pilot experiments that were aimed at equalizing the just

noticeable differences for sweep rate and formant frequency are reported. With this

just noticeable difference, the range of variation for both dimensions (formant

frequency and sweep rate) is set. The just noticeable difference commonly used for

formant frequency for this area of perceptual space is 0.12 ERB (Glasberg & Moore).

In the pilot experiments a value for sweep rate is that is similar in perceptual

saliency is determined.

Second, two unsupervised category learning experiments with these dimensions

are reported. Because Experiment 1 showed the dimensions to be far from similar in

distinguishabilty/saliency (despite our efforts to create equal just noticeable

differences for both dimensions in the pilot), Experiment 2 was conducted to find the
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value for sweep rate that had a similar salience as the one for formant frequency in a

category learning experiment. In these experiments, the just noticeable difference for

sweep rate was systematically varied to find the right just noticeable difference.

Pilot experiments

Method

Subjects

Thirty-seven listeners participated in the pilot experiments. Participants were drawn

from the subject pool of the Max Planck Institute for Psycholinguistics and received

a small payment for their participation. All were students from the University of

Nijmegen and reported normal hearing.

Stimuli

The stimuli were inharmonic tone complexes that were similar to the non-speech

sounds used in Chapters 2 and 3. Contrary to those stimuli, they did not differ in

formant frequency and duration, but in formant frequency and sweep rate. Sweep

rate is defined in octaves per second as the speed with which the first formant rises

with time. The sweep values of the stimuli ranged between 2 octaves per second and

15 octaves per second, depending on condition (See table A1). The ERB rates

(Glasberg & Moore, 1990) of the different conditions are also presented in table A1.
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Table A1.
Stimulus characteristics per condition and the experimental properties of the different conditions.

Condition Min Max Stepsize Tested differences Trials High ERB Low ERB

1 2.2 oct/s 2.8 oct/s 0.2 oct/s 0.2 / 0.4 / 0.6 oct/s 192 17.9 ERB 20.6 ERB
2 5.0 oct/s 15 oct/s 1.0 oct/s 1.0 / 2.0 oct/s 400 18.8 ERB 19.7 ERB
3 5.0 oct/s 15 oct/s 0.5 oct/s 0.5 / 1.5 oct/s 400 18.8 ERB 19.7 ERB

Procedure

All conditions consisted of same/different judgment tasks in which half of the

stimulus pairs were same trials and half were different trials. Listeners were seated

comfortably in an experiment room and listened to stimulus pairs over Sennheiser

headphones (HD 270). If they considered the sounds to be the same, they pressed a

button labeled with (the Dutch equivalent of) “same”. If they considered the sounds

to be different, they pressed a button labeled with (the Dutch equivalent of)

“different”. All conditions lasted for about 30 minutes and participants were given

the possibility of a break halfway through the experiment. The comparisons were

done at multiple levels of ERB and sweep rate. For example, in Condition 1, the

difference between 2.2 octaves per second and 2.4 octaves per second was compared

at different frequencies (ERB levels). This way, possible interactions between the two

dimensions could be investigated. Differences in sweep rate were also compared at

different levels to investigate possible differences in just noticeable differences at

different levels of sweep rate. For example, in Condition 2 the differences between

5.0 and 6.0 octaves per second and that between 14.0 and 15.0 octaves per second

were compared.

205



Results

All three conditions of the same/different pilot experiment yielded hit rates and false

alarm rates that were used to compute the dʹ values associated with each difference

in sweep rate. As a dʹ of about 1 is considered to reflect two perceptually separable

stimuli, the goal of the pilot experiment is to find a sweep rate with a dʹ as close to 1

as possible. Table A2 shows the results of the pilot experiment.

Table A2. 
Mean dʹ values and their standard deviations of the differences tested in all three conditions.

Condition 1 (N=13) Condition 2 (N=14) Condition 3(N=10)

Difference (oct/s)

ERB level 0.2 0.4 0.6 1.0 2.0 0.5 1.5

dʹ (σ)
Low 0.28 (0.68) 0.85 (0.86) 1.09 (0.83) 1.93 (0,85) 3.12 (0.86) 0.58 (0.79) 1.28 (0.86) 

High 0.49 (0.51) 0.69 (0.82) 1.26 (0,82) 1.46 (0.32) 2.93 (0.89) 0.35 (0.47) 1.43 (0.98)

According to the data presented in table A2, a difference sweep rate between 0.6

and 1.5 octaves per second has a dʹ of approximately 1. Condition 1 showed that

sweep rate differences lower than 0.4 octave per second were difficult to distinguish.

Condition 2 and 3 showed that sweep rates higher than 1.5 were very easy to

distinguish. Somewhere between 0.6 and 1.4 lies the dʹ value of 1 looked for in this

pilot experiment. Because the dʹs for 0.5 from Condition 3 were considerably lower

than 1, we decided upon a sweep rate of 1.0 octave per second to constitute a just

noticeable difference in the following category learning experiments.

Table A2 appears to indicate that a high ERB level is associated with higher mean

dʹ values for the sweep rate differences. However, the dʹs of the different ERB level

do not differ significantly (all p > 0.18, t[max] = 0.95). This absence of a significant
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difference between the higher and lower ERB rate justifies the use of one just

noticeable difference for sweep rate at all ERB levels in the categorization

experiments. In other words, there is no evidence of interaction between the two

dimensions in this part of perceptual space.

Categorization experiments

Two experiments are presented here. The first experiment uses the just noticeable

difference for sweep rate determined in the pilot experiments (1.0 octave per second)

and the just noticeable difference for formant frequency (0.12 ERB) derived from

Glasberg & Moore (1990). The results show that the just noticeable difference for

sweep rate was not comparable to that for formant frequency. In Experiment 2 the

sweep rate is systematically varied to equalize the distinguishabilty of both

dimensions.

Experiment 1

Method

Subjects

Thirty-six students from the MPI subject pool participated in the experiment. All

were students at the University of Nijmegen and participated in return for a small

payment. None reported any history hearing difficulties.
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Stimuli

The 224 learning stimuli (2 categories x 112 stimuli in each category) were

inharmonic sound complexes that differed in both formant frequency and sweep.

The probability distributions of the stimuli identified the relevant and irrelevant

dimension for the listeners (see Figure A1). In the learning phase of Conditions 1

through 4, formant frequency was the relevant dimension (see the second panel of

Figure A1) whereas in the learning phase of in Conditions 5 and 6, sweep rate was

the relevant dimension (see the first panel of Figure A1). In Condition 7, both

dimensions were relevant (see the third panel of Figure A1). The 49 stimuli of the

maintenance phase of each condition were positioned in an equidistant (7 x 7) grid,

thus not providing any distributional information to the listeners (see the fourth

panel of Figure A1). The labeling sounds were two simple and easily distinguishable

sounds.

Design

All conditions had a similar design with a learning phase and a maintenance phase

(see Figure A1). In the learning phase, listeners listened to stimuli under a number of
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conditions but did not categorize them. In the maintenance phase, they had to

categorize the stimuli as they saw fit. Depending on condition, either formant

frequency or sweep rate was the relevant dimension of variation in the learning

phase.

Because we wanted to investigate learning under several conditions, the

conditions also differed in the task subjects had to perform in the learning phase.

First, we wanted to compare learning without any supervision (the listening

condition) with learning where there is a perfectly correlated cue to category

membership (the labeling condition). This perfectly correlated cue was an auditory

label that directly followed the sound before it. To equalize all conditions in terms of

auditory complexity, there was an uninformative label between the stimuli in the

other conditions.

Second, to make it harder for our listeners to attend to the distributional

information in the stimuli, we added a condition with a lexical decision task to the

experiment. This task was combined with the uninformative labels (lexical decision

only condition), and with the informative labels (the labeling and lexical decision

condition).

This results in the following seven conditions: Condition 1: Listening with

intermittent uninformative sounds, formant frequency relevant; Condition 2: labeling

with intermittent informative labels, formant frequency relevant; Condition 3:

listening with intermittent uninformative sounds and a lexical decision task, formant

frequency relevant; Condition 4: labeling with informative labels and a lexical decision

task, formant frequency relevant; Condition 5: listening with intermittent

uninformative sounds, sweep rate relevant; Condition 6: labeling with intermittent
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informative labels, sweep rate relevant; Condition 7: listening with intermittent

uninformative sounds, both formant frequency and sweep rate relevant.

Procedure

Listeners were seated in a soundproof booth and listened to the stimuli over

Sennheiser headphones (HD 270). In the learning phase, they listened passively to

the stimuli and sometimes had, depending on condition, another task or another

source of information besides the distributional information in the stimuli. Each

learning phase of each condition contained 448 stimuli (112 stimuli x 2 categories x 2

repetitions) and was interrupted by a pause after 224 stimuli. 

After the learning phase, listeners entered the maintenance phase where they had

to categorize 196 (49 stimuli x 4 repetitions) maintenance stimuli as they saw fit. The

maintenance phase was intended to neutrally scan the categorization tendencies of

the listeners without providing new information about the category distributions.

Results

Since listeners only respond in the maintenance phase, this is the only phase that can

be analyzed. To probe for possible changes in categorization strategies during the

maintenance phase, the maintenance phase was analyzed in two parts.

For a binary choice problem with two categories, an analysis using logistic

regression is the analysis of choice. A logistic regression analysis yields a β-weight

for each predictor entered into the analysis. In this case, the dimensions were entered

as predictors for the categorization response. Table A3 lists the mean β-weights of

each dimension in each phase of each condition. 
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Table A3.
Mean β-weight and their standard deviations of the first and second part of the maintenance phase
for all seven conditions.

Maintenance phase 1 Maintenance phase 2

Condition Relevant dimension µβsweep σ µβfreq σ µβsweep σ µβfreq σ

Listening Formant frequency 1.58 0.44 0.31 0.20 1.43 0.21 0.27 0.14

Labeling Formant frequency 1.38 0.52 0.33 0.15 2.02 0.82 0.43 0.31

Lexical decision Formant frequency 1.33 0.89 0.44 0.36 1.74 0.65 0.39 0.21

Labeling and LD Formant frequency 1.17 0.59 0.39 0.12 1.30 0.19 0.31 0.19

Listening Sweep rate 1.74 0.94 0.44 1.24 1.58 0.43 0.39 0.23

Labeling Sweep rate 1.75 0.94 0.44 0.24 1.59 0.44 0.40 0.23

Listening Both 1.30 0.69 0.52 0.29 1.38 0.64 0.45 0.29

The data presented in Table A3 show that the listeners used sweep rate much

more in their categorization compared to formant frequency, irrespective of

condition or whether it was the relevant dimension or not. An ANOVA with

Dimension (relevant versus irrelevant) and Part of the maintenance phase (first

versus second part) as within-subject variables and Condition and Orientation

(formant frequency relevant, sweep rate relevant, or both relevant) as between-

subject variables and the β-weights for both dimensions as dependent variables

showed no significant main effects of Part, Dimension, Orientation or Condition (all

F [1,45] < 1, n.s.).

Because the above design is not perfectly balanced, the effect of the relevance of

the dimensions and the orientation of the distributions and the conditions was

further investigated by concentrating on conditions 1, 2, 5, and 6 (see Figure A2).
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With these conditions, we performed an ANOVA with Part of the maintenance

phase (first versus second part) and Dimension (relevant versus irrelevant) as

within-subjects variables and Orientation (formant frequency relevant versus sweep

rate relevant) and Condition (listening versus labeling) as between-subjects

variables. There were no significant effects for Dimension (F [1,27] =0.004, n.s.) or

Orientation (F [1,27] = 0.46, n.s.) showing that listeners were not sensitive to the

different category structures. The interaction between Orientation and Dimension

was highly significant (F [1,27] = 139.71, p < 0.000) indicating the preference for

sweep rate, irrespective of whether it was the relevant condition or not.

212

Figure A2. Mean β-weights of the first and second part of the maintenance phases of Conditions
1, 2, 5, and 6; the listening and labeling conditions with one relevant dimension of variation,
either formant frequency (Conditions 1 and 2) or sweep rate (Conditions 5 and 6). Vertical error
bars represent one standard error. Note that sweep is the dimension used irrespective of
whether it is the relevant dimension.



Because of the lack of significant effects of the experimental manipulations, the

chosen just noticeable difference for sweep rate was reconsidered. Just noticeable

differences determined with a same/different paradigm apparently do not transfer to

a categorization experiment. In Experiment 2, we systematically manipulated the

size of the difference in sweep rate in an attempt to find a just noticeable difference

for sweep rate that was equal to that chosen for formant frequency in a category

learning experiment.

Experiment 216

Method

The rationale of Experiment 2 is that it must be possible by systematically varying

the differences in sweep rate, to find the sweep rate just noticeable difference that is

equal to the just noticeable difference used for formant frequency (0.12 ERB).

Subjects

Twenty-four participants (four in each condition) were drawn from the MPI subject

pool and took part in the experiment. All were students at the University of

Nijmegen and received a small payment for their contribution. None reported any

hearing difficulties.

16 Marloes van der Goot and Maarten Jansonius are thanked for their help in recruiting the
participants and running the experiments.
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Stimuli

The stimuli were identical to those used in Experiment 1: inharmonic sounds that

differed in formant frequency and sweep rate. Depending on condition, either the

variation in formant frequency was relevant for distinguishing the categories and

sweep rate was irrelevant or vice versa (see the first and second panel of Figure A1).

The just noticeable difference for sweep rate was also varied with condition:

conditions with ʺSweep 2ʺ had a sweep rate of 0.5 octave per second; conditions with

ʺSweep 4ʺ had a sweep rate of 0.25 octave per second and conditions with ʺSweep 8ʺ

had a sweep rate of 0.125 octave per second. 

Procedure

The procedure was identical to the labeling conditions of Experiment 1. In the

learning phase, listeners heard a stimulus that was immediately followed by an

acoustical label that correlated perfectly with category membership. In the

maintenance phase, listeners were asked to categorize the stimuli as they saw fit.

There were six experimental conditions (2 category structures x 3 sweep rate

levels) in the experiment. Four listeners participated in each condition.

Results

The results from the maintenance phase were again analyzed with a logistic

regression analysis yielding a β-weight indicating each subjectʹs use of each

dimension. Table A4 and Figure A3 show the mean β-weights for all six conditions.

When the just noticeable difference for sweep rate was set at 0.5 octave per second,
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listeners still had a higher β-weight for sweep rate, irrespective of whether it was the

relevant dimension or not.

When the just noticeable difference for sweep rate was set to 0.125 octave per

second, however, the variation in sweep rate was too small and the β-weight for

formant frequency was higher than that for sweep rate. Again, this was independent

of whether formant frequency was the relevant dimension or not.

Table A4.
Mean β-weight for the two dimensions (formant frequency and sweep rate) for all three levels of
sweep rate (0.5 octave per second, 0.25 octave per second, and 0.125 octave per second) and the two
category orientations (formant frequency relevant and sweep rate relevant).

Formant frequency relevant Sweep rate relevant

Sweep 2 Sweep 4 Sweep 8 Sweep 2 Sweep 4 Sweep 8

Maintenance Phase 1

β (σ) β (σ) β (σ) β (σ) β (σ) β (σ)

Formant frequency 0.47 
(0.27)

1.35 
(0.38)

1.38 
(0.27)

0.29 
(0.13)

0.85
(0.40)

1.41
 (0.60)

Sweep 1.12 
(0.42)

0.37 
(0.27)

0.22 
(0.23)

1.38 
(1.31)

0.97
(0.48)

0.29
(0.30)

Maintenance Phase 2

β (σ) β (σ) β (σ) β (σ) β (σ) β (σ)

Formant frequency 0.33 
(0.13)

1.81 
(0.68)

1.66 
(0.52)

0.26 
(0.22)

1.01
(0.24)

1.18
(0.89)

Sweep 1.75 
(0.48)

0.51 
(0.12)

0.27 
(0.08)

1.36 
(0.18)

1.21
(0.86)

0.08
(0.05)
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Finally, when the just noticeable difference for sweep rate was 0.25 octave per

second, the experimental manipulations are not washed out by the differences in

salience of the different dimensions. With a sweep rate of 0.25 octave per second the

relevant dimension is the one that is used most by listeners. The effect is still quite

small when sweep rate is the relevant dimension, but compared to when formant

frequency is relevant, the differences are considerable. An ANOVA with Part of the

maintenance phase (phase 1 versus phase 2) and Dimension (relevant versus

irrelevant) as within-subjects variables and Orientation (formant frequency relevant

versus sweep rate relevant) as between-subjects variable and the β-weights of each

dimension a dependent variables indicated a marginally significant main effect of
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Dimension (F [1,6] = 3.99, p < 0.09). This shows that listeners were able to determine

and use the relevant dimension in their categorizations.

In sum, a sweep rate of 0.25 octave per second is the best counterpart for a just

noticeable difference of 0.12 ERB. Because the β-weights for formant frequency are

still considerably higher than those for sweep rate, a sweep rate between 0.25 octave

per second and 0.5 octave per second (0.375 octave per second) might represent an

even more similar just noticeable difference.

Conclusion

These experiments have shown the difficulty of equalizing the just noticeable

differences for two important dimensions in speech recognition; formant frequency

and sweep rate. Even after careful piloting with same/different experiments, sweep

rate was still the dominant dimension in Experiment 1. The results of Experiment 2

show, however, the validity of the logic of conducting consecutive categorization

experiment with differing sweep rates to find the sweep rate that best fits the just

noticeable difference for formant frequency.
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Appendix B

Unidimensional category learning





Introduction

Most distinctions between speech sounds are multidimensional in nature. However,

there are examples of one dimension accounting for most of the difference between

two speech sounds. This appendix presents experiments investigating the learning

of a unidimensional distinction under several conditions. Contrary to the stimuli

presented in the rest of the dissertation, the stimuli used in this appendix vary only

in one dimension (spectral peak) and do not have an irrelevant dimension of

variation. The conditions under which learning of these unidimensionally separable

categories is investigated are based on reasoning put forward before in this thesis

(see Chapters 2, 3 and 4), but will be briefly repeated below.

Consider the infant’s situation: In a cacophony of sounds, only some are

language. The infant’s task is to extract the relevant patterns in this input. A striking

aspect of infant auditory category learning is the absence of explicit supervision.

When infants learn categories, there is no observable behavior so acquisition must

have taken place without explicit supervision. Also, this learning certainly cannot be

verbally mediated; it has to be implicit.

A way to account for the exceptional performance of infants in the absence of

supervision or verbal mediation is to consider them as statistical pattern recognizers.

They perform a distributional analysis of the incoming acoustic data. This way, they

221



learn the categorical regularities in the input. Adult learning of auditory categories,

however, can probably also be supervised and verbally mediated.

The experiments presented here examined auditory category learning in adults,

comparing conditions which encouraged implicit learning (like that in infants) with

conditions which encouraged explicit learning by manipulating the presence or

absence of a secondary lexical decision task. When present, the lexical decision task

ought to prevent or at least hinder explicit learning. The lexical decision task had

subjects decide on words and nonwords (both with a 50% probability) that were

presented together with the category exemplars (with varying stimulus onset

asynchrony). We also manipulated the presence or absence of feedback in the form

of a perfectly correlated auditory cue (the label). In order to equalize the conditions

for auditory complexity and the possible effect of backward masking in

counteracting the facilitative effect of the auditory labels, the stimuli in conditions

without the informative auditory label were followed by a label that was not

informative of the category of the preceding stimulus.

Additionally, we wanted to investigate the a priori categorization tendencies of

listeners and the speed of learning. We did this by either removing the learning

phase or drastically shortening it.

The first four conditions followed a 2 x 2 design with two independent variables:

the presence or absence of supervision (implemented as the presence of a perfectly

correlated auditory cue 300 ms after the stimulus), and whether learning was explicit

or implicit (manipulated by the secondary task).

This created the following four conditions (identical to those in Appendix A).

Condition 1, where 440 learning stimuli were presented with uninformative labels

and listeners had to rely solely on the distributional information in the stimuli.
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Condition 2, where the labels were informative about category membership of the

preceding stimulus and listeners thus had two sources of information. Condition 3,

in which participants had to perform a secondary task (a go/nogo lexical decision

task with words and nonwords between the learning stimuli) and the stimuli were

followed by uninformative labels. Finally, Condition 4 where both the informative

labels were present and listeners had to perform the lexical decision task.

Two additional conditions investigated listenersʹ initial categorization tendencies

and the speed of learning. In Condition 5, subjects categorized the stimuli as they

saw fit, without a preceding learning phase. Condition 6 was identical to Condition 3

(a secondary task without informative labels) but listeners were tested after a quarter

of the learning phase (110 stimuli instead of the usual 440).

Table B1. Properties of all six experimental conditions.

Condition Supervision Distraction Learning phase N

1 No No 440 stimuli 8

2 Yes No 440 stimuli 9

3 No Yes 440 stimuli 9

4 Yes Yes 440 stimuli 14

5 No No No 9

6 No Yes 110 stimuli 14

Method

Subjects

All 63 participants were students of the University of Nijmegen and were drawn

from the MPI subject pool. All reported normal hearing. Subjects were randomly

assigned to the conditions.
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Stimuli

Two auditory categories were constructed. They were complex inharmonic patterns

that varied in the frequency of their spectral peak. Table B2 lists the mean spectral

peak, the standard deviation and the range of the stimulus dimension of the two

categories.

Table B2.
Stimulus characteristics of the learning stimuli.

Category µ. (Hz/ERB) σ (Hz/ERB) Range (Hz/ERB)
A 1291.2 / 17.6 92.5 / 3.2 1078.7 - 1531.6 / 16.2 - 19.0
B 1744.8 / 20.0 120.2 / 3.9 1468.9 - 2057.0 / 18.6 - 21.4

Each category contained 110 different stimuli. To make category learning easy, there

were only eight ambiguous (overlapping) items (four per category) and 102

unambiguous ones. The eleven maintenance phase stimuli ranged between the

means of the learning phase stimuli in equal steps and thus containing no

distributional information that could be of assistance in categorization. Figure B1

displays the categories’ probability density functions and the range of the

maintenance phase (the dashed line).
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Procedure

Listeners were seated in a soundproof booth and listened to the stimuli over

Sennheiser headphones (HD 270). In the learning phase, they listened passively to

the stimuli and sometimes had, depending on condition, had another task or another

source of information besides the distributional information in the stimuli. Each

learning phase of each condition contained 440 stimuli (110 stimuli x 2 categories x 2

repetitions) and was interrupted by a pause after 220 stimuli. They received

feedback on their lexical decision judgments in the pause.

After the learning phase, listeners entered the maintenance phase where they had

to categorize 220 maintenance stimuli (11 stimuli x 20 repetitions). The maintenance

phase was intended to neutrally scan the categorization tendencies of the listeners

without providing new information about the category distributions.

Results

Category judgments were tested with 11 stimuli evenly spaced between the means

of the categories. These categorical responses on continuous stimuli are best

analyzed using a logistic regression technique (Agresti, 1990). The β-weights yielded

by this analysis indicate to what extent the variation in the stimuli was used by the

listeners in their category judgments. Figure B2 displays the mean β weights for the

six conditions.
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Figure B2 shows that the conditions did not differentiate much. Performance was

only negatively affected when listeners did not enter a learning phase before

categorizing the stimuli (Condition 5). The effects of supervision, distraction and the

learning phase were statistically evaluated in an ANOVA with the β-weights as

dependent variable and Supervision, Distraction and the presence of a Learning

phase as independent (between subjects) variables. There were no significant main

effects of either Supervision (F [1,48] = 0,24, n.s.) or Distraction (F [1,48] = 0,031, n.s.),

nor was there a significant interaction between these two (F [1,48] = 0,65, n.s.). The

comparison of all conditions with a learning phase with the one without training did

show a marginally significant difference in favor of the conditions with a learning

phase (F [1,48] = 3,12, p < 0,08). The comparison between a learning phase of 440

stimuli with distraction (Condition 3) with a learning phase of 110 stimuli with
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distraction (Condition 6) showed no significant difference (F [1,27] = 0,31, n.s.).

Listeners apparently pick up the distributional information very quickly.

Discussion

The results showed that learning of unidimensionally varying auditory categories

was possible with and without (implicit) supervision by a perfectly correlated

auditory cue. Even the presence of a distracting task did not hamper performance.

These findings are surprising. There are a number of explanations for these results.

First, it could be that the category structure was exceptionally easy to learn, given

the small amount of overlap between the two categories. The poor performance of

subjects who were tested without previous learning makes this interpretation less

likely. Second, the amount and speed of learning was perhaps so great that

differences between conditions faded away. The absence of a significant difference in

performance after a learning face of 220 stimuli and a learning phase of 55 stimuli

seems to favor this interpretation. Listeners learned to categorize some

unidimensional stimuli very quickly.
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Appendix C

Improving unsupervised category learning





Introduction

Multidimensional unsupervised category learning is very fragile. Categorization

rules using two dimensions that are acquired in the learning phase often get lost

quickly in the maintenance phase. For example, in Chapter 3 listeners learn to use a

multidimensional categorization rule in the learning phase, but revert to using only

one (either duration or formant frequency) instead of two dimensions in the

maintenance phase. Appendix A shows that the performance of listeners is highly

dependent on the distributional properties of the stimuli. This appendix presents

two series of experiments that tried to improve categorization performance in the

maintenance phase of multidimensional category structures, i.e., category

distinctions where both dimensions are relevant. This was done by manipulating the

distributional characteristics of the stimuli (range and standard deviation) or by

changing the procedure in the learning phase and the experimental instructions.

Figure C1 shows the general idea behind both experiments: unidimensional

categorization rules are ineffective in multidimensional categorization because they

lead to many incorrect categorizations. If the costs of a unidimensional rule are so

high, then why do listeners not maintain their learned multidimensional

categorization rule? And how can they be brought to do so?

Both experiments attempt to direct listeners away from unidimensional rules

where listeners make a lot of categorization errors (the left and middle plane of
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Figure C1) towards a multidimensional rule where listeners theoretically make no

errors (the right plane of Figure C1). In Experiment 1 the distributional properties of

the categories are manipulated in order to achieve this, whereas in Experiment 2 the

instructions and the information given to the listeners is manipulated to achieve

better (i.e., more multidimensional) performance.

Experiment 117

In Experiment 1 the category structure was manipulated in order to improve the

performance of the participants in the maintenance phase. More precisely, the

distance between the means as well as the standard deviations were manipulated

(see Stimuli section).

17 Experiment 1 was carried out with financial support from the Dutch Scientific Council. We further
thank Keith Kluender, University of Wisconsin, Madison for financial and other assistance with
these experiments.
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Method

Subjects

All 30 participants were psychology students from the University of Wisconsin,

Madison. They received course credit for their participations and gave informed

consent before taking part in the experiment. The number of participants was 12, 11

and 7 in Condition 1, 2, and 3 respectively.

Stimuli

All experiments consisted of a learning and a maintenance phase. The 224 learning

stimuli (112 in each category) were inharmonic complex sounds differing in duration

and their spectral peak (See Chapter 2 for details concerning stimulus construction).

As mentioned, the conditions differed in the extent to which they encouraged

multidimensional learning by differences in their range and standard deviations.

Figure C2 shows the stimulus distributions of the three conditions and Table C1 lists

the theoretically optimal percentages correct for .each condition.
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Table C1.
Optimal percentages correct for all three conditions for the unidimensional and the multidimensional
categorization rules.

Condition Unidimensional Multidimensional

1 82% 100%

2 70% 100%

3 57% 100%

As Figure C2 and Table C1 show, a multidimensional categorization rule is

always beneficial, but the difference with a unidimensional rule differs depending

on the distributional properties of the stimuli. 

The maintenance stimuli were generated by constructing an equidistant grid of

49 stimuli (7 by 7) in the same perceptual space as the learning stimuli. For details

regarding the maintenance stimuli, see Chapter 2. All stimuli were RMS matched to

ensure a constant sound pressure level at the headphones of 65 dB. 

Procedure

The listeners were placed in a soundproof booth. After they had received written

instructions, they pressed a button to start the experiment. They were instructed to

assign sounds to one of two buttons. If the sound was correctly assigned, a light

above the button would light up. If not, the light belonging to the other button

turned on. With this feedback, the listeners were asked to correctly classify as many

stimuli as they could.

Each stimulus was presented in two randomized blocks, resulting in 448 trials

(112 stimuli x 2 categories x 2 blocks). This learning phase lasted about 25 minutes,

depending on the response speed of the listeners. In condition 3, listeners received

an additional block, resulting in 672 (112 x 2 x 3) trials.
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After the learning phase, listeners entered the maintenance phase where they

categorized the maintenance stimuli as they say fit by pressing the appropriate

button. In the maintenance phase, feedback as well as distributional information was

absent.

Results

As in the multidimensional experiments in Chapters 2 through 4, the results were

analyzed using a polar transformation of the β-weights of the logistic regression

analysis, resulting in the angle φ (with ½π indicating unidimensional use of formant

frequency, 0 indicating unidimensional use of duration and ¼π indicating

multidimensional categorization) and the distance (consistency) measure A.

Table C2.
The results of Experiment 1, the mean Φ and A values as well as their standard deviations of the
learning and the maintenance phase of the three conditions. Additionally, the number of listeners
using both dimensions significantly (p < 0.05) in their categorization is shown.

Condition N Learning Nmulti Maintenance Nmulti

1 12 Φ (σ) 0.27 (0.03)
A (σ) 1.44 (0.57)

12 0.12 (0.20)
1.27 (0.41)

3

2 11
Φ (σ) 0.29 (0.04)
A (σ) 1.24 (0.57)

11
0.05 (0.20)
1.06 (0.79)

3

3 7 Φ (σ) 0.11 (0.29)
A (σ) 0.29 (0.23)

4 0.00 (0.26)
0.79 (0.63)

0

The results shown in Table C2 indicate that performance in the learning phases of

Condition 1 and 2 was good. The mean value of the angle φ was close to ¼π

indicating multidimensional performance and A was quite large. In the maintenance

phase, however, multidimensional categorization was all but absent with φ close to

zero indicating the often observed preference for duration. The relatively large value

235



for A shows that subjects used their (incorrect) unidimensional rule consistently. The

low A and the small number of listeners using both dimensions in Condition 3,

suggest that the distributional manipulations in Condition 3 did more harm than

good. The improved performance in A in the maintenance phase indicated the

sensitivity of listeners to the (absence of) distributional information and feedback, as

they were better able to maintain an (incorrect) unidimensional categorization rule.

Statistical evaluation of φ confirmed the impression that listeners were unable to

maintain a multidimensional categorization rule. In the learning phases of Condition

1 and 2, Φ differed significantly from both 0 and ½π (tmin = 18.1, p < 0.05) indicating

multidimensional categorization. In the maintenance phase φ did not differ

significantly from 0 (and very significantly from ½π (tmin = 6.4, p < 0.05) showing the

overall preference for a unidimensional categorization rule with duration as the

relevant dimension.

After assuring all Aʹs differed significantly from zero in all conditions (tmin = 3.3, p

< 0.05) an ANOVA with A as a dependent measure and condition as the

independent variable was conducted. This showed the conditions to differ

significantly in the learning phase (F [2,27] = 11.7, p < 0.05). but not in the

maintenance phase (F [2,27] = 1.36, n.s.). Post hoc tests (Tukey HSD) on the learning

phase showed Condition 3 to differ significantly from the other two.

Discussion

The goal of Experiment 1 was to increase the number of listeners that used a

multidimensional categorization rule in the maintenance phase by manipulating the

distributional properties of the categories. In effect, the condition that punished
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unidimensional categorization the most, Condition 3, had the worst

multidimensional performance. Apparently, listeners do not respond to these

properties as predicted. An explanation for this result might be that the categories in

Condition 3 were too difficult to separate for the listeners. The diagonal distance

between the means may have simple been too small to be perceptually separable.

Another possible explanation for this finding could be that there is so much negative

reinforcement (the error rate for an initial unidimensional rule is very high) that

listeners give up before they can discover the multidimensional rule.

The distributional properties of the experiments presented in Chapter 2 to 4 were

based on the results obtained in this experiment. Since the manipulations had no

positive effects on performance and were, in their extreme form, even

disadvantageous, the distributional properties of Condition 1 were used.
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Experiment 2

Experiment 2 tried to improve multidimensional categorization performance in the

maintenance phase by manipulating the feedback listeners receive in the learning

phase and by giving the listeners explicit instructions regarding their categorizations

(Condition 3).

Method

Subjects

Eighteen students of the University of Nijmegen participated in the experiment in

return for a small payment. All were drawn from the MPI subject pool and reported

normal hearing.

Stimuli

The stimuli were identical to those in Condition 1 of Experiment 1.

Procedure

All conditions had a learning phase and a maintenance phase. The procedure of the

maintenance phase was identical in all three conditions: listeners were asked to

categorize the well-known equidistantly spaced grid as they saw fit. The learning

phase differed according to condition. In Condition 1, listeners received trial-by-trial

right/wrong feedback on their responses. In Condition 2, listeners received

right/wrong feedback on their responses and were provided with perceptual anchors

(consisting of the means of the categories) for the first 40 trials to aid in their
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categorization. In Condition 3, listeners received a written explanation of the

distributional properties of the stimuli (explaining the diagonal categorization rule

and the importance of integrate the two stimulus dimensions to avoid errors),

additional to the anchors and the feedback.

Results

Table C3.
The results of Experiment 2, the mean φ and A values as well as their standard deviations of the
learning and the maintenance phase of the three conditions. Additionally, the number of listeners
using both dimensions significantly (p < 0.05) in their categorization is shown.

Condition N Learning Nmulti Maintenance Nmulti

1 6 φ (σ) 0.24 (0.05)
A (σ) 0.56 (0.22)

6 0.06 (0.10)
0.94 (0.63)

1

2 6
φ (σ) 0.25 (0.12)
A (σ) 0.35 (0.16)

4
-0.03 (0.07)
1.03 (0.45)

1

3 6 φ (σ) 0.23 (0.11)
A (σ) 1.36 (0.22)

6 0.18 (0.11)
0.70 (0.28)

5

The results presented in Table C3 showed that neither providing feedback nor

providing perceptual anchors was helpful in facilitating multidimensional

categorization in the maintenance phase. The φ dropped to 0 in both conditions and

the number of listeners categorizing multidimensionally dropped to 1. Providing a

verbal description of the category structures and reminding the listeners of the

importance of using both dimensions, however, was helpful as both the mean φ and

the number of listeners using both dimensions in the maintenance phase of

Condition 3 shows.

These observations were confirmed by the statistical evaluation of the φʹs of the

learning and maintenance phases of the conditions. In the learning phase of

Conditions 1 and 2, φ differs significantly from 0 and ½π (tmin = 5.2, p < 0.05). In the
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maintenance phase of these conditions, however, φ only differs significantly from

½π (tmin = 11.2, p < 0.05) showing a return to unidimensional categorization.

Condition 3 has similar results in the learning phase with φ differing from both 0 (t

[5] = 4,8, p < 0.05) and ½π (t [5] = -5,7, p < 0.05). However, the maintenance phase of

Condition 3 shows multidimensional categorization also: φ differs significantly from

both 0 (t [5] = 4.0, p < 0.05) and ½π (t [5] = -7.4, p < 0.05).

The consistency measure A differed significantly from zero in all phases in all

conditions (tmin = 3.7, p < 0.05) and was used to directly evaluate the differences

between the conditions. The ANOVA showed a statistical difference between the

conditions in the learning phase (F [2,15] = 40.98, p < 0.05), but not in the

maintenance phase (F [2,15] = 0.78, n.s.). Post hoc testing (Tukey HSD) confirmed

that Condition 1 and 2 form a homogeneous subset opposed to Condition 3 in the

learning phase but not in the maintenance phase. The effect of the written

explanation is thus present in the comparison of the φʹs, but not in the consistency

measure A.

Discussion

The manipulations of Experiment 2 were aimed at improving categorization

performance in the maintenance phase by changing the conditions in the learning

phases. In Condition 1, listeners received right/wrong feedback on every trial to help

them learn to integrate the two relevant dimensions. Condition 2 added perceptual

anchors to the feedback to further help category learning. Finally, Condition 3 added

a written instruction describing the category structures and stressing the importance
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of the use of both dimensions. Only with the last manipulation were listeners able to

maintain the categorization rule they successfully applied in all learning phases.

Since verbal instruction about the separation of phonetic categories can hardly be

thought of as an ecologically valid approach, this procedure was not used in the

category learning experiments of Chapter 2, 3, and 4. The aim of the research

presented there was to discover what listeners were able to learn when left to their

own devices, whereas Condition 3 aimed at finding the upper limits of performance

in the maintenance phase.

Conclusions

As has been shown in this appendix and throughout the thesis, listeners are sensitive

to the distributional properties of the stimuli. The categorization rules they apply in

the learning phases and the change in their categorizations in the maintenance phase

indicate as much. However, the differences in range and standard deviation created

in Experiment 1 did not succeed helping listeners maintain the categorization rule

they applied in the learning phase, neither did adding right/wrong feedback or

perceptual anchors. The only manipulation that succeeded in helping listeners

maintain their acquired categorization tendencies was providing them with a clear

instruction to use both dimensions and literally pointing the category structure out

to them.
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Appendix D

Incidental category learning18

18 The experiment presented in this appendix was carried out with financial support from the Dutch
Scientific Council. We further thank Keith Kluender, University of Wisconsin, Madison for
financial and other assistance with these experiments.





Introduction

Learning without the aid of trial-by-trial feedback (unsupervised learning) can take

many forms. In the experiments that were presented in this thesis, the difference

between supervised and unsupervised learning was usually the absence of feedback

on the categorization of the listener. However, other forms of unsupervised learning

are also possible: observational learning with or without cues (as was presented in

Appendix A) and implicit learning; learning that takes place without the listener

being (explicitly) aware of it. This last form of learning could be one of the ways in

which speech categories are acquired (since infants in all likelihood lack an explicit

reasoning system) and it is the subject of this appendix.

This experiment presented listeners with three categories instead of two. The

listeners had to explicitly differentiate (in an oddball task) one category from the

other two, while the other two categories were never explicitly contrasted with one

another. However, listeners did observe both of them in contrast to the third

category. This procedure was meant to create a multidimensional categorization

tendency in listeners, possibly combined with categorical perception effects.
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Method

Subjects

Thirty-six students from the University of Wisconsin, Madison, took part in the

experiment and were given course credit in return. All of them signed a consent

form at the beginning of the experiment and none of them reported any hearing

problems.

Stimuli

Three versions of the experiment were run, each with slightly different category

structures in terms of the range and standard deviations (see Appendix C). The

stimuli were the inharmonic sound complexes differing in duration in formant

frequency introduced in Chapter 2. However, this time there were three instead of

two categories. Figure D1 shows the three categories used in the learning phase in

their multidimensional perceptual space (Category A being the one in the lower left

corner, category B being the middle one, and category C being the one in the upper

right corner).

The difference between the means of each category was set to 20 just noticeable

differences. Each category contained 112 stimuli which brought the total number of

stimuli in the learning phase to 336.
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In the discrimination phase, listeners were presented with 14 stimuli drawn from

an equidistantly spaced diagonal line from the mean of category A to the mean of

category B. The maintenance stimuli were constructed using the equidistantly

spaced grid introduced in Chapter two. The stimulus characteristics of the

maintenance grid as well as those of category A and B were identical to the stimuli

used in Chapter two. Category C differed in this respect, because it was located in a

different (higher) area of perceptual space.

Procedure

The experiment consisted of a learning phase, a discrimination phase , and a

classification phase. In the learning phase, listeners heard four sounds: three from

either category A or B,  and one from C (the category in the upper right corner of

Figure D1). One of the four sounds was the “odd one out” and listeners were

expected to identify which one by pressing one of four buttons. After their response,
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a light above the button indicated which sound was the odd one out. There were 200

trials in the learning phase, 100 with three exemplars of category A and one of

category C (in random combinations), and another 100 with three exemplars of

category B and one of category C (in random combinations). The training phase took

about 15 minutes to complete.

After the training phase, listeners entered a discrimination phase in which they

had to discriminate stimuli ranging between the means of categories A and B in an

AXB paradigm. In this procedure, listeners were presented with three sounds and

either the first or the last two were the same (aab, abb, bba, or baa). Listeners were

asked to indicate whether the first or the last pair was the same by pressing a button.

No feedback was given on their responses. The discriminations were made with a

stepsize of three, meaning that it was tested whether listeners could discriminate

between stimulus one and stimulus four, between two and five, et cetera. Each of the

44 possible triplets was presented four times, resulting in 176 stimuli. The

discrimination task took about 12 minutes to complete.

Finally, after the discrimination phase, listeners entered the maintenance phase

where they categorized stimuli drawn from the equidistantly spaced grid

(positioned between the means of the categories A and B). Each of the 49 stimuli was

presented four times, resulting in 196 stimuli. The maintenance phase took about ten

minutes to complete.
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Results and discussion

Learning phase and discrimination phase

Three versions of the experiment were run, each with a slightly different value for

the just noticeable difference and the distance between the means of the categories

(see Appendix C). The results for the training, discrimination, and maintenance

phase of the three versions were similar, so the data were pooled. Figure D2 and

Figure D3 show the results for the learning and discrimination phase respectively.

As Figure D2 shows, subjects were quite good at determining which stimulus

was  the odd one out. Percent correct starts around 70 and reaches 90 at the end of

the learning phase. Figure D3 shows the discrimination results. Although
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discrimination is certainly above chance level at every step (tmin [27] = 3.2, p < 0.05),

the peak in discriminatory ability in between the two categories that is thought to be

a property of categorical perception, is absent.

Maintenance phase

The polar transformations of the logistic regression weights for duration and

frequency as well as the number of participants using both dimensions in their

categorization are presented in table D1.

Table D1.
Logistic regression results of the maintenance phase.

N A φ Nmulti

28 1.08 (0.76) 0.14 (0,40) 5
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Figure D3. Percentage correct in the discrimination phase.
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The consistency measure A was high and significantly different from zero (t [27]

= 7.5, p < 0.05) but the mean angle φ differed only marginally significant from 0 (t

[27] = 1.9, p < 0.06) and highly significantly from ½π (t [27] = -4.74, p < 0.000).

Together with the small number of listeners using both dimensions significantly, this

indicates that the often observed preference for duration was not altered by the

experimental manipulations.

Taken together, the results of the experiment suggest that the three category

oddball task is a doable one, but does not result in multidimensional categorization.

Either multidimensional category learning does not happen implicitly or the task

does not tap into implicit learning mechanisms enough. We decided on the latter

and did not use this procedure in subsequent experiments.
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Samenvatting in het Nederlands

Hoe baby’s de klanken van hun moedertaal leren herkennen is onderzoekers nog

steeds een raadsel. Dit proefschrift probeerde enkele van de processen betrokken bij

het leren van klanken van zowel een eerste als een tweede taal in kaart te brengen.

Het complexe probleem waar zowel baby’s als volwassen tweede taalverwervers

mee geconfronteerd worden werd hier teruggebracht tot het kunnen onderscheiden

van twee categorieën. Waar spraakklanken (fonetische categorieën) op allerlei

manieren van elkaar verschillen, verschilden de klanken in dit onderzoek steeds in

een of twee eigenschappen (dimensies) van elkaar. De variatie in beide dimensies

werd gemanipuleerd, zodat ofwel één of beide dimensies relevant waren. Dit valt

goed te zien in Figuur 2.1.

Omdat baby’s de klanken noodzakelijkerwijs zonder feedback moeten leren (ze

gaan pas klanken produceren nadat ze al in staat zijn deze te herkennen), werd de

rol van feedback bij het leren van deze klanken onderzocht door experimenten mét

feedback te vergelijken met experimenten zónder feedback.

Tenslotte werd onderzocht wat de invloed is van de samenstelling van het

klankpatroon van de moedertaal op het leren van de klanken van een tweede taal

door volwassenen.

Alle experimenten werden gedaan met volwassen deelnemers. Om het leren van

de eerste klanken zoals dat bij baby’s plaatsvindt, te onderzoeken werd gebruik
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gemaakt van klanken die niet als spraak werden waargenomen, maar daar wel erg

op leken. Om het leren van de klanken van een tweede taal te onderzoeken, werd

gebruik gemaakt van Spaanstalige en Engelstalige luisteraars die klanken uit het

Nederlands moesten leren categoriseren.

Zowel bij de niet-spraakklanken als bij de spraakklanken waren de dimensies die

gebruikt werden voor het maken van de verschillende categorieën de duur van het

geluid (in milliseconden, gemiddeld 150 milliseconden) en de piekfrequentie van de

eerste formant (de resonantiepiek).

Het leren van niet-spraakklanken

De experimenten in hoofdstuk 2 onderzochten het leren van niet-spraak categorieën

met behulp van supervisie, waarbij de deelnemers feedback kregen op elke reactie

(goed of fout). In experiment 1 werden luisteraars getraind om klanken te

categoriseren die zowel een relevante als een irrelevante dimensie van variatie

hadden (zie de eerste twee bovenpanelen van Figuur 2.1). De resultaten lieten zien

dat deze categoriestructuren eenvoudig te leren waren met behulp van feedback.

Het vasthouden van het geleerde in een testfase zonder feedback en zonder

distributionele informatie (zie het derde bovenpaneel van Figuur 2.1) was een stuk

moeilijker. Vooral de dimensie resonantiepiek werd door de luisteraars nauwelijks

nog gebruikt in de testfase.

Experiment 2 onderzocht het leren van een multidimensionele structuur, waarin

zowel duur als resonantiepiek belangrijk zijn voor het onderscheid tussen de

categorieën (zie de eerste twee onderpanelen van Figuur 2.1), weer met behulp van

feedback is onderzocht in experiment 2 van hoofdstuk 2. Een dergelijk
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multidimensioneel onderscheid was veel moeilijker te leren dan wanneer er maar

één dimensie relevant was, zelfs wanneer luisteraars op iedere keuze die ze maakten

feedback kregen. Hoewel bijna alle luisteraars beide dimensies uiteindelijk leerden te

gebruiken in de trainingsfase, bleek het geleerde in de testfase wederom fragiel. Net

als in experiment 1 gebruikten luisteraars in de testfase het liefst één dimensie,

waarbij zij de voorkeur gaven aan duur boven resonantiepiek.

De testfase verschilde van de trainingsfase op twee manieren: er was geen

feedback meer én de distributionele informatie die aanwezig was in de

trainingsstimuli was afwezig in de testfase (zie voor een illustratie Figuur 2.1).

Experiment 3 onderzocht welk van deze twee bronnen van informatie

verantwoordelijk was voor het (on)vermogen van de luisteraars om het geleerde

multidimensionele onderscheid te handhaven in de testfase. De stimuli in de testfase

van experiment 3 waren namelijk identiek aan de stimuli uit de trainingsfase en

bezaten dus nog wel distributionele informatie. De testfase verschilde nu alleen nog

maar van de trainingsfase in de afwezigheid van feedback. In deze testfase mèt

distributionele informatie slaagden luisteraars er wel in om volgens het geleerde

onderscheid te categoriseren. Uit dit resultaat bleek dat luisteraars erg gevoelig

waren voor de aan- en afwezigheid van distributionele informatie en hun

categorisatie daar vrijwel meteen op aanpasten.

In hoofdstuk 3 werd het leren van dezelfde categoriestructuren en klanken als in

hoofdstuk 2 onderzocht, maar nu zónder feedback.

In experiment 1 was slechts één van de beide dimensies relevant, terwijl de

variatie in de andere dimensie niet van belang was (voor categorie lidmaatschap).

Verrassend was dat luisteraars in staat waren om zonder hulp van feedback te

ontdekken welke dimensie relevant was en om deze dimensie vervolgens te
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gebruiken in hun categorisatie. In de trainingsfase bleek het ontdekken van

piekfrequentie als relevante dimensie iets makkelijker dan duur, terwijl de

luisteraars het in de testfase juist lastig vonden om duur te negeren en de variatie in

resonantiepiek te gebruiken. Net als in hoofdstuk 2 was er in de testfase dus een

voorkeur voor de dimensie duur.

In experiment 2 werd onderzocht of luisteraars ook multidimensionele stimuli

konden leren categoriseren zonder hulp van feedback. De prestaties van individuele

proefpersonen verschilden sterk, maar toch was een aanzienlijk deel van de

luisteraars gevoelig voor de distributionele eigenschappen van de geluiden en

maakten ze dus in hun categorisatie gebruik van beide dimensies. In vergelijking

met Experiment 1, waar één dimensie relevant was en de ander genegeerd moest

worden, was het leereffect echter veel kleiner. 

Toch blijkt uit de vergelijking van de experimenten uit hoofdstuk 2 en hoofdstuk

3 dat de verschillen tussen leren met en leren zonder feedback eerder kwantitatief

dan kwalitatief zijn. Leren zonder supervisie gaat langzamer en moeizamer, maar

verschilt verder niet van leren met feedback: categoriestructuren waarin beide

dimensies relevant zijn worden in beide gevallen moeilijker gevonden dan

structuren met een relevante en een irrelevante dimensie.

Het leren van spraakklanken

In de experimenten in hoofdstuk 4 werden andere categorieën geleerd dan in de

eerdere hoofdstukken: in plaats van niet spraak worden de luisteraars hier

blootgesteld aan door een computer gegenereerde Nederlandse klinkers. Deze

klinkers, de eu, uu en u (in fonetisch schrift de /ø/, /y/, en /Y/), worden voornamelijk

256



van elkaar onderscheiden door dezelfde dimensies als in de vorige hoofdstukken:

duur van de klinker en eerste resonantiepiek. De eu (feut) is langer dan de u (fut),

maar verder hetzelfde, de uu van fuut verschilt vooral van de eu van feut in

piekfrequentie en voor het onderscheid van de eu en de u zijn beide dimensies

noodzakelijk. De luisteraars waren ofwel Spaanstalig (Experiment 1, 2 en 3) ofwel

Engelssprekenden uit de VS (Experiment 3 en 4). In beide talen zijn deze klinkers

onbekend. Het onderscheid tussen de categorieën werd zowel met als zonder

feedback geleerd.

Experiment 1 liet zien dat Spaanstalige luisteraars klanken die van elkaar

verschillen op één relevante dimensie met behulp van feedback konden leren. Dat

konden ze voor beide dimensies, al hadden ze een voorkeur voor piekfrequentie.

Deze voorkeur was het duidelijkst in de testfase.

In experiment 2 moesten de Spaanse luisteraars hetzelfde onderscheid zonder

feedback leren. Door de afwezigheid van feedback konden ze alleen gebruik maken

van de distributionele eigenschappen van de stimuli. Nu waren de luisteraars niet in

staat het verschil tussen beide categorieën te leren. Ook hier was er weer duidelijk

een voorkeur om piekfrequentie te gebruiken, of die dimensie nou relevant was of

niet. Wanneer piekfrequentie relevant was in de trainingsfase gebruikten luisteraars

deze dimensie zeer sterk in de testfase, maar wanneer duur relevant was in de

trainingsfase gebruikten ze deze dimensie nauwelijks in de testfase. Het is mogelijk

dat de fonologische eigenschappen van het Spaans hier een rol in spelen:

piekfrequentie is daar erg belangrijk, terwijl er in het Spaans geen klinkers zijn die

onderscheiden worden met behulp van duur.

Als de fonologie van de moedertaal verantwoordelijk is voor de moeite die de

Spaanse luisteraars hebben met het gebruik van duur in hun categorisatie, dan
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zouden sprekers van een taal waar duur wél een belangrijke dimensie is daar

minder moeite mee hebben. In experiment 3 werd daarom onderzocht hoe sprekers

van het Amerikaans-Engels het duur onderscheid tussen eu (feut) en u (fut) leerden

(mét feedback, net als de Spaanstaligen in experiment 1). Het bleek dat de Engelse

luisteraars dit op duur gebaseerde onderscheid veel beter konden leren dan de

Spaande luisteraars uit experiment 1 en 2. Dit resultaat ondersteunt de hypothese

dat de fonologie van de moedertaal een belangrijke rol speelt bij het leren van

nieuwe klanken.

Tot slot onderzocht experiment 4 het leren van het multidimensionele

onderscheid tussen uu en u met feedback. De resultaten lieten zien dat sprekers van

het Amerikaans-Engels (een taal waarin beide dimensies een belangrijke rol in de

fonologie hebben) moeite hadden om beide dimensies te leren gebruiken, zélfs met

de hulp van feedback. Toch bleek uit de resultaten ook dat deze luisteraars wel

gevoelig waren voor de beide bronnen van informatie (feedback en distributionele

eigenschappen), want aan het einde van de trainingsfase maakte de helft van de

luisteraars gebruik van beide dimensies bij het categoriseren. In de testfase bleek dit

leren wel weer fragiel en vielen de luisteraars terug op het gebruik van één dimensie

(meestal piekfrequentie) in hun categorisatie.

Conclusies

Samenvattend leiden de resultaten beschreven in dit proefschrift tot een drietal

hoofdconclusies.

Ten eerste zijn de verschillen in het leren van klanken met en zonder feedback

kwantitatief en niet kwalitatief van aard. Ten tweede zijn luisteraars gevoelig van
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voor distributionele informatie bij het leren van klanken, zelf wanneer zij leren

zonder feedback. Ten derde speelt de fonologie van de moedertaal een belangrijke

rol bij het leren van de klanken van een tweede taal.
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