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Abstract. Discretizations of continuum theories often do not preserve the
gauge symmetry content. This occurs in particular for diffeomorphism symmetry
in general relativity, which leads to severe difficulties in both canonical and
covariant quantization approaches. We discuss here the method of perfect
actions, which attempts to restore gauge symmetries by mirroring exactly
continuum physics on a lattice via a coarse graining process. Analytical results
can only be obtained via a perturbative approach, for which we consider the
first step, namely the coarse graining of the linearized theory. The linearized
gauge symmetries are exact also in the discretized theory; hence, we develop
a formalism to deal with gauge systems. Finally, we provide a discretization
of linearized gravity as well as a coarse graining map and show that with this
choice the three-dimensional (3D) linearized gravity action is invariant under
coarse graining.
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1. Introduction

Discretizations of field theories have become a viable tool for both classical and quantum
physics. On the one hand, numerical treatments of, for instance, gravity require discretization;
on the other hand, lattice quantum field theories give access to non-perturbative physics. One
might even expect that discrete structures will play a fundamental role in quantum gravity—
as opposed to just providing an auxiliary UV cut-off. Indeed, in many approaches to quantum
gravity, such discrete structures appear either as fundamental ingredients, as derived from a
continuum quantization, or as auxiliary structures.

Independent of the interpretation of these discrete structures as fundamental or auxiliary,
the question arises as to how to retrieve the continuum physics we experience at larger scales
from the microscopic models involving discrete structures. This applies in particular to the
emergence of continuum symmetries, as these influence physical predictions as well as the
interpretation of the models.

For general relativity diffeomorphism, symmetry plays an extraordinarily important role
as it is deeply intertwined with the dynamics of the theory. Unfortunately, diffeomorphism
symmetry is usually broken by discretization [1]-[5]. This leads to severe difficulties for both
covariant and canonical quantization approaches.

In the covariant approach, breaking of gauge symmetries leads to additional degrees of
freedom. The gauge modes that for an exact symmetry completely decouple from the physical
modes will become relevant and couple to the remaining modes if the gauge symmetries are
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broken. Hence, these modes have to be taken into account in a quantization (and cannot be
gauge fixed), but should become irrelevant in the continuum limit.

In the canonical approach, the dynamics of general relativity are encoded in the
Hamiltonian and diffeomorphism constraints. The central problem in the canonical quantization
program is to implement these constraints into the quantization. Here, breaking of
diffeomorphism symmetry leads to inconsistencies in the dynamics defined by these constraints,
which severely impedes the quantization of the constrained theory. This has been a huge obstacle
to canonical gravity lattice models [1]; see, however, the suggestions in [6, 7]. For further
discussions of these points and related issues, see [1], [3]-[5], [8]-[13] and references therein.

Discretizations that would preserve some notion of diffeomorphism symmetry* would
therefore be very much appreciated. Indeed, there is an approach to construct such
discretizations. The associated discrete actions, encoding the discretized dynamics, are called
perfect actions [14, 15]. The basic idea is to map continuum physics onto the lattice by a coarse-
graining process. The resulting lattice theory will then mirror exactly continuum dynamics in
its coarse-grained observables. Hence, one would also expect the continuum symmetries to be
present in these lattice dynamics (at least those that have not been absorbed by the coarse-
graining process).

Furthermore, this process might lead to ‘lattice-independent’ lattice theories. That is, not
only are lattice artifacts avoided, but also predictions should not depend on the choice of
the lattice. More fundamentally, observables of the theory should not depend in any way on
lattice sites. This corresponds to the requirement of diffeomorphism invariant, hence coordinate-
independent observables in the continuum. Such observables are known from topological lattice
models, where there are only finitely many global observables. For four-dimensional (4D)
gravity, however, we expect the number of such observables to scale with the number of lattice
sites.

The coarse-graining process can be performed in two different ways. One is to consider
a ‘block transformation from the continuum’, i.e. to have only one coarse-graining step from
an infinitesimal lattice constant to a finite one [16]. This should result immediately in a theory
where continuum symmetries are preserved. There is a disadvantage, however: namely that
coarse graining always involves solving the theory at least partially. Hence this method requires
some control over the solutions. Coarse graining can be also performed in many small steps
from smaller to larger scales. This usually allows one to introduce approximations, in the
(frequent) case that exact evaluations are not possible and is related to the ideas of Wilsonian
renormalization group flow [17].

As many quantum gravity models are discrete on the microscopic scale, one would here
rather adopt the second strategy. Indeed, even classical gravity being a very hard to solve
theory, we cannot expect to obtain a perfect action easily. The prospect is rather to understand
the coarse-graining process better and to derive conditions on the microscopic theory, so that
diffeomorphism symmetry will arise at macroscopic scales.

Mostly, discrete gravity models can be solved only numerically. An alternative is to
consider a perturbative approach and to coarse grain the theory, order by order, in the
perturbations. In this work, we will start with gravity linearized on a flat background. In
this case, the (linearized) gauge symmetries of the continuum are typically still realized.
These are, however, broken in the higher order theory. This actually leads to inconsistencies

4 We will discuss in section 6 what kind of diffeomorphism symmetry one would expect in a discretized theory.
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in the perturbative approach [5]. From the higher-order equation of motions, nonlinear
consistency equations arise, which determine the gauge degrees of freedom present at lower
order.

To avoid these inconsistency issues, one has to ‘perfectionize’ the action order by order.
That is, a second-order perfect action will allow a consistent solution of the theory truncated at
third order—where all of the lower-order gauge parameters remain free.

We therefore consider in this work the first step—the coarse graining of quadratic actions,
that is, free theories. Here, the main point we address is to coarse grain theories with gauge
symmetries in a gauge covariant way, that is, without involving a gauge fixing. This is inevitable
for discrete gravity, as due to the breaking of diffeomorphism symmetries, gauge fixing is not
a viable procedure anymore, starting with the third-order theory. We leave the consideration of
higher-order perturbations for a future work.

As will be explained in section 6, the expected gauge symmetries for discrete gravity have
a very geometric interpretation. We will therefore always be motivated in our choice of discrete
action and the coarse-graining procedure by geometric reasoning. For (linearized) discrete
gravity, we will derive an action and a coarse-graining map derived from Regge gravity [20],
which in itself is a very geometric discretization of gravity. An indication that this choice is
suitable will be provided by 3D gravity, whose (linearized) discrete action will turn out to be
form invariant under coarse graining, as expected from a topological theory.

The plan of the paper is as follows. We will start by reviewing basic coarse graining for
free fields in section 2 and also introduce our conventions and notations. This formalism will be
applied to coarse grain the free scalar field from a finite lattice to a coarse-grained finite lattice
and for coarse graining from the continuum to a finite lattice (see section 3).

We will then develop the formalism in order to coarse grain theories with gauge degrees
of freedom in section 4. To this end, we will first discuss the behavior of gauge symmetries
under coarse graining in section 4.1. In particular, we will argue which kind of discrete
diffeomorphism symmetry one might expect for a perfect action for discrete gravity. The
formalism will then be applied to electromagnetism in section 5 and we will show that for
2D electromagnetism the action is form invariant under coarse graining.

Finally, we will provide a discrete action and a coarse-graining map for linearized gravity
in section 6. Again, we will show that with this choice the 3D linearized gravity action
is form invariant under coarse graining. We will conclude with a short summary and an
outlook.

Appendix A contains some material on the relationship between Regge calculus and the
discretization for gravity employed here, so that we can provide a geometric derivation of the
coarse-graining map. In appendix B, we evaluate some sums, which are needed for the coarse
graining of 2D electromagnetism and 3D gravity.

2. Coarse graining of free fields

Here we will consider the coarse graining of free field theories without gauge symmetries on
the lattice. We derive a general formula for the coarse-grained action that we will apply to a free
scalar field, reproducing the results of [18].

We will consider fields ¢4, with A a yet to be specified index, on a d-dimensional periodic
lattice with N9 sites x = (0, ...,0),..., (N —1,..., N —1). For free fields, the action will be
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a quadratic functional of the fields of the form

1
S== a(xX)map(x —y) ¢p(y). (2.1)

> ; Zy: ¢ ) ¢y
Here we assume that m 45 does only depend on the difference (x — y), that is, that the action is
invariant under (lattice) translations. For most of the discussion, we will work with the Fourier
transformed fields. All of the general formulae can easily be adapted back for fields ¢ (x) in
real space. We will use Fourier transformed fields here in order to apply the formulae at once to
concrete examples.

Introducing the momentum labels p = (0,...,0),..., (N —1,..., N —1), we define

. 1 .
Da(p) = eV Ga(x),  pa(0) =17 > N Gu(p). (2.2)
X p

For the inverse, we used that the delta-function on the (N-periodic) lattice is given by

1 .
00 (p) =5 e, (2.3)
The action in the Fourier transformed fields is then
1 . wi(p-x
S=7 2 eaPmas()ds(=p). with map(p) = &N myp(x). (2.4)
A>va X

The action (2.1) will be varied under the conditions that the field values ¢ (x) sum up to the
coarse-grained fields ®(X) on a coarse-grained lattice with sites X = (0,...,0),..., (N —1,

..,N'—1), where N =L N’. The extrema (or solutions) of the action (2.1) obtained with
these conditions will be functions of the coarse-grained fields ®. Reinserting these solutions
into the action (2.1), we obtain a coarse-grained action S’ as a function of the coarse-grained
fields @,

S [®]= extr S, (2.5)
¢, Bp=0

where B is the coarse-graining map. Varying this new action S” with respect to the fields ®, we
will find new solutions &, describing the dynamics of the theory on the coarse-grained lattice.
The solutions @ encode, however, the dynamics of the original lattice, as these solutions can be
obtained by coarse graining the solutions of the action S (without adding any conditions on the
fields ¢). Namely, what has been done is to split the variational problem for the action § into
two parts. First, one looks for extrema under the condition that the ¢ coarse grain to ®. Then,
one varies the conditions @, so that one reobtains the extrema of the action S,

extr extr S =extrsS. (2.6)

¢ ¢, Bp=2 ¢
Just that we have now only access to these extrema via the coarse-grained fields &.
We will write the coarse-graining map as

®4(X) =Y Bap(X.x) ¢p(x), 2.7)
B.x
which for the Fourier transformed fields gives
. , 1
Pa(P)= Y e NN @y (X) = 15 D Ban(P, p) (1), (2.8)
X B.p
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where
Big(P,p)= Y e M PXNI B, b(X, x)e2m i/, (2.9)
X,x

The coarse-graining conditions (2.8) can be added to the action (2.4) with Lagrange multipliers
A(—P), so that we have to vary

1 1

Si=n0 D PaPImas(P)Ps(=p)+ ) _da(=P) | @a(P) =5 > Basds(p) |. (2.10)
A,B,p AP B,p

This gives rise to the equations of motion,
1
mas(p) §s(=p) =) _hc(=P)Bea(P,p),  ®a(P)=—2) Bas(P,p)¢s(p). (21D
C,P B,p
Assuming that m(p) is invertible, we can write

NY®A(P) =Y Bas(P. p)¢s(p)

B,p

= Y Bas(P,p) m Ysp(=p) Ben(—=Q, —p)Ae(Q).  (2.12)

B,C,D,Q,p

On the other hand, we can rewrite the action with the help of (2.11) as

1
S=5va > a(p) mas(p)ps(—p)

A,B,p

1
=oni 2 $a(P) Ae(=P) Bea(P, p)

A,C,P,p

1
=52 Pa(P)ha(=P). (2.13)
A,P

Hence, this time assuming that the matrix B -m~!- B appearing in the last line of (2.12) is
invertible, we obtain for the coarse-grained action

Nd
S = > Z Qu(P) Myp(—P,—Q) ®p(—0), (2.14)

A,B,P,Q

where

(M~ ap(P, Q) = Z Bac(P, p) (m™"ep(=p) Bep(—Q, —p). (2.15)

C.D,p

3. Example: perfect action for scalar field

3.1. The coarse graining

Here, we will apply the general formalism to a free scalar field discretized on a regular hyper-
cubical lattice. We adopt the following (Wick rotated) action for a free scalar field ¢ on
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a d-dimensional periodic lattice,

1
S = 5 ;¢(x)m(x —y) ()

d
a
=5 2 PW(AG, )+, )P (). (3.1)
x’y
The Laplace operator on the lattice is defined as
1 (N) (N) (N)
A, y)=— Y (28M(x, y) =8N (x, y+e) =8N (x, y — ), (3.2)
@
with a o« 1 /N being the lattice constant and e, the lattice vectors in the directionb =1, ..., d.
Its Fourier transformation is
1 i . 1 _
Alp) = a? Z(Z — e2mipe/N) _ o =27ipn/N)y . — Z kyky, (3.3)
b b

where we defined k, = (1 — e2™i»/M)Y and k;, = (1 — e~2*(»»/N))_ For the Fourier transformed
action, we obtain

d
S = 3277 2 (P A(P)+uD)p(—p). (3.4)
P

The coarse-grained scalar field ®(X) will be defined as the sum over the fields ¢ (x) over all
lattice sites x in a box associated with X,

O(X)=Y BX.x) p(x):=» by sM(x,LX+2) ¢(x), (3.5)
X X 4
where b is some rescaling constant and z assumes the values z=(0,...,0),...,
(L—1,...,L—1).(Remember that N = L N'.) Fourier transforming the matrix B gives
B(P, p):= Ze—Zni(P-X/N’)B(X’ )i /N)
X.x
_ Z b Ze—Zni(P~X/N’) SN (x, LX +7) 2Ti0x/M)
X.x z

— b N/d 8(N’)(P _ p) ZeZHi(p-Z/N)
Z

1 — eZni(L Pa/N)
1 — e27i(pa/N)

=bN" s P -p) []

/ K,
=bN" s P -p) [] = (3.6)

where for the sum over z=(0,...,0),...,(L—1,...,L—1), we used that it is a product
of geometric series. In the last line, we introduced K, =1 —e*"("»/N ). Later we will also
abbreviate K, = 1 — e 27i(P/N)

New Journal of Physics 13 (2011) 045009 (http://www.njp.org/)
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Now we already have all of the prerequisites to apply formula (2.14) and (2.15) for the
coarse-grained action,

M~'(P,Q) =) B(P,p)m ' (=p) B(-=Q,—p)
p

a2_d 1—[ Kbl_(b
Zb kbl_cb +612M2 b kblzb

=bp* N> s (P —p) sM(Q—p)
)4

r b

Zb kpky, +a*p? kpky, ‘p:P+N,,

(3.7)
In the last line, the sum is over r = (0, ...,0),...,(L—1,..., L —1) and the k, depend via
k, =1—e*P»/N) on p (whereas the K;, depend only on P). The coarse-grained action is then
given by

1Ldad*2
= ———— O(PYM' (PYD(—P .
S 2N%22pj()()( ), (3.8)
where .
1 K,K
M'(P) = Z( P I1 kb]; b) . (3.9)
r Zb bRy +aT[L b b%b p=P+N'r

The sum over r can only be performed analytically for 1D systems, d = 1 (see below). Also, the
action (3.8) (Fourier transformed back to X labels) will in general be non-local®, that is, involve
couplings between non-neighboring lattice sites.

3.2. Blocking from the continuum

To obtain the action coarse grained from the continuum, we can iterate the blocking procedure
infinite times for finite L to obtain a fixed point. Alternatively [16], we can directly ‘block from
the continuum’, to obtain an action on a finite lattice, mirroring the continuum theory.

We will consider T periodic continuum fields ¢ (x), with x € [0, T)?. For the Fourier
transformation, we adopt the conventions

. 1 .
¢ (i) = f Ay e T B(x), Ple) = Y D (i), (3.10)
[0.7) r keZd
so that the momentum label « takes values in Z¢. The continuum action is given by

1
Se = 5/ Ay ¢ (x) (=0, +1l) ¢ (x)
[0,7)¢

1 2 2
=73 > ¢ <Z (%/@) +,u§> ¢ (—k). (3.11)

> These couplings are, however, exponentially decaying with distance, and sometimes such a case is still referred
to as a theory with local couplings. We termed it non-local to distinguish it from the lattice actions, which are
mostly used in discrete gravity approaches, such as Regge gravity and spin foam models. There the couplings are
restricted to nearest neighbors.
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We coarse grain the field by averaging it over cubes of volume a’?, where a' is the lattice constant
of the coarse-grained lattice, so that T = N’a’. That is,

d(X) = bC/ di€ ¢p(a'X +e), (3.12)
[0,a")4
which for the Fourier transformed fields gives
N'—1
d(P) := Z e—2ni(P‘X/N’)cD(X)
X.=0
=b.N" Y sM(P-)pt0) [] zfc , (3.13)
ke

keZd c

where K, = 1 —e?™i(P/N) A derivation completely analogous to the one in section 2 leads to
the coarse-grained ‘perfect’ action

1 1

S'= 3 gy 2 PPIM (PYB(=P), (3.14)
¢ P
where
=l - 1 Kal_{a
v XZ: (Zb@m)@m) + (T o) H (2m)(2m>> — (3.15)

3.3. One-dimensional (1D) system

Here we will perform the sum in (3.9) for a 1D system. This will introduce techniques that will
later be useful for evaluating the coarse-grained actions for (topological) gauge theories.
Following (3.9), we have to compute

L-1 iLx —iLx
My =Y 1 (1 —ell¥)(1 — eiL¥)
- pr (1 _ eix+(2rri/L)r)(] _ e—ix—(Zni/L)r) +m2 (1 _ eix+(27ri/L)r)(1 _ e—ix—(2rri/L)r) ’

(3.16)

where we have defined m :=ap and x := ZF”P. We introduce a different way of writing the
mass m by defining

1 B m?
E(ey+e 7Y =cosh(y) := 1+7. (3.17)

From this, it follows that

(1 - eix+(2ﬂi/L)r)(1 _ e—ix—(Zni/L)r) +m2 — ey(l _ ei(x+iy)+(2ni/L)r)(1 _ e—i(x—iy)—(27Ti/L)r). (318)

Hence, we have to evaluate the sum

L—-1 i —i —
M/(P)fl _ Z (1 _ele)(l —e 1Lx)e y
(1 _ eix+(2ni/L)r)(1 _ e—ix—(Zni/L)r)(l _ ei(x+iy)+(2ni/L)r)(1 _ e—i(x—iy)—(Zni/L)r) .
r=0

(3.19)

New Journal of Physics 13 (2011) 045009 (http://www.njp.org/)
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The basic idea of performing the summation is to rewrite the factors in the denominator into a
geometric series, for instance

| 1 L—1 . )
| | _ ‘ elx+(2n1/L)"_ 3.20
(1 _ e1)c+(27'r1/L)r) (1 _ ele) JX:(; ( )

In this way, we obtain

L—-1 L—-1
M/(P)fl —A Z Z eV U1 =izt —ja) =y Ustja)+ Qmi/Lyr (i —j+js—ja) (3.21)
r=0j1,j2,j3.J4=0
where the prefactor A is given by

e e Vel
A= — . — = —— . 3.22
(1 _ elL(x+1y))(1 _ e—lL(x—ly)) KK + M2 ( )
Here we introduced K = (1 —e'/%) = 1 —e@/N” and the new mass M by
1 , M?
E(e” +e 1) =cosh(Ly) =1+ - (3.23)

Performing the sum over r in (3.21) results in a lattice delta function, Y "~ e®" /)i =
L §P(j), and so we obtain

L-1
M (P)"'=LA Z e¥U1=j2tj3=j) =y (js+ja) 3(L)(j1 — ot 3 — ju). (3.24)

1.2, j3,ja=0
For the given range for the labels j; =0, ..., L — 1, there are three types of solutions possible

for the L-periodic delta function. These result if the argument a(j) := (j; — jo+ jz — ja)
assumes the values a(j) =0, a(j) = £L, so that we have to consider

L1 L1

M/(P)_l — LA Z e YUzt 4 (eiLx +e—iLX) Z e YUt | (3.25)

J1+42:J3-J4=0 J1+42:J3:J4=0
a(j)=0 a(j)=L

where we could summarize the a(j) = =L case into one summation due to the Z,-symmetry
in the problem. We rename j; — js =:J and reorder the sums, by counting the possible
configurations with a(j) =0, £L. For J = 0, there are L possibilities for j;, j, (namely both
being equal) such that a(j) = 0. For J > 0, there are L — J possibilities for a(j) = 0, namely
whenever j, — j; = J, similarly for J < 0.

To obtain a(J) = L (we do not need to consider — L, since this has already been taken care
of within the sum), we need J = j; — j, > 0. Then there are J possibilities for j; — j, to equal
L — J and hence satisfy the condition a(j) = L.

We conclude

L—1 L—1L—1—j L—1L—1—j
M'(P)'=LA|Y Le™™+2) " 3 (L= J)e @ 4@ +e)Y " Y Je )

j=0 j=0 J=1 j=0 J=1

L—1
=LA Z e 2 |:L +2L
=0

New Journal of Physics 13 (2011) 045009 (http://www.njp.org/)

L-1

J L-1-j
eV + (e +e 1 —2) E Je_yji| )
J=1 J=1


http://www.njp.org/

11 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The sums can be performed explicitly in a straightforward manner, which results in
L 1

M(PY- — |: 1 - ( sinh(Ly))]
(P =—= L (cosh(Ly)—1)+-KK (L — ———
KK + M? (cosh(y) — 1) 2 sinh(y)

L 1 |:LM2+KI_<< _ Mvar M “Mzﬂ (3.26)

_KI_(+M2m2 ma/4 +m?2

We obtain for the coarse-grained action

1 om? KK+ M?
S = - > () — O(—P), (3.27)
2 N'Lab? = KK —c)+M?

where
1 M4+ M?
C—=m= ————

Lodir s (3.28)

Note that the appearance of the factor K K in the denominator in the coarse-grained action
(3.27) renders it non-local. This can be avoided (but only for 1D systems) by changing the
coarse-graining map appropriately [16]. For instance, coarse graining by decimation, where the
coarse-grained field is just given by the values of the original field on the coarse-grained lattice,
will lead to a local coarse-grained action in 1D.

4. Coarse graining for systems with gauge symmetries

4.1. Gauge degrees of freedom under coarse graining

The formalism in section 2 can only be applied if the dynamics do not feature gauge symmetries,
as otherwise the matrix m 4 in the action (2.1) is not invertible. Of course, one can perform a
gauge fixing procedure, as is used for instance in [19] for Yang—Mills theory. We are here,
however, interested in regaining gauge symmetries; hence we prefer to adopt a gauge invariant
framework. Another advantage of doing so is that topological field theories, i.e. those without
propagating degrees of freedom, such as 2D electromagnetism and 3D gravity, will have form
invariant actions under coarse graining.

Furthermore, a gauge fixing approach is not suitable for discrete gravity: as mentioned
in the introduction, discretizations of general relativity usually break diffeomorphism
symmetry [4]. Here, we understand under a gauge symmetry the property that for given
fixed boundary data the solutions of the theory are not unique. This characterization depends,
however, on the kind of solution (specified by the boundary data) under consideration. Indeed,
in most discretizations of gravity, such as Regge gravity [20], flat space solutions are not unique.

The reason is the following: Regge calculus involves a discretization of space time by
internally flat building blocks—in this case simplices. The metric information is encoded in the
lengths of the edges of these building blocks. Curvature arises as flat simplices might be glued
together along a hinge—an edge in 3D and a triangle in 4D—such that the sum of the angles
contributed by the glued simplices around this hinge differs from 2. This difference is the
so-called deficit angle and measures the scalar curvature.

Flat space solutions can be constructed easily by triangulating flat space. To this end, one
just has to distribute a set of points and to connect all of these points with (geodetic, that is,
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straight) edges so that one obtains a triangulation. The lengths of these edges are induced
by the embedding flat geometry. Having one such flat triangulation with a determined set of
edge lengths, one can obtain another flat triangulation (with a different set of edge lengths) by
displacing any vertex of the first triangulation in the embedding flat geometry. This displacement
will by definition not change the flatness of the geometry. Also, it only changes the lengths of
the edges adjacent to the vertex—hence the change is only local and will in general not affect
the boundary data. In this sense, we obtain many gauge equivalent solutions—for every internal
vertex we obtain d gauge parameters, where d is the space—time dimension.

Basically, we obtain gauge symmetries for the case of flat solutions as these can be mirrored
exactly in the discretized theory. The same applies for homogeneously curved solutions (if a
cosmological constant is present) if one uses homogeneously curved building blocks [15, 21].
Also, here the gauge symmetries correspond to vertex displacements.

The gauge symmetries of the flat geometry survive if one considers linearized Regge
calculus on such a flat background [22]. The gauge modes correspond to the infinitesimal
change in the length variables induced by the displacement of vertices embedded in the flat
background geometry. However, this invariance is broken to higher order [4, 5], that is, the
second-order gauge modes do appear in the higher than second-order (potential) terms. This
makes a perturbative expansion in general inconsistent: quantum mechanically, one has to face
the problem that modes appear in the higher potential terms for which, however, a propagator
is missing. Even classically, it turns out [5] that the higher-order equations lead to nonlinear
consistency equations for the perturbative lower-order (gauge) variables, including the one at
zeroth order. That is, the positions of the vertices in the flat background geometry, which is left
to be arbitrary for the linearized theory, is fixed by the higher-order perturbative equations.

One way to avoid these problems is to improve the action order by order. In this way, one
pushes the gauge breaking terms to higher and higher order. Although the linearized Regge
action features (linearized) gauge symmetries, one even has to start with the improvement in
the quadratic order of the action (defining the linearized theory). The reason is that gauge
breaking at third order is related to the non-invariance of the second-order Hamilton—Jacobi
functional of the theory under vertex displacements (see [5]). In other words, the linearized
theory, although invariant under infinitesimal vertex displacements, is not invariant under finite
vertex displacements and its predictions still depend on the underlying lattice.

What kind of diffeomorphism symmetry can one expect for the full non-perturbative
perfect action? As this action should represent the pull-back of continuum physics to the lattice,
we can describe the potential solutions of such an action. Assume that as in Regge calculus
the basic variables are the lengths of the edges of some underlying triangulation. Then one
way to obtain lattice representations of continuum solutions is to choose a triangulation of a
given solution, i.e. to embed vertices in this solution and to connect these by geodetic edges.
The geometry of the continuum solutions prescribes the length of these edges, determining a
particular configuration of the lattice theory. Obviously, there is a huge set of ambiguities in
this procedure, namely the choice of how and where to embed the vertices into the continuum
solutions. This is where a perfect lattice theory should lead to gauge equivalent solutions. That
is, also non-perturbatively, one would expect vertex displacements as remnants of the continuum
diffeomorphism symmetry. This can also be understood from the construction of the solutions
described above: the choice of where to embed the vertices can be parameterized with the choice
of coordinates. The change of coordinates under a transformation would thus induce a change of
the embedded vertices and hence, in general, of the edge lengths describing the discrete solution.
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Let us turn to the general problem of coarse-graining theories with gauge symmetries.
Conceptually, this is not a problem at the classical level, as we can still apply the definition (2.5)

S'[®]= extr S, 4.1)
¢, Bp=2
1.e. to evaluate the action at an extremum under the conditions that the coarse-grained fields B¢
are equal to some prescribed values ®. In general, this extremum will not be unique—due to
the gauge symmetries. But this does not render the coarse-grained action (4.1) ill-defined, as by
definition the values of the action at these gauge-related extrema coincide.

Note also that gauge symmetries are preserved under coarse graining. If ¢¢(A) is a family
of solutions related by gauge transformations labeled A, then—as coarse grained solutions will
be solutions of the coarse-grained action—B ¢(A) will be a family of solutions of the coarse-
grained action. What will, in general, happen is that gauge degrees of freedom are absorbed by
the coarse graining, i.e. that B ¢;(A) is a much smaller set of solutions than ¢g(1).

A useful criterion for the choice of the coarse-graining map B will be that it should
preserve the form of the gauge symmetries for the coarse-grained action, as will be discussed
for the examples below. This will have the advantage that the (often geometric determined)
interpretation of the gauge transformations will not change, nor does the form of the gauge
invariant variables.

The coarse-grained gauge modes can be easily described for free theories. Assume that the
(symmetric) matrix m 45 in the action®

1
S=32 bamas b 4.2)
A,B

has null vectors vp such that ) pMap v = 0. We add the coarse-graining conditions,

> (% -3 BA/B¢B), (4.3)
A’ B

to the action (where the index A’ labels the coarse-grained fields and will, in general, assume
fewer values than the indices A, B, ...) and obtain the following equations of motion for the
fields ¢4 and the Lagrange multipliers A 4,

ZmAB¢B = Z ApBpa, Pp = Z By pdp. 4.4)
B B B
As before, we can write the coarse-grained action as
1 1
S == ApPp =: = Dy Mypd ’y 4.5
> ; pPp 5 %/ aMpapPp 4.5)

where A p is to be understood as a function of ® 4 determined by the equations of motions (4.4).
Hence, we define M, p to satisfy Ay = ), M4 p P . Now, if v, is a null vector, we will have

0= Z VaMm spPp = Z AaBapug, (4.6)
A.B

A'B
6 For this discussion, we have absorbed the lattice labels x or p into the indices A, B, .. ..

New Journal of Physics 13 (2011) 045009 (http://www.njp.org/)


http://www.njp.org/

14 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

so that we obtain as a condition on M
Z(BA’BUB) My =0. 4.7)
A',B

Therefore V4 =) 5 Bagvp 1s a null vector for the coarse-grained action (4.5).

4.2. Coarse graining of free theories with gauge symmetries

Here, we will derive a general formula for the coarse-grained action in the case where gauge
symmetries are present. We will directly work with the Fourier transformed fields, so that the
action is

1

S =
2 N4

DY balp) -m(p)-T),p ¢5(—p), (4.8)

A,B p

where we inserted projectors I[1-p(p) onto the subspace orthogonal to the gauge modes, that is,
the null vectors of m 45(p). As before, the coarse-grained fields will be given as

1
®4(P) =17 D Ban(P, p) $5(p). (4.9)
B,p

Adding these conditions with Lagrange multipliers A(—P) to the action (4.8), we will obtain
the following equations of motion,

> @ -m-Myp (p)ds(—=p) = Y > rc(—P) Bea(P, p), (4.10)
B c P
1
Pa(P) =72 > Bas(P. )¢5 (p). (4.11)
B p

By contracting the first equation with the projector I1+(p) onto the space of gauge modes v*(p),
labeled by an index «, we learn that

D> ke(=P)Bea(P, p) T, (p) =0. (4.12)
A,C P

From the discussion in section 4.1, we know that V{(P):=) , Zp Bsp(P, p)v*(p) will be

gauge modes of the coarse-grained action. Let [T}, (P) be the projector onto the space spanned
by these modes and I1,p(P) the projector orthogonal to I3, (P). (In the examples below, the
projectors IT+(P), IT(P) will have the same form as I1+(p), I1(p), respectively; therefore we
just use the same symbols here.) Hence, equation (4.12) entails

> he(=P) T, (P) =0, (4.13)
C

Contracting equation (4.11) with the projector I1(—P), we obtain
Ny Map(=P)- ®p(P)= Y > Mus(=P) Bpc(P, p)dc(p)
D

B.C P

= Y > Tus(=P) Bsc(P, p)llcp(—p) ¢p(p) (4.14)

B.C,.D P

as any gauge modes in the field ¢ are projected away after coarse graining by IT(P).
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Let m 5 (p) be a generalized inverse to mpc(p). That is, m % (p) satisfies

S mpg(pympc(p) =Y map(p)myi(p) = Mac(p). 4.15)
B B

The generalized inverse is not unique as one can add multiples of the projector ITt. These
non-unique terms will, however, be projected out later on. We can deduce from equation (4.10)

Y Tas(p)¢s(=p) =D _ > my5(p) Bes(P, p) ke(—P), (4.16)
B

BC P
which if used in (4.14) yields

Ny Tap(=P)Pp(P)= Y Y Tap(=P) Bsc(P, pymcs(—p)Bpr(—Q, —p)ie(Q).
D B,C,D,E P,Q
(4.17)

Because of equation (4.13), we can replace Ag(Q) in the last equation (4.17) by
> r MEer(—0)Ar(Q). We therefore have

Ny Tap(=P)-®p(P) =Y Y M5 (P, Q) p(Q) (4.18)
D D 0
with
Mig(P, Q)= Y Y Tuc(=P) Bep(P, pympi(—p) Ber(—Q, —p)rp(—= Q). (4.19)
C,D,E,F p

We now have to find a generalized inverse Mp(P, Q) to Mz(Q, R) satisfying
D> Map(P, QMzE(Q. R) =8(P — R) Mac(—P). (4.20)
B 0

As in section 2, the coarse-grained action can be written

| 1

§'=52. 0 @aPla(=P)=5) > @a(P)Iup(PIhp(=P).  (421)
A P A,B P

where A4 has to satisfy the equations of motion (4.10) and (4.11). This solution is given by

inverting (4.18); hence the coarse-grained action is given by

S'=—" ). 2 Pa(P) Map(P) Myc(—P, =Q) Men(Q) @p(=Q). (4.22)

A,B,C,D P,Q

The difference with the standard case without gauge symmetries (2.14) is that we have to work
with generalized inverses and that we have to insert the projectors IT into the formula for the
coarse-grained action (4.19) and (4.22). These projectors take care of the non-uniqueness of
the generalized inverses; that is, the coarse-grained action S’ does not depend on the particular
choice of representative for the generalized inverse.

5. Example: perfect action for electromagnetism

5.1. Coarse graining from the lattice and the continuum

Here we will discuss first electromagnetism (or Abelian Yang—Mills fields), as this is a much
simpler example for a lattice theory with gauge symmetries than lattice gravity. The basic fields
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L 4
a(z + e2)
az() az(z +ey)
P a1(2) °
x T+ e

Figure 1. The variables used in discrete electromagnetism (here for d = 2).

will be connection variables a, associated with the edges of the lattice. Here, a,(x) is the
variable associated with the (positively oriented) edge starting at the site x in the direction b
(see figure 1).

A discretization for the action is given by the square of plaquette variables f,;

d-2
§=" ;gfm)fbc(x), (5.1)
where
Joe(x) = ap(x) +a.(x +ep) —ap(x +e.) —a.(x) (5.2)

and a is as before the lattice constant. The Fourier transformed plaquette variable is given by
foe(p) = ap(p) +&" " Na,(p) — PNy (p) — a.(p)
=k.a, — kpa, (5.3)
and the action is
a2 a2 / kyk.
S=ni ; bZ Joe(P) foe(=P) = Sr ; bZ ay(p) A (ahc - T) a(=p), (54

where A'=)", kyk, = a>A. Here we can introduce the discretized projectors onto the
transversal IT" and longitudinal T modes,
I_Cbkc 1 lzbkc

H;JC:(SbC_T’ Hbc: A/ (55)

satisfying
> ongnl, =5%M,,, I, +1T, = 8 (5.6)

for «, B =t, [. (Note that here the projectors are meant to act on a.(— p) on the right and a,(p)
on the left.) The action is therefore a sum over only the transversal modes—the longitudinal
modes a, ~ k, do not appear and are hence gauge modes. This corresponds to the gauge
symmetry

ap(x) = ap(x) +g(x +ep) — g(x) (5.7

with a gauge parameter g(x) at each lattice site x.
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Az(X)

as(z)

X
ay(z) A3(X)

Figure 2. The variables in electromagnetism are coarse grained along the lines
of the lattice, since they are naturally one-forms (here with D =2 and L = 3).

Let us turn to the coarse graining of the fields. The connection is a one-form—hence
naturally discretized as variables associated with edges (see figure 2).

Coarse graining would mean to integrate the connection over all of the (smaller) edges that
have built up the new (longer) edge. Hence, we define

Ac(X)=b) a(LX+ze)=: ) Bu(X.x)ay(x), (5.8)
z b,x
where z =0, ..., L — 1, and b is a rescaling factor. The Fourier transformed coarse-graining
matrix is then
rd (N K,
B.y(P, p) =bDN™ 8.4 8" (P — p) - (5.9

As can be easily seen, the coarse-graining operation has the remarkable property that it
transforms the longitudinal modes a. ~ k;, which are the gauge modes of the action, to
longitudinal modes on the coarse-grained lattice A; ~ K,. Hence, these modes will also be
gauge modes of the coarse-grained action. The coarse-grained variables keep their geometric
interpretation: for instance, the coarse-grained plaquette variables Fj,. = K.A, — K, A. will be
invariant under the gauge transformations of the coarse-grained action.

As the longitudinal modes are preserved by the coarse graining, we will have

, _ 1
D2 Bea(P.p) My (=p) Bro(=Q, —p) =b’N*6(P — Q)K.K; ) —
de p p (p) | p=P+N'r
~ ni_f(_p), (5.10)
where in the sum r takes values r = (0,...,0),...,(L—1,..., L —1). This will allow us to

add an arbitrary multiple of the longitudinal projector to the generalized inverse m ¢ in formula
(4.15) for the coarse graining, as this added part will be projected out again by the transversal
projectors. Hence, we use for the generalized inverse

(M) g = NP, >~ N5, (5.11)
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where the last equality holds modulo terms proportional to the longitudinal projector. This gives
for the matrix M ¢ appearing in the coarse-grained action

(M™)a(P, Q)= > nzd(—P)(ZBde(P,p) (m™)er (=) Bgf<—Q,—p)>H;h<—Q)
p

d.e.f.g
=b*N™ §VAP — Q) T, (— P) s KyKy 844 T1L,(— Q), (5.12)
where
Z( — ) (5.13)
Sqg = —_— . .
—~\A'(P) kaka/ | p=penr
The generalized inverse can be found by adding a longitudinal part of the form
A BN NP — Q) T (— P)saK Ky 8ag 1, (— Q) (5.14)

and inverting the sum of the terms. Projecting from both sides with IT'(— P) gives a generalized
inverse that is independent of A, satisfying

DD T MLEP. Q)M (Q. R) =8N (P — R) T, (~P). (5.15)
R0
In this way, we obtain
Mca(P, Q) = 8NP —Q) = LI (8ca te — (1 = 8ca)tea) (5.16)
b2N/2d Kch t

where
tog = 1_[ S, tC=Ztce, t:Z ]_[sf. (5.17)
e#c,d e#c e f#e

Finally, the coarse-grained action, is given by

ad—2Nd
§'= =52 AP)Mea(=P, —Q)As(~Q)
P.Q
1 Ld Cldiz (8cdtc - (1 _8Cd)tcd)
- A.(P ; Ay(—P). 5.18
2 N2 %:XP: (P) t KKy (=) 19

It is straightforward to see—using ). (f; 8cq — t.a(1 —8.4)) = O—that in the coarse-grained
action, the longitudinal modes A,(P) ~ K, are indeed gauge modes.

To ‘block from the continuum’, we proceed with the same conventions as for the scalar
field in section 3.2. Accordingly, we start from the continuum action

1
S.=~ / A’y (Bpac(x) — dear(x))?
7 Z 0.7y b b

b<c

1
= Sram D D W) <Z<2m><2md>8bc - <2mcb><2mcc>) ac(—k).

b,c kezd d

(5.19)
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The coarse-grained connection variables A, are obtained by integrating the connection a; over
the edges of the lattice,

Ap(X) = bcf d’¢, ap(a'X +¢€,), so that
[0,a")

b.N"

— ¢ (N)

Ap(P) = T E 8 (P —«k)ap(k) |: Khi| (5.20)
keZd i
This gives for the coarse-grained action
_ 1 T (8cate — (1 = bca)lea)

s’ A - S Ag(—P), 5.21
N,Zdb2§: (P) a7 +(=P) (5.21)

where 7, t. and ¢, are defined as before, equation (5.17), just that s, is now given by

1 < 1 1 )
Sq = . (5.22)
; (2m)* |c=P+N'r

Zb KpKp KiKq

5.2. Electromagnetism in 2D

Here we will consider the 2D case and show that the action is form invariant under coarse
graining. For the quantities appearing in (5.17), we have

th=1, t.=1, t=s1+s,. (5.23)
For the last quantity, we obtain with the definition (5.13)

1 1 1
S1+85 = E = = ( — + —= )
p k]k] +k2k2 k]k] k2k2

1
kiky koky
B 1
Y S — (5.24)

KK, K> K,

where the last identity is proved in appendix B. Note that the summation over r for the
expression s; + s, just replaces the fine-grained wave vectors k with the coarse-grained ones
K (and introduces a factor of L*). This is equivalent to considering a coarse-graining step with
L =1 where k = K, so we will indeed find that the action just undergoes a rescaling if coarse
grained.

The coarse-grained action is given by

11 KK K>K,

= A (P) —————= 26,4 —1) Ay(—P
2N/2b2L20d2p: (P) =z @a—1) Au(=P)
11 K.K,

= A(P) Ay (8.4 — A (—P), 5.25
2N,2b2L2;2Pj (P) K(d A,K) a(—P) (5.25)

where we have abbreviated Ay, =), K, K,.
Indeed, the action (5.25) is a multiple of the action we started with (5.4). The form
invariance of the action can be easily understood if one works with the plaquette variables
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Figure 3. For gravity, the lattice (solid lines) needs to be enhanced by introducing
(e.g. for D = 3) face-diagonals (dashed lines) and body-diagonals (dotted lines)
in order to capture all triangulation degrees of freedom of Regge calculus.

fup, as in this case the matrix m appearing in the action (5.1) is just the identity. This does not
apply to higher dimensions, as the plaquette variables are not (locally) independent anymore,
due to the Bianchi identities [23]. Nevertheless, this shows that looking for variables that are
particularly convenient for coarse graining might very much simplify the calculations [24].

6. Example: linearized gravity

6.1. The coarse graining

Next we will consider linearized gravity discretized on a lattice. In this section, we will supply
all of the necessary ingredients to perform the coarse graining, that is, a discrete action,
including a discretization of spin-0, spin-1 and spin-2 projectors for the metric variables, and
a geometrically derived coarse-graining map. We will then consider 3D linearized gravity and
show that the discrete action is invariant under coarse graining. This has to be expected as 3D
gravity is a topological theory, i.e. there are no propagating degrees of freedom.

The choice of discretization for (linearized) gravity is not as straightforward as that for
electromagnetism. One popular example is provided by Regge gravity [20]. Regge gravity
relies on a triangulation with basic variables given by the lengths of the edges (see figure 3).
See [25] for a discussion of the conditions under which linearized Regge solutions do converge
to linearized (continuum) gravity solutions. Hence we can hope to recover continuum physics
and therefore symmetries in the coarse-grained action by taking the fine lattice, which we coarse
grain from, to the continuum limit.

Choosing a regular (hyper-) cubical lattice [22], linearized Regge gravity can be mapped
to linearized gravity with fundamental variables given by symmetric tensors 4, associated with
the vertices of the lattice. These variables represent the metric perturbations from flat space. The
map is reviewed in appendix A since it will be used to derive the coarse-graining map for the
variables /.

To define the discrete action for linearized gravity, let us first consider the continuum
Lagrangian density in d = 3, 4 dimensions,

1
Lew=7 ) hay (T = (d =2)1)apca Area, 6.1)

a,b,c,d
where A = — %" 9,0, =), kik,.
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Here we introduced the spin projectors,
1
0
Hapea = ﬁnfzbnid’
H;bcd = %(&wabd +8ad5bc) - %(HZCHZ[{ + Hfldnzc)v (62)
)y = 5 (T, T, + TG, TG, ) — o2 T, T,
where

kaka aaab
I =68, — —— =08, +
ab = Tab A N

is the projector onto the transversal modes. As can be easily seen, I1°, [T' and I1? sum to the
identity map (on the space of symmetric rank two tensors)

(6.3)

(HO + Hl + nz)abcd = %(8ac8bd + 5aa,’(sbc) (64)

and are orthogonal to each other.
In the gravity Lagrangian (6.1), the projector I1' does not appear; hence the modes that it
projects on are gauge modes. More precisely, the longitudinal modes

Ve, = 85ky + 85k, (6.5)

are annihilated by M.y := 3(IT> — (d — 2)T1%) 4pey forc =1, ..., d.

We will now discuss the discrete action. To this end, we will define discretized projectors
and replace the continuum Laplacian by the lattice Laplacian (3.2). This is most easily done
in the Fourier transformed picture. Here, the difference with the continuum is that we have
the choice between k, = 1 —e@/M P and k, = 1 — e27/N)pa that is, forward and backward
lattice derivatives. But we also have to satisfy a discretization condition, which is that the
projectors should be Hermitian, i.e. TT}, , =TT’ , ,. Hence, we define

1 k. k k.k _
Moped = 777 <6ab + (- aabkb)) (acd v 8cdkd)> :

1 1 _
n,.,= §(3ac3bd +8440pc) — 5(1 — Savkp) (1 — 8cakq)

Igakc l;bkd lzakd Izbkc
Sac — — ) (8pa — + {800 — — ) | Spe — ,

| (6.6)
Mapea = 5 (1= 8apky) (1 = Scaka)
l;akc ];bkd ];akd ];bkc
e — — ) (80 — —=) + (8,0 — %) (5, —
(= 50) b= 3) = 50) (- 50)
1 kok k.k -
o (aab += (1 - aabkb)) <3Cd v acdk[»),
where A’ =" k,k,. Note that
ka(l_lga):_lza’ Iza(l_ka):_kav (1—](,1)(1—]20): 1, (67)
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so the additional factors (1 — 8,,kp) and (1 — 8.pkp) just change the forward derivative into
backward derivatives and vice versa.
The discrete action so obtained,

1
§= W Z Z hay(p) (H2 —(d- 2)H0)abch/hcd(_p), (6.8)

a,b,c,d p

reproduces the linearized Regge action derived in [22] on a regular (hyper-) cubical lattice. The
gauge modes for this action,

v, (p) =8,k (1+ (8, — 1)kg) + 8,k (1 + (8, — Dky), (6.9)

correspond to the change in the metric perturbation variables (via the change in lengths of the
edges of the triangulation) if a vertex is infinitesimally displaced in the triangulation [22].

We now turn to the coarse-graining map for the fields 4,;,. Here it is important to use the
geometric nature of the variables—namely that these encode edge lengths—to define a coarse-
graining map. As we will see, this ensures that coarse graining preserves the gauge modes. In
appendix A, we derive the coarse graining for the /,, induced by the natural coarse graining for
the edge lengths—namely that a coarse-grained edge length is just the sum of the length of the
edges contained in the coarse-grained edge. The resulting map is given by

N o K, 1 K., K,
Babcd(Pa P) = F(S (P - P) 8(1118641 aac_ + (1 - 8ab)3cd = 8ac - — 5

ka 2 kab ka
1oy, (Ker _ Ko +(1=8)(1 =38 )1(5 S + 8add )K“b (6.10)
bc kab kb ab cd ) acObd adObc kab s .

where we have abbreviated k,, = 1 — e /NPae@Ti/N)Ps — k4 k;, — k,k;, and similarly for K.
Note that this coarse graining is much more complicated than the one for electromagnetism
(5.9) as we now have to deal with a non-diagonal matrix: the second line in (6.10)
displays non-vanishing entries between non—diagonal metric elements H,, and diagonal metric
elements 4.

The coarse-graining matrix preserves, however, the gauge modes, that is,

DD Baver vip(p) ~ v, (P). (6.11)
cd p

This justifies the choice of the coarse graining (6.10).

We now have all of the necessary ingredients for applying the general formalism in
section 4. The calculations are, however, considerably more involved than for electromagnetism.
We leave the 4D case for a future work and consider in the following subsection the 3D case,
where the action will be invariant under coarse graining. This will show that the method, the
discrete action as well as the coarse-graining map proposed here, lead to sensible results.

6.2. 3D linearized gravity

To find the coarse-grained action, we have to consider the following matrix according to the
general formalism developed in section 4,

M= Y > =T wser Begon Mgl Bepgw Ad—T10 . (6.12)
e f.fl 8.8 W p
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Here, to keep the formulaes readable, we suppressed the dependence on the momentum labels
p, P, QO and used a bar to indicate an object depending on — p, — P instead of p, P, respectively.
That is, IT' = IT'(— P) and so on. The generalized inverse /¢ can be easily found using the
representation of the matrix m in (6.8) with projectors. Hence,

_ I - -
mabgcd = ZE (H2 - Ho)abcd- (613)

It turns out that the matrix elements M_,%, can be computed and have the following general
form,

Z A(k) [C;}%cd(K)klkZ + C;gcd(K)kllq + Cgl:’;cd(K)ka?’ + C;ggd(K)klkle]

Mg = / . (6.14)
~ A [A) (1= K)(1 - Ky)(1 - K3)]*
where A} =) k,k, and A/, = > . K. K,. The prefactor A(k) is given by
NO , (1—k)(—k)(1 —kg)A;c
Ak) =2—8N (P —=p)sN (0 —p) 2k (6.15)
L4 P P kikakskioki3kos

with k., =k, +k, — k.k,. Note that there is a Laplacian in A(k) that cancels the one in the
denominator of (6.14). This will eventually make the sum over p in (6.14) computable. The
coefficients C,;., are polynomials of K, K,, K3; for example,

C2, = —Cin(K) [K2K3(1 — K)(1 — K))(1 — K3)(K Ky — K2 Ky — K3K3)
+K1K3(1— K)(1— (1 — K)((1 = K2) (1 — K3))],
CB,, = —Cii(K)[KrK3(1— K)(1— Ky)(1— K3)(K K| — K> K, — K3K3)

(6.16)
+K K;(1 = K3)(1— (1= K)((1 = K2) (1 — K3))],
Chin = Ciun(K) KK (1 — K))(1 — K3)[K, Ky + K3 K3 — K1 K, — K K],
Cit = Ciun(K)K>K3(1 — K)(1 — K»)(1 — K3)[2K, K| — K2 K> — K3K3),
where the common factor Cy;y; is given by
Ciin(K) =2K} K K3(1 — K))*(1 — K2)* (1 — K3)*[K2Ka + K3 K] (6.17)

Using an algebra manipulation program, the expressions for all of the coefficients have been
obtained, but they are too long to be listed here.

The sum over the labels p in (6.14) involves only the k, = 1 —e**(?«/¥) and not the
K, =1—¢*"P«/N) We therefore have to consider only two types of sums; for instance,

> 8YP —p)s™(Q - p) A=d =)L =) ),
p

kikokskioki3ko3

_spog) Y kil ok s

s kirki3kos |kg=1—e2mi(Pa/N)+27iCra/L)
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The derivation of these sums can be found in appendix B; the results are given by

LX_E 1=k —k)(1—k3) (A—-K)(1—-Ky)(—-K3) 0, if L is even,
= X
0 kiakiskas K12K13K53 L3, if Lisodd.
LX_E (I =k —k)(1—ks) (1=Kl —Ky)(l—Kj3)
R — ka ki2ki3kas K2 K13K
L*2 - K, o
>k if L is even,
X L42—aKu IE - (6.19)
— +—, if L is odd.
2 K, 2

Here we have two scalings; some terms scale with ~ L3 (only for odd L) and the others
with ~ L*. The terms with L3-scaling do, however, vanish if we use the expressions for the
coefficients C fbcd, A =12, 13,23, 123: namely, to evaluate the L3 terms for odd L we have to
consider

Ccﬁcd + Cégcd + Cﬁicd + 2C;133d =0, (6.20)

which vanishes for all index combinations a, b, ¢ and d. We are thus left with the L4—scaling
terms in the sums (6.19), which do agree for odd and even L. These terms sum up to

1K K 1K, _ _
Ctil%cd Tj + Ctllgcd 2[{22 + Cazgcd 2K, _ (HZ(K) — HO(K))abcd (6 21)
(A)* KinKi3K23(1 — K1)3(1 — K»)3(1 — K3)3 (A%) ’ '

i.e. we obtain back a multiple of the original matrix m,,.; we started with. In addition, by
combining the two equations (6.20) and (6.21), we obtain the equation that guarantees the
consistency condition for L =1 so that K, =k, for a =1, 2, 3. This case—since no proper
coarse graining has taken place—should result in the original matrix we started with. Indeed,

Cibea K% +Cliea KLZ +Cliea KL1 +Copa _ (IMT2(K) — (K ) abea (6.22)
(A%)* KinKi3Kp3(1 — K1)3(1 = K»)3(1 — K3)3 (A7) ' '
Collecting all prefactors, we obtain for the coarse-grained action
/ 1 2 0 1
5= Y D Ha(PYITP = T1)gpeg Ay Hoa(—P), (6.23)

a,b,c,d P

showing that the 3D discrete linearized gravity action is indeed invariant under coarse graining.
Note that by comparison it is quite straightforward to derive the topological character of
3D (non-perturbative) Regge gravity (see also [15]). The action in this case is

S = Z Le, (), (6.24)

where the sum is over all edges in the triangulation, /, denotes the length of an edge e, and
€.(l) is the so-called deficit angle, a measure of the curvature, associated with the edge e. The
fundamental variables are the edge lengths /..
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We choose a coarse-grained triangulation, such that the edges E, triangles and tetrahedra of
the coarse-grained triangulation are made up of the edges, triangles and tetrahedra, respectively,
of the original triangulation. Then an obvious choice for the coarse-graining map is to require
that the length of a new edge L is equal to the sum of the lengths of the edges e contained in
E. We add these conditions to the Regge action (6.24) and therefore have to vary

S, = Z Le, () + Z A (LE — Z le) . (6.25)
e E

eCE

We obtain the equations of motion’,

e () = ZAE, Lp= Zle. (6.26)

EDe eCE
Multiplying the first equation in (6.26) with /, and summing over all edges, we find that (here
we indicate with [(L), A(L) that the lengths /(L) and Lagrange multiplier Az (L) satisfy the
equations of motion (6.26) and hence depend on the Lg.)

=) l(DeWL) =) L) rp(L)=) Lehp(L). (6.27)
e e EDe E

Now, from the first equation of motion (6.26), it actually follows that Az is the deficit angle

at E in the coarse-grained triangulation (which just agrees with the deficit angles of all of the

edges e making up E). Hence, we indeed just obtain again the original Regge action (6.24) as

the coarse-grained action.

7. Discussion and outlook

The purpose of this work was to develop some necessary methods, in order to construct discrete
actions, that feature continuum (gauge) symmetries. One motivation is to understand how
discrete gravity actions with an exact notion of diffeomorphism symmetry could be obtained.
As in general relativity, diffeomorphism symmetry is deeply intertwined with the dynamics of
the theory, an investigation of this problem could shed some light on one of the most important
problems in many quantum gravity approaches, namely to show that general relativity emerges
in the large-scale limit.

The main idea of constructing such discrete actions featuring continuum symmetries
is to ‘pull back’ continuum dynamics to the lattice. This can be done via a coarse-
graining/renormalization approach. The advantage of this method is that in the long term, the
tools developed may also help us to derive the large-scale limit of discrete quantum gravity
theories.

Here, we took some initial steps in this program. In particular, we formulated how to coarse
grain theories with gauge degrees of freedom in a gauge covariant way. This is particularly
important regarding discrete gravity approaches, where there is a notion of diffeomorphism
symmetry for the linearized theory, which is, however, broken at higher order. Thus gauge
fixing would be inconsistent, at least to higher order. Furthermore, we provided a discrete
gravity action and a coarse-graining map for gravity, which was motivated by Regge calculus
and its geometric interpretation. Indeed, with this choice, there is an obvious interpretation of

7 Here one has to use the Schlifli identity [20] to find that the terms with derivatives of the deficit angles cancel

each other. This is equivalent to finding, in the continuum, that the equations of motion only involve second-order
derivatives of the metric.
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the gauge degrees of freedom as a translation of the vertices in the background geometry, which
is preserved under coarse graining. Moreover, for 3D gravity, the discrete action is invariant
under coarse graining with the coarse-graining map provided.

We have only considered free theories—one obvious development is to consider the theory
to higher order, where in the case of discrete gravity, diffeomorphism invariance is broken. Thus
one could verify or falsify whether one regains with these methods diffeomorphism symmetry
at least on the perturbative level.

Numerous other directions for further development are possible; we list just a few of them
below:

o If the theories are not topological, the coarse-grained actions will in general be non-local.
Here it would be interesting to develop a canonical analysis of such non-local theories on
the lattice [26]. For canonical lattice gravity, a long-standing problem is that the algebra
of (gauge transformation generating) constraints does not close [1, 2]. One possibility
is that to obtain closure of the constraint algebra, one might have to involve canonical
formulations of such non-local theories.

e In the course of this work, we have seen that the complexity of the coarse-graining
process might depend very much on the choice of basic variables. Indeed for general
relativity, there exists a plethora of different formulations in the continuum [27, 28] but
also in the discrete [21], [29]-[33] based on different kinds of variables. Here it could
be very fruitful to see which formulations are most amenable for coarse graining. Since
many of the formulations on which spin foams [34] are based involve (second class)
constraints, an interesting problem is to investigate the behavior of such constraints under
coarse graining [24]. This could also shed some light on the problem whether degenerate
configurations, which play an important role in spin foam formulations [35, 36], will be
relevant for large-scale dynamics.

e A related question is to consider alternative coarse-graining maps, to see how these
influence the locality of the coarse-grained action [16, 18], and also whether these
alternative coarse-grainings regain (diffeomorphism) symmetries.

e For the quantum theory, one would not only need a diffeomorphism invariant discrete
action but also a diffeomorphism invariant measure for the discrete theory. Such a measure
can likewise be obtained by coarse graining/renormalization of the partition function [37].
This question can even be considered for linearized gravity; however, one has to keep some
parameters of the triangulation of the flat background geometry as free variables, in order
to gain some information on the measure that will be a function of these parameters.

e The actions and partition functions obtained via coarse graining should be explored, in
particular with regard to diffeomorphism invariance. Here, an interesting more general
question is whether diffeomorphism invariant actions are necessarily fixed points of some
coarse-graining processes, in particular whether these are connected to discretization (or
triangulation) independence. If this is the case, the question arises as to how this approach,
where triangulation independence is obtained via coarse graining, is related to approaches
where triangulation independence is reached via a sum over triangulations [38].
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Appendix A. Coarse-graining map for the metric variables

Here we want to derive geometrically the coarse-graining map for the metric variables A,
used in section 6. This map can be obtained by considering a regular (hyper-) cubical lattice
to which we assign as variables the length of the edges. It would, however, not be sufficient to
have only the lengths of the edges in the d-coordinate directions to reconstruct the full metric.
Rather, one has to introduce diagonals e, that is, edges starting from a vertex x and ending at
X + e, + e, where ¢, and e, are the lattice vectors in the direction b, ¢ =1, ..., d. In 3D and 4D,
it is also necessary to introduce further edges, namely body diagonals along ¢, + ¢, +¢., and in
4D, hyperbody diagonals along e; + e, + e3 + ¢4, to obtain a regular triangulation into simplices.
But the lengths of these additional edges are subject to a trivial dynamics in linearized Regge
calculus; that is, these variables can be ignored [22]. Indeed, as we will see below, the lengths
of the edges [, along all the directions e, together with the lengths of the diagonals /,, along the
directions e, + ¢, are sufficient for finding all of the lattice metric components g,;.

To this end, we just need to consider how the lengths of the edges are computed from the
metric g,

2 __ —
la—ea'g'ea—gaa’

2 (A.1)
Loy = (eat+ep) - & (eat+ep) = gaa+28an+ gbb-
We will consider perturbations for the length variables and for the metric variables,
Lo = 100 +eh), Ly =15 (0 +ehw), 8w =8y +€ha, (A2)

where the background values are / 2(70) =a, |l ,58) = +/2a and 8be = a*8., with a being the lattice
constant. Using the expansion (A.2) in the relations (A.1) and keeping only terms to first order
in €, we obtain

hag = Zaz)“a’ hay = a2 (2)“ab —Aa — )“b) (A3)

The coarse graining of the length variables is straightforward: the lengths of a coarse-grained
edge L, and L, should be given by the sum of the lengths /, and /,;, respectively, of all of the
edges forming this new coarse-grained edge. Hence, we obtain for the coarse graining of the
perturbation variables A,, A4

1 L—-1 1 L—-1
Ae(X) =2 ha(LX+ze),  Aa(X)= 7D daLX +zleate). (A4)
z=0 z=0

Using the relations (A.3) on both sides of these equations leads to the following coarse-graining
map for the perturbative metric variables,

L—1
Haa =L Z haa(LX+Zea)7

z=0
L—-1 1 1

Hyy =LY (ha+ Shaat Sho ) (LX +2(ea+ep) (A.5)
z=0

L—1 L—1
1 1

—LE —hgo (X + “_LE —hpp(LX + .

o 5 ( ze,) ar ) bi ( zep)

New Journal of Physics 13 (2011) 045009 (http://www.njp.org/)


http://www.njp.org/

28 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Defining the coarse-graining matrix B,,.q(X, x) by

Hapy(X) =D > Bapea(X, ) hap (%), (A.6)
c,d x
we obtain for its Fourier transformation,
Bupea(P. p)i= Y e M PXND By (X, )™ PEN), (A7)
X,x

the following result,

Bupea (P, p) = Nd(S(N’)(P Y 8ap8ea S K“+(1 Sap)d 15 Rap _ Ka
abced » P _Ld_l p abO9cd Qac ka ab cd2 ac kab ka

Kab
p ), (A.8)

ab

K. K, 1
+8bc <_ - _>> + (1 - 8ab)(l - Scd) _(aacsbd +8ad6bc)
kaw Ky 2

where we abbreviated k,;, = 1 — e@™/NraeC/Nrv — [+ k; — k,k;, and similarly for K. Note
that there is a non-diagonal part in the coarse-graining matrix between the diagonal metric
elements /.. and the non-diagonal metric elements H,,, a # b.

Finally, we will show that the gauge modes of the action (6.8) are related to infinitesimal
vertex translations. Changing the positions of the vertices infinitesimally by the amount y, (x)
in the direction e, at the vertex at x leads to a change in the length variables XA,, A, by

)“a(x) = )\a(-x) + yu(-x +ea) - Va(x)’

(A9)
Aap(X) > hap+ 3 (Va (X +eq+ ) — Va(X) + V(X + €4+ €5) — ¥ (X)).
This gives for the metric variables the gauge transformations
B (X) > hao(x) +2a% (v, (x + e,) — (%)),
(x) (x) (Va( ) = Ya(X)) (A.10)

Rap(X) > hap(X) + @ (Va(X +eq+€p) = Va(X +€0) + V(X +eq +ep) — Yp(x +ep)) .
Fourier transformation gives the gauge modes
Vap(P) = 85 k(1 — (1 = 8ap)ka) + 8, ko (1 — (1 — 8ap)ks), (A.11)

which are exactly the longitudinal modes projected on by IT'. Note that the form of the modes
is left invariant under the coarse-graining map

D Baner (P pYVip(p) ~ 05 (P) = 85 Kp(1— (1= 845)Ky) +8 Ko(1— (1= 845)Kp).
cd p

(A.12)

Appendix B. Some summations

In the case of 1D systems and topological models, one can actually perform the sums over the
fine-grained wave vectors p. In this section, we will provide explicit expressions for some sums
needed in the main text.

The sums involve exponential functions of the form

271 271 ] 271
w, ;zl—ka:exp —P, +—r, =:explix,+ —r,), (B.1)
N L L
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which are summed over r, =0, ..., L — 1. Note that a)aL = exp(%Pa) =:1-— K, does not

depend on the summation label r, and hence can be pulled out of the sum. To evaluate the
sum, we will in all cases use a rewriting of the summands into a geometric series. The basic

idea is described by
Case A:
L1 B L—1 1 L L .
ko 1 — ex+Qui/Lyr — | _eilx K (B.2)
r=0 r=0
Proof:
L1 ~ L1
r=0 k r=0 l-o
= s
=— —
l—w g l—w
==
=T
r=0 s=0
| Lol
— isx+Q2mil)rs
T 1_ L Z ¢
! @ r=0 s=0
=
=1 7 e L 8% (s)
- s=0
L L (B.3)
Cl—owt K’ ’
where we used that the L-periodic delta function is given by
=
8(L) —_ _ e(2ﬂi/L)rs' B4
(5)=7 ; (B.4)
Similarly, we obtain the sum needed for 2D electromagnetism in chapter 5.2:
Case B:
L1 L1
1 1 L? L?
— =) — = ‘ — = ——. (B)S)
— kk — (1 _ elx+(2m/L)r)(1 _ e—lx—(ijl/L)r) (1 _ ele)(l _ e—le) KK
Proof:
L1 1 L—1L—1
i ei(s—t)x+(27ri/L)r(s—t)
1 L-1
— i(s—0)x (L)
= e Lé —t
b oD 2 ©=0
L? L?
= (B.6)

T (l-—oh(1-wl) KK’
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The sums for 3D gravity are more involved. The two cases we need are:
Case C:
L—-1

Z wW1Wrws3
(I —wiwy)(1 — w1w3)(1 — wrw3)

ry,r2,r3
_ ofolwk 0, if L is even, B
(1 —oreb)(1 —oFob) (1 - w2w3) L3, if L is odd. '
Case D:
L—1
Z 1 w13
= (1= w,) (1= 0100) (1 = 0103) (1 — w303)
L* 1+ ot i
- ohokok ) Tl if L is even, 55
(1—ofen)—oten)l —wief) = | L 1oy L7 o0
21—l 2
Proof:

Let us first consider the sum over r; for case C. To this end we write the w;-dependent
part as

-1
1) —w
1 =  —— (B.9)
(I —wi)( —wiws) (1 —ww)(l—w] »;)
Using again the rewriting of these terms into a geometric series, we arrive at
L—1 -1
Yoo
ml—oo)(l-vw)  (1-ofo Ol —wptw;b)
L-1 L1
x Z Zeixl(xft)+(2ni/L)r1(s7t) Wl
s,t=0r;=0
"~ (- ofwb) (I - oty )
L1
X Z L8 (s —1) e wiw;!
s,t=0
—L w;l G
= wHrw~
(1 - wtwb)(1- Z 23
—L a)_1 1 —otwi”
— 3 T ( 2@ 1). (B.10)
(I -ofo))(l - ) (I —wwy7)
This leaves us with the following w,-dependent terms from (B.7) and (B.10),
1 — 1
@2 @3 (B.11)

(1 — ww3) (1 — wyw3 ") - (I —wrw3) (1 _w2—1w3)'
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A similar calculation as in (B.10) leads to
L—1

2L

Z (02) 1 = _ LL(I)3 L (1 6()32). (1312)

(-0 (1 —mwy) (- wkeh)(1 - 0f) (1-0))
Now the remaining w;-dependent terms from (B.7), (B.10) and (B.12) are given by

w3 1
(1-w}) (7' —ws)
1 1
(B.13)

(1-w) (1-w3)
From the symmetric form of the second expression in (B.13), one can conclude that the sum
over r3 vanishes for even L (as in this case there are % terms differing by a minus sign from
the other % terms). But we will also find this by evaluating separately the two summands in the

second line of (B.13). For the first term, apply case A,
L—-1

> ! L (B.14)

- (I-wh)

For the second term, we obtain

L—1 1 1 L-1
= L 5™ (25)e**
2 i X
L (1+w%),  if Liseven,
=—— o (B.15)
(I—-w3") |1, if L is odd,
as for even L there are two solutions to the L-periodic delta function s =0 and s = %
Summing up the two contributions in (B.14) and (B.15), we obtain
Lz_i w3 L a)3L 0, if L is even, (B.16)
Z-w) (- |1, ifLisodd '

We have finally performed all the sums for case C. Collecting all of the results of (B.10), (B.12)
and (B.16), we indeed arrive at the claim in (B.7).

To tackle case D, it is, due to symmetry, sufficient to consider the case w, = w3;. Hence, we
can reuse most of the calculations for case C and just redo the summation over the ws-dependent
terms. These are now given by

w3 1 1

= — . B.17)
l-w)(l-0w) (-w)? (-—w)l—ow3)
For the first term, we calculate
L—1 1 1 L—1 L—1
— ws+t
r; (1—w3)?  (1—wk)? ;,2::0 :
I3 L—1
— eiX3(S+t) 8(L)(S +f)
(1 —wi)? S;{)
L L
:m[nu—n%], (B.18)
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as there are two kinds of solutions to the L-periodic delta function: one is s, t = 0 and another
L — 1 solutions are given by s +¢ = L. The second term gives similarly

L—1 1 1 L—1 L-1
— ws+2t
r;oa—wg)(l—w%) (1—w§>(1—w§L),§MZZO ’
L L—1
— eiX3(S+2t) 8(L)(S +2t)
(1 —a)3L)(1 —w%L) s,zizjo
B L
(-1 —wih)
L L—2
1+ EwSL + w3k, if L is even,
L . (B.19)
1+ 5 a)3L+ 5 a)%L, if L is odd.

Again, collecting the results of (B.10), (B.12), (B.18) and (B.19), we arrive at the claim (B.8)
for case D.
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