146 Prophecy

realities of a later period as well as the conditions
in which the utterances were initially spoken.

2. Scholars continue to compare prophetic texts of
one culture with those from other settings. For
example, recent publication of Akkadian texts
attests the preserving of more than one oracle on
a clay tablet. Such practice marks the transition
from archival preservation of one oracle to the
creation of prophetic literature, i.e., the arranged
composition of multiple oracles and sayings. Such
compositions are observable in both biblical and
extrabiblical texts.

3. Study of the rhetorical and literary features
of prophetic texts is currently of great interest,
particularly as such study has been informed by
new understandings of Hebrew poetry.

See also: Akkadian; Bible.
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Introduction

Logic is defined by two key notions, entailment and
calculus. More precisely, a logic is a calculus for the
derivation of entailments. Entailment is a relation
between assertive sentences or, rather, between propo-
sitions expressed by assertive sentences. (Henceforth,
the term ‘sentence’ is used for ‘assertive sentence.’)
Entailment for sentences is defined as follows:

A sentence or a set of sentences P entails a sentence
Q (PEQ) just in case whenever P is true, Q must of
necessity also be true, on account of the meanings of
P and Q - that is, for analytical reasons.

There is an immediate complication, however.
Strictly speaking, it is not sentences that are true or
false but, rather, their utterance tokens and their un-
derlying propositions. It is impossible to say whether
the English sentence Jack arrived late is true or false
as long as the person called Jack and the time referred
to are not specified. The vast majority of natural
language sentences are occasion sentences in the
sense that they contain a number of parameters that
must be given specific values in the world spoken
about before there can be talk of truth or falsity.
The values for such parameters in one sentence to-
gether we call the ‘key’ of the sentence in question.
Only a properly keyed sentence can function as an

utterance token with a truth value. It is true that there
are sentences, called ‘eternal sentences,’ that can do
without a specific key, such as all humans are mortal.
These are to be considered marginal cases whose key
is the universe as a whole. Starting with Aristotle, the
logical tradition has preferred to avoid the complica-
tions caused by the keying condition and has, in
principle, developed logics only for eternal sentences.
Only recently has there been a greater awareness that
such a limitation is not fruitful.

Since the vast majority of sentences are occasion
sentences, the entailment relation, when defined for
sentences, must be defined modulo key — that is, with
reference values kept constant. Under this condition it
can be said that Jack has been killed entails Jack is
dead because it is in the meaning of the predicate be
killed that whoever has been killed is of necessity
dead. Propositions, by contrast, if taken to be token
occurrences of mental acts in which a property is
assigned to one or more objects, are keyed by defini-
tion and thus do not need the modulo key condition.
The analyticity condition remains unchallenged:
When a proposition P entails a proposition Q, it
does so in virtue of the cognitively defined meanings
of the predicates in any linguistic expressions of
P and Q.

The analyticity condition must be clearly distin-
guished from other conditions that justify the draw-
ing of a conclusion. For example, Jack was shot in the
heart does not entail Jack died because, even though
Jack’s death is a direct consequence of his being shot
in the heart, this is not a semantic but a physical
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consequence, brought about not by the semantic de-
scription of the predicates in question but by physical
causation. To be able to draw the corresponding
conclusion we need world knowledge, not knowledge
of the language.

Most entailments are imtuitive in that they are
based on speakers’ knowledge of their language.
Some entailments, however, can be made formal in
that they can be computed with the help of a calculus.
When that is the case, we have a logic. Every logical
system distinguishes between its logical constants and
its variables. In propositional calculus, for example,
the logical constants are the words and, or, if, and not
and the variables range over linguistically expressed
propositions. In standard first-order predicate cal-
culus, the logical constants are those of proposition-
al calculus plus the words all and some, and the
variables range over predicates and individuals. The
logical constants define the calculus.

The notion of logic was discovered in Plato’s Acad-
emy, mainly by Aristotle (384-322 B.C.E.), who began
as a student and later became a prominent member of
the Academy. He discovered that the negation word
not functions differently according to whether the
subject term is or is not quantified. The sentence
Plato does not live in Athens is true whenever Plato
lives in Athens is false, and vice versa, the former
sentence being equivalent to ‘it is not true that Plato
lived in Athens.” Here, the negation is full sentential,
or external, negation. But in, for example, some
Greeks do not live in Athens, the negation cannot be
external because both this sentence and some Greeks
live in Athens can be true at the same time. The
difference is that in the latter pair of sentences the
subject term is quantified, whereas in the former pair
it is a referring expression. Apparently, in sentences
with a referring expression as subject term it makes
no truth-conditional difference whether the negation
is external or internal, but in sentences with a quanti-
fied subject term it does. This discovery intrigued
Aristotle and some of his fellow students. It eventual-
ly resulted in what is now known as Aristotelian-
Boethian Predicate Calculus (ABPC), a form of
predicate logic due in the first place to Aristotle
but remodeled (and to some extent spoiled) by later
commentators, especially the Roman-Christian
philosopher Boethius (ca. 475-524 ck.).

Predicate Calculus

ABPC, like standard modern logic, is restricted by a
few overarching principles. First there is the Principle
of Contradiction, which says that no sentence can be
true and false at the same time. Then comes the
Principle of Bivalence, which says that every sentence

Table 1 Boethius’s sentence types

A: All Fis G
I: Some Fis G

E: All Fisnot-G=No Fis G
O: Some Fis not-G = Not all Fis G

is either true or false, with nothing in between and no
further truth values. A further restriction, applying
throughout, is the Principle of Extensionality, which
restricts the applicability of logic to really existing,
actual objects, eliminating all virtual objects (see
Virtual Objects), such as Sherlock Holmes or the
Golden Mountain, which have been thought up by
creative minds.

The Principle of Contradiction seems firmly rooted
in cognition and language, but the other two princi-
ples, although universally accepted nowadays, are
open to doubt. Presuppositional phenomena, in par-
ticular, strongly suggest that the Bivalence Principle
does not fit the facts of language (see Presupposition).
And the Principle of Extensionality is clearly inadmis-
sible in any logico-semantic analysis of human lan-
guage, which quantifies with equal ease over actual
and virtual objects (see Virtual Objects). This last
complication is allowed to rest in the present context.

Under the principles given, the (external) negation
not, or —, is a toggle between truth values: if P is true,
—P is false, and if =P is true, P is false; =—P is
equivalent to P (=—P = P). P and —P are called Con-
tradictories. Given the principles mentioned and the
definition of not (—) just given, it follows that when
P E Q, then =Q E —P - an entailment schema known
as Contraposition.

As regards ABPC specifically, Boethius distin-
guished four sentence types, the types A and I (from
Latin affirmo ‘I affirm’) and E and O (from Latin
nego, ‘I deny’), defined as in Table 1 (the variables F
and G range over predicates). ABPC is then defined
by the following entailment schemata. Sentences of
type A entail sentences of type I, and those of type E
entail those of type O. Formally: A ETand E | O.
These are known as the subaltern entailments. More-
over, both I and O entail ‘there is at least one F — an
entailment known as existential import. Given the
entailment A k= I, it follows that A and —I cannot be
true simultaneously, although they may be false to-
gether: they are contraries. Aristotle himself added
the entailments from some F is G to not all F is not-
G and from all F is not-G to no F is G (Kneale and
Kneale, 1962: 57). However, his later commentators,
especially Boethius, went further and added the con-
verses of these two entailment schemata: from not all
F is not-G to some F is G and from no Fis Gto all F
is not-G, thereby creating the now standard conver-
sions that allow conversion of all into some, and vice
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Figure 1

versa, provided both an external and an internal ne-
gation are added (or removed). Now all F is G and no
F is not-G, and some F is G and not all F is not-G are
equivalent. With the conversions added, it follows
that I and O cannot be false together, although they
can be simultaneously true; they are subcontraries.

ABPC is known in the traditional form (due to
Boethius) of the Square of Oppositions, shown in
Figure 1A. Aristotle’s original system, called Aristote-
lian-Abelardian predicate calculus ( AAPC), is shown
in Figure 1B (the asterisk stands for internal negation:
A% is all F is not-G; I* is some F is not-G).

It is important to insist on the difference between
ABPC and AAPC because ABPC contains a logical
fault that is absent in AAPC. This fault becomes
visible when we consider a world (such as ours) with-
out any mermaids. In such a world, the sentence all
mermaids swim must be either true or false, owing to
the Bivalence Principle. If it is true, some mermaids
swim must also be true (subaltern), from which it
follows, contrary to fact, that there are mermaids
(existential import). But if it is false, then not all
mermaids swim is true and entails (by conversion)
some mermaids do not swim, which likewise entails
(by existential import) that there are mermaids, again
contrary to fact. Therefore, all mermaids swim can be
neither true nor false when there are no mermaids,
which violates the Bivalence Principle. The problem
with ABPC is, thus, that it cannot deal with situations
in which the F-class is null: only when the F-class is
nonnull are the subaltern entailments applicable. This
goes against the very notion of logic because entail-
ments are valid not in virtue of world contingencies
but in virtue of meanings. This logical fault is called
undue existential import (UEI).

To repair this fault, standard modern predicate
calculus (SMPC) was developed by mathematical
logicians such as Boole, Frege, Peano, and Russell
during the late 19th and early 20th centuries. SMPC

SC: subcontraries

(A) ABPC and (B) AAPC represented as Squares of Oppositions.

is indeed free from this, or any other, logical fault
and is now universally accepted as the one and only
sound predicate calculus, which must be embodied in
human language if that can lay claim to logical
soundness. This deeply ingrained belief, however, is
unwarranted.

To see what is at issue it is useful to go back into
history. That ABPC is logically faulty was not entirely
unknown to medieval philosophers. Peter Abelard
(1079-1142), in particular, had seen the fault and
restored Aristotle’s predicate logic to its original
form (hence the name AAPC; see Seuren, in prepara-
tion). Yet his (and Aristotle’s) way of avoiding UEI
was never taken up by the logical tradition, which
stuck to the faulty Boethian system until the advent of
modern logic. Had the tradition been more attentive,
it would have seen not only that the Aristotelian-
Abelardian system is logically sound but also that it
has much greater logical power than SMPC. This
question is worth unraveling.

Despite its long tradition, the Square of Opposi-
tions is not a very good way of representing ABPC
because it expresses neither the conversions nor the
role of internal negation. A better representation is
shown in Figure 2A, where the symbols E and O have
been eliminated in favor of external (—) and internal
(*) negation. The analogous representation of AAPC
is given in Figure 2B. Figures 2A and 2B show two
logically isomorphic triangles, each with the vertices
A, I, and -1, one with and one without the internal
negation. In each triangle, the three logical relations
are entailment, contradiction, and contrariety. The
figures differ in that Figure 2A has the conversions,
whereas Figure 2B has the one-way entailments of
AAPC, and AAPC lacks the relation of subcontrariety.

A valuation space representation (Van Fraassen,
1971) shows why logical relations hold. The valua-
tion space (VS) /P/ of a sentence P is the set of situa-
tions, in the universe of situations U, in which P is
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Figure 2 Improved representations of (A) ABPC and (B) AAPC.
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Figure 3 The VS models for (A) ABPC and (B) AAPC.

true (modulo key). Logical relations can be read from
VS models:

When /P/ C /Q/, P = Q.

When /P/ =/Q/, P = Q.

When /P/ N /Q/ = &, P and Q are contraries.

When /P/ U /Q/ = U, P and Q are subcontraries.

When /P/ N /Q/ = & and /P/ U /Q/ = U, P and Q are
contradictories.

ABPC is represented in Figure 3A and AAPC in
Figure 3B.

ABPC lacks a space for cases in which the extension
of the F-predicate is null ([[F]] = &), which makes its
applicability dependent on the contingent condition
that [[F]] # O, but AAPC has space 4 for the situa-
tions in which [[F]] = @. In these situations, the four
sentence types, A, I, A*, and I* are all deemed false.

The VSs of the eight sentence types are read from
Figure 3 as shown in Table 2. In both systems, the
subalterns hold from A to I because {1} C {1,2}, and
from A* to I (or, for AAPC, —A) because {3} C {2,3}
(or {2,3,4}). But AAPC lacks the subaltern from —I to
I* because {3,4} Z {2,3}. The conversions do not hold

in AAPC because —1* }£ A, as {1,4} € {1} and -1 [£ A%,
as {3,4} € {3}. The contraries have remained intact
in AAPC, except for the pair —I and —I*, because
{3,4} N {1,4} # . Subcontrariety between I and I*
has been lost in AAPC because {1,2} U {2,3} # U.
SMPC presents a solution to UEI based on a direct
interpretation of all as set-theoretic inclusion and of
some as set-theoretic intersection: all F is G is inter-
preted as [[F]] C [[G]], and some F is G as [[F]] N
[[G]] # . When [[F]] = 9, all Fis G is true because
the null set @ is included in any set. A and A* sen-
tences are thus taken to be true when [[F]] = &, which
allows the conversions to remain intact. This solu-
tion, which depends on the interpretation of all as
inclusion and of some as intersection, may be conve-
nient for the logic of mathematics but lacks any lin-
guistic necessity. Given Boolean algebra and standard
set theory, we are free to interpret all and some in
different terms. For example, all may be defined as
yielding truth on condition that [[F]] C [[G]] and that
[[F]] # Q. This, in fact, appears to correspond more
closely to the way the meaning of all is defined in
natural language than the simple condition that [[F]]
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Table 2 VS Models of eight sentence types

ABPC AAPC
/A = {1} IA/ = {1}

n = {1,2} n = {1,2}
/A = {3} IA* = {3}
n = {2,3} n = {2,3}
/~A/ = {23} /-Al = {2,3,4}
Al = {8} Al = {3,4)
/-A* ={1,2} /=A% = {1,2,4}
A = {1} A = {1,4)

C [[G]], which fits the facts of language badly. The VS
model of SMPC is as in Figure 4.

This shows that almost all entailment relations are
lost: the subalterns are gone, as are the contraries and
subcontraries. All that has remained is the contradic-
tories and the conversion equivalences. This makes
SMPC extremely impoverished compared with either
ABPC or AAPC.

It also makes SMPC redundant for the use of lan-
guage because, when [[F]] = O, the truth value of all
eight sentence types considered follows automatically
from the theorems of standard set theory. This is so
because, for any sets X and Y, X C Y when X = &,
and X N'Y = & when X or Y or both equal &. When
the class of situations where [[F]] = O is excluded
from SMPC, the truth value of the eight sentence
types becomes contingent on circumstances, which
makes the corresponding sentences informative. Be-
cause the logic that results when the situations where
[[F]] = O are eliminated is identical to ABPC, natural
language has a functional interest in ABPC. Such an
elimination affects only the semantics of all: T and I*
sentences are unaffected by the condition that [[F]] #
J. Tt follows that if ABPC can be upheld without the
logic becoming unsound, the information value of
expressions containing the quantifier all will be great-
ly enhanced. The question is whether natural lan-
guage can manage to maintain ABPC while keeping
its logic sound.

In general, if the semantic description of certain
words turns out to be such that they allow for a
logical calculus, then that calculus is the logic of
language. To find out what the logic of language
amounts to, we should, therefore, investigate the
meanings of possible logical constants and see what
calculus results. For predicate calculus, the logic of
language is thus defined by the linguistically given
lexical meanings of the words all, some, and not.

It seems that language has outsmarted the logicians
by making sentences context-sensitive, using the de-
vice of presupposition (see Presupposition), which
restricts the informative use of sentences to consistent
contexts, in which the presuppositions of the

IN ={1,4}
N ={1,2}
/A¥ = {3,4}
N = {2,3)
/A = {2,3}
/-l = (3,4}
~A* ={1,2}
/A1 ={1,4)

Figure 4 The VS model for SMPC.

sentences in question are stored as preliminary infor-
mation. The truth of a sentence co-depends on the
truth of its presuppositions as stored in the embed-
ding context. If they are not all true, the sentence is
false in a special way, called ‘radically falsity,” which
implies the falsity of at least part of the embedding
context and, hence, the futility of the sentence itself in
that context. Radical falsity (F2, written as ~) con-
stitutes a third truth value in addition to truth (T) and
minimal falsity (F1, written as ~; see Multivalued
Logics). Thus, if the lexical meaning of all is made
to incorporate the condition that [[F]] # O as a pre-
condition for informative use in a consistent context,
ABPC is allowed to apply again in full force, but only
within the confines of a situation in which [[F]] # @.
In situations that do not satisfy that condition, the use
of all will result in radical falsity. Although no such
provision is required for the lexical meaning descrip-
tion of some, as previously mentioned, I and I* sen-
tences are still radically false when [[F]] = & because
the Principle of Extensionality amounts to the pre-
suppositional requirement of actual existence for the
reference values of the terms of the G-predicate. This
presuppositional predicate calculus (PPC) is repre-
sented in Figure 5, where the bold circle delineates
the area of applicability of traditional bivalent ABPC.
Space 4 is useful not only as a logical safety net but
also in speech to mark a sentence as being unfit for the
current discourse. This is done with the help of the
radical negation NOT, emphatically accented, which
makes itself useful in language as a metalinguistic
discourse corrector, as in all mermaids do NOT swim;
there ARE no mermaids!

It thus seems that SMPC should be rejected as a
candidate for the status of ‘logic of language.” This in
itself is a momentous conclusion given the almost
universal, yet false, belief that no other consistent
predicate logic is possible. There is, however, a re-
deeming feature. Had it not been for SMPC, the
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Figure 5 The VS model for PPC.

logical language of predicate calculus (Lpc.peano) in
which it is formulated would not have existed. After a
first unsuccessful attempt at a logical language in
Frege (1878), PLpc was created by Giuseppe Peano
around 1900 and adopted by Alfred Whitehead and
Bertrand Russell in their Principia Mathematica of
1910-1913. Since then, Lpc.peano has become the
stock in trade of all logic.

The main innovation of Lpc.peano consisted in the
introduction of separate symbols for all (V) and some
(3) as variable binders in propositional functions.
A propositional function is a propositional sentence
in Lpc.peano With at least one term missing — that is,
filled by a variable. Thus, if Bald(Jack) is a proposi-
tional sentence with a truth value, Bald(x) is a propo-
sitional function that will be true or false when a
value is filled in for the variable x. Quantifiers such
asVand J are a further way of turning a propositional
function into a propositional sentence. The universal
quantifier V turns a propositional function into a
sentence with a truth value, in that it requires for
truth that any arbitrary value for x (within the de-
fined range of x) will yield truth. The existential
quantifier 3 produces truth when at least one value
for x yields truth. A sentence such as All humans are
mortal is rendered in Lpc.peano as (1a), and Some
humans are mortal is rendered as (1b). The symbol
— stands for the material implication ‘if . .. then’, and
A stands for the conjunction ‘and’. Both full proposi-
tional sentences and propositional functions can be
negated and placed under any binary propositional
operator.

(1a) Vx(Human(x) — Mortal(x))
(“for all x, if x is human, x is mortal’)

(1b) 3x(Human(x) A Mortal(x))
(‘there is an x such that x is human and x is
mortal’)

Example (1a) is true when any arbitrary value for x
makes it true. If the value of x is not human but, say, a
tree, then the whole implication is automatically true.
If for all human values of x it turns out that they are
also mortal, then (1a) is true. Falsity for (1a) can thus
be brought about only by one or more values for the
variable x that are human but not mortal — so-called
counterexamples. For the truth of (1b), it is required
that there be at least one x such that x is both human
and mortal.

Lpc.peano mMakes it possible to treat sentences with
more than one argument term and to quantify each
such term. Thus, a sentence such as Every boy gave
some present to some girl can be rendered as (2)
(disregarding tense):

(2) Vx(Boy(x) — Jy(Present(y) A 3z(Girl(z) A Give(x,
% 2))))
(“for all x, if x is a boy then there is a y such that y
is a present and such that there is a z such that z
is a girl and x gives y to )

For the analysis of quantification in natural language
sentences, however, this ‘translation’ method is now
widely considered inadequate, mainly because it can-
not be used for quantifiers such as most or half. For
this reason, Barwise and Cooper (1981) decided to
adopt the notion of generalized quantifier, introduced
in Mostovski (1957). The actual logic, in the sense
of a system of entailment schemata, is not af-
fected by this innovation, which is merely syntactic.
In the syntax of this modified logical language
Lpc-Mostovskis @ quantifier is a binary higher order
predicate — that is, a binary predicate over sets, not
over individuals. Instead of writing (1a) and (1b), we
now write (3a) and (3b), respectively; (2) is now
rendered as (3c):

(3a) Vx(Human(x), Mortal(x))

(‘the set of humans is included in the set of
mortals’)

(3b) Ix(Human(x), Mortal(x))

(‘there is a nonnull intersection of the set of
humans and the set of mortals’)

(3¢) Vx(Boy(x), dy(Present(y), Iz(Girl(z), Give(x, y,
to z))))

(‘the set of boys is included in the set of those
individuals a such that for each a there is a
nonnull intersection of the set of presents and
the set of objects b such that there is a nonnull
intersection of the set of girls and the set of
persons that a gives b to’)

Lpc-Mostovski fits both the syntactic and the semantic
facts of language remarkably well and is now widely
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used in philosophical, semantic, and logical studies of
language. It is important to realize that the syntax of a
logical language is to a large extent independent of the
precise semantics of the quantifiers and the negation:
The language may stay the same while the semantic
description of the operators involved varies, and vice
versa. The main question regarding the logic of lan-
guage is now no longer the syntax of the logico-seman-
tic ‘translations’ of sentences because Lpc_mostovski has
so far proved adequate. The main problem still out-
standing is, rather, the precise semantic description of
whatever logical constants are detected, in particular
the words not, all, some, and, or, and if. (May (can)
and must are likewise plausible candidates for the
status of logical constants in a modal logic, and other
candidates may yet be discovered.) So far, the syntax
of Lpc-Mostovski has proved highly successful not only
as regards the expression of the logical properties of
propositions, but also for the purpose of relating its
expressions to surface sentences in natural languages.
It has vastly extended the scope of the logical analysis
of natural language sentences and is probably the
greatest contribution made by modern logic to the
logico-semantic analysis of natural language.

Propositional Calculus

In propositional calculus, the most current logical

constants are not, and, or, and if ... then. The
A B C D
PAQ PvQ P>Q
P |-P Q:‘T F Q:‘T F Q:‘T F
T|F P.T|T F P.TI|T T P.T|T F
FIT FIF F FIT F FlT T

Figure 6 Standard truth tables for -, A, V, and —.

A
AND __ -OR* OR*
- cD
Cc \.SC c
cD —_—
OR -OR — AND*

Figure 7

variables, say P, O, R, ..., range over propositional
sentences. Propositional calculus was developed in
the Greek world by Stoic philosophers during the
3rd and 2nd centuries B.CE. (bukasiewicz, 1934).
Not is standardly symbolized as — and is the bivalent
truth-value toggle described here. And is standardly
written as A, or as V, and #f ... then as —. The
semantics of these constants (operators) is usually
given in terms of the truth tables shown in Figure 6.
Strictly speaking, the material implication operator
— is superfluous because P — Q = -P v Q. Yet it is
usually specified as a separate operator rendering
natural language if ... then. That it does not do so
has been known for two millennia, yet it continues to
figure in logic textbooks as a translation of if . . . then.
Of greater logical importance is the fact that the
logic of and and or is isomorphic with the logic of all
and some in ABPC. When P A Q stands for A, P V
Qforl, =PV —=Q for A*, and =P V —=Q for I*, there is
full isomorphism. The following notation is used:

AND: P A Q OR: PV Q
—AND: -(P A Q) -OR: =(P Vv Q)
AND*: =P A =Q OR*: =P vV =Q

—AND*: (=P A =Q)

Propositional calculus can now be represented as
the Square of Oppositions of Figure 7A. The VS
model for propositional calculus is as in Figure 7B,
which is isomorphic with Figure 3A. The ‘conver-
sions’ in predicate calculus correspond to the De
Morgan’s laws in propositional calculus; they convert
A into V and vice versa, provided both an external
and an internal negation are added (or removed):
~(PAQ)=—PV-Q,and ~(PV Q)= -P A -Q.

It has often been observed that the universal quan-
tifier is somehow related to and and the existential
quantifier to or. This relation is usually spelled out by
saying that all F is G is equivalent to ‘G(f1) A G(f2) A
G(f3) A ..., and that some F is G is equivalent with

=OR*: =(=P vV =Q)

(A) Square and (B) VS model for standard propositional calculus.
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A B PAQ c Pva
QT F1 F2
PPT |TFIF2 PT|TTT
F1|F1F1 F2 FI|T F1 Fi
F2 | F2 F2 F2 F2|T F1 F2

Figure 8 Truth tables for Presuppositional Propositional Cal-
culus (PPC).

‘G(f1) V G(f2) V G(f3) V ..., until all members £, of
[[F]] have been enumerated. Yet this is only so if
[[F]] # Q. If [[F]] = O there will be neither a conjunc-
tion nor a disjunction of its members. In general, since
ABPC was rejected in favor of SMPC, which had its
logic reduced to the conversions, the obvious paral-
lelism of V with A and of 3 with V has been more of an
embarrassment than of a help to logicians. Yet, if
ABPC can be restored to its traditional position, the
isomorphism of ABPC with propositional calculus
will be a reason for looking further into logical sys-
tems with such properties as ABPC and propositional
calculus have in common.

Unlike ABPC, propositional calculus is not logical-
ly faulty. It does not need a fourth space because there
is no null class to cater for. Yet it can be made triva-
lent so as to cater for presuppositions (Seuren et al.,
2001). The minimal, presupposition-preserving nega-
tion (~) toggles between T and F1 and yields F2 in
cases of presupposition failure. The radical presuppo-
sition-canceling negation (~) yields T only in cases of
presupposition failure and yields F1 otherwise. (The
standard negation — is equivalent with the disjunction
of minimal and radical negation: ~P vV ~P = —-P.)
Conjunction (A) selects F2 over F1 and T, and F1

over T; disjunction (V) selects T over F1 and F2, and
F1 over F2, as shown in Figure 8.

When the logic of language is seen as being defined
by the semantic descriptions of the logical constants
involved, an entirely new perspective on logic
emerges, one that has so far hardly been explored.

See also: Aristotle and Linguistics; Extensionality and In-
tensionality; Multivalued Logics; Presupposition; Virtual
Objects.
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Paradigmatic propositional attitude ascriptions (in
English) are sentences of the form A Vs that S, where
A is a singular definite noun phrase referring to a
rational agent, S is a sentence, and V is a propositional
attitude verb. Paradigmatic propositional attitude
verbs include ‘believe’, ‘doubt,” ‘realize,” ‘hope,” ‘re-
gret,” etc. Such verbs refer to intentional mental states
with representational content, where this content can

be evaluated for truth or falsity, and thus can be iden-
tified with a proposition. (What are sometimes called
verbs of saying, e.g., ‘say,” ‘deny,’” ‘announce,’” are
closely related to, but typically distinguished from,
propositional attitude verbs.) Because propositional
attitude verbs refer to intentional states with proposi-
tional content, it is natural to endorse a relational
analysis of propositional attitude ascriptions: an as-
sertion of ‘John hopes that Mary won’ says that the
referent of ‘John’ bears the mental relation (or astitude
in Russell’s 1940 terminology) referred to by ‘hopes’
toward the proposition expressed by the complement
clause ‘that Mary won.” Similarly, an assertion of
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