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ABSTRACT 

The difficulty of the task of segmenting a speech signal into its 
words is immediately clear when listening to a foreign language; it 
is much harder to segment the signal into its words, since the 
words of the language are unknown. Infants are faced with the 
same task when learning their first language.  

This study provides a better understanding of the task that in-
fants face while learning their native language. We employed an 
automatic algorithm on the task of speech segmentation without 
prior knowledge of the labels of the phonemes. An analysis of the 
boundaries erroneously placed inside a phoneme showed that the 
algorithm consistently placed additional boundaries in phonemes 
in which acoustic changes occur. These acoustic changes may be 
as great as the transition from the closure to the burst of a plosive 
or as subtle as the formant transitions in low or back vowels. 
Moreover, we found that glottal vibration may attenuate the 
relevance of acoustic changes within obstruents. An interesting 
question for further research is how infants learn to overcome the 
natural tendency to segment these ‘dynamic’ phonemes.  

Index terms: unsupervised speech segmentation, speech 
analysis, articulatory features, infant language acquisition. 

 
1. INTRODUCTION 

A speech signal does not contain (many) obvious markers – like 
the space between words in a written text – to indicate word 
boundaries. A person listening to the speech signal is thus faced 
with the task of segmenting the speech signal into words in order 
to obtain the message in the speech signal. The difficulty of the 
word segmentation task is immediately clear when listening to a 
foreign language. Whereas the speech signal in one’s own mother 
tongue is easily segmented into words, the segmentation of the 
speech signal of a foreign language is much harder – if not impos-
sible – since the words that constitute the language are unknown. 

The latter situation is exactly the circumstances under which 
infants have to learn to speak and understand their native language. 
Psycholinguists have found that young infants can discriminate 
among virtually all sounds used in all languages, whereas adults 
cannot [1]. This capability is however lost very soon. In language 
acquisition, infants first learn which phonetic contrasts are impor-
tant in the language they are learning [1]. In a subsequent step, 
infants learn to group together sounds that may sound distinct, for 
instance, due to coarticulation or to speaker differences in gender, 
age, speaking style or rate, but nevertheless belong to the same 
‘phonetic unit’ (this is called ‘categorisation’) [1]. 

Our study aims at getting a better understanding of human 
speech processing, by building a computational model of human 
speech recognition (on the basis of SpeM [2], using techniques 
from the field of automatic speech recognition), that is able to 
model all parts of the human speech recognition process, including 
the acquisition of new phonemes and, subsequently, words. In this 
context we are interested in getting a better understanding of the 
task infants face while learning their native language. We em-
ployed an automatic algorithm (Section 2.2, [3]) on the task of 
unsupervised speech segmentation.  

The algorithm was tuned such that the number of hypothe-
sised boundaries was equal to the number of boundaries in our 
reference transcription. We then assessed the performance of our 
speech segmentation algorithm by comparing the boundaries 
hypothesised by the algorithm to the reference phoneme bounda-
ries. In addition to the correctly hypothesised boundaries (and the 
boundaries that were erroneously missed, see also Section 2.3), the 
algorithm also hypothesised boundaries that are not in between two 
phonemes (i.e., not located on phoneme boundaries). Infants 
eventually learn which acoustic events belong together in a 
phonetic unit. At first sight, automatic algorithms seem to have 
difficulty with this task since they hypothesise boundaries inside 
phonemes. In this paper, we analyse these boundaries that are 
hypothesised inside a phoneme, and try to predict where to expect 
these additional boundaries. This enterprise provides us on the one 
hand with more insights into the difficulty of the task infants face 
while learning their native language, and on the other hand gives 
us indications how to improve our speech segmentation algorithm. 

 
2. EXPERIMENTAL SET-UP 

2.1. Material 
In this study, the TIMIT [4] speech corpus was used. It consists of 
reliably hand labelled and segmented data of quasi-phonetically 
balanced sentences read by 630 native speakers of eight major 
dialect regions of American English. Of the 630 speakers in the 
corpus, 438 (70%) were male. For the analyses, TIMIT’s standard 
test set (excluding the sa sentences) was used, consisting of 1,344 
utterances. 

The speech was parameterised with 12 Mel Frequency Cep-
stral Coefficients (MFCCs) and log energy, augmented with their 
first and second derivatives resulting in 39-dimensional MFCC 
vectors. The MFCCs were computed on windows of 15 ms, with a 
5 ms frame shift (the window size and frame shift were determined 
in a separate tuning experiment), and cepstral mean and variance 
normalisation was applied.  

INTERSPEECH 2007

August 27-31, Antwerp, Belgium1953



2.2. The speech segmentation algorithm 
The algorithm used to segment the speech is described in [3] and 
relies on a method called maximum margin clustering (MMC) [5]. 
Without access to the phone labels, the algorithm segments the 
speech into clusters of input frames that ‘belong together’. The 
speech segmentation algorithm is thus unsupervised. 

The objective of MMC is to find a dichotomy of a given set of 
unlabelled MFCC vectors (see Section 2.1) such that the margin 
separation between the two resultant groups is maximal (see Figure 
1). Figures 1a and 1b are examples of a non-optimal decision 
boundary. The empty region bounded by the two lines is called the 
margin and should have maximal width, that is, it should be as 
wide as possible while remaining empty. The MMC extends this 
principle to the non-separable case by penalising incursions into a 
so-called soft-margin and the goal then is to maximise the soft-
margin while minimising the penalties. Figure 1c is an example of 
an optimal decision boundary. 

Using a sliding window 18 MFCC vectors wide (determined 
in a separate tuning experiment), a set dichotomy is obtained for 
the frames inside the window. In a subsequent step, the dichotomy 
assignments between adjacent sliding windows are compared and 
where a maximum margin dichotomy is consistently detected a 
boundary is hypothesised (for more information, see [3]). 
 

 
 
Figure 1. The maximum margin criterion.  
 
2.3. The boundaries 
The speech segmentation algorithm hypothesised 44,885 bounda-
ries. Following the method described in [3], we defined a boundary 
as correctly hypothesised if it fell within a distance of 20ms from 
the phoneme boundary in TIMIT. This resulted in 67.9% correctly 
hypothesised boundaries. This result is comparable with existing 
unsupervised methods for automatic phoneme boundary detection 
(e.g., [6]; see [3] for a discussion of the results).The algorithm also 
hypothesised boundaries that do not coincide with the phoneme 
boundaries in TIMIT. Of these 13,959 additional boundaries, 
3,075 boundaries were hypothesised in the silence part at the start 
or end of a file, 10,884 are inside a phoneme. In these cases, there 
is apparently a difference between clusters of frames inside the 
sliding window that is big enough to warrant hypothesising a 
boundary, even while there is no phonetic boundary.  
 

3. ANALYSING THE BOUNDARIES 
Since we are interested in identifying the segments that are liable 
to get spurious boundaries, we analysed the speech signal in terms 
of phonemes. In order to be able to generalise over different 
phonemes, we characterised phonemes by ‘articulatory features’ 
(AFs). AFs describe properties of speech production and are 
physiologically motivated classes which characterise the essential 
aspects of articulatory properties of speech sounds for speech 
perception (e.g., voice, nasality) [7]. In our analysis, we focused on 
the 10,884 boundaries that were hypothesised inside a phoneme.  

3.1. The articulatory features 
For the analysis, we used the set of seven articulatory features 
shown in Table 1. The names of the AFs are self-explanatory, 
except maybe for staticity, which states whether an acoustic change 
occurs (as, e.g., is the case for diphthongs; ‘dynamic’), or not 
(‘static’). The set is based on the six AFs proposed in [8], the 
difference being that in the present study the place of articulation 
for vowels and consonants have been separated into two different 
AFs (i.e., place for consonants and height for vowels). In TIMIT, 
the silence (i.e., the closure) and release (i.e., the burst) part of 
plosives have been annotated separately, but in our study the 
silence part is merged with the release part to form a single seg-
ment.  
 

Table 1. Specification of the AFs and their respective 
values. 

AF Values 
manner approximant, retroflex, fricative, nasal, 

stop, vowel, silence 
place bilabial, labiodental, dental, alveolar, velar, 

nil, silence 
voice voiced, unvoiced 
height high, mid, low, nil, silence 
backness front, central, back, nil 
roundness rounded, unrounded, nil 
staticity static, dynamic 

 
3.2. The analysis 
For each boundary hypothesised inside a phoneme (thus for each 
boundary in the 10,884 set), we determined the label of that 
phoneme in the TIMIT transcription and the labels of the preced-
ing and following neighbouring phoneme. Each phoneme label 
was then rewritten in terms of its AF values. 

We analysed the likelihood of a boundary to be correct or to 
be hypothesised inside a phoneme by means of generalised linear 
mixed-effect models using the binomial link function. We used 
contrast coding1, and entered the phoneme itself and the preceding 
and following phonemes as crossed random factors [10,11], as the 
AFs together form the phoneme labels. The AFs of the phoneme 
itself and of the preceding and following phonemes were entered 
as predictors. 

A generalised model, with the binomial link function, has the 
form 

...321 ++++= βββc , 

where logit p represents log [p(1-p)], and p is in our case the 
probability of a boundary to be hypothesised inside a phoneme. 
The constant c is the intercept, and represents the default phoneme. 
The different �s [11] represent the relevance of the different AFs 
for the estimation of the logit p, and were estimated with maximum 
likelihood. 

 In the following analyses, only those effects are reported that 
are statistically significant (calculated using F-tests). In addition, 
we report the absolute estimated values of the different �s, with an 
explanation of whether the likelihood of additional boundaries 
increases or decreases for each effect. 

                                                 
1 One phoneme or combination of AF values is used as the ‘Intercept’, i.e., 
the default, with which all other phonemes or combinations of AF values 
are compared. 

logit p 
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Table 2. Percentage correctly hypothesised boundaries 
at the end of a phoneme of ‘Total’ number of phonemes 
with the specified manner AF value. 

AF value % Total 
‘vowel’ 72.3 14,888 
‘stop’ 69.5 6,341 
‘fricative’ 68.9 7,832 
‘nasal’ 66.4 4,434 
‘retroflex’ 59.2 3,541 
‘approximant’ 56.0 3,480 
‘silence’ 27.3 6,353 

 

4. RESULTS AND DISCUSSION 
Since only manner can be meaningfully specified for all phonemes, 
we first analysed all data with only the manners of the phoneme 
itself and of the preceding and following phonemes as predictors. 
We observed robust effects of the manner of the phoneme itself 
(F(6,40159)=2.9212, p < 0.01) and of the preceding phoneme 
(F(6,40159)=18.3521, p < 0.001). The manner of articulation of 
the following segment appeared not to have an effect. 

Additional boundaries were more likely in vowels than in 
nasals (�=1.279202, p < 0.001). This difference can most likely be 
attributed to the staticity of the phoneme (see also below). During 
the realisation of a diphthong vowel the articulators move from one 
position to the next, resulting in acoustic change. Since the algo-
rithm is designed to group together frames that are similar, the 
acoustic change results in the hypothesis of (additional) bounda-
ries, and the algorithm divides the diphthong into two separate 
segments. Nasals, on the other hand, are more or less ‘static’ 
sounds, and this staticity results in less additionally hypothesised 
boundaries.  

Additional boundaries were also more likely after vowels than 
after fricatives (�=0.264826, p < 0.001). Moreover, additional 
boundaries were more likely after any segment than after a silence 
(�s range from 0.547408, for fricatives, to 0.813009, for vowels, 
all ps < 0.001). Interestingly, these results show exactly the 
opposite pattern as the percentages of correctly hypothesised 
boundaries at the end of phonemes and silences, listed in Table 2. 
Boundaries indicating the end of ‘vowel’ segments are typically 
hypothesised fairly well, whereas the end of a ‘silence’ segment 
tends to be hypothesised poorly. The latter effect is most likely due 
to the endpointing algorithm which is used to remove the silence at 
the beginning and end of each utterance (note that the ‘Total’ 
number for ‘silence’ in Table 2 includes the silences at the begin-
ning and end of each utterance), which does not only lead to 
missing boundaries at the end of the silences, but also to fewer 
additional boundaries within the directly following segments.  

In order to test the role of the other AFs in the hypothesising 
of additional boundaries, we analysed obstruents, nasal conso-
nants, and vowels separately, and investigated which of their 
characteristics predict the presence of an additional boundary. 
Since voice is a meaningful specification only for plosives and 
fricatives (vowels and nasals are always ‘voiced’), we grouped the 
plosives and fricatives together and analysed this category of 
obstruents. For the obstruents, voice, manner (thus either ‘stop’ or 
‘fricative’), staticity, and place of articulation are meaningful AFs. 
Only voice showed a main effect (F(1,14076)= 7.3711, p < 0.01, 
�=0.9136): additional boundaries were more likely in ‘unvoiced’ 
(3,269 additional boundaries versus 5,978 expected boundaries) 
than in ‘voiced’ obstruents (1,010 versus 3,821).   

This result may be somewhat surprising since staticity may be 
expected to be a better predictor than any other AF, including 
voice. In our description of the phonemes, most fricatives are 
described as ‘static’ and all stop consonants as ‘dynamic’ (remem-
ber that the closure and release part of plosives are labelled as one 
segment – contrary to the standard TIMIT labelling), and distinc-
tion is made between ‘voiced’ and ‘unvoiced’ obstruents, even 
though ‘unvoiced’ obstruents are obviously more dynamic than 
‘voiced’ ones. Our results show that the distinction between 
‘voiced’ and ‘unvoiced’ obstruents is highly important and suggest 
that the AF staticity should be made sensitive to voice. 

For nasal consonants, we studied the role of place of articula-
tion and staticity. Both predictors emerged as significant (place: 
F(2,3314)=3.2801, p < 0.05; staticity: F(1,3314)=28.6835, p < 
0.001). Additional boundaries were more likely in the ‘bilabial’ 
([m] and syllabic [m], �=0.3615) and ‘velar’ ([η] and syllabic [η], 
�=0.5981) nasals than in the ‘alveolar’ ones ([n] and syllabic [n], 
all ps < 0.001). Phonetic research [12] has shown that ‘alveolar’ 
nasals (like /n/) are often partially assimilated to the following 
phoneme. For instance, an /n/ followed by a bilabial stop (e.g., [b]) 
is often realised as an [n] that gradually becomes more bilabial 
([m]) like. As a consequence, the formant transitions at the end of 
‘alveolar’ nasals are not as great as those at the end of non-alveolar 
nasals. As explained before, dynamic change is the basis for 
hypothesising boundaries.  

Additional boundaries were also more likely in ‘dynamic’ 
than in ‘static’ nasals (�=0.9909). The ‘dynamic’ nasals are the 
syllabic nasals. We expect formant changes to be greater in syllabic 
than in non-syllabic nasals, as they form the transitions from 
consonants to consonants, instead of from vowels to other vowels. 
This explains the increased number of additional boundaries. 

Vowels differ in their specification for height, backness, 
roundness, and staticity. Three predictors appeared significant: 
height (F(2,14623)=26.946, p < 0.001), backness (F(2,14623)= 
22.001, p < 0.001), and staticity (F(1,14623)=23.328, p < 0.001). 
Additional boundaries were more often positioned in ‘low’ than in 
‘high’ (�=1.0332) vowels, more often in ‘back’ than in ‘central’ 
(�=1.3971) and ‘front’ (�=0.3425) vowels, and more often in 
‘dynamic’ than in ‘static’ (�=0.6544) vowels (all ps < 0.01). The 
higher number of additional boundaries for ‘dynamic’ is again 
according to expectation.  

The higher number of hypothesised boundaries for ‘back’ 
compared to ‘central’ can also easily be explained. The formant 
transitions in a ‘central’ vowel are much smaller (thus less acoustic 
change) than the formant transitions in a ‘back’ or ‘front’ vowel. It 
is thus to be expected that more additional boundaries are hypothe-
sised in ‘front’ and ‘back’ vowels than in ‘central’ vowels, and that 
the difference between ‘back’ and ‘front’ vowels is smaller than 
the difference between ‘back’ and ‘central’ vowels, which is 
exactly what we observed.  

Additional boundaries were more often hypothesised in ‘low’ 
vowels than in ‘high’ vowels.  During the production of a ‘low’ 
vowel, the mouth is much more open than during the production of 
a ‘high’ vowel. During the production of the constriction of the 
preceding and following consonants, the mouth needs also to be 
fairly closed. As a consequence, the formant transitions are 
comparatively greater in ‘low’ vowels, which in turn implies more 
acoustic change and thus more additionally hypothesised bounda-
ries than in ‘high’ vowels.  

We then investigated the role of the characteristics of the pre-
ceding obstruents, nasal consonants, and vowels. If the preceding 
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segment was an obstruent, we found no effects for its place, 
manner, or voice (all ps > 0.05). Preceding nasals showed an effect 
of place of articulation (F(2,4110)=4.3651, p < 0.05). The bilabial 
[m] and syllabic [m] were less likely to be followed by a segment 
with an additional boundary than the ‘alveolar’ (�=0.18930) and 
the ‘velar’ (�=0.39331, both ps < 0.05) nasals. This pattern of 
results is exactly the opposite as the one we found for additional 
boundaries within nasals. We do not have an explanation for this at 
this moment. For preceding vowels, we found an effect of their 
height (F(2,13296)=4.4611, p < 0.05) and staticity (F(1,13296)= 
11.5797, p < 0.001). Additional boundaries were more likely after 
‘high’ than after ‘low’ vowels (�=0.18644), and, again according 
to expectation, more likely after ‘dynamic’ than after ‘static’ 
vowels (�=0.16017). Interestingly, 74.5% of the boundaries at the 
end of a ‘high’ vowel were correctly hypothesised, while only 
66.8% of the boundaries at the end of a ‘low’ vowel were correctly 
hypothesised. Apparently, ‘high’ vowels more often lead to 
additional boundaries in the following segments, but less often 
have additional boundaries in the vowels themselves (see above).  

Finally, we tested the predictive power of the characteristics 
of following obstruents, nasal consonants, and vowels. We did not 
find any effects for following obstruents and vowels. With respect 
to nasal consonants, we only found a significant difference be-
tween ‘alveolar’ and ‘bilabial’ nasal consonants (F(2,4167)= 
3.1493, p < 0.05). Additional boundaries were more likely in 
segments preceding [n] and syllabic [n] (�=0.53086). It is well-
known that vowels may become nasalised before nasals. We 
therefore expected an effect of ‘nasal’ on the number of addition-
ally hypothesised boundaries. Indeed, when it is known that the 
following phoneme is a ‘nasal’, more boundaries are being hy-
pothesised in the current phoneme.  

 
5. CONCLUDING REMARKS AND FUTURE WORK 

This paper tries to get more insights into the difficulty of the task 
infants face when learning their native language. We employed an 
automatic unsupervised algorithm on the task of segmenting the 
speech into parts, and subsequently analysed the boundaries that 
were erroneously hypothesised inside a phoneme in order to 
ascertain which characteristics of the speech signal are responsible 
for these erroneous boundaries. In short, the algorithm consistently 
placed additional boundaries in phonemes in which acoustic 
changes occur. These acoustic changes may be as great as the 
transition from the closure to the burst of a plosive, but also as 
subtle as the formant transitions in low or back vowels. Moreover, 
we found that glottal vibration may attenuate the relevance of 
acoustic changes within obstruents. In subsequent research, we 
also plan to analyse the boundaries that were missed by the auto-
matic algorithm to get more insights into the difficulty of the task 
infants face when learning their native language. 

An interesting question for further research is how infants 
learn to overcome the natural tendency to segment dynamic 
phonemes. Possibly, this is based on statistical learning: Infants 
discover at a certain moment that bursts are always preceded by 
silence and as a consequence group the silences and bursts to-
gether. We plan to test this hypothesis using our automatic speech 
segmentation algorithm in the near future. Another possibility is 
that infants take advantage of more fine grained information 
present in the acoustic signal.  

In this study, we used MFCCs as input to the segmentation 
algorithm. It is however well-known that MFCCs do not capture 
all relevant information in the speech signal. In future research, we 

plan to investigate whether acoustic features that are based on rate 
maps [13] (which are based on knowledge of the auditory system), 
will improve performance.  

Finally, the analyses showed that the end of a ‘silence’ seg-
ment tends to be hypothesised poorly. This effect is most likely due 
to the endpointing algorithm which is used to remove the silence at 
the beginning and end of each utterance. Obviously, future re-
search is necessary to test these hypotheses. 
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