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a b s t r a c t

The pancreas is composed of two main compartments consisting of endocrine and exocrine tissues. The
majority of the organ is exocrine and responsible for the synthesis of digestive enzymes and for their
transport via an intricate ductal system into the duodenum. The endocrine tissue represents less than
2% of the organ and is organized into functional units called islets of Langerhans, comprising alpha-,
beta-, delta-, epsilon- and PP-cells, producing the hormones glucagon, insulin, somatostatin, ghrelin and
egeneration
ouse
iabetes

pancreatic polypeptide (PP), respectively. Insulin-producing beta-cells play a central role in the control
of the glucose homeostasis. Accordingly, absolute or relative deficiency in beta-cells may ultimately
lead to type 1 and/or type 2 diabetes, respectively. One major goal of diabetes research is therefore
to understand the molecular mechanisms controlling the development of beta-cells during pancreas
morphogenesis, but also those underlying the regeneration of adult injured pancreas, and assess their
significance for future cell-based therapy. In this review, we will therefore present new insights into

beta-cell development with focus on beta-cell regeneration.

© 2010 Elsevier Ltd. All rights reserved.
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. Introduction isolated from the pancreases of organ donors alleviates insulin-
dependence in type 1 diabetes patients, providing strong support
Although insulin supplementation allows a reasonable control
f blood sugar levels, diabetic patients still suffer from long-term
ide effects of blood glucose variations, too often resulting in severe
lterations of various organ functions. Transplantation of islets
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to stem cell-based therapy. It is obvious that, due to the islet short-
age to suffice the need for transplantation, alternative cell sources
have to be explored. At first glance, human embryonic stem (h-
ES) cells and induced pluripotent stem cells (iPS) potentially may
represent an unlimited source for generating beta-cells in vitro.
However, although several straightforward protocols were estab-
lished, including procedures using chemical compounds, both the

efficiency of in vitro programming and the function of h-ES-derived
beta-cells remain unsatisfactory. Besides, safety concerns due to
inherent risks of teratoma formation originating from residual stem
cells remain a major hurdle [1–3].

dx.doi.org/10.1016/j.semcdb.2010.07.007
http://www.sciencedirect.com/science/journal/10849521
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It is now accepted that in various experimental animal models of
njury to the (endocrine) pancreas, such as partial pancreatectomy
PPX), partial duct ligation (PDL), and chemically- or genetically-
nduced beta-cell destruction, [4–10], islet cells actively regenerate.
t is therefore of fundamental interest to consider the molecular

echanisms that control such regenerative programs to putatively
pen new avenues for an improved treatment of diabetes. The
xpansion of the beta-cell mass during early postnatal life, preg-
ancy, as well as in the pancreas of animal models for which
eta-cells were genetically ablated, has been mainly attributed
o beta-cell proliferation [7,11,12]. Despite these findings, it was
emonstrated that beta-cells may also arise from alternative cell
ubtypes, such as duct-lining or acinar cells [13], as observed dur-
ng embryonic development. Indeed, several studies in various
nimal and transgenic models support a process of duct-lining cell-
erived beta-cell neogenesis [4,14–22]. However, as we will discuss
hereafter, while replication of preexisting beta-cells has been
stablished as a major component of the expansion of the beta-cell
ass in normal and injured pancreas, the existence of duct-derived

rogenitor cells is still controversially discussed [23–25]. Finally,
ntra-islet precursor cells promoting beta-cell neogenesis have
een also suggested [26–28].

. Beta-cell development

The first obvious morphological signs of pancreas development
ppear at approximately 8.5 days post-coitum, as two protusions
t the dorsal and ventral portion of the foregut/midgut junction
29–32]. The specification of this endodermal region towards a
ancreatic fate is achieved through the concerted interplay of dif-
erent signaling pathways emanating from the adjacent mesoderm
32–34]. During subsequent pancreas histogenesis, both the dorsal
nd the ventral buds develop under the control of distinct signal-
ng machineries, their growth and branching being regulated by
he surrounding mesenchyme [32,35–37]. In the mouse, the ven-
ral pancreatic bud rotates and eventually fuses with its dorsal
ounterpart between E17 and E18 of embryonic development [32].

During pancreas morphogenesis, the first hormone-expressing
ells that are detected contain glucagon and appear at E9.5, some
f which initiating insulin expression a day later [29,38]. How-
ver, these few early scattered cells that produce both insulin
nd glucagon will not contribute to the mature endocrine pan-
reas [39]. Endocrine and exocrine cell proliferation peaks at the
o-called secondary transition starting at about E13.5 [29]. Mul-
ipotent progenitor cells located at the distal tip of the growing
pithelium are characterized by the expression of Ptf1a, c-myc,
nd carboxypeptidase a1 (cpa1) [40]. Lineage tracing experiments
emonstrated that cpa1-positive cells delaminate from the epithe-

ium to generate all pancreatic cell types, including Ngn3-marked
ells that will adopt an endocrine cell fate. Accordingly, in the
bsence of Ngn3, endocrine cells fail to develop [41]. It is worth
oticing that Ngn3-labeled endocrine progenitors are subjected
o a window of competence for the generation of the different
ndocrine hormone-producing cell subtypes [42]. At about E14.5,
pa1-labeled progenitors are restricted towards the acinar lin-
age [40]. Concurrently, a significant number of maturing insulin-
r glucagon-labeled endocrine and amylase-labeled acinar cells
ccumulate. At E15.5, the first somatostatin-expressing delta-cells
ppear. Lastly, shortly before birth, PP-labeled cells emerge and
ggregation of endocrine cells to form mature islets of Langerhans

s initiated [29].

The use of gain- and loss-of-function mutant mice as a tool
o study gene function has allowed to gain further insights into
he crucial role exerted by transcription factors in the processes
nderlying endocrine cell specification (excellently reviewed in
opmental Biology 21 (2010) 838–844 839

[30–32,36,43]). However, gaining further insights into the molecu-
lar mechanisms controlling normal beta-cell development, as well
as their replenishment in animal models of beta-cell injury, is of
fundamental interest for the generation of insulin-producing cells
from progenitor or embryonic stem cells.

3. Expansion of the beta-cell mass through self-replication

Glucose-mediated insulin secretion is required for the proper
control of glucose homeostasis. Interestingly, during pregnancy
[11] or in obese individuals [44], a beta-cell mass expansion was
outlined to compensate for the increased needs. Although sev-
eral molecular mechanisms promoting adaptation of the functional
beta-cell mass are under discussion, self-duplication of preexist-
ing beta-cells unquestionably represent an important process to
increase islet size. Accordingly, Cre recombinase-mediated lineage
tracing analyses provided compelling evidences for beta-cell repli-
cation as the main source of beta-cell neogenesis under normal
physiological conditions, but also following 70% PPX [45]. Another
in vivo pulse-chase study, supplemented by a clonal analysis of
dividing beta-cells, supported a model where insulin-expressing
cells equally participate to the replication-mediated expansion of
the beta-cell mass [12]. In addition, using a novel DNA analog-
based lineage tracing approach, it was found that only beta-cells
contribute to the beta-cell regeneration occurring under normal
physiological conditions, following 50% PPX or treatment with the
GLP-1 agonist Exendin-4, and during pregnancy, underscoring the
importance of replication to sustain the beta-cell turn-over [46].
These findings were confirmed by studies in transgenic mice with
beta-cell depletion induced by tetracycline-controlled diphtheria
toxin expression or by c-myc activated overexpression leading to
beta-cell apoptosis [7,47].

In rodents, beta-cell replication appears to follow an age-
dependent process for which the beta-cell mass expansion
observed next to pancreas injury seems limited to young animals
[48,49]. Accordingly, the proliferation rate of insulin-producing
cells was found extremely reduced in 1-year old mice [49], with
a Ki67 proliferation index significantly decreased in islets of 94-
week old animals as compared to their 20-week old counterparts
[50]. Furthermore, a clear decline in islet proliferation capability
upon 90% PPX was also associated with age in rats [51].

Beta-cell replication obviously requires the activity of cell
cycle regulators (for review see [52–54]). Accordingly, cyclin
D2-deficient mice exhibit smaller islets, a dramatically reduced
beta-cell mass, and compromised beta-cell proliferation capabil-
ities [55,56]. While the lack of Cdk4 activity results in diabetes,
the expression of a constitutively active form of Cdk4 is accompa-
nied by beta-cell hyperplasia [57–59]. Moreover, virus-mediated
overexpression of Cdk4 in human islets also induces beta-cell pro-
liferation [52,58,60]. Similarly, the adenovirus-mediated ectopic
expression of E2F1, together with protein kinase B (Akt), in pri-
mary beta-cells, results in an increase in the absolute cell number
provoked by an induction of proliferation and a concomitant inhi-
bition of cell death [61]. On the other hand, the in vivo conditional
overexpression of E2F1 in beta-cells stimulates their prolifera-
tion, but not sufficiently enough to increase the beta-cell mass.
However, increased insulin contents and glucose-mediated insulin
release were noticed and associated to protection against STZ
(streptozotocin)-induced diabetes [61].

The diminished proliferation ability in aging mice was recently

correlated with an increased expression of the cell cycle inhibitor
p16INK4a in older animals [62–64]. Accordingly, the loss of p16INK4a

activity in mutant mice results in improved regeneration capa-
bilities in islets of older animals following chemical ablation of
beta-cells using streptozotocin (STZ), while the overexpression of
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16INK4a is accompanied by diminished islet proliferation [62].
oreover, the propensity of beta-cells to multiply in younger ani-
als strongly correlates with the expression levels of Bmi1 and

zh2, two polycomb proteins that control the Ink4a/Arf locus
hrough modulation of histone modifications [65,66]. Hence, Bmi-
-deficient young mice display increased expression of p16INK4a,
nd thereby lose their capacity to expand their beta-cell mass
n response to exendin-4 [63]. Similarly, in the absence of Ezh2,
nsulin-producing beta-cells exhibit reduced proliferation rates
nd mutant mice suffer from mild diabetes [66]. Interestingly, MLL,
member of trithorax TrxG protein family, was found associated to

he activation of the Ink4a/Arf locus [65]. Menin, a factor encoded by
he men1 locus, recruits MLL to the p27kip1 and p18Ink4c promot-
rs [67] and thereby modulates pancreatic islet growth by inducing
istone methylation and activating the transcription of cell cycle

nhibitors [68]. These findings underscore the role of epigenetic
ontrol of the beta-cell mass expansion during life span. Finally, it
s worth noticing that other signaling pathways and factors, such
s STAT5, growth hormones, prolactin and FoxM1 also play a role
n beta-cell proliferation during pregnancy [11,30,65].

. Do facultative stem cells exist in the pancreas?

Recent studies indicate that adult pancreatic cells are more
plastic” than hitherto assumed, and provide evidence for islet neo-
enesis in several animal models. One attractive hypothesis favors
njury-induced activation of facultative stem/progenitor cells to
xpand the beta-cell mass [4,14,69,70]. Differentiation of facul-
ative stem/progenitor cells might involve recapitulation of the
rogram that controls the embryogenesis of the endocrine pan-
reas, including re-expression of the proendocrine factor Ngn3. As
common denominator to these reports, the ductal compartment

eemingly represents the site where stem/progenitor cells at least
ransiently reside [4,16–22]. Robust injury using partial pancreatic
uct ligation created the appropriate microenvironment to unam-
iguously demonstrate the existence of multipotent endocrine
rogenitors in the adult mouse pancreas [19]. In this model, at least
art of the embryonic endocrine program is reinitiated leading to
eactivation of Ngn3 in a subset of Pdx1+ cells lining the duct. Ngn3-
ositive cells isolated from adult duct-ligated pancreata gave rise
o the four main endocrine cell subtypes when implanted in pan-
reata of embryonic mice that were null mutant for Ngn3 and thus
ncapable of producing endogenous endocrine cells. Remarkably,
he Ngn3−/− embryonic pancreata explants engrafted with adult
gn3+ cells were glucose responsive and the newly formed beta-
ells intensely proliferated [19]. Lineage tracing experiments using
he human carbon anhydrase II (CAII) promoter to drive the expres-
ion of cre recombinase and follow the progeny of pancreatic duct
ells following birth or partial duct ligation showed that CAII cells
an give rise to both endocrine and exocrine cells [20].

In yet another model, conditional expression of Pax4 allowed
he transcription factor to be ectopically present in alpha-cells
nd initiate their conversion into functional beta-cells [21]. The
nsuing glucagon shortage induced compensatory neogenesis
f glucagon-producing cells. Along the same line of evidence,
eficiency/alterations in glucagon signaling in glucagon receptor
nockout or prohormone convertase-deficient mice were previ-
usly found to also trigger alpha-cell hyperplasia [71,72]. Upon
ax4 misexpression, alpha-cells consequently adopted a beta-cell
henotype leading to oversized islets mainly comprised of insulin-

roducing cells [21]. Importantly, in transgenic mice misexpressing
ax4 in alpha-cells, a progressive normalization of the glycemia
as observed in mice that underwent chemically-induced diabetes.

he regenerated alpha-cells noted in Pax4 transgenic mice were
ound to originate from the reactivation of Ngn3, but not Pdx1, in
opmental Biology 21 (2010) 838–844

the ductal lining. Moreover, knockdown experiments using Ngn3-
specific interfering RNA demonstrated the requirement of Ngn3
re-expression for endocrine cell neogenesis in Pax4 transgenic mice
[21].

Recently, mice expressing a constitutively active form of Cdk4
(Cdk4R24C) displaying beta-cell hyperplasia (see also above), were
found to exhibit increased proliferation rates of beta-cells, but also
of ductal cells, following 60% pancreatectomy [22]. Duct cells in
injured pancreas of both Cdk4wt and Cdk4R24C mice contained
Pdx1+ cells and were able to express insulin. In this study, however,
no Ngn3+ cells were observed prior to or following pancreatec-
tomy [22]. In contrast, wild type mice and FoxM1-deficient animals
exhibit Ngn3 re-expression in the duct epithelium after 60% pan-
createctomy [73]. This discrepancy may be due to the technical
difficulties encountered using immunohistochemical detection of
Ngn3 expression in the adult tissue. In the adult injured pan-
creas, the duct epithelium often contains insulin-, glucagon- or
Glut-2-expressing cells, suggesting islet neogenesis [15,74–76].
Finally, adult transgenic mice expressing the human diphtheria
toxin receptor under the control of the insulin promoter to induce
global beta-cell ablation by diphtheria toxin treatment were also
found to undergo beta-cell regeneration through spontaneous con-
version of alpha-cells [8].

Together these findings provide evidence that, besides beta-cell
replication, additional mechanisms of islet regeneration oper-
ate in the adult pancreas, some involving facultative stem cells.
The mechanism underlying such beta-cell neogenesis appears to
depend on the extent and/or the method of beta-cell injury. The
ductal origin of endocrine cell formation in adult injured pancreas
still remains controversial. In contrast to the clear contribution
of carbonic anhydrase II-positive cells to endocrine and exocrine
cell neogenesis following birth and PDL [20], such ductal ori-
gin was not noticed for Hnf1b-marked cells following PDL- or
alloxan/EGF/gastrin-induced injuries [23,25]. Furthermore, no con-
tribution of acinar and of duct cells to endocrine cell genesis in the
early postnatal period was observed by conditional lineage trac-
ing of Muc1+ cells [24]. It remains to be determined whether, in
the injured pancreas, Muc1-labeled cells are involved in beta-cell
regeneration.

It needs to be mentioned that cre recombinase-mediated lin-
eage tracing strongly depends on the efficiency of recombination
and that never all duct cells are labeled, increasing the chance to
overlook rare stem cells residing in the duct epithelium or acinar
cell compartment (see also [77]). Ngn3+ cells were clearly detected
in the duct of mice subjected to PDL, or with ectopic Pax4 expression
in alpha-cells [19,21].

Besides the ductal lining, intra-islet precursor cells as well as
acinar cells were suggested to contribute to beta-cell neogenesis
[18,26,28,70,78,79]. In mice treated with STZ and kept normo-
glycemic using exogenous insulin (STZ/IN), as well as in aging
animals, two seemingly distinct beta-cell precursors were detected
in islets [70]. These cells were characterized by the expression of
Glut-2 and Pdx1/somatostatin, respectively. In RIPcreER and Z/AP
reporter mice [45] that label insulin+ cells by placental alkaline
phosphatase (PLAP) and allow identification of putative precur-
sor cells, the islets of aging and STZ/IN-treated mice contained
beta-cell precursors expressing either Pdx1 or Mafb [28]. These
findings contrast with the beta-cell replication described earlier
[45], and were attributed to differences in immunhistochemical
techniques [28]. However, the source of these putative precursor
cells remains unclear and, as the authors pointed out, they may

also have a ductal origin. Interestingly, Glut-2-positive cells were
also detected in the PANIC-ATTAC mouse model characterized by
beta-cell injury provoked by the activation of caspase 8-mediated
apoptosis, as well as in the pancreatic duct of PDL-treated rats
[15,75].
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by immunhistochemistry and were found to display high levels of
ALDH1 enzymatic activity [100] enabling their isolation by FACS.
Isolated CA/TD cells are able to differentiate into endocrine and
exocrine cell types in vitro. Following caerulein administration to

Fig. 1. Beta-cell development and regeneration. Schematics representing various
roadmaps leading to the generation of functional insulin-producing cells. Dur-
ing embryonic development, beta-cells are generated from Ngn3+ progenitors.
Moreover, beta-cells have the capacity to undergo self-replication to expand the
beta-cell mass. This occurs during development, pregnancy, and following injury.
Findings from several independent studies, using various pancreas injury mod-
P. Collombat et al. / Seminars in Cell &

It is worth noticing that the Mafb+ cells, probably representing
lpha-cells, detected in the islets of STZ/IN-treated or aging mice
28], are reminiscent of glucagon+ cells that spontaneously con-
ert to beta-cells, following diphtheria toxin-mediated beta-cell
epletion [8]. In both studies mice were treated with insulin to
ounter hyperglycemia and allow survival [8,28]. It is conceivable
hat the Mafb- or glucagon-marked cells contributing to beta-cell
eplenishment in these mice may derive from the duct epithelium,
ot excluding that intra-islet precursor cells may exist as well.
uct-derived endocrine cell neogenesis requires the reactivation
f Ngn3 in the duct epithelium following pancreatic duct ligation
r forced expression of Pax4 in alpha-cells [19,21]. Hence, duct-
erived progenitors that differentiate into hormone producing cells
ay migrate in order to expand that beta-cell pool or, alternatively,

orm new islets adjacent to the duct epithelium.

. Reprogramming acinar cells into beta-cells

As the most abundant cell type in pancreas, acinar cells are con-
idered as a rich supply for generating beta-cells [80]. Culturing
he acinar cancer cell line AR42J in the presence of betacellulin,
ctivin or glucagon-like peptide, was found to induce insulin or
lucagon production [81–83]. Dexamethasone treatment of duct-
igated rat pancreas provoked acino-ductal transdifferentiation and
evealed an intermediate cell type coexpressing both acinar and
uct markers [84]. The currently most successful approach con-
ists in supplementing rat acinar cell culture with the cytokines
pidermal growth factor (EGF) and leukemia inhibitory factor (LIF)
o generate functional beta-cells that normalized hyperglycemia in
mmune-incompetent diabetic mice [85]. This transdifferentiation
rocess was found to pass through an intermediary cell type that
xpresses both duct- and beta-cell markers [85], such results being
onfirmed by non-genetic lineage tracing [86]. Acinar- to beta-
ell reprogramming uses Notch signaling as gatekeeper [86] and
equires both Ngn3 expression and signaling through the JAK/STAT
athway [87]. The notion of acinar- to beta-cell differentiation was
urther supported by genetic lineage tracing in suspension cul-
ures of adult pancreatic exocrine cells isolated from transgenic

ice expressing the ROSA26-eCFP, infected with recombinant ade-
oviruses expressing Cre under the control of the promoter of either
mylase-2 or elastase-1 in cell cultures supplemented with EGF
nd nicotinamide [88]. Furthermore, in vitro culture of pancre-
tic explants isolated from transgenic mice expressing TGF-alpha
nder the control of the metallothionein promoter, revealed that
cinar-to-duct transdifferentiation occurs through a dedifferenti-
ted nestin-positive intermediate, in an EGFR-dependent manner
89]. It has been speculated that EGF activation in pancreatic
xocrine cell cultures could be triggered by cell dissociation and
hat exogenous EGF might enhance cell survival [88].

In addition, transgenic mice expressing IFN-gamma under the
ontrol of the insulin promoter countered STZ-mediated beta-cell
epletion through the budding of newly formed islets from ducts,
ith acinar cells as putative precursors [90]. In contrast, during

egeneration of the mouse exocrine pancreas after caerulein-
nduced pancreatitis, acinar cell dedifferentiation was observed

ithout further redifferentiation into duct cells [91]. Replenish-
ent of the exocrine tissue in caerulein-mediated pancreatitis

epended on the Notch signaling pathway and was mediated
y repression of beta-catenin signaling pathway [92]. In trans-
enic mice expressing the tamoxifen-inducible Cre recombinase

CreERT2) under the control of the acinar-specific promoter elas-
ase I, and crossed with Rosa26LacZ mice, lineage tracing was
erformed in three models with pancreas injury, including PPX, PDL
nd caerulein-induced pancreatitis, but no evidence for the contri-
ution of acinar cells to islet neogenesis was found [93]. Following
opmental Biology 21 (2010) 838–844 841

PPX, self-replication of preexisting acinar cells was the predom-
inant mechanism involved in regeneration of the newly formed
acinar tissue [94]. This indicates that the capacity of adult acinar
cells to transdifferentiate into endocrine cells in vivo is still a mat-
ter of debate und that more challenging studies are needed. On
the other hand, the forced co-expression of Pdx1, Ngn3 and Mafa
in acinar cells promoted the formation of insulin-producing beta-
cells in vivo by direct conversion rather than dedifferentiation [95].
The reprogramming of acinar cells by the forced expression of tran-
scription factors suggests that the transdifferentiation of acinar to
endocrine cells is under the control of a repressive mechanism, like
Notch signaling, in the normal pancreas. Accordingly, inhibition
of Notch1 signaling results in a more efficient acinar- to beta-cell
conversion [86].

Finally, the centroacinar and terminal duct cells of the pan-
creas are not well defined and their molecular characteristics
poorly established [96,97]. Only few studies have suggested that
these cells have the capacity to actively proliferate in different
injury models, including PPX, or treatment with caerulein or STZ
[18,98,99]. However, it is not clear whether the centroacinar and
terminal duct (CA/TD) cells consist of distinct cell types or are
functionally equivalent. Recently, these cells were characterized
els, are consistent with the idea that stem/progenitor cells do exist in the adult
pancreas. Several sources of facultative stem/progenitor cells were suggested and
are depicted: duct epithelium, acinar cells, centroacinar (CA)/terminal duct (TD),
and intra-islet progenitors. Glucagon+, Pdx1+, and Ngn3+ were often found in the
duct lining, suggesting that this may be a site where stem/progenitor cells at least
transiently reside.
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nduce pancreatitis, ALDH1+ CA/TD cells were found expanded, as
ompared to controls, suggesting that CA/TD cells possess progen-
tor cell characteristics [100]. Along the same line, lineage tracing
f Bmi1+ cells identified a self-renewing pancreatic acinar cell sub-
opulation capable of maintaining pancreatic organ homeostasis
101]. Further studies are needed to examine whether CA/TD cells
re able to contribute to the endocrine cell compartment, as previ-
usly suggested [18,99] (see Fig. 1).

. Conclusions

Beta-cell proliferation clearly appears as the fundamental mech-
nism involved for beta-cell turn-over. The induction of beta-cells
n vitro to generate sufficient numbers of cells for transplantation

ould be an interesting alternative if at least the expanded beta-
ell mass would remain glucose responsive. A similar approach
n vivo should carefully take the risk of tumor formation, such as
nsulinomas, into account.

Islet transplantation demonstrated that stem cell-based ther-
py could represent a realistic option for the treatment of diabetes.
ence, the current islet shortage may be compensated in the future
y the generation of insulin-producing beta-cells from pancre-
tic non-beta-cells, beta-cell progenitors or embryonic stem cells.
esides embryonic stem cells, it is now well accepted that the

njured adult pancreas has the capacity to regenerate new beta-
ells: several independent studies in various animal models of
eta-cell injury provided strong evidences for the existence of fac-
ltative stem cells that are able to give rise to functional beta-cells.
he source of such cells still is subject of controversial discussion.
molecular analysis of the current models is required to iden-

ify the factors implicated in the activation of such cells. Gaining
urther insights into the molecular mechanisms underlying regen-
ration processes may disclose the different cell sources that are
mplicated in endocrine cell neogenesis. It should be outlined that,
epending on the type of pancreatic injury, different progenitor
ells might be activated. In this context, it is of high interest to define
ow the application of insulin to streptozotocin-treated mice may
ctivate the regeneration of significantly more beta-cells, as com-
ared to streptozotocin-treated mice that remain hyperglycemic
28,70]. One possible explanation is that high glucose levels in
yperglycemic animals may perturb or inhibit islet neogenesis and
eta-cell regeneration.

Nevertheless, the hunting for tools that activate stem cells
n vivo, or induce the transdifferentiation of non-beta hormone-
roducing cells, such as alpha-cells, into functional beta-cells, is
ow open. Future efforts should focus on the identification of mark-
rs for facultative stem cells in the injured pancreas and examine
hether such molecules also do exist in the human pancreas.
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