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Lipid droplets: A dynamic organelle moves into focus
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Lipid droplets (LDs) were perceived as static storage deposits, which passively participate in the
energy homeostasis of both cells and entire organisms. However, this view has changed recently
after the realization of a complex and highly dynamic LD proteome. The proteome contains key
components of the fat mobilization system and proteins that suggest LD interactions with a variety

of cell organelles, including the endoplasmic reticulum, mitochondria and peroxisomes. The study
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of LD cell biology, including cross-talk with other organelles, the trafficking of LDs in the cell and

regulatory events involving the LD coat proteins is now on the verge of leaving its infancy and
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unfolds that LDs are highly dynamic cellular organelles.
© 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Lipid droplets

Lipid droplets (LDs) are the lipid storage organelles of all organ-
isms (reviewed in: [1]). They are important for the survival of the
organism when food supplies are limited or energy consumption
suddenly spikes. Stored lipids also serve to fuel developmental pro-
cesses both in egg-laying animals and in plants. In addition, LDs
play a protective role by scavenging free fatty acids, which other-
wise are driven into non-oxidative pathways to form reactive lipids
that promote cellular dysfunction (lipotoxicity) and eventually cell
death (lipoapoptosis) [2].

Thus, while lipid storage is an elementary feature of life, it must
be tightly controlled. Excessive storage of lipids, for example, can
be detrimental to the organism, a phenomenon that is most obvi-
ous in emerging metabolic diseases such as atherosclerosis, diabe-
tes and obesity. At the other end of the spectrum, the inability to
store lipids in diseases such as lipodystrophy also results in multi-
faceted systemic problems [3]. The apparent need to tightly regu-
late energy balance in organisms obviously demands a finely tuned
regulation of lipid storage and mobilization which ultimately
translates into processes such as LD biogenesis and LD filling with
fat on the one hand, and fat mobilization from LDs and their break-
down on the other.

Although all cell types are probably able to store fat in LDs, at
least temporarily, these organelles are usually highly enriched in
specialized cell types such as the mammalian adipocyte or corre-
sponding fat body cells in insects. Despite variations in size (from
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the sub-pm to 200 um in diameter) and appearance in virtually
every organism and cell type, the structure and organization of
LDs is highly conserved. They consist of a hydrophobic core of
stored fat, mostly neutral lipids such as triacylglycerols but also
sterols and sterol esters, which is surrounded by a protein-bearing
phospholipid hemimembrane (reviewed in: [4]). Among all known
cytoplasmic organelles, LDs are exceptional in that they possess
only a monolayer membrane.

How are these organelles formed? The most widely accepted
model of LD biogenesis involves the incorporation of neutral lipids
in the interspace between the bilayer leaflets of the ER membrane,
followed by a budding-out of the cytoplasm-oriented hemimem-
brane to form the fat-bearing LD (Fig. 1D). In this model, the cyto-
plasmic leaflet of the ER membrane provides the phospholipid
monolayer surface of the nascent LD. The origin of the protein coat
of LDs is not yet fully understood. It seems likely, however, that the
coating process involves two different pathways. Some LD coat
proteins were recently shown to be inserted into the ER membrane
before localization to the LD occurs (Fig. 1D) [5,6], whereas other
proteins, such as the PAT-domain protein perilipin/PLIN1, are
never found in association with the ER [7]. The details of how these
proteins attach to or insert into the LD membrane have not yet
been explored in any detail. Once formed and released from ER,
cytoplasmic LDs are likely to increase their volume either by local-
ized lipid synthesis [8] or by fusion of LDs [9] (Fig. 1@). Upon cel-
lular demand, i.e. when energy is needed by the cell, stored lipids
are remobilized by the tightly controlled activity of specific lipases.
In the mammalian adipocyte in particular, both the executing
enzymes and the regulatory pathways have been intensively
studied and have already been the subject of reviews (see [10]).

0014-5793/$36.00 © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.febslet.2010.03.022


http://dx.doi.org/10.1016/j.febslet.2010.03.022
mailto:mbeller@gwdg.de
http://www.FEBSLetters.org

M. Beller et al./ FEBS Letters 584 (2010) 2176-2182 2177

Membrane contact sites /
Hemifusion

outside

.
® orl @

TAG/DAG/

—— MAG
—_— L_Z>
Fusion/ N
Localized AEEe

TAG Synthesis @

Fig. 1. LD cell biology and LD-organelle interactions. LD biogenesis involves either a budding-like process at the ER @ or deposition within cup-like structures of the ER @.
Alternate LD biogenesis models include vesicular budding and bicelle migration (for details see [4]). Membrane bridges connecting the ER and LDs @ could provide a conduit
for the non-vesicular exchange of proteins and lipids. Cytoplasmic LDs grow by homotypic fusion or localized TAG synthesis, and lipid stores are eventually remobilized by
specific lipases by breaking them down into triacylglycerols (TAG), diacylglycerols (DAG) or monoacylglycerols (MAG) as well as free fatty acids @. LD-associated proteins are
translated at the ER (@, blue ribosome - open triangle), or perhaps at the LD surface (2, green ribosome - black square). Mitochondria associate with specialized regions of
the ER (Mitochondria-attached membranes MAMs) as well as with LDs ©. Contact sites between the LD hemimembrane and phospholipid bilayers of other organelles might
involve membrane hemifusion (inset). Proteins associate with the phospholipid hemimembrane, which is shielding the hydrophobic core of LDs (2nd inset). LDs also interact
with Peroxisomes ©®. Peroxisome protrusions could facilitate fatty acid channeling to the peroxisomes in order to enhance energy production efficiency. Intracellular
trafficking machineries are tightly connected to LDs ©. The ERGIC is positioned close to LDs, possibly facilitating lipid or protein exchange, perhaps via small, nascent LDs.
COPI and COPII vesicles (black circles) transport proteins and lipids from the ER to the cis-Golgi network (CGN) and vice versa. COP vesicles appear to be involved in lipid
storage regulation. COPI vesicle machinery components might act directly at the LD surface ®. LDs also interact with early and late endosomes ® as well as with the caveolae
of adipocytes @. Abbreviations: lipid droplets (LD, yellow), ER/Golgi intermediate compartment (ERGIC), cis-Golgi network (CGN), trans-Golgi network (TGN), Coat
protein complexes I and II (COPI and COPII), triacylglycerols (TAG), diacylglycerols (DAG), monoacylglycerols (MAG). Endosomes are shown as red circles, exosomes as green
circles.

Additionally, an important contribution of autophagy to regulated
LD remobilization was recently demonstrated [11]. The fatty acids
liberated by LD breakdown are subsequently utilized by the cell as
an energy source and/or for metabolite production, or they are
shuttled outside the cell to be used in other cells or target tissues.

While the LD life cycle as a whole seems to be clear, many steps
in the various processes are still unknown or controversial. For
example, it has also been suggested that LDs are formed in so-
called ER cups without undergoing a budding-out process [12]
(Fig. 1®). Also vesicular budding and bicelle formation at the ER
membrane were discussed as models for LD biogenesis [4]. In addi-
tion, mechanistic details of the cellular control of LD size and num-

bers are largely unknown, as are the mechanism(s) and signaling
pathways that regulate the LD protein coating. Furthermore, only
vaguely defined sequence characteristics of coat proteins have
been identified so far. These include hydrophobic or basic amino
acid stretches that can reside in various positions of a given LD coat
protein (e.g. [5,13-16]), raising the question of how LD-specific tar-
geting can be achieved in the absence of a defined LD localization
sequence. The answer to this question seems to be rather complex,
since several of the proteins that have been identified are found in
association with only a subset of the cellular LDs [17,18]. It is
therefore possible that the LDs within a cell differ distinctly with
respect to function, maturation and/or metabolic status, and that



2178 M. Beller et al./FEBS Letters 584 (2010) 2176-2182

these characteristics are reflected in LD-specific protein coat com-
positions. Identification and functional characterization of distinct
marker proteins for subsets of LDs are now necessary in order to
test whether there are indeed functionally distinct subclasses of
LDs. In view of the rapidly increasing evidence for a complex func-
tional repertoire of LDs, different LD subclasses would not come as
a surprise, and they would continue to change the scope of LD biol-
ogy much as perilipin/PLIN1 did when it was shown to act as a
gatekeeper of mammalian lipolysis regulation [19,20].

2. LD coat proteins open a window on subcellular interactions
of LDs

Almost two decades ago, Londos and co-workers stimulated
interest in the regulatory potential associated with the LD protein
coat by identifying perilipin/PLIN1 as a major phosphoprotein of
mammalian adipocytes [21]. Perilipin/PLIN1 serves as a gatekeeper
and regulatory scaffold for basal and stimulated lipolysis regulation
(reviewed in: [22]). Most studies on LD-associated proteins subse-
quently focused on perilipin/PLIN1 function to reveal its key role
in the regulation of lipolysis in adipocytes. These studies, in turn,
led to a growing interest in LD-associated proteins and the discovery
of a new and evolutionarily conserved perilipin-like protein family
[22]. These proteins have a common but functionally not yet fully
characterized N-terminal domain of about 100 amino acids, the
PAT-domain, which is named after the three main mammalian fam-
ily representatives perilipin/PLIN1, ADRP/Adipophilin/PLIN2 and
Tail interacting protein of 47 kDa (Tip47/PLIN3). PAT-domain pro-
teins are capable of associating with LDs and participate in the reg-
ulation of cellular lipid metabolism in organisms as evolutionarily
distant as insects [23,24] and mammals (reviewed in: [22]).

In an attempt to identify additional components of the LD pro-
tein coat that participate in the regulation of fat-dependent cellular
and organismic energy homeostasis, i.e. the control of fat storage
and fat mobilization, several laboratories have characterized LD-
associated proteins from various organisms. LD fractions were
purified by sucrose-gradient ultracentrifugation and analyzed by
mass spectrometry (e.g. [17,25-29]). Among the several hundred
proteins identified by these studies, a relatively small core set of
LD-associated proteins was consistently found. It includes the
abovementioned PAT-domain proteins, certain lipases and other
metabolic enzymes. In addition, a variety of proteins specific to
the cell type and the approach taken were observed, including
reproducible sets of proteins which appeared at a first glance to
be contaminants. These included proteins of ribosomal and
mitochondrial origin, ER-localized components and trafficking-
associated proteins [17,25-29]. Finally, some totally unexpected
proteins were found as well, such as histones [27], suggesting that
the majority of the identified proteins may derive from contamina-
tions of LDs. These contaminations might have been the result of
the extreme hydrophobic properties of LDs which allow them to
associate with certain types of proteins and/or organelle remnants
during the purification procedure. However, the demonstration
that the most unexpected association, that between LDs and his-
tones, is of functional relevance [27] requires a revisiting of the
other previously suspected “contaminants” as well. In fact, there
is now growing evidence suggesting that what were once pre-
sumed to be "contaminants” of the LD coat proteomes are in fact
early indicators of functional interactions between LDs and various
other organelles of the cell.

3. Lipid droplets and Endoplasmic Reticulum: the elusive liaison

The close apposition of LDs and the ER was first observed
decades ago by both electron and light microscopy (e.g. [30]).

LD proteomes also showed a significant enrichment of proteins
predicted or already known to localize at the ER [29]. A tight
connection between ER and LDs, as suggested by both the visual
and biochemical studies, is now supported by several functional
studies. Genomic screens designed to isolate possible key regula-
tors of LD morphogenesis identified, for example, the Fldp1/Sei-
pin protein in yeast [31,32]. Loss-of-function mutations of
Fldp1/Seipin cause irregularly shaped, giant LDs, which are often
clustered alongside proliferated ER [31,32]. In humans, mutant
Fldp1/Seipin protein was found in patients suffering from the
most severe form of hereditary lipodystrophy, Berardinelli-Seip
Congenital Lipodystrophy type 2 (BSCL2) [33]. The virtual ab-
sence of adipose tissue seen in such patients has been associated
with a proposed role of Seipin in the differentiation of mesen-
chymal cells into preadipocytes [34]. In fibroblasts of BSCL2 pa-
tients, numerous small, irregularly shaped LDs are apparent [32].
In yeast, Seipin is localized in the ER. It forms puncta in positions
where LDs adhere, suggesting a function in LD maintenance,
assembly and/or shape determination. Moreover, Seipin affects
the phospholipid and triglyceride composition of LDs, which in
turn could play an important role in preventing their fusion
[31,35]. In fact, LD fusion is a hallmark of Seipin mutants and
is likely to be the cause of the giant LDs that were observed
[31].

A guiding role of the ER in LD biogenesis and the initial protein
coating of the LD surface can also be deduced from recent studies
on proteins that were identified by LD proteomics [6,13]. These
studies not only uncovered hydrophobic and basic amino acid
stretches from Caveolin, UBXD8 and AAM-B, which were shown
to be necessary and sufficient for LD localization, but also tested
the proposed LD-protein localization mechanism via a transient
insertion of UBXD8 and AAM-B in the ER membrane. Most impor-
tantly, the authors characterized not only this localization path of
the proteins but also performed experiments whose results allow
the postulation of a bidirectional trafficking of proteins to and from
the LDs in response to the nutritional status of the cells [6]. Such a
transport might involve an intimate functional connection be-
tween LDs and ER by membrane bridges or at least through a very
close apposition that allows a direct contact among the partners
(Fig. 1®) [6].

The characterization of such contact sites might shed light on
the question of whether and how LDs arise at specific sites of the
ER, as suggested by the localization of Seipin. Such sites of LD bio-
genesis might differ in their phospholipid composition, defining
specific sites, such as “rafts” (reviewed in: [36]), for the assembly
of a LD biogenesis machinery. A spatial restriction of the LD bio-
genesis machinery within the ER is in line with the current model
of how LDs are formed, since the accumulating neutral lipid in the
ER intermembrane space would otherwise eventually spread fur-
ther in the hydrophobic environment instead of nucleating the
proposed LD “lens”. As a result, the incoming lipids would expand
and thereby spread the ER hemimembranes, consistent with a phe-
notype as observed in the Seipin mutants.

Lipidomics should help to uncover LD biogenesis sites. In fact,
previous lipidomics studies demonstrated a complex lipid compo-
sition of LDs [37,38] and suggested specific sites of the ER as the
birthplace of LDs, since the phospholipid composition of LDs was
markedly different to the composition of ER membranes [38]. It re-
mains to be elucidated whether the different lipid compositions re-
flect only the heterogeneity of the ER, i.e. differences between
rough and smooth ER, or depend on sites where LDs are generated.
Recently developed microanalytical tools for lipid analysis [39] will
allow a more comprehensive study of the lipid composition of LDs
from different cell types and organs to close this important gap in
our knowledge and to finally characterize the proposed birth place
of the LDs.
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4. Interactions between LDs and other organelles - the
unfolding story

Interactions between LDs and organelles other than the ER are
less well documented and rely almost completely on microscopy
and proteomics studies rather than functional data. However, an
interaction between LDs and the mitochondria would be function-
ally reasonable, since a flow of freed fatty acids derived from LD
“breakdown” could be directly channeled into energy production
via beta-oxidation. In fact, at least two lines of evidence provide
additional support for a tight connection between mitochondria
and LDs. First, LDs are transported via microtubule tracks towards
the mitochondria in steroidogenic cells, where the fatty acids from
LDs are channeled into the synthesis of steroid hormones [40]. Fur-
thermore, a lipogenic enzyme called diacylglycerol acyl transferase
2 is found in mitochondria-associated membranes (MAMs) of the
ER, which are specialized regions for lipid biosynthesis (Fig. 1®).
DGAT?2 was found to translocate from the MAMs to LDs when LD
biogenesis is stimulated upon oleic acid treatment of cells [8,41].

A link between LD breakdown and energy production was also
described in the yeast Saccharomyces cerevisiae for LDs and peroxi-
somes. As observed with mitochondria, a close apposition between
LDs and peroxisomes was noted [42]. Most interestingly, electron
microscopy revealed peroxisome protrusions, so-called pexopodia,
which extend into the LD core (Fig. 1©®) [42]. A failure in peroxi-
some function had severe consequences for LD morphology, lead-
ing to elongated, curled and tangled electron-dense regions
within the LD core, which were called “gnarls” by the authors
[42]. Up to now it is not clear if similar interactions also exist in
organisms other than yeast. However, it is worth noting that per-
oxisomes are thought to arise at the ER, implying that cell organ-
elles specialized in lipid metabolism have a common cellular
origin. This would allow for the coordinated biogenesis of the
two organelles in response to regulatory inputs that depend on
the energy state of a given cell.

The peculiar finding that ribosomal constituents are both en-
riched in the “hit lists” of functional genomic screens focusing on
lipid storage phenotypes [43,44] and in lipid droplet proteomics
screens [17,27,45] raises the possibility of a direct and functional
association between ribosomes and LDs. The abovementioned find-
ings are supported by electron microscopy and hybridization tech-
niques showing that ribosomes as well as RNA molecules are found
in contact with LDs in mast cells [46] and leukocytes [45]. Also, in
cells infected with Hepatitis C virus, the RNA of the virus was de-
tected at specific ER sites, often juxtaposed to LDs [47]. It is there-
fore reasonable to speculate that at least some of the components
of the LD protein coat are targeted by localized translation

(Fig. 1Q).

5. Docking of LDs to other organelles

How is the exchange of proteins and lipids between LDs and the
interacting organelles achieved? One possible mechanism could
involve so-called “membrane contact sites” (MCS), as initially pro-
posed by Levine and co-workers (reviewed in: [48]). Such sites
have been described for different organelles such as ER and mito-
chondria forming the MAMs described above, which facilitate the
non-vesicular transfer of phosphatidylserine [48]. Interactions be-
tween LDs and bilayer-surrounded partner organelles might in-
volve “hemifusion” (Fig. 1®; inset Fig. 1), a mechanistic process
proposed by Murphy and co-workers [49]. This process would in-
volve a transient but continuous fusion of the phospholipid mono-
layer of LDs and the outer membrane leaflet of a docking vesicle/
organelle without any mixing of the contents of the interaction
partners. However, in this process, proteins and possibly lipid frac-

tions of the LD surface and corresponding components of the outer
leaflet would be able to translocate from one interaction partner to
the other. The transfer of Caveolin1 from caveolae to the unilocular
LD in mammalian adipocytes has been suggested to invoke such a
mechanism, although a vesicle-mediated transfer was also dis-
cussed (Fig. 1) [49]. Factors that mediate contact between LDs
and their partners appear to be similar to or identical with those
known to mediate vesicle docking and fusion (reviewed in: [50]).
This proposal is consistent with the recent finding that the vesicle
trafficking machinery appears to be important for LD homeostasis
(see below).

6. Lipids on the move - LD transport and vesicle trafficking

LDs travel within cells via cytoskeleton tracks such as the
microtubules in diverse cellular and organismic systems such as
fungi, Drosophila embryos and ovaries, fish eggs and cultured
mammalian cells or the lactating mammary gland (reviewed in:
[51]). Thus, LDs might be shuttled to cellular sites where stored lip-
ids are remobilized to be further processed as shown in steroido-
genic cells [40].

Movement of LDs also appears to be essential for LD biogenesis,
since microinjection of anti-Dynein antibodies blocks LD forma-
tion/volume growth [50,51]. Growth of LDs is likely to involve
homotypic fusion between pre-existing LDs, a process mediated
by the SNAP23 protein [9]. The involvement of this protein, to-
gether with various vesicle transport-associated proteins such as
other SNARE proteins and various Rabs found in LD proteomes,
supports the possibility that the molecular machines that mediate
vesicle trafficking, docking and fusion could also be active at the LD
surface [17,26,28,50,52]. The presence of such proteins at the LD
coat furthermore suggests that vesicle-associated proteins might
mediate not only interactions between LDs, but also interactions
between LDs and trafficking vesicles. In fact, a Rab-dependent
interaction of early endosomes and LDs was demonstrated in a
reconstituted in vitro system (Fig. 1®) [52]. While transport vesi-
cles do not seem to fuse with the LDs, an interaction between the
two cellular components could serve as a means to exchange lipids
and/or proteins, as outlined above. Such a lipid transport function
was proposed for a novel class of Dpm1-positive transport vesicles
in S. cerevisiae which mediate lipid transport to LDs [53].

Information about the pathways regulating LD-vesicle interac-
tions is very limited. The small GTP binding protein ARFRP1 was
only recently shown to be a regulator of LD fusion, probably by act-
ing upstream of SNAP23 [54]. Loss of Arfrp1 results in smaller LDs,
a phenomenon probably based on fewer LD fusion events caused
by, or linked to, the translocation of SNAP23 from LDs to the cyto-
sol. In physiological terms, lack of Arfrp1 activity causes an in-
creased basal lipolysis rate. The mechanism of ARFRP1 action is
still unknown, but the authors speculate that ARFRP1 alters the
attachment properties of Rab proteins to LDs [54]. Interestingly,
ARFRP1 seems to function independently of COPI-dependent traf-
ficking which was recently shown to participate in LD homeostasis
[43,44,55].

7. COPI-dependent regulation of LD physiology

Early electron microscopy studies of cells led to a vesicle trans-
port hypothesis for protein trafficking involving three major clas-
ses of coated vesicles that had been purified: COPI- and COPII-
coated vesicles (where COP stands for coat protein complex) and
clathrin-coated vesicles. In each type of vesicles, coat components
are needed for the generation of highly curved membrane areas,
recruitment of cargo (and the exclusion of non-cargo proteins/lip-
ids), vesicle scission and uncoating factor recruitment. Transport of
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proteins and lipids between ER and the Golgi apparatus is provided
by COPI and COPII vesicles (Fig. 19).

Systematic genome-wide RNA interference knock-down exper-
iments with Drosophila cell lines revealed that components of the
COPII vesicles that mediate the anterograde transport from ER to
Golgi did not consistently affect the LD protein coat and LD func-
tion [43,44]. In contrast, COPI vesicles, which mediate the retro-
grade transfer from the Golgi to the ER (reviewed in: [56,57]),
are essential for LD function [43,44]. Further experiments in mam-
malian cell lines showed evolutionary conservation of this function
[43,55].

COPI vesicles consist of a heptameric protein coat, the coatomer,
and involve an assembly process at the Golgi, which is initiated by
the activity of the small GDP/GTP binding protein Arfl. The Arf1
nucleotide binding state is regulated by a specific Arf GTPase acti-
vating enzyme (ARF GAP) and an Arf GDP/GTP exchange factor
(ARF GEF) which control the bending and budding-off of the pre-
assembled COPI vesicles from the Golgi [56,57]. Knock-down
experiments by RNA interference of the COPI components caused
(with the exception of eCOP) increased lipid stores not only in Dro-
sophila [43,44] but also in different mammalian tissue culture cell
lines [43,55]. Subsequent functional analyses revealed that the in-
creased lipid storage is due to a decreased lipolytic rate in the cells
which correlates with the inability of the Adipocyte Triglyceride Li-
pase (ATGL) to join the LD surface [43,55]. Indeed, COPI seems to
play a more general role in proper protein assembly at the LD sur-
face, since PAT proteins are also mislocalized in response to COPI
perturbation [43,55]. Interestingly, however, COPI-dependent
PAT-domain protein localization is cell-type specific, a phenome-
non likely to reflect differing PAT-domain protein configurations
and/or cell-specific differences in PAT-domain protein expression
levels. In HelLa cells, for example, Tip47/PLIN3 localization at the
LD surface is unaffected by COPI perturbation, whereas ADRP/
PLIN2 is no longer targeted to the LD [55]. HeLa cells express only
small amounts of both ADRP/PLIN2 and Tip47/PLIN3. In mouse
AML12 hepatocytes, however, ADRP/PLIN2 localization is not sig-
nificantly affected, whereas the recruitment of Tip47/PLIN3 to
the LD surface is strongly enhanced or its attachment is stabilized
in response to reduced COPI activity [43]. AML12 cells normally
contain high amounts of ADRP/PLIN2 and low amounts of Tip47/
PLIN3 attached to LDs and are marked by a high efficiency to accu-
mulate LDs (C. Sztalryd, personal communication). We attribute
the observed changes in the LD protein coat in response to altered
COPI activity to a different and specific need for COPI for the local-
ization of the different PAT proteins at the LD surface.

The current results showing effects of reduced or lacking COPI
activity on LD function are not yet conclusive with respect to a pos-
sible direct role of COPI components in LD function. The effects
could still be indirect and a consequence of the loss of canonical
COPI function in retrograde Golgi/ER trafficking. However, two
lines of evidence point towards a direct role of COPI at the LD sur-
face. First, Arf1 was shown to localize to LDs in a nucleotide-depen-
dent manner, and its absence affects ADRP localization [58].
Secondly, components of the COPI machinery were found in highly
purified lipid droplet proteomes [26]. These findings are consistent
with the argument that COPI acts directly at the LD surface, per-
haps by mediating the transport of lipids or proteins to the COPI
target destination, the ER. However, COPI-mediated transport from
ER exit sites (“ERES”) or from the ER-Golgi intermediate compart-
ment (“ERGIC”) to LDs still cannot be ruled out in view of a recent
study by Soni et al. [55]. Their immunofluorescence and electron
tomography studies revealed a close apposition of LDs with both
ERES and the ERGIC. Thus, besides the possibility of COPI vesicle
trafficking to or from the LDs, those findings are also consistent
with a model proposing that small, nascent LDs formed at ERES
or the ERGIC sites could contribute to larger, pre-existing LDs by

LD fusion. Future experiments will be needed to address these
and other possible models that explain the results obtained with
the manifold experimental approaches taken. Such studies should
be open to the possibility that the COPI vesicle machinery may also
participate in very different processes and trafficking routes,
including trafficking from peroxisomes to the ER or peroxisome
proliferation, as suggested in previous reports [59].

8. Summary and perspectives

LD research gained exciting perspectives. Although LDs were
long regarded as static fat stores, recent studies clearly emphasize
a highly dynamic role for these organelles in cellular energy
homeostasis and even envision an important role of droplet-de-
rived lipid modifications in cellular regulatory processes such as
the transport of morphogen signaling ligands [60]. The unique fea-
ture of these organelles is their surface: a monolayer sheet of phos-
pholipids probably originating from the cytoplasm-oriented leaflet
of the ER. The available evidence is consistent with a mechanism
that involves site-specific filling of the ER bilayer membrane inter-
space, bending of the outer leaflet and budding of lipid-filled ves-
icles surrounded by the ER-derived monolayer leaflet that may
maintain a specific lipid and protein coat signature. Subsequent
processes regulating the proper size and growth of the newly
formed LDs are still unclear. However, increasing evidence sug-
gests that such processes are under tight control, since whole-gen-
ome genetic screens [31,32,43,44] have identified factors that
affect those properties. Both genetic and LD proteome studies have
revealed a number of factors that not only affect the size and shape
of LDs but also the physiology of cells and energy homeostasis be-
yond the level of single cells. One prominent example is Brummer/
ATGL, an evolutionarily conserved lipase decorating the LD sur-
faces. In its absence, single cells accumulate excess fat and the en-
tire organism develops an obese phenotype [61-63]. Conversely,
overexpression of Brummer/ATGL reduces the fat content in single
cells as well as the whole organism. This finding, obtained with a
distinct and confirmed component of the LD protein coat, suggests
that LDs are indeed sites of regulatory events and that they could
contain entire molecular machines for regulating the energy
homeostasis of cells and, together with the specialized adipocytes
of the fat storage organ, of the entire organism.

The dynamics of LDs includes not only fat storage and mobiliza-
tion control, but also an apparent direct and possibly functional
interaction with other cell organelles, including peroxisomes and
mitochondria in addition to ER. There is visual documentation that
this interaction is quite intimate in the case of the peroxisomes and
that it involves membrane attachment receptor proteins such as
SNAP23 in the case of the mitochondria [64]. Needless to say, each
and every one of these interactions could bear new surprises in
terms of LD functions and regulatory pathways.

While this emerging picture of LDs is exciting, the current
mosaic of information remains patchwork for the most part. Just
as numerous steps in the LD life cycle still await elucidation,
more work will be needed to determine whether LD trafficking
and emerging LD-organelle interactions are indeed of functional
significance and what function they may serve. Novel tools for
visualizing LD dynamics such as specific dyes [8,65] or recent
enhancements of imaging techniques including coherent anti-
stokes Raman scattering (CARS) microscopy (e.g. [66,67]) or elec-
tron tomography (e.g. [55,68]) might accelerate the deciphering
of functional and mechanistic details.

The apparent simplicity of lipid droplets is eventually a tribute
to their probable long evolutionary history as storing excessive
nutrients must have been a very basic and early prerequisite of
survival. We only started to appreciate the delicate regulatory sys-
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tem acting on those simple organelles to adjust the cellular and
organismic lipid stores and only scratched the various LD func-
tions, which developed on top of the energy storage function.
Unraveling the basic principles underlying the past and current
features of the cellular lipid store and its regulation will ultimately
also result in a deeper understanding of pathophysiological condi-
tions including obesity and ectopic fat deposition with all of their
detrimental consequences such as atherosclerosis, insulin resis-
tance or diabetes. A better understanding of the cell biology of
LDs may thus be the key to developing novel therapies addressing
these pressing health issues.
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