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Nonlinear Inverse Reconstruction for Real-Time MRI of
the Human Heart Using Undersampled Radial FLASH

Martin Uecker,* Shuo Zhang, and Jens Frahm

A previously proposed nonlinear inverse reconstruction for auto-
calibrated parallel imaging simultaneously estimates coil sen-
sitivities and image content. This work exploits this property
for real-time MRI, where coil sensitivities need to be dynami-
cally adapted to the conditions generated by moving objects.
The development comprises (i) an extension of the nonlin-
ear inverse algorithm to non-Cartesian k-space encodings, (ii)
its implementation on a graphical processing unit to reduce
reconstruction times, and (iii) the use of a convolution-based
iteration, which considerably simplifies the graphical process-
ing unit implementation compared to a gridding technique. The
method is validated for real-time MRI of the human heart at
3 T using radio frequency-spoiled radial FLASH (pulse repetition
time/echo time = 2.0/1.3 ms, flip angle 8◦). The results demon-
strate artifact-free reconstructions from only 65–85 spokes,
with 256 oversampled data points. Acquisition times of 130–
170 ms resulted in 29–38 frames per second for sliding window
reconstructions (factor 5). While offline reconstructions required
1–2 sec, real-time applications with modified parameters and
slightly lower image quality were achieved within 90 ms per
graphical processing unit. Magn Reson Med 63:1456–1462,
2010. © 2010 Wiley-Liss, Inc.
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Recently, nonlinear algorithms for improved autocalibrated
parallel imaging (1,2) have been described, which com-
bine the use of variable density trajectories with the joint
estimation of image content and coil sensitivities. For the
algorithm presented in Uecker et al. (2), it could also be
shown that only a very small central k-space area with
full sampling is required for accurate autocalibration. Both
properties are particularly attractive for real-time imaging,
where the coil sensitivity information has to be frequently
updated to match the actual experimental situation gener-
ated by a moving object. A further strength of the algorithm
is its inherent flexibility, which allows for arbitrary sam-
pling patterns and k-space trajectories. In fact, the specific
application to a radial trajectory leads to a completely self-
contained reconstruction process, so that the real-time data
can be processed without any special calibration of the coil
sensitivities.

In order to apply a nonlinear inverse reconstruction to
non-Cartesian k-space data, it has been proposed to add
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an interpolation step to each iteration of the algorithm (3).
Because such computations are rather slow, one may con-
sider the use of a graphical processing unit (GPU) to achieve
reasonable reconstruction times. A corresponding imple-
mentation for iterative SENSE (4) has indeed been utilized
for real-time imaging (5). However, an efficient imple-
mentation of the interpolation algorithm on a GPU is a
difficult and time-consuming task. The present work there-
fore describes an alternative solution. The extension of our
previous work (2) to a non-Cartesian radial trajectory is
accomplished by only a single interpolation performed in a
preparatory step, while the subsequent iterative optimiza-
tion relies on a convolution with the point-spread function.
Although this idea has also been proposed for iterative
SENSE (6), it was not found to be faster than the interpo-
lation technique (7). However, in terms of computational
demand and in contrast to an interpolation, a convolu-
tion mainly involves two applications of a fast Fourier
transform algorithm. It therefore allows for a very simple
GPU implementation, which then may be exploited to real-
ize considerable reductions of the reconstruction time. To
further reduce the computational demand, a channel com-
pression technique was implemented, which combines the
data from multiple physical receive channels into a smaller
number of “virtual channels” that represent their principal
components.

Experimental demonstrations of the proposed method
deal with real-time MRI of the human heart based on
undersampled radial fast low angle shot (FLASH) acqui-
sitions (8). The method offers robust imaging at high tem-
poral resolution, without cardiac gating, and during free
breathing.

THEORY

Regularized Nonlinear Inversion

The MRI signal equation is a nonlinear equation, which
maps the unknown spin density ρ and coil sensitivities cj

to the data acquired from all receive coils

F : x := (ρ, c1, . . . , cN ) �→ (s1, . . . , sN ). [1]

The operator is given by

F : x �→



P�kFPFOV {c1 · ρ}
...

P�kFPFOV {cN · ρ}


 with x =




ρ

c1
...

cN


 , [2]

where F is the (multidimensional) Fourier transform, P�k
is the orthogonal projection onto the trajectory, and FOV
is the field of view. Because the object is restricted to a
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finite area defined by the projection PFOV , the Fourier trans-
form can be implemented with fast Fourier transform FFT
algorithm after periodic extension. Solving this nonlinear
equation jointly for the spin density and coil sensitivities
improves the accuracy of both estimated quantities com-
pared with traditional algorithms for autocalibrated par-
allel imaging (2). Moreover, because the algorithm moves
most of the low frequency variations into the estimated coil
sensitivities, it produces a very homogeneous image.

The solution to Eq. [1] is calculated with the iteratively
regularized Gauss Newton method (9). It is applied to the
operator equation modified by an additional positive def-
inite weighting matrix G = F ◦ W −1/2. The reconstruction
employs an initial guess x0, which is improved in an iter-
ative process by solving a regularized linearization of the
signal equation. The improved estimation xn+1 is given in
terms of the operator G, its derivative DG, and the adjoint
of its derivative DGH by the update rule

xn+1 − xn = (
DGH

xn
DGxn + αnI

)−1 (
DGH

xn
(y − Gxn) − αnxn

)
.

[3]

The weighting matrix W 1/2 constrains the solutions of this
bilinear equation to comply with prior information. It is a
block matrix consisting of two submatrices: The first penal-
izes high frequencies in the coil sensitivities according to
(1 + a · ‖k‖2)l with properly chosen constants, and the sec-
ond contains a regularization term for the image. Here,
this term is the identity matrix, which corresponds to a
conventional L2-regularization for the image.

The regularization parameter α is reduced in each iter-
ation according to αn = α0qn with q ∈ (0, 1). Thus, the
regularization of the last iteration determines the tradeoff
between noise and artifact in the reconstructed image. It is
commonly controlled by changing the number of iterations
while keeping the initial regularization α0 fixed. As for all
Newton methods, the algorithm requires a suitable initial
guess. Typically, the object part is initialized to 1 and the
coil sensitivities to zero. For the efficient reconstruction of
a time series of images, it is advisable to use the previous
frame as an initial guess in order to reduce the computation
time.

Extension to Non-Cartesian Trajectories

An extension of the algorithm to non-Cartesian trajecto-
ries can be achieved by adding an interpolation (3) to the
operator that performs a regridding of the k-space data.
Alternatively, this work employs a technique that is simi-
lar to the convolution-based sensitivity encoding (SENSE)
algorithm described earlier (6).

Starting from a continuous description, the forward oper-
ator F can be decomposed into a (nonlinear) operator C ,
which contains the multiplication of the object with the
sensitivities, a projection PFOV onto the FOV, the Fourier
transformation F , and a projection P�k onto the trajectory:

F = P�kFPFOV C [4]

Multiplication of this operator with the weighting matrix
W −1/2 and insertion of the result into the update rule

for the iteratively regularized Gauss Newton method
yields

dx = (W −1/2DCH
xn

PFOV F−1P�kFPFOV DCxn W −1/2 + αnI )−1

× (W −1/2DCH
xn

PFOV F−1(y − P�kFPFOV ◦ CW −1/2xn) − αnxn).
[5]

The process takes advantage of the idempotence and self-
adjointness of an orthogonal projection (PP = P and PH =
P) and that the data y are already given on the trajectory
P�ky = y .

As for convolution-based SENSE, the term F−1P�kF can
be understood as a convolution with the point-spread
function. Because this convolution only needs to be eval-
uated on an area with compact support as defined by the
projection PFOV , it can, after discretization, efficiently be
implemented with the use of a fast Fourier transform on a
2-fold oversampled grid. In a preparatory step, therefore,
the vector y is discretized by interpolating the data onto a
grid and the point-spread function is calculated.

Preprocessing

First, a whitening step is used to decorrelate the acquired
data. Starting from an eigen decomposition UΣUH of the
noise correlation matrix, the receive channels are trans-
formed according to Σ−1/2UH .

Second, to reduce the computation time, a principal com-
ponent analysis is applied to the data of the first frame.
Only the first principal components are then used for the
reconstruction process. This is a standard technique from
multivariate analysis and known as array compression in
the context of MRI (8,10). Given an eigen decomposition
UΣUH of the covariance matrix of the data, the receive
channels are transformed according to UH . From these vir-
tual channels, only a subset corresponding to the highest
eigenvalues is used for reconstruction.

The above processing steps linearly recombine the phys-
ical receive channels to fewer virtual channels. Because
the coil sensitivity estimation is integrated into the non-
linear reconstruction, no further changes are necessary.
The algorithm simply estimates the virtual sensitivi-
ties of the transformed channels instead of the physical
sensitivities.

As a final preprocessing step, the data are interpolated
onto a Cartesian grid. However, in contrast to the conven-
tional gridding technique, no density compensation has to
be used.

The complete data flow of the reconstruction process is
summarized in Fig. 1.

MATERIALS AND METHODS

Data Acquisition

Real-time MRI of the heart of healthy human subjects was
performed at 3 T (Siemens Magnetom TIM Trio, Erlangen,
Germany) with the use of radiofrequency-spoiled radial
FLASH (pulse repetition time/echo time = 2.0/1.3 ms, flip
angle 8◦). All acquisitions were performed without cardiac
gating and during free breathing. Informed written consent
was obtained from all subjects prior to the examination.
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FIG. 1. Flow diagram for nonlinear inverse reconstructions from non-
Cartesian encodings using a GPU. For details see text.

The images covered a 256×256 mm2 FOV with a variable
number of spokes. Each spoke had a base resolution of 128
data points, which led to 256 complex samples, for a 2-fold
oversampling. To avoid any aliasing of body parts that are
outside the FOV, the actual computations were performed
after interpolation to an oversampled 384 × 384 grid, and
the resulting images were cropped for display purposes.
All images had an in-plane resolution of 2 mm and a slice
thickness of 8 mm.

The data were acquired with a 32-channel body array coil
consisting of an anterior and posterior 16-element array.
These signals were compressed to 12 virtual channels,
using a principal component analysis. Real-time MRI series
were obtained for radial images with 45, 65, 85, 105, and
125 spokes, respectively. The corresponding image acquisi-
tion times ranged from 90–250 ms. Because the acquisition
scheme involved a five-turn interleaved view reordering, it
conveniently offered the application of a sliding window
reconstruction with five interleaves (8). The corresponding
movies yielded rates of 20–55 frames per second.

Online reconstruction and immediate display of real-
time images were accomplished with a simple gridding
technique, which for images with less than 125 spokes
lead to streaking artifacts of increasing strength. After
data acquisition, the raw data were transferred to a differ-
ent computer for offline reconstruction with the proposed
nonlinear inverse algorithm.

Parameter Choice

The data vector was scaled to 100.0 in the L2 norm after
interpolation to the Cartesian grid. The regularization term
for the coil sensitivities was (1.0 + 225.0 · ‖k‖2)16 for k ∈
[-0.5, 0.5]. If not mentioned otherwise, the initial regular-
ization was set to α0 = 1.0 and reduced by a factor of 0.5

in each Newton step. The number of Newton steps was set
to 8. In each Newton step, the conjugate gradient algorithm
was stopped when the residual was reduced by a factor
of 0.01. Apart from the number of Newton steps, which
determines the final regularization, these generic parame-
ters have been used without further modification in many
imaging scenarios, including applications of the algorithm
to both Cartesian and non-Cartesian data.

Implementation on a GPU

The main algorithm was implemented on a GPU, which
is a massively data-parallel processor. In this work, two
GTX 285 GPUs (Nvidia, Santa Clara, CA) were used, each
providing 240 processing cores. Efficient programming of
the GPU was considerably facilitated by the choice of a
convolution-based algorithm. Thus, apart from the few
CPU-based preprocessing and initialization steps, the GPU-
based iterative optimization simplified to (i) pointwise
operations, (ii) fast Fourier transform applications, and (iii)
calculations of scalar products. Each of these operations is
either easy to implement or readily available through the
programming library of the GPU vendor. Because the inter-
polation of a gridding technique is difficult to implement
on a GPU but not time critical, it was executed on the CPU
during preprocessing.

Real-Time Reconstruction

The original idea of this work was to complement online
gridding reconstructions of real-time MRI data with offline

FIG. 2. A single frame from a real-time MRI data set of the
human heart (short-axis view) acquired with 65 spokes per frame
(3 T, radio frequency-spoiled radial FLASH, 128 data points per
spoke, 2-fold oversampling to 256 complex samples, pulse repe-
tition time/echo time = 2.0/1.3 ms, 8◦ flip angle). The nonlinear
inverse reconstructions were obtained with a different degree of
regularization using seven to 10 Newton steps.
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FIG. 3. Twenty consecu-
tive frames from a real-time
MRI data set of the human
heart, acquired with 85
spokes per frame and
reconstructed with nonlin-
ear inversion using eight
Newton steps. For other
parameters, see Fig. 2.

nonlinear inverse reconstructions that offer better image
quality for radial data sets with more pronounced under-
sampling, that is, higher frame rates. However, during the
course of the study it turned out that true real-time appli-
cations of the method are already possible, although still
with compromises in reconstruction quality.

To achieve real-time performance, various changes to the
reconstruction process had to be made. First, the array com-
pression of the original data was limited to the strongest

six instead of 12 principal components. Second, during
iterative optimization, the size of the oversampled data
matrix was reduced as much as possible (from 384 × 384
to 256 × 256) to cover the FOV without too much aliasing.
And third, the number of Newton steps was set to 1 and
the IRGNM was initialized with the reconstruction of the
previous frame. Because the regularization was no longer
controlled by the number of Newton steps, the value of α0

was set to 0.0078, as normally used for the 8th Newton

FIG. 4. A single time
frame from a real-time
MRI data set of the human
heart during systole
reconstructed by gridding
(GRID), autocalibrated
SENSE (SENSE/auto),
and nonlinear inversion
(NLINV). The reconstruc-
tions were obtained with
125 to 45 spokes per
frame. Arrows indicate
reconstruction artifacts
(see text). For other
parameters, see Fig. 2.
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step. While the reconstruction becomes a linear process, a
nonlinear update of the coil sensitivities was still achieved
after the reconstruction of several successive frames.

With these measures, the reconstruction time could be
reduced from 1–2 sec to about 90 ms per frame and GPU.
Of course, such changes impair the optimum performance
of the algorithm and affect the achievable image quality.

RESULTS

The influence of the regularization on the nonlinear inverse
reconstruction as given by the number of Newton steps is
shown in Fig. 2 for a data set with 65 spokes per frame.
While only few Newton steps may lead to blurring, higher
numbers or smaller regularization parameters introduce
more noise. Based on these observations, all subsequent
reconstructions were obtained with eight Newton steps.
Corresponding results are shown in Fig. 3 for a data set
with 85 spokes. The series of 20 consecutive frames at a
temporal resolution of 34 ms corresponds to a total dura-
tion of 0.68 sec and a frame rate of 29 Hz (sliding window
factor 5, 85/5 = 17 spokes per image update, pulse repe-
tition time = 2.0 ms). The short-axis views cover a single
heartbeat from about peak systole (top left) to the diastolic
phase (lower right).

Figure 4 compares the performance of the nonlinear algo-
rithm to reconstructions obtained by gridding and autocal-
ibrated SENSE. For a moderately undersampled but still
relatively high number of spokes such as 125, the gridding
reconstruction presents without visible streaking artifacts.
Nevertheless, the images are slightly more noisy than the
nonlinear reconstruction, which combines the data from all
receive channels with correct phases. On the other hand,
for lower numbers of spokes the gridding reconstruction
cannot avoid streaking artifacts, which are mostly sup-
pressed in the nonlinear reconstruction. For SENSE, the
coil sensitivities were obtained from the densely sampled
k-space center by reconstructing low-resolution images for
each coil and dividing them by the square root of the sum-
of-squares image (11). Although this approach offers visible
improvements with respect to gridding, a closer inspection
reveals various problems (Fig. 4, arrows): (i) local signal
cancellation and the occurrence of banding artifacts, (ii)
spurious signals in the background of the images, and (iii)
a severe loss of detail for lower number of spokes. In con-
strast, the nonlinear reconstructions are free from these
artifacts. If the number of spokes per frame decreases to val-
ues below 45, the quality of the nonlinear reconstruction
starts to deteriorate.

The temporal resolution and, to a certain degree, the tem-
poral fidelity of the real-time MRI acquisitions is improved
by reducing the number of spokes per frame. The effect is
examined in Fig. 5, which illustrates the temporal evolu-
tion (horizontal axis: 5-sec period corresponding to about
five heartbeats) of a single line through a short-axis heart
image (vertical axis) for reconstructions from a different
number of spokes. The individual traces were obtained
from 100 frames (125 spokes, 50-ms resolution), 144 frames
(105 spokes, 42-ms resolution), 188 frames (85 spokes,
34-ms resolution), 233 frames (65 spokes, 26-ms resolu-
tion), and 277 frames (45 spokes, 18-ms resolution) and
scaled to equal size in the temporal dimension. The image

FIG. 5. Temporal evolution (horizontal axis: 5-sec period comprising
five heartbeats) of a horizontal line through a short-axis view of the
heart, slightly above the liver (vertical axis, compare Figs. 2 to 4). The
traces refer to frames reconstructed from 125 to 45 spokes. The cor-
responding decrease of the acquisition time from 250 ms to 90 ms
improves the visualization of the contraction and thickening of the
myocardial walls (darker bands) by reducing the degree of tempo-
ral blurring. Arrows indicate intensity changes due to breathing. For
other parameters, see Fig. 2.

line cuts horizontally through a cardiac short-axis view, as
shown in Figs. 2–4 in a position slightly above the liver.
The darker bands in Fig. 5 therefore represent the con-
traction and thickening of the myocardial walls, which
appear less blurred for shorter image acquisition times.
Larger-intensity distortions, which are also best seen in the
traces derived from acquisitions with only 65 or 45 spokes
(arrows in Fig. 5), are due to breathing, which leads to body
movements perpendicular to the image section and cor-
responding disturbances of the in-plane steady-state MRI
signal.

Finally, Fig. 6 compares the achievable image quality
for an acquisition with 65 spokes when using a gridding
reconstruction, a nonlinear inverse reconstruction, and a
nonlinear inverse reconstruction modified for real-time
reconstruction speed, respectively. For the currently imple-
mented conditions, and if the sliding window is turned off,
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FIG. 6. Two frames from a real-
time MRI data set of the human
heart during (top) diastole and
(bottom) systole. The images
were acquired with 65 spokes
and reconstructed using grid-
ding (GRID), nonlinear inversion
(NLINV), and nonlinear inversion
modified to achieve real-time
reconstruction speed (RT-NLINV).
For other parameters, see Fig. 2.

the reconstruction time of 90 ms per frame and GPU corre-
sponds to a frame rate of about 20 Hz for two GPUs, which
in many cases is fast enough for a true real-time appli-
cation. Although the real-time version of the nonlinear
inverse reconstruction is somewhat degraded in compar-
ison to the offline reconstruction, it is still superior to the
gridded image, which shows more pronounced streaking
artifacts.

DISCUSSION

Because of its ability to accurately estimate coil sensi-
tivities and image content from a single acquisition with
only a very small area in the central k-space yielding
sufficient sampling density, our nonlinear inverse recon-
struction for autocalibrated parallel imaging (2) emerges as
an ideal choice for real-time MRI with radial trajectories.
The present results for real-time MRI of the human heart
fully confirm the expectations with respect to image quality
and currently achievable reconstruction speed.

For radial imaging, reconstructions by self-calibrated
SENSE that estimate coil sensitivities from the k-space
center are also possible (12). Unfortunately, the method is
mathematically not exact and has previously been shown
to cause errors in the Cartesian case (1,2). While radial
imaging is inherently more robust, a less optimal cali-
bration of coil sensitivities may nevertheless affect the
achievable image quality, which particularly holds true
for applications with a higher degree of undersampling.
For serial image acquisitions, the situation may be amelio-
rated by combining data from multiple time frames (13),
provided the coil sensitivities change only slowly. In prac-
tice, however, the frequent, if not permanent, generation
of new experimental conditions is an inherent property
of real-time MRI studies monitoring dynamic processes.
Such changes in coil sensitivities may be due to exten-
sive organ movements (e.g., of joints such as the knee) or,
in interventional MRI, be caused by the positioning of a

surgical instrument or the interactive alteration of an imag-
ing parameter. The proposed algorithm avoids these prob-
lems by jointly reconstructing image and coil sensitivities
for each frame in a completely self-contained process.

The adaptation of the algorithm to non-Cartesian data
by a convolution with the point-spread function sepa-
rates the interpolation from the iterative optimization. The
remaining part of the algorithm may therefore be accel-
erated by a GPU implementation, using a code that is
nearly identical to that required for Cartesian data. Here,
the convolution-based implementation on a GTX285 GPU
achieves approximately the same speed of 1 ms per itera-
tion and coil (384×384 processing matrix) as the approach
presented in Sørensen et al. (5) (256 × 256 matrix). With
similar performance, the main advantage of the convolu-
tion approach compared to the interpolation technique is
the greatly simplified GPU implementation.

At this stage of development, the present work describes
a proof-of-principle application of a real-time MRI recon-
struction with frame rates of about 20 Hz. While further
technical progress is foreseeable, compromises had to be
made with respect to the real-time performance of the
nonlinear inverse reconstruction, even when using two
GPUs. First, the quality of the reconstructed images is
degraded due to a lower number of virtual channels and
the reduced oversampling, although the resulting image
quality appeared to be acceptable for all cases studied so
far, that is, for real-time cardiac MRI of a few healthy sub-
jects. And second, the adaptation of the real-time version
of the algorithm to sudden changes of the coil sensitivities
is impaired because of the restriction to only one Newton
step per frame. Further advances in the algorithm, its GPU
implementation, and the reconstruction hardware should
allow for a gradual removal of these limitations in the near
future.

This study entirely focused on the principal applicabil-
ity and usefulness of the nonlinear inverse reconstruction
method for real-time MRI. Its success primarily relies on
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a combination of (undersampled) radial encodings, the
concept of parallel imaging, and its extension to a joint esti-
mation of coil sensitivities and image content. As far as the
achievable image quality is concerned, the present results
may be even further improved by exploiting frame-to-frame
temporal redundancies, which are inherently contained in
a dynamic image series of the beating heart. Such ideas
have previously been shown to improve the reconstruction
quality of linear algorithms (13–16) and will be the subject
of future work.
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