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OWe report longitudinal 15N relaxation rates derived from two-dimensional (15N, 13C) chemical shift

correlation experiments obtained under magic angle spinning for the potassium channel KcsA-Kv1.3
reconstituted in multilamellar vesicles. Thus, we demonstrate that solid-state NMR can be used to probe
residue-specific backbone dynamics in a membrane-embedded protein. Enhanced backbone mobility was
detected for two glycine residues within the selectivity filter that are highly conserved in potassium channels
and that are of core relevance to the filter structure and ion selectivity.

© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Protein dynamics play an essential role for molecular function [1]
and nuclear magnetic resonance (NMR) has become a premier
method to probe molecular dynamics at atomic resolution in solution
[2,3]. For more than two decades (see, e.g., Ref. [4,5]), solid-state NMR
(ssNMR) has provided spectroscopic means to study molecular
structure and dynamics in amembrane environmentwheremolecular
size increases and protein structure is modulated by the presence of a
surrounding bilayer matrix [6]. With recent advancements in the field
of Magic-Angle-Spinning (MAS [7]) based ssNMR on membrane
proteins (see, e.g., [8–10]), the structural analysis of largermembrane-
embedded proteins becomes feasible.

For example, we have shown that for the chimeric KcsA-Kv1.3
potassium channel, ligand binding and channel inactivation can be
studied at atomic level [11–14]. KcsA-Kv1.3 shares essential structural
and functional features with the KcsA channel first identified in the
gram-positive bacterium Streptomyces lividans [15]. KcsA has been
characterized by a variety of structural and biophysical techniques and
high resolution structural information is available [16–18]. The selec-
tivityfilterwhich entails the channel's highK+ selectivity and specificity
[19] constitutes an essential part of the K+ channel and is highly
conserved among potassium channels. During pH-induced activation
KcsA and KcsA-Kv1.3 channels rapidly inactivate. The inactivation is
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otein dynamics detected in
phys. Acta (2009), doi:10.10
TEcorrelated with a conformational change of the filter from a conductive
to a ‘collapsed’ conformation which renders potassium binding sites
inaccessible and thereby blocks the passage of potassium ions.

Crystal structures initiated a series of in-silico molecular-dynamics
(MD) studies [20–25] that addressed the conformational flexibility in
the selectivity filter for the selective conduction of potassium ions. The
dynamical dependence between filter and permeant ionwas referred to
as breathing motion and linked to the fundamental mechanism of ion
gating [25]. MD simulations evaluating the energetics related to
different ion occupancies within the selectivity filter suggested a two
state conduction pathway for the permeant ion [21,26,27]. This is
supported by electron density profiles obtained for K+ and larger
analogues like Rb+ located in the selectivity filter of KcsA [21,26,27].
Experiment and simulation showed thatfilter stabilitydepends crucially
on the presence of potassium [17,23,28–30]. Mutations in the selectivity
filter and within its close proximity strongly affect stability and gating
properties of the potassium channel [31–36], confirming that con-
formational dynamics of the selectivity filter and its molecular
environment play an in important role for channel gating [31,32,37–47].

In principle, ssNMR provides an experimental means to directly
examine ion channel dynamics in a bilayer environment and in
different functional states. Compared to solution-state NMR, ssNMR
provides a more direct measure for internal mobility, as no overall
tumbling of the molecule has to be considered. Moreover, spectral
resolution is not determined by the micellar surrounding, instead the
type and nature of the lipid bilayer can be readily varied granting
insight intomembrane effects on protein structure and dynamics (see,
e.g., [48,49], Ader et al., in preparation). For KcsA-Kv1.3, previous
a membrane-embedded potassium channel using two-dimensional
16/j.bbamem.2009.06.023

mailto:m.baldus@uu.nl
http://dx.doi.org/10.1016/j.bbamem.2009.06.023
http://www.sciencedirect.com/science/journal/00052736
http://dx.doi.org/10.1016/j.bbamem.2009.06.023


C

RO
OF

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Fig. 2. Structural model for KcsA-Kv1.3 comprising residues 1–160 (only 2 subunits of
the channel are shown) based on the crystal structure of full-length KcsA (PDB ID 3EFF)
[18] and a full-length model based on EPR data for residues 1–24 (PDB ID 1F6G) [66].
Residues stated in the text and the following figures are labeled. Nitrogen atoms for
which site-specific longitudinal relaxation rates (R1) could be obtained are illustrated
as blue spheres. Gly residues other than Gly77 and Gly79 are marked by red spheres.
The selectivity filter of the potassium channel is marked by a black frame. The lipid
bilayer is indicated by black lines.
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dipolar ssNMR correlation spectra speak in favor of a well defined
structure in a membrane setting [12]. Here, we probed 15N nuclear
spin relaxation times to obtain a more detailed view of KcsA-Kv1.3
backbone dynamics with particular attention to selectivity filter
residues. Following pioneering work by Torchia et al. [50,51] andmore
recent studies [52,53] on solid-phase globular proteins, we show that
two-dimensional ssNMR in combination with 15N-edited relaxation
filtered spectroscopy provides a promising means to probe channel
backbone dynamics in lipid bilayers.

2. Material and methods

Protein expression, isotope-labeling and reconstitution in asolec-
tion liposomes were done as previously described [14]. The sample
used for this study contained approximately 150 nmol (10 mg)
uniformly (13C, 15N) labeled KcsA-Kv1.3. The protein to lipid ratio was
1:100 (mol/mol) and the water content of the sample was about 50%
(w/w). Site-specific 15N nuclear longitudinal relaxation rates (R1)
weremeasured using two-dimensional R1-edited (15N,13C) correlation
experiments. The corresponding pulse sequence is shown in Fig. 1 and
was adapted from previous R1 investigations [52,53] on a micro-
crystalline protein by incorporation of a SPECIFIC-CP [54,55] transfer
step. As a result, the 15N,13C heteronuclear correlation spectrum is
dominated by N-Cα correlations. All spectra were obtained at about
283 K and 12.5 kHz MAS using an 800 MHz instrument (Bruker
Biospin Karlsruhe). The 1H–15N cross polarization (CP) step employed
a linear ramp (100 to 80% field strength) on the 1H channel. The CP
period was 0.75 ms and the 15N field strength was set to 35 kHz. The
2.5ms 15N–13C CP step used a linear ramp on the 13C channel and a 15N
field strength of about 34 kHz establishing SPECIFIC [54,55] transfer.
1H decoupling was obtained by SPINAL64 [56] and continuous wave
(CW) with a decoupling field of 83.3 kHz. Spectra were obtained for
three spin-lattice relaxation times (5, 10, and 20 s). We acquired 176–
560 scans for each of the 40 increments in t1. Maximum acquisition
times in t1 and t2 were 4 ms and 10 ms, respectively. The total
experimental time for the spectra analyzed was about 140 h. In order
tominimize effects due to changes in CP-efficiencies over the course of
the experiment, spectra were acquired in interleaved steps and added
after the whole dataset was completed. Furthermore, we monitored
CP-efficiencies in between individual two-dimensional (2D) experi-
ments by acquiring 1D control spectra. During the course of data
collection, we did not observe any sizable intensity changes in the
ssNMR spectra. The average 15N nuclear longitudinal relaxation rate of
KcsA-Kv1.3 was measured by fitting the integrals of a series of 1D 1H–
15N cross polarization (CP) spectra with an additional spin-lattice
relaxation time before detection. For the external magnetic field of
18.8 T we obtained an average relaxation rate of 0.024 s−1 measured
at an effective temperature of 283 K. This value compares favorably to
values found for a microcrystalline protein [52,53].

3. Results and discussion

As previously shown [14], KcsA-Kv1.3 residues Thr75, Gly77, and
Gly79 are essential for binding K+ ions in the selectivity filter. These
UN

Fig. 1. Pulse sequence used to encode 15N spin-lattice relaxation rates in 15N–13C
correlation spectra. All spectra were obtained at about 283 K and 12.5 kHz MAS.

Please cite this article as: C. Ader, et al., Protein dynamics detected in
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residues can readily be resolved in N-Cα correlation spectra. Our
spectral analysis also included Thr74, close to the inner entrance of the
filter, and Ser61, located in the turret region at the extra-cellular side
of the KcsA-Kv1.3 channel (Fig. 2). Together with a set of α-helical Gly
residues, several residue-specific probes were hence available for
spectroscopic analysis (Figs. 2, 3). Obviously, the number of residues
to be investigated could be increased by conducting NCACB [57]
experiments, possibly even in three spectral dimensions. For reasons
of spectroscopic sensitivity, such experiments were not attempted
here.

In Fig. 3, we present relaxation-edited N-Cα correlation spectra
obtained for longitudinal 15N delays of 5 and 20 s. Visual inspection of
the spectra readily revealed a qualitative difference between residues
Gly77 and Gly79, which occur at the upper, and Thr74 and Thr75,
which occur at the lower part of the selectivity filter. Our data show
Fig. 3. Superposition of 15N–13C correlation spectra obtained for membrane-embedded
KcsA-Kv1.3 using 15N spin-lattice relaxation delays of τ=5 s (red) and τ=20 s (blue).
Resonances due to residues discussed in the text are labeled. The Gly N-Cα region is
marked by a dashed box. The slice on top was extracted from the spectrum employing
τ=5 s at a 15N chemical shift of 99 ppm in order to illustrate signal-to-noise.

a membrane-embedded potassium channel using two-dimensional
16/j.bbamem.2009.06.023
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Fig. 4. (a) Decay curves measured for Ser61, Thr74, Thr75, Gly77, Gly79, and the Gly N-Cα region. Corrected intensity values obtained for three relaxation delays (τ=5, 10, and 20 s)
were renormalized so that the data point for τ=5 s has an intensity value of 1. Solid curves give exponential fits to the data. (b) Bar graph summarizing the determined average (Ø)
and site-specific 15N spin-lattice relaxation rates.
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that spin-lattice relaxation proceeds faster for Gly77 and Gly79 than
for Thr74 and Thr75. In order to distinguish whether this observation
originates from increased local mobility in the upper part of the
selectivity filter or from larger motional freedom intrinsic for Gly
residues, we included the Gly N-Cα region (dashed box in Fig. 3) in
our analysis. KcsA-Kv1.3 contains thirteen glycines per subunit,
mainly located in helical segments of the KcsA-Kv1.3 channel (see
Fig. 2). Subsequently, we determined peak volumes for the five
resolved signals and the Gly region and subtracted noise levels by
integrating and subtracting corresponding noise regions of the
individual spectra in order to avoid systematic overestimation of
small peak volumes obtained at long relaxation delays. In order to
correct for different experiment times, we normalized peak volumes
by the number of acquired scans. The resulting corrected peak
integrals were standardized to the respective data point obtained for
the relaxation delay of 5 s and datawere fitted to an exponential decay
in order to determine R1's (Fig. 4a). No correction for effects of magic
angle spinning on R1 and 15N spin diffusion [52,53] was applied. Based
on the signal-to-noise of our spectra, we estimate that our site-specific
R1's are associated with an error of approximately 0.01 s−1.

For residues Gly77 and Gly79 we measured 15N backbone R1's of
0.049 s−1 and 0.050 s−1, respectively (Fig. 4b). These values are
significantly larger than the average value obtained for KcsA-Kv1.3.
Note other signals contributing to the Gly N-Cα region are charac-
terized by comparatively slow relaxation rate of 0.011 s−1, more than
four times smaller than the relaxation rates obtained for the two Gly
residues in the selectivity filter. On the other hand, we found 15N
backbone R1's of residues Thr74 and Thr75 of 0.03 s−1 and 0.019 s−1,
respectively. The data suggest that increased mobility as observed for
Gly77 and Gly79 is locally confined to the upper part of the selectivity
filter. By contrast, Thr74 and Thr75 at the lower part of the selectivity
filter have a local mobility similar to the average mobility in a channel
backbone residue. In this context, it is interesting to note that
mutation of Thr75 was not only found to change ion affinity but also
substantially affected the thermal stability of the channel tetramer
[33]. These findings suggest that this residue plays an important role
for the integrity of the channel's quaternary structure in agreement
with our finding that the lower part of the selectivity filter exhibits
less backbone dynamics than the remaining filter segments. Finally,
we determined a 15N backbone R1 of 0.038 s−1 for Ser61. This residue
is located in the extra-cellular loop of KcsA-Kv1.3 and displays
mobility above the protein's average. Nevertheless, the Ser61 value
does not exceed T1 rates observed for the Gly residues in the upper
selectivity filter. The data is consistent with the idea that residues in
the turret region arewell structured in the resting state of the channel
Please cite this article as: C. Ader, et al., Protein dynamics detected in
solid-state NMR spectroscopy, Biochim. Biophys. Acta (2009), doi:10.10
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OOat pH 7.5 [12] but likely exhibit higher molecular dynamics in the
context of pH-induced gating [14].

On the basis of 15N backbone R1's we have color coded in Fig. 5a the
relative differences in local mobility observed for KcsA-Kv1.3 filter
residues. For reference, selectivity filter residues affected by ligands
which induce a distorted conductive (KTX, ref. [11,58]) or collapsed
(porphyrin, Ref. [14]) backbone structure are indicated. Interestingly,
filter residues identified as mobile are involved in both ligand binding
modes. Next, we compared our results to crystallographic B-factors
obtained for KcsA crystallized in the absence and presence of an FAB
antibody (Fig. 5b, c). Neither of the two data sets shows qualitative
agreement to our spectroscopic analysis. This disagreement may ori-
ginate from the different conditions in which the KcsA channel struc-
tures were studied including parameters like pH, temperature, ionic
strength, and lipid environment. The crystal structures for example
were obtained using detergent solubilized KcsA, whereas ssNMR
experiments utilize proteoliposome preparations. In fact, comparison
of both X-ray data sets suggests that B-factors seem to depend mainly
on the environment of the channel, i.e, residing in a free crystalline
state or when bound to an FAB antibody.

Previously, solution-state NMR studies of KcsA variants were
conducted at pH 7.5 in SDS micelles that revealed a molecular
conformation comparable to the available crystal structures and
allowed to examine 15N relaxation rates as a quantitative measure of
structural mobility [59,60]. These data suggested increased backbone
mobility for the N- and C-terminal segments of closed KcsA and
excluded backbone dynamics on the ps–ns time scale for selectivity
filter residues at neutral pH. However, pH-induced gating could not be
followed under such conditions. Instead, solution-state NMR of KcsA
in DDM and foscoline micelles were used to gain insight in pH sensing
and dynamics related to activation gating [61,62]. For example, Riek et
al. followed structural dynamics of residue Y78 in the selectivity filter
as a function of pH based on 3J(1HN,1Hα) scalar couplings [61]. This
data revealed millisecond timescale motions in the filter that were
attributed to exchange between low and high K+ affinity states.

On the other hand, we previously observed significantly larger
structural changes after inactivation in lipid bilayers [14] compared to
solution-state NMR studies. It suggests that protein dynamics are
significantly different in a micellar versus a lipid bilayer environment.
This is consistent with the idea that composition and mechanical
status of the lipid bilayer have a profound influence on K+ channel
gating and stability, underlining the utility of ssNMR-based dynamic
studies in a native or native-like membrane setting. Here, we showed
the 15N R1's are accessible for KcsA-Kv1.3 in a membrane setting
revealing increased backbone dynamics in the upper selectivity filter
a membrane-embedded potassium channel using two-dimensional
16/j.bbamem.2009.06.023
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were determined are depicted as spheres. R1's are indicated by a color gradient from
blue (R1=0 s−1) to red (R1=0.05 s−1). Bars indicate the residues affected by KTX and
porphyrin binding, respectively. B-factors reported for backbone nitrogens of the
selectivity filter and the two neighboring residues for KcsA crystal structures obtained in
the absence (b, PDB ID 1BL8) [16] and presence (c, PDB ID 1K4C) [17] of FAB antibodies.
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of the closed channel at neutral pH. This approach may be used in the
future to follow filter dynamics as a function of parameters such as pH
or ion concentration controlling potassium channel function.

4. Conclusions

We have determined 15N longitudinal relaxation rates for indivi-
dual residues of KcsA-Kv1.3 in lipid bilayers. The experiments allow for
a qualitative description of local backbone dynamics in the selectivity
filter in reference to other segments of a membrane-embedded potas-
sium channel. Site-specific R1's ranged from 0.019 s−1 to 0.050 s−1 at
18.8 Tand the average protein backbone relaxation can be described by
an overall rate of 0.024 s−1. In absolute numbers, the values compare
Please cite this article as: C. Ader, et al., Protein dynamics detected in
solid-state NMR spectroscopy, Biochim. Biophys. Acta (2009), doi:10.10
TE
D
PR
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F

favorably todata obtainedon a crystalline protein at differentmagnetic
fields. Our experiments confirm earlier conclusions based on dipolar
ssNMR correlation spectroscopy [12] that KcsA-Kv1.3 resides in a well
defined structure in a membrane setting. We observe a locally
increased mobility for Gly77 and Gly79 in the upper part of the
KcsA-Kv1.3 selectivity filter, while the Thr74 and Thr75 residues in the
lower part display local dynamics similar to the average protein
backbone. The two glycine residues are highly conserved in the pore of
K+ channels and their conformational dynamics are of crucial
importance to the filter structure and ion selectivity (see, e.g., Ref.
[34,35]). Here, we found that these residues are also characterized by
distinctly high backbone mobility. We propose that this mobility is an
essential property of the filter to dynamically respond to the binding
and unbinding of ionswhile they pass along the K+ binding sites in the
filter during ion permeation. Furthermore, conformational backbone
plasticity of the selectivity filter may be critical for the gating
transitions of the K+ channel involving conductive and ‘collapsed’
filter conformations or the binding of ligands to the K+ channel pore.
The results underline that T1 relaxation rates provide a powerful
means to follow site-specific dynamics in largermembrane-embedded
proteins by solid-state NMR. To further dissect dynamical details
associated with K+ channel function, site-resolved measurement of
15N backbone dynamics may in the future be assisted by measure-
ments of transversal protein relaxation rates [63] or by amore detailed
analysis of ssNMR chemical shifts and cross-peak amplitudes as
recently demonstrated for other membrane proteins [64,65].
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