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Massive amounts of image data have been collected and continue to be generated for representing cel-
lular gene expression throughout the mouse brain. Critical to exploiting this key effort of the post-geno-
mic era is the ability to place these data into a common spatial reference that enables rapid interactive
queries, analysis, data sharing, and visualization. In this paper, we present a set of automated protocols
for generating and annotating gene expression patterns suitable for the establishment of a database. The
steps include imaging tissue slices, detecting cellular gene expression levels, spatial registration with an
atlas, and textual annotation. Using high-throughput in situ hybridization to generate serial sets of tissues
displaying gene expression, this process was applied toward the establishment of a database representing
over 200 genes in the postnatal day 7 mouse brain. These data using this protocol are now well-suited for
interactive comparisons, analysis, queries, and visualization.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The postnatal day 7 (P7) mouse brain is a complex developing
organ with hundreds of functional parts and their roles still being
established. However, the existing information on underlying
molecular mechanisms is still relatively limited. Describing when
and where genes are expressed in the P7 brain is thus a potentially
powerful tool for understanding the function of gene products [1-
3]. With multiple mammalian genomes characterized - including
human and mouse - there are now efforts that aim to systemati-
cally determine the expression patterns for all genes in the mouse
[4-11], as well as many more focused efforts examining specific
molecular mechanisms exploiting gene expression data (e.g.,
[12-15]). This article details a pipeline for the automated genera-
tion and annotation of gene expression patterns suitable for the
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establishment of a database supporting interactive knowledge dis-
covery. Additionally, the protocols for several key applications are
presented. Fig. 1 depicts an overview of the pipeline.

Spatial gene expression data must be registered into a common
coordinate system to enable accurate comparisons and queries of
anatomical regions and subregions [16-21]. Automating this pro-
cess is essential for handling massive amounts of data. The objec-
tive of the procedure described here is to optimize accuracy of
comparisons through explicit control of the registration process,
while minimizing the amount of human intervention. The selected
technology to achieve this aim is an atlas constructed from subdi-
vision meshes [22], with the registration steps and interactive
applications designed to take advantage of the unique characteris-
tics of subdivision meshes.

The use of subdivision meshes as atlases achieves accurate and
efficient deformation. Subdivision-based atlases are controlled by a
small number of handles (i.e., vertices at the coarsest level of atlas
resolution) and explicitly model the boundaries of anatomical re-
gions while providing a smooth multi-resolution coordinate repre-
sentation of small structures. Deforming subdivision-based atlases
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Fig. 1. Flow-chart displaying pipeline for automated atlas-based annotation of gene
expression patterns. Numbers within boxes refer to sections in this paper.

thus provides more direct control with a lower complexity when
compared to free-form deformations defined on rectilinear grids.
In a concurrent article, we detail the subdivision modeling tech-
nique in both 2D and 3D and the general geometric algorithms
for deforming a subdivision-based atlas and for querying spatial
data mapped onto the atlas. Subdivision atlases are generally
applicable to other multiple-region anatomical structures beyond
the P7 mouse brain, though it has yet to be investigated if a subdi-
vision-based atlas can be applied to structures with variable topol-
ogy such as the human brain which has cortical sulci in various
arrangements and may require probabilistic approaches to prop-
erly construct an atlas [23]. In this paper, we focus primarily on
data-specific automated procedures, including image generation,
signal detection, feature recognition, and pattern annotation, that
are involved in utilizing subdivision atlases for the analysis of 2D
gene expression patterns from in situ hybridization (ISH) images.
While this is a successful pipeline of methods, the 2D approach
does have limitations and inefficiencies that can likely be over-
come by the implementation of a 3D subdivision atlas and analo-
gous approach.

2. Description of method
2.1. Generating gene expression images

The protocols for generating gene expression images of the P7
mouse brain are presented here as compiled from descriptions in
[4,10,24].

2.1.1. Riboprobe synthesis

Riboprobes were generated from DNA templates, usually using
RT-PCR. Templates of ~1000 base pairs were designed from
sequence databases. Template generation began with an amplifica-
tion of the gene from a cDNA pool using primers of a gene-specific
sequence linked to T3, T7 or SP6 polymerase promoter sites. PCR
products were purified and sequence-verified. During in vitro

transcription, digoxigenin-labeled UTP was incorporated into the
RNA.

2.1.2. Tissue preparation

P7 brains extracted from the C57BL6 mouse strain are approxi-
mately 6 x 8 x 12 mm in size (Fig. 2A). Each fresh mouse brain is
placed into a freezing chamber consisting of a 5 x 5 cm copper
base, transparent Plexiglas sidewalls, and an aluminum top bracket
held in place by stainless steel rods and a pair of clamps (Fig. 2B).
The chamber sits on top of a slab of dry ice while the chamber is
filled with O.C.T. cryomount medium. During this process, the
brain is aligned visually to keep the brain axes parallel to the walls
of the freezing chamber. This creates a frozen block containing the
stereotaxically aligned tissue (Fig. 2C). The blocks can be stored
indefinitely at —80 °C. Frozen blocks must be moved to a —20 °C
freezer prior to sectioning in order to equilibrate to the tempera-
ture inside of a cryostat. Brains are sliced sagittally (i.e., from the
left lateral side to just past the midline) into 25-pm thick tissue
sections using the cryostat (Fig. 2D). Serial tissue sections are
placed onto alternating sets of slides (Fig. 2E). With eight sets col-
lected for each brain, the resulting distance between tissue sec-
tions within a set is 200 um. Sections are fixed in 4%
paraformaldehyde, acetylated, and dehydrated for further storage
at —80°C.

2.1.3. High-throughput in situ hybridization

High-throughput (HT) ISH was developed as a method to per-
form large-scale analyses with a daily throughput of 196 standard
25 mm x 75 mm glass slides with four tissue sections per slide
[24]. HT-ISH is based upon the catalyzed reporter deposition
(CARD) signal application protocol that enhances sensitivity of
non-radioactive ISH [25]. Reaction steps - prehybridization,
hybridization and signal amplification/detection - are performed
in a flow-through chamber (200 pl) into which solutions are added
in parallel with an automated Tecan Genesis pipetting robotic sol-
vent delivery system. Hybridization is carried out with digoxigenin
(DIG)-tagged riboprobes. To visualize expression, DIG-tagged ribo-
probes are detected with an anti-DIG antibody to which peroxidase
is coupled. Peroxidase is used to activate a tyramine—biotin conju-
gate, which is subsequently covalently attached to proteins in the
vicinity of the anti-DIG antibody. Then biotin is detected with a
streptavidin-alkaline phosphatase-based color reaction [26],
resulting in the formation of blue-colored precipitate crystals
localized to the cell.

2.1.4. Microscopy

Slides are cover-slipped and digitally scanned via a CCD camera
at 1.6 um/pixel, a magnification appropriate for detecting individ-
ual neuron cell bodies which are approximately 10 pm in diameter,
using a custom-made automated Leica (Wetzlar, Germany) bright-
field compound microscope with a motorized stage that holds up
to eight slides [4]. Individual 24-bit color images (each 575 x 575
pixels in size) are stitched together automatically to produce a sin-
gle mosaic image approximately 10,000 x 5000 pixels in size rep-
resenting the entire section, a step that relies on pre-calibrated
image placement in the mosaic and the accurate translation of
the motorized stage. Images are automatically cropped and stored
as Red-Green-Blue (RGB) Tagged Image File Format (TIFF) files
with Lempel Ziv Welch (LZW) lossless compression using Adobe
Photoshop (Adobe Systems Incorporated).

2.2. Detection of gene expression
Different types of neurons and other cells perform a variety of

functions. A necessary component of gene expression characteriza-
tion is cell-based detection of gene expression. For example, a



J. Carson et al./Methods 50 (2010) 85-95

Set 1
A E
‘8mm
d=txn I
i 2
n

o]
(9]
Slide 2

Slide m

87
Set 2 Setn
Slice # Slice # Slice #
1 2 n
n+1 2 o o @ 2n
2n+1 2n+2 3n
3n+1 3n+2 4n
Slice # Slice # Slice #
4n+1 4n+2 5n
5n+1 5n+2 6n
6n+1 én+2 7n
n+1 7n+2 8n
o
L]
L]
Slice # Slice # Slice #
(4m-4)n+1 | (dm-d4)n+2 (4m-3)n
(4m-3)n+1 (4m-3)n+2 (4m-2)n
(4m-2)n+1 (4m-2)n+2 (4m-1)n
(4m-1)n+1 (4m-1)n+2 4mn

Fig. 2. Tissue preparation protocol for high-throughput in situ hybridization. (A) Basic dimensions and shape of the P7 mouse brain. The third image from the top shows a
sagittal view. (B) The empty freezing chamber into which the mouse brain is placed consists of a 5 x 5 cm copper base, transparent Plexiglas sidewalls, and an aluminum top
bracket held in place by stainless steel rods and a pair of clamps. This chamber was developed at the Max Planck Institute of Experimental Endocrinology in Hannover,
Germany. (C) The frozen block containing the mouse brain. (D) Cryostat used for slicing the mouse brain at a consistent thickness, t=25 um. (E) Slices are alternately
distributed into n different sets, with each set consisting of m slides. During ISH, a specific gene probe is assigned and applied to an entire set. Distance, d, between slices

within a set is t x n.

small population of cells could have the same total amount of tran-
script, but the transcript could be unevenly or evenly distributed
across the cells. For these two situations, the functional relevance
is potentially substantially different. Dye-based ISH has been
shown to quantitatively correlate with transcript levels as detected
by microarrays [27]. The Celldetekt system for fast accurate auto-
mated classification of cellular gene expression described in this
section has been validated against visual classification of cellular
gene expression as well as calculations of dye content at higher
magnifications [28]. The motivation for this semi-quantitative ap-
proach is based on the limits of resolving small differences in levels
of detected precipitate at the resolution at which data is collected,
as well as the limited means for validating the significance of such
small changes.

2.2.1. Categories of signal strength

The quantity of cellular precipitates as a result of the non-radio-
active ISH increases with the number of detected transcripts
(Fig. 3A). Visible levels of gene expression strength range from cells
with no detectable expression to cell bodies completely filled with
dye precipitate. The range of visibly observable and distinguishable
expression strengths is divided into four categories: strongly
expressing cells filled with dye precipitate (+++), moderately
expressing cells partially filled with precipitate (++), weakly
expressing cells with scattered minute particles of deposit (+),
and cells with no detectable precipitate (—) [10,28]. Having de-

tected multiple levels of gene expression signal strength enables
flexibility in selecting the strength threshold for quantitative com-
parisons [3], as well as the potential for analyses that incorporate
multiple levels of signal strength including scoring systems for
clustering gene expression patterns [14].

2.2.2. Signal detection

Gene expression signal detection and categorization is imple-
mented as Celldetekt, a python script (http://www.python.org/)
utilizing the Python Imaging Library (http://www.python-
ware.com/) that automatically identifies pixels representing
precipitate and then classifies clusters of pixels by size [28]
(Fig. 3B). A fixed threshold method identifies pixel type using
two user-provided threshold values, t; and t,, with Green-chan-
nel pixel intensities less than t; assigned to dye precipitate, and
remaining Grey intensities up to t, designated as cellular areas
without precipitate (Fig. 3Bb). Unassigned pixels indicate the
absence of cell bodies. Although fixed throughout a given image,
thresholds can be adjusted between sets of data to
compensate for variations in the HT-ISH protocol that may result
in staining differences for either the precipitate or the
background.

Detecting cells is accomplished using a sliding window tech-
nique. A series of square windows traverse the entire image mark-
ing the locations where the signal filled the window. The first 3 x 3
pixel window approximates the average size of a neuron cell body
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Fig. 3. Illustration of automated annotation process for the P7 mouse brain. (A) Cnr1 expression as collected by HT-ISH protocols with strength of expression labeled at high
magnification. HT imaging is at 100x. (B) Automated expression strength classification using Celldetekt. (a) Original Cnr1 at 50x followed by (b) intensity thresholding results
in (c) cell signal strengths marked by color in a 12.5x image. (C) Standard deformable map number 4 shown here absent of subdivisions. (D) After registration, the quantified
cellular gene expression data is attached to the quadrilaterals in the subdivided standard mesh. (E) The 15 major anatomical regions of the P7 mouse brain are shown here in a
3D stack of the standard maps. (F) Once in the context of the atlas and patterns have been automatically been detected, a textual search at the website www.geneatlas.org can
be used to find genes of interest. In this example, two genes are found matching the criteria of strong scattered expression in the cortex and strong regional expression in the
thalamus. (G) Sophisticated graphical searches take advantage of the subdivision mesh characteristics and web-friendly display to allow users full control of the region(s) of
interest in a search. Users can define their own regions of interest and levels of expression in each region, or they can use genes already in the database as search criteria, or a

combination of these mechanisms.

(~10 pm in diameter) in the image scaled to 3.3 pm/pixel. At loca-
tions where every pixel within the window is precipitate signal,
the point is marked as a cell with +++ gene expression. After scan-
ning through the entire image, signal near the +++ detected
cells are removed by a circular 7 pixel diameter mask to prevent
subsequent re-detection. This sliding window procedure is re-
peated with a 2 x 2 pixel window to detect ++ cells and then a
1 x 1 pixel window to detect + cells. Cells without any dye precip-
itate are next located using the same protocol as for the precipi-
tate-containing cells. Clusters of cells are segmented into

approximately cell-sized units by reducing the image size another
25% to produce a digital false color map with each pixel represent-
ing one cell color-coded by the expression strength of the cell
(Fig. 3Bc).

2.3. Atlas construction
To provide a single common spatial context for gene expression

images, a series of two-dimensional (2D) deformable maps of P7
mouse brain sagittal sections is created utilizing the 11 sagittal tis-
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sue slices comprising Valverde’s P7 mouse brain atlas [29] as a
guide [3,30]. These 2D maps corresponding to 11 standard tissue
sections and defining 15 anatomical structures (Fig. 3E) constitute
an atlas for the mouse brain. Subdivision meshes [22] are used to
represent each map. Each subdivision mesh consists of a coarse
mesh of quadrilaterals plus a set of subdivision rules for generating
increasingly fine quadrilateral meshes that smoothly approximate
the initial coarse mesh (for a detailed description, see the concur-
rent article). Modeling anatomical regions entails tagging each
quadrilateral in the coarse mesh by its associated anatomical re-
gion (Fig. 3C). By applying special subdivision rules to edges and
vertices shared by quadrilaterals with different tags, the fine mesh
accurately models the smooth boundaries between distinct ana-
tomical regions. In addition to precisely fitting the boundaries be-
tween major regions, small internal anatomical subregions are
accurately localized [3].

2.4. Atlas-based registration

Registering the atlas onto the ISH images undergoes the stan-
dard two-step procedure, starting with a global affine transforma-
tion to account for shifts and rotations during image collection,
followed by a local per-vertex deformation to account for anatom-
ical variations [3,30,31]. The general methodologies for performing
the two steps are introduced in the concurrent article in a data-
independent manner. Here, we detail the procedures and modifica-
tions specifically for registering ISH images.
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2.4.1. Image selection

Images that best match the anatomical topology of the 11 stan-
dard tissue sections (see Section 2.3) are selected from the collec-
tion of digitized images [32]. First, for each standard section, a key
anatomical feature was identified (Fig. 4A). Then, an automated
program was developed to perform cross-correlation of the key
anatomical features to all of the histogram-normalized images of
the dataset in order to identify which tissue sections were most
likely to contain the features (Fig. 4B). To facilitate visual validation
- and, if necessary, a user-decided correction of this step - the
implementation displays thumbnail representations of all of the
images in the dataset along with the computed best assigned
match to each standard. Ultimately, for each standard tissue sec-
tion, one unmodified image from the dataset is selected even in
cases where two images may appear to match a standard tissue
section.

2.4.2. Initial global registration

To fit a given section with the subdivision atlas, the mesh is first
deformed onto the tissue using global affine transformation con-
sisting of translations and rotation. The deformation is computed
via standard Principle Component Analysis on the atlas and on
the detected tissue on each image [30].

2.4.3. A statistical atlas for local deformation
After global affine alignment to an image, the atlas needs to be
further adjusted to account for local differences in anatomical

i%{gxg
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Fig. 4. Automated image selection program output. (A) The header at the top of the image output indicates which anatomical features in the standard sections to look for
during visual confirmation of image selection. These are the same features as used during the calculation of the best match via cross-correlation. (B) Main output displays
image thumbnails of all 24 ISH data images along with numbers that label the images as best matching a particular standard section.
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Fig. 5. Automated registration. (A) Flow-chart of automated registration steps. (B) Example of 10 landmarks displayed on a standard tissue section. (C) SVM probability
estimates for pixels around landmark 0. (D) Classification of mesh elements at a boundary between regions. X marks misclassified quadrilaterals, with arrows indicating how
the boundary edge will automatically displace toward the misclassified element. Source: [31] (© 2007 IEEE).

shapes between the atlas and the image. This entails repositioning
each vertex in the coarse subdivision mesh, which can be accom-
plished by formulating a least-square minimization problem
whose goal is to reduce the fitting error between the atlas and
the image while maintaining a low geometric distortion of the at-
las [31].

To more accurately fit an ISH image, we have augmented the at-
las with statistics of the shape of the regions, the location and
appearance of selected anatomical landmarks, and texture varia-
tion at anatomical region boundaries [31]. Specifically, the subdivi-
sion mesh, A;, for each of the 11 standard cross-sections is
associated with a triplet such that A; = (S;,L;,B;), where S; represents
the subdivision mesh shape, L; describes the position and optimal
texture features for selected anatomical landmarks, and B; models
the appearance at the boundaries of anatomical regions. This hy-
brid statistical framework is the key technology for highly refined
automated registration (Fig. 5A). Unlike other image registration
methods, for example [33,34], this is the first approach to combine
subdivision surfaces with landmark deformation, where landmarks
can be both points and boundary contours.

S; is a representation of the shape at multiple subdivision levels
where the shape at each subdivision level is expressed as a linear
combination of the mean shape and shape vectors obtained during
training. These shape vectors are the eigenvectors corresponding to
the eigenvalues that represent the principal modes of shape
variation.

L; captures statistical information about the location and
appearance of selected landmarks. These landmarks are locations
in the image that have a fairly consistent shape and appearance

(Fig. 5B). External boundary landmarks are points of extreme
curvature along the outer boundary of the brain section. Each
boundary landmark is associated with its average and the vari-
ance of a set of parameters including mesh location and curva-
ture of the boundary at the landmark. Internal landmarks are
anatomical subregions generally recognized by a distinctive
change in cell density, such as a cross-section of the anterior
commissure fiber tract. Each internal landmark is associated
with its average and the variance of a set of parameters includ-
ing mesh location and texture-based classification features ac-
quired from training datasets.

B; represents the texture features inside the mesh quadrilaterals
at the region boundaries. A boundary segment is the anatomical
boundary curve between two regions. For each boundary segment,
a class of optimized texture features are defined for classifying
each side of the segment.

2.4.4. Training the statistical atlas

Training the statistical framework is a one-time step per-
formed using a series of mouse brain gene expression images
on which landmarks are marked and the subdivision meshes
are expertly fitted manually [31]. A template is placed on each
landmark and on surrounding areas to extract texture features,
including the moments of an ordered set of sub-windows within
the template, responses of Gabor filters, and Laws’ Texture en-
ergy measures [35]. The texture features are normalized and dis-
cretized using Fayyad and Irani’'s Minimum Description Length
criterion [36]. Information Gain Ratio is used to rank the features
and an optimal set of features for discriminating between the
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Fig. 6. Pattern types and basic pattern assessment. (A) Illustrations of the four types of patterns are shown. Filled circles are expressing cells, and empty circles are non-
expressing cells. “Not detected” has no cells expressing. “Scattered” has a small percentage of cells expressing and evenly distributed throughout the structure. “Ubiquitous”
has a large percentage of cells expressing and evenly distributed throughout the structure. “Regional” has an uneven distribution of cells. (B) The structure in (A) is divided
into four quadrilaterals with the percentage of cells expressing shown in each one. (C) Histograms of the distribution of the percentage of cells expressing in each
quadrilateral are shown for each example. An even distribution of expression across a structure clusters the values on the histogram. This corresponds to a low variance.
Values spread out across the histogram create high variance, which thus indicates differences in expression levels among the structure’s substructures. (D) Automatically
generated annotations for particular regions are displayed for three different genes: lipidosin (Lpd), adenylate cyclase 5 (Adcy5), and somatostatin (Sst).

landmark and its surrounding area is obtained in a Forward
Selection process. A Support Vector Machine (SVM) classifier
[37] is then constructed to distinguish the landmark from its
neighbors using the selected optimal features. Similarly, texture
features are extracted from quadrilaterals at multiple mesh sub-
division levels on opposite sides of anatomical boundaries and
SVM classifiers are built for each boundary segment as with
the landmarks. The number of training samples used is depen-
dent upon the information redundancy of the training dataset.
For our experiments, we chose training samples that captured
a variety of information. Specifically, 30 images were used for
our original training set to generate the results in this paper.
The SWM reduces the possibility of over-fitting by finding the
hyperplane that maximizes the separation between two classes
in multi-dimensional space. Over-fitting was not observed in
the dataset that we used.

2.4.5. Registration using the statistical atlas

Subdivision-based atlases are automatically deformed to new
gene expression images using an energy minimization frame-
work (described in the concurrent article). After affine alignment,
texture features are extracted from pixels within the bounding
boxes and the SVM classifier is applied to classify the pixels
(Fig. 5C). The pixel with the highest probability estimate sur-
rounded by similarly high estimates is selected as the landmark.
Texture features are extracted from quadrilaterals on both sides
of anatomical region segments, and the SVM classifier for each
specific segment classifies these. The region boundaries are
appropriately adjusted to match the classification in the model
(Fig. 5D). The process is repeated at multiple levels of subdivi-
sion [31].

The statistical atlas for registration utilizing shapes, landmarks,
and boundary texture features enables local deformation that
accurately captures the shape of brains. All the shapes in our
mouse brain datasets have been successfully registered using this
approach [31]. However, additional training of the registration
framework may be necessary as the database of mouse brains ex-
pands. This problem can be addressed by adding automatically-fit-
ted images that have been manually verified to the training set.

2.5. Data storage

After registering a standard subdivision mesh to a tissue section
image, each cell-based data point generated by Celldetekt (see Sec-
tion 2.2.2) is associated with the mesh quadrilateral in the overlying
deformed atlas at a fine subdivision level (Fig. 3D). This association,
the image of the tissue section, and all other metadata are stored on
the www.geneatlas.org host web-server, an online database built
using mySQL and Java Servlet pages [3,30]. The association is stored
as an array of floating point values, each being the average gene
expression level within a quadrilateral of the deformed atlas, with
additional multi-resolution summaries used to accelerate region-
based queries [30]. The image stored is an RGBAimage at 12 pum/pix-
el resolution with the gene expression signal Celldetekt information
encoded in the A channel. The image is saved as PNG format
(www.libpng.org) which was selected because it is a widely sup-
ported lossless-compression image format with no patent-based
restrictions on usage [38]. Associated metadata include the gene
name, gene ID, sagittal plane location, status of mesh-fitting process,
mouse identification number, slide number, and links to the high
resolution raw image data at GenePaint.org [10].

Table 1

Pattern annotation variables listed by structure.
Structure o B 7 (%) S (%) x (%)
Cortex 0.7 0.7 50.00 2.00 1.00
Cerebellum 0.72 0.72 45.00 2.00 1.00
Striatum 0.7 0.72 40.00 4.00 1.00
Basal forebrain 0.7 0.7 50.00 3.50 1.00
Amygdala 0.7 0.7 57.00 2.00 1.00
Hippocampus 0.73 0.5 50.00 3.70 1.50
Hypothalamus 0.7 0.5 50.00 1.80 1.00
Thalamus 0.55 0.45 50.00 2.00 0.90
Olfactory bulb 0.65 0.65 50.00 3.50 1.00
Midbrain 0.65 0.7 47.00 3.00 0.80
Pons 0.7 0.7 45.00 2.00 1.00
Medulla 0.7 0.7 45.00 2.00 1.00
Ventral striatum 0.9 0.7 50.00 2.00 1.40
Globus pallidus 0.55 0.7 50.00 2.00 1.00
Septum 0.7 0.7 50.00 3.00 1.00
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2.6. Pattern annotation

ISH patterns in major anatomical structures are customarily
annotated in a textual manner by classifying the expression pat-
terns as ubiquitous (U), scattered (S), regional (R), or not detected
(ND) [39]. With spatial gene expression information now accu-
rately segmented into major anatomical regions by the registered
atlas, pattern annotations are automatically generated for each re-
gion (Fig. 6) [39]. The two key components of an expression pattern
are the number of cells expressing and the distribution of that
expression within a structure. Each structure type possesses its
own unique substructure arrangement, requiring the parameters
used in the annotation algorithm to be assigned on a structure-
by-structure basis (Table 1). The classification of ND is assigned
when the total percentage of cells expressing in the structure is
less than y.

U is assigned to structures in which the total percentage of cells
expressing is greater than y. Between y and 7, the classifications R
and S are differentiated by examining the scaled weighted devia-
tion (SWD) in the percentage of gene expression across the quad-
rilaterals within the region. SWD is weighted during calculation
by the number of cells in each quadrilateral, and scaled by the total
percentage of expression. Regional patterns are indicated by higher
deviations in the distribution of expression across the structure at
subdivision level 1. For SWD greater than «, R is assigned; other-
wise, S is assigned. At very low amounts of expression (between
x and ¢), deviations are calculated at subdivision level 0 and com-
pared to B. In cases where a particular structure exhibits multiple
specific patterns, the most dominant is assigned. This is accom-
plished by calculating pattern separately for each of the expression
strengths and selecting the strongest detected pattern.

2.7. Interactive knowledge discovery applications

2.7.1. Textual queries

Textual queries allow users to search for genes by specifying a
set of search criteria based on expression pattern and strength
for each major anatomical structure of interest [32]. In this inter-
face, each of the 15 major anatomical structures can be restricted
to a particular pattern or set of patterns by selecting one or more
of the corresponding buttons (Fig. 3F). Data associated with the
images that can be used to define the query include the specimen
age and strain, gene symbol, mouse ID, standard section plane
number, fitted status, GenePaint.org identification number, gene
accession number, and Entrez Gene identification number.

2.7.2. Graphical queries

The graphical query is similar to the textual query in that genes
are searched based upon their expression pattern; but in this case,
the graphical interface allows users to define unique regions of
interest by selecting the specific set of quadrilaterals of interest
at any level of subdivision (Fig. 3G) [3]. After defining the region,
users specify the expression strength quad-by-quad as strong,
medium, weak, or none. Alternatively, the expression strength dis-
tribution of genes in the database may be used as the search crite-
ria for this user-defined region. Queries compare expression
patterns using an L; or ? norm of the average gene expression le-
vel on a quad-by-quad basis, and sum the results to calculate an er-
ror value representing the difference between two gene expression
patterns.

2.7.3. Comparative analysis

Representing gene expression patterns quantitatively in a com-
mon coordinate system facilitates the comparison of cellular gene
expression strength and distribution in two different experimental
states [3]. Control and experimentally modified specimens are

simultaneously subjected to HT-ISH for a gene of interest, as any
changes in conditions (e.g., probe lengths, reaction detection dura-
tions) can affect signal amplification, which in turn augments the
quantity of precipitate deposited. Celldetekt is performed on im-
aged specimens and the appropriate standard map is registered
to all tissue sections containing the region(s) of interest. The quad-
rilaterals in the standard mesh overlying the region of interest are
selected. The cellular quantitative gene expression values are then
extracted from these regions and statistically compared. In this
way, blind comparative analysis is performed using a systematic
definition of the region. Comparisons can be made using either
the percentage of cells in a region expressing the gene at a partic-
ular strength, or by simply comparing the total number of cells
in that region expressing above a user-determined strength
threshold.

2.74. Cluster analysis

HT-ISH creates an abundance of information in regards to how
genes express with a high spatial resolution. With an organ such as
a brain that has many different subregions, the tissue itself be-
comes a natural laboratory for expression analysis since the subre-
gions each have their own functions and set of cell types [14].
When expression patterns for many genes are collected in this
fashion and mapped into a common coordinate system, two basic
categories of questions can be answered by clustering techniques.
The first category asks what are the subregions of the brain as de-
fined by gene activities, and what are the gene-based relationships
between disconnected regions (Fig. 7). The second seeks to under-
stand which genes tend to work with each other (i.e., what are the
genetic modules (Fig. 8)). To answer these, a k-means clustering
algorithm can be applied. The iterative process begins after ran-
dom assignment of points to k groups. During each cycle, the cen-
troid (i.e., mean) of each group is calculated and points are
reassigned to the closest centroid. Once the local minima of total
distance between points and centroid is found, the result is stored
and the whole process repeats with the points randomly assigned
to groups again. After multiple iterations, the result that minimizes
total distance between points and centroids is kept. In the case of
partitioning the brain, each of the M quadrilaterals is represented
as a point in N-dimensional space with N equal to the number of
genes in the dataset. The value in each dimension is the percentage
of cells either moderately or strongly expressing for that gene in
the quadrilateral. The kcluster command from the open source
Pycluster python package [40] clusters the points with Euclidean
distance applied to score distances from points to centroids. Genes
are clustered into groups by using the same technique as for the
anatomical subregions, but on the transpose of the point matrix.
In this case, the N-dimensional space has N equal to the number
of quadrilaterals, and the number of M points is the number of
genes.

2.8. Extending pipeline to 3D

We have begun the process of extending this pipeline for auto-
mated atlas-based annotation of gene expression patterns to 3D
datasets. One of the primary challenges in such extension is to cre-
ate a 3D image volume from a stack of 2D ISH images, which is key
to subsequent atlas construction, registration, and spatial queries
[41,42]. However, the sectioning distortion resulting from ISH
experiments yields artifacts when the images are simply stacked
together. As an example, Fig. 9A shows a synthetic sagittal cut
through the middle of a stack of coronal ISH Nissl stained sections.
Note that the cut image is highly discontinuous due to the section-
ing distortion that varies randomly from one slice to the next.

To address this challenge, we developed an elastic deformation
technique based on dynamic programming that smoothly migrates
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Fig. 7. Detecting spatial co-expression. A point is selected and the volume of the brain is locally evaluated for likelihood of expression when the selected point expresses.
Standard cross-sections 2, 6, 9 and 10 are shown (left column to right column). Positions of interest, indicated by the red arrows, are in the following anatomical structures
and substructures: (A) the reticular nucleus in the thalamus; (B) the inferior colliculus of the midbrain; (C) the substantia nigra in the midbrain; (D) layer IV of the

somatosensory cortex; and (E) the striatum.

Fig. 8. Example gene cluster. Clustering genes based on their expression throughout the brain is one method that can identify genes that co-express and perhaps take part in
the same gene network. In this example, 100 genes were clustered into 10 groups using k-means clustering. Displayed in this figure is one of the 10 groups. This group
contains four genes, each of which generally expresses more in the striatum than in other anatomical locations, suggesting a potential relationship between these four genes.

each pixel on a slice to the average location of the corresponding
pixels on multiple neighboring slices [43]. The result when applied
onto a stack of histological sections is a 3D image volume where
any cut exhibits a smooth appearance (Fig. 9B). To apply the meth-
od onto gene expression images, normalization of gene expression
signal is required for HT-ISH datasets where up to eight different
genes will be collected from the same mouse brain by alternating
the sections (Fig. 9C). To this end, expressing and not-expressing
cells are detected using Celldetekt [28], converting binary images
of detected cells to cell density using a Gaussian blur, and applying
linear histogram normalization. On these normalized images, the
warping algorithm can compute the necessary transformations to

remove much of the local sectioning deformations to produce a
volume suitable for automated volumetric atlas registration
(Fig. 9D).

3. Concluding remarks

Discovering which genes are active in different cell populations
of the brain can significantly expand the knowledge of how gene
products interact as well as how they affect biological processes
and human disease. Automated atlas-based annotation provides
a critical step in harnessing the terabytes of data generated by
HT-ISH. The method described in this paper provides a straightfor-
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Fig. 9. (A) Virtual sagittal cross-section through a stack of coronal images aligned using only rigid-body transformations (i.e., translations and rotations) reveal 2D distortion
introduced during sectioning. (B) Virtual section reconstructed using our warping method. Synthetic sagittal section of stacked coronal sections of (C) raw ISH images and (D)

after normalizing gene expression signals and warp-based reconstruction.

ward method to perform interactive knowledge discovery of spa-
tial gene expression datasets. Normally, the biggest challenge in
this process is how to normalize in space the location of gene
expression from different datasets. Due to the relatively small
number of handles controlling the shape of a subdivision atlas -
a prime advantage subdivision possesses over other atlas-based
registration approaches — the approach described here allows an
extremely high level of registration precision as these handles con-
trol the explicit boundaries between major anatomical regions,
while the subdivision mesh smoothly interpolates the interior of
the regions. This enables a variety of knowledge discovery applica-
tions that rely on precise registration, such as quantitative compar-
ative analysis of gene expression in small anatomical regions
across the mouse brain [3,12-14]. The 2D approach is limited to
some extent by the slight variation in slicing angles during data
production, as well as the need to fit multiple meshes per brain.
This requirement for image slice angle to be well-aligned with
the plane of the standard is the greatest challenge for this method,
as poorly sliced data becomes unusable. With the future develop-
ment of a 3D subdivision atlas, this challenge can be overcome
and the overall pipeline can become even more efficient.

Acknowledgments

The following funding mechanisms provided support in part for
the creation of this manuscript: DE-AC05-76RL01830, NSF
DBI0743691, NIH 1R21NS058553-01, and a training fellowship
from the W.M. Keck Foundation to the Gulf Coast Consortia
through the Keck Center for Computational and Structural Biology.

References

[1] U. Albrecht, H.-C. Lu, J.-P. Revelli, X.-C. Xu, R. Lotan, G. Eichele, in: KW. Adolph
(Ed.), Human Genome Methods, CRC Press, Boca Raton, 1997, pp. 93-119.

[2] M.S. Boguski, A.R. Jones, Nat. Neurosci. 7 (2004) 429-433.

[3] J.P. Carson, T. Ju, H.C. Ly, C. Thaller, M. Xu, S.L. Pallas, M.C. Crair, J. Warren, W.
Chiu, G. Eichele, PLoS Comput. Biol. 1 (2005) e41.

[4] J.P. Carson, C. Thaller, G. Eichele, Curr. Opin. Neurobiol. 12 (2002) 562-565.

[5] N. Heintz, Nat. Neurosci. 7 (2004) 483.

[6] E.S. Lein, M.J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger, A. Bernard, A.F. Boe,
M.S. Boguski, K.S. Brockway, E.J. Byrnes, L. Chen, L. Chen, T.M. Chen, M.C. Chin,
J. Chong, B.E. Crook, A. Czaplinska, C.N. Dang, S. Datta, N.R. Dee, A.L. Desaki, T.
Desta, E. Diep, T.A. Dolbeare, M.J. Donelan, H.W. Dong, J.G. Dougherty, B.J.
Duncan, A.J. Ebbert, G. Eichele, LK. Estin, C. Faber, B.A. Facer, R. Fields, S.R.

Fischer, T.P. Fliss, C. Frensley, S.N. Gates, KJ. Glattfelder, K.R. Halverson, M.R.
Hart, J.G. Hohmann, M.P. Howell, D.P. Jeung, R.A. Johnson, P.T. Karr, R. Kawal,
J.M. Kidney, R.H. Knapik, C.L. Kuan, J.H. Lake, A.R. Laramee, K.D. Larsen, C. Lau,
T.A. Lemon, AJ. Liang, Y. Liu, L.T. Luong, ]. Michaels, ].J. Morgan, RJ. Morgan,
M.T. Mortrud, N.F. Mosqueda, L.L. Ng, R. Ng, G.J. Orta, C.C. Overly, T.H. Pak, S.E.
Parry, S.D. Pathak, O.C. Pearson, R.B. Puchalski, Z.L. Riley, H.R. Rockett, S.A.
Rowland, J.J. Royall, M.J. Ruiz, N.R. Sarno, K. Schaffnit, N.V. Shapovalova, T.
Sivisay, C.R. Slaughterbeck, S.C. Smith, K.A. Smith, B.I. Smith, AJ. Sodt, N.N.
Stewart, K.R. Stumpf, S.M. Sunkin, M. Sutram, A. Tam, C.D. Teemer, C. Thaller,
C.L. Thompson, LR. Varnam, A. Visel, RM. Whitlock, P.E. Wohnoutka, C.K.
Wolkey, V.Y. Wong, M. Wood, M.B. Yaylaoglu, R.C. Young, B.L. Youngstrom, X.F.
Yuan, B. Zhang, T.A. Zwingman, A.R. Jones, Nature 445 (2007) 168-176.

[7] S. Magdaleno, P. Jensen, C.L. Brumwell, A. Seal, K. Lehman, A. Asbury, T.
Cheung, T. Cornelius, D.M. Batten, C. Eden, S.M. Norland, D.S. Rice, N. Dosooye,
S. Shakya, P. Mehta, T. Curran, PLoS Biol. 4 (2006) e86.

[8] L. Neidhardt, S. Gasca, K. Wertz, F. Obermayr, S. Worpenberg, H. Lehrach, B.G.
Herrmann, Mech. Dev. 98 (2000) 77-94.

[9] M. Ringwald, ]J.T. Eppig, D.A. Begley, J.P. Corradi, I.]. McCright, T.F. Hayamizu,
D.P. Hill, J.A. Kadin, J.E. Richardson, Nucleic Acids Res. 29 (2001) 98-101.

[10] A. Visel, C. Thaller, G. Eichele, Nucleic Acids Res. 32 (2004) D552-D556.

[11] S. Gong, C. Zheng, M.L. Doughty, K. Losos, N. Didkovsky, U.B. Schambra, N.J.
Nowak, A. Joyner, G. Leblanc, M.E. Hatten, N. Heintz, Nature 425 (2003) 917-
925.

[12] J.R. Gatchel, K. Watase, C. Thaller, ].P. Carson, P. Jafar-Nejad, C. Shaw, T. Zu, H.T.
Orr, H.Y. Zoghbi, Proc. Natl. Acad. Sci. USA 105 (2008) 1291-1296.

[13] B.E. McGill, S.F. Bundle, M.B. Yaylaoglu, ].P. Carson, C. Thaller, H.Y. Zoghbi, Proc.
Natl. Acad. Sci. USA 103 (2006) 18267-18272.

[14] A. Visel, J. Carson, J. Oldekamp, M. Warnecke, V. Jakubcakova, X. Zhou, C.A.
Shaw, G. Alvarez-Bolado, G. Eichele, PLoS Genet. 3 (2007) 1867-1883.

[15] M.B. Yaylaoglu, B.M. Agbemafle, T.J. Oesterreicher, M.]. Finegold, C. Thaller, S.J.
Henning, Am. ]. Physiol. Gastrointest. Liver Physiol. 291 (2006) G1041-G1050.

[16] W.J. Bug, W.W. Wong, C. Gustafson, G.A. Johnson, M.E. Martone, D.L. Price, G.D.
Rosen, RW. Williams, 1. Zaslavsky, ]. Nissanov, in: IEEE EMBS Conference on
Neural Engineering, Kohala Coast, Hawaii, 2007.

[17] J.H. Christiansen, Y. Yang, S. Venkataraman, L. Richardson, P. Stevenson, N.
Burton, R.A. Baldock, D.R. Davidson, Nucleic Acids Res. 34 (2006) D637-D641.

[18] L. Ng, S.D. Pathak, C. Kuan, C. Lau, H. Dong, A. Sodt, C. Dang, B. Avants, P.
Yushkevich, J.C. Gee, D. Haynor, E. Lein, A. Jones, M. Hawrylycz, IEEE/ACM
Trans. Comput. Biol. Bioinform. 4 (2007) 382-393.

[19] A. MacKenzie-Graham, E.F. Lee, L.D. Dinov, M. Bota, D.W. Shattuck, S. Ruffins, H.
Yuan, F. Konstantinidis, A. Pitiot, Y. Ding, G. Hu, R.E. Jacobs, A.W. Toga, ]. Anat.
204 (2004) 93-102.

[20] H.W. Dong, The Allen Reference Atlas: A Digital Color Brain Atlas of the C57BL/
6] Male Mouse, Wiley, 2008.

[21] G. Paxinos, K.B.J. Franklin, The Mouse Brain in Stereotaxic Coordinates,
Academic, San Diego, California, London, 2001.

[22] J. Warren, H. Weimer, Subdivision Methods for Geometric Design: A
Constructive Approach, Morgan Kaufmann, San Francisco, 2002.

[23] J. Mazziotta, A. Toga, A. Evans, P. Fox, ]. Lancaster, K. Zilles, R. Woods, T. Paus, G.
Simpson, B. Pike, C. Holmes, L. Collins, P. Thompson, D. MacDonald, M.
lacoboni, T. Schormann, K. Amunts, N. Palomero-Gallagher, S. Geyer, L.
Parsons, K. Narr, N. Kabani, G. Le Goualher, ]. Feidler, K. Smith, D. Boomsma,
H. Hulshoff Pol, T. Cannon, R. Kawashima, B. Mazoyer, J. Am. Med. Inform.
Assoc. 8 (2001) 401-430.



J. Carson et al./Methods 50 (2010) 85-95 95

[24] U. Herzig, C. Cadenas, F. Sieckmann, W. Sierralta, C. Thaller, A. Visel, G. Eichele,
in: G. Bock, J. Goode (Eds.), Novartis Foundation Symposium: Complexity in
Biological Information Processing, vol. 239, John Wiley & Sons, Chicester, 2001,
pp. 129-149.

[25] M.N. Bobrow, T.D. Harris, K.J. Shaughnessy, G.J. Litt, J. Immunol. Methods 125
(1989) 279-285.

[26] H.M. Kerstens, P.J. Poddighe, A.G. Hanselaar, J. Histochem. Cytochem. 43
(1995) 347-352.

[27] CK.Lee, S.M. Sunkin, C. Kuan, C.L. Thompson, S. Pathak, L. Ng, C. Lau, S. Fischer,
M. Mortrud, C. Slaughterbeck, A. Jones, E. Lein, M. Hawrylycz, Genome Biol. 9
(2008) R23.

[28] J.P. Carson, G. Eichele, W. Chiu, J. Microsc. 217 (2005) 275-281.

[29] F. Valverde, Golgi Atlas of the Postnatal Mouse Brain, Springer-Verlag, New
York, 1998.

[30] T. Ju, J. Warren, G. Eichele, C. Thaller, W. Chiu, J. Carson, in: L. Kobbelt, P.
Schroder, H. Hoppe (Eds.), Eurographics Symposium on Geometry Processing,
Eurographics Association, Aachen, Germany, 2003, pp. 166-176.

[31] M. Bello, T. Ju, J. Carson, J. Warren, W. Chiu, l.A. Kakadiaris, IEEE Trans. Med.
Imaging 26 (2007) 728-744.

[32] J.P. Carson, Quantitative Annotation and Analysis of Gene Expression Patterns
with an Atlas of the Mouse Brain, Baylor College of Medicine, Houston, 2004.

[33] P.L. Bazin, D.L. Pham, Med. Image Anal. 12 (2008) 616-625.

[34] D. Shen, C. Davatzikos, IEEE Trans. Med. Imaging 21 (2002) 1421-
1439.

[35] K. Laws, Textured Image Segmentation, University of Southern California, Los
Angeles, 1980.

[36] U.M. Fayyad, K.B. Irani, Mach. Learn. 8 (1992) 87-102.

[37] V. Vapnik, The Nature of Statistical Learning Theory, Springer, Berlin, 2000.

[38] R.H. Wiggins 3rd, H.C. Davidson, H.R. Harnsberger, J.R. Lauman, P.A. Goede,
Radiographics 21 (2001) 789-798.

[39] J.P. Carson, T. Ju, C. Thaller, J. Warren, M. Bello, 1. Kakadiaris, W. Chiu, G.
Eichele, in: 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, San Francisco, CA, 2004.

[40] M.J. de Hoon, S. Imoto, J. Nolan, S. Miyano, Bioinformatics 20 (2004) 1453-
1454.

[41] T. Ju, J. Warren, ]J. Carson, G. Eichele, W. Chiu, M. Bello, I. Kakadiaris, Vis.
Comput. 21 (2005) 764-773.

[42] P.K. Commean, T. Ju, L. Liu, D.R. Sinacore, M.K. Hastings, M.J. Mueller, ]. Digit.
Imaging (2009), doi:10.1007/s10278-008-9118-z.

[43] T. Ju, ]J. Warren, ]J. Carson, M. Bello, 1. Kakadiaris, W. Chiu, C. Thaller, G. Eichele,
J. Neurosci. Methods 156 (2006) 84-110.


http://dx.doi.org/10.1007/s10278-008-9118-z

	Automated pipeline for atlas-based annotation of gene expression patterns: Application to postnatal day 7 mouse brain
	Introduction
	Description of method
	Generating gene expression images
	Riboprobe synthesis
	Tissue preparation
	High-throughput in situ hybridization
	Microscopy

	Detection of gene expression
	Categories of signal strength
	Signal detection

	Atlas construction
	Atlas-based registration
	Image selection
	Initial global registration
	A statistical atlas for local deformation
	Training the statistical atlas
	Registration using the statistical atlas

	Data storage
	Pattern annotation
	Interactive knowledge discovery applications
	Textual queries
	Graphical queries
	Comparative analysis
	Cluster analysis

	Extending pipeline to 3D

	Concluding remarks
	Acknowledgments
	References


