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Inverse Reconstruction Method for Segmented Multishot
Diffusion-Weighted MRI With Multiple Coils

Martin Uecker, Alexander Karaus, and Jens Frahm

Each k-space segment in multishot diffusion-weighted MRI
is affected by a different spatially varying phase which is
caused by unavoidable motions and amplified by the diffusion-
encoding gradients. A proper image reconstruction therefore
requires phase maps for each segment. Such maps are com-
monly derived from two-dimensional navigators at relatively
low resolution but do not offer robust solutions. For exam-
ple, phase variations in diffusion-weighted MRI of the brain
are often characterized by high spatial frequencies. To over-
come this problem, an inverse reconstruction method for
segmented multishot diffusion-weighted MRI is described that
takes advantage of the full k-space data acquired from mul-
tiple receiver coils. First, the individual coil sensitivities are
determined from the non-diffusion-weighted acquisitions by
regularized nonlinear inversion. These coil sensitivities are
then used to estimate accurate motion-associated phase
maps for each segment by iterative linear inversion. Finally,
the coil sensitivities and phase maps serve to reconstruct
artifact-free images of the object by iterative linear inver-
sion, taking advantage of the data of all segments. The
efficiency of the new method is demonstrated for segmented
diffusion-weighted stimulated echo acquisition mode MRI of
the human brain. Magn Reson Med 62:1342-1348, 2009.
© 2009 Wiley-Liss, Inc.
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In MRI, segmented k-space acquisitions are often attrac-
tive because they reduce the length of an acquired echo
train. For example, in echo-planar-imaging a shorter train
of gradient echoes translates into reduced susceptibility
artifacts, while in rapid stimulated echo acquisition mode
(STEAM) MRI, fewer stimulated echoes yield higher flip
angles and an improved signal-to-noise ratio (SNR), as
recently demonstrated for black-blood cardiac MRI (1).
Unfortunately, however, segmented multishot acquisitions
are not easily applicable to diffusion-weighted (DW) MRIL
This is because of the occurrence of spatially varying (non-
linear) phase variations, which are caused by unavoidable
nonrigid brain pulsations and patient movements during
the action of the self-compensating diffusion-encoding gra-
dients. This phase information differs for each segment
and therefore prohibits a direct image reconstruction by
a simple combination of all k-space data.

Current attempts to reconstruct motion-affected seg-
mented k-space data make use of low-resolution phase
maps that are either obtained by a two-dimensional
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navigator acquisition (2-4) or extracted from the fully
sampled center of a self-calibrating k-space trajectory (5-7).
As a common feature, these techniques rely on the assump-
tion that the motion-associated phase varies only smoothly,
so that it can be accurately described by low spatial fre-
quencies. In DW MRI of the human brain, this condition
is not generally fulfilled. A robust and artifact-free image
reconstruction from segmented k-space acquisitions there-
fore requires high-resolution phase maps. These experi-
mental approaches, however, face shortcomings: For DW
echo-planar-imaging, a large two-dimensional navigator
may be compromised by susceptibility problems that limit
the accuracy of the resulting phase maps, while for DW
STEAM MR, the need for multiple navigator acquisitions
would eliminate the SNR advantage of a shortened echo
train.

In this work, an alternative solution is presented that is
based on an iterative inverse image reconstruction tech-
nique that exploits the information from the entire k-space,
as well as from multiple receiver coils. The new method
allows for the reconstruction of DW images from segmented
k-space acquisitions without motion-induced artifacts and
without the need for additional navigator acquisitions. It
provides a more general and robust solution than a recent
proposal by Skare and colleagues (8), which relies on
a standard noniterative sensitivity encoding (SENSE) or
generalized autocalibrating partially parallel acquisition
(GRAPPA) reconstruction and a homogeneously sampled
echo-planar-imaging trajectory.

THEORY
Segmented DW MRI Using Multiple Coils

The MRI signal obtained from N receiver coils is given by
(1) = / dxe % pF)g (%) j=1,--,N (1]

Here, p denotes the spin density, c¢; the coil sensitivities,

and k(t) the k-space trajectory. In DW MRI, as in many
other imaging scenarios, phase effects have to be taken into
account by including nontrivial phase maps

st = [dre™ 5 p@eDgx) [T L2

The index describes the segment I of a multishot acqui-
sition with M segments. Because in DW MRI the phase
information is not consistent between different segments,
the situation requires individual phase maps e/ for
each segment I. In most current approaches, phase maps
and coil sensitivity maps are obtained with the use of a
two-dimensional navigator acquisition or from additional
autocalibration lines in the k-space center. Given those
maps, the resulting reconstruction problem is linear and
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can be solved with iterative methods such as conjugate
gradient—based versions of SENSE.

Recently, new algorithms for autocalibrated parallel
imaging were presented, which combine the estimation of
the coil sensitivities c; and the calculation of the image p
into a nonlinear reconstruction problem (9,10). The advan-
tage of these nonlinear inversion techniques, namely, a
better estimation of both the image and coil sensitivities,
is that they allow for higher reduction factors and fewer
autocalibration lines than linear inversion techniques. In
a similar way, nonlinear inversion might be helpful to
improve the phase maps in multishot DW MRI as the
approach would include the entire available k-space data,
instead of relying on a small number of navigator echoes.
In fact, after only minor adjustments of the nonlinear inver-
sion algorithm presented earlier (10), its application to
DW MRI emerged as a generic alternative to conventional
reconstruction methods. Despite some advances, however,
the algorithm did not yield completely satisfactory results
for data sets with pronounced high-frequency phase varia-
tions. For this reason, this work presents the development
of a new multistep algorithm, which allows one to robustly
reconstruct even severely motion-disturbed data. Because
the first step of the procedure relies on regularized nonlin-
ear inversion for autocalibrated parallel imaging (10), the
respective algorithm will be briefly summarized in the next
section.

Regularized Nonlinear Inversion

In regularized nonlinear inversion, the signal equation is
treated as a nonlinear operator equation that maps the
unknown spin density p and coil sensitivities ¢; to the data
acquired from all coils and segments

F:x:=(p,c1,--,¢) > (51, ,5)) [3]

The operator is given by

PF{c: - p) L
1
F:xr— : with x=1| . [4]
PF{cn - p}
CN

where F is the (multidimensional) Fourier transform and P
is the orthogonal projection onto the trajectory. This nonlin-
ear equation is then solved with the iteratively regularized
gauss newton method (11). Starting from an initial guess
and in order to achieve an improved estimation xj. 1, each
iteration solves the following optimization problem that
corresponds to a regularized linearization of the operator
equation around the current estimate x:

Xjer1 — X = argming, {[|IDF (x;)éx + F(x) — y |3
+ agl|Wixx + 8x — xo)ll3}- 5]
Here, DF denotes the derivative of the operator F, which

can be calculated by using the linearity of the Fourier
transform and the product rule of derivatives
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dp
dey PF{p-dci +dp-ci}

DFx)| . |= : 6]

d(:,N PF{p-dcy +dp - cn}
The weighting matrix W penalizes high frequencies in the
coil sensitivity part of x with the use of (1 + a - ||k||?)!
and properly chosen constants. For the object part, W con-
tains the identity matrix, which leads to a conventional
L,-regularization for the image. The degree of regulariza-
tion is reduced in each iteration according to oj = Olg(%)k.
The total number of iterations determines the final regu-
larization, which controls the tradeoff between noise and
artifact.

The algorithm is applicable to arbitrary sampling pat-
terns or k-space trajectories as long as the k-space center
is fully sampled. It makes optimal use of all receiver coils
and utilizes all acquired k-space data, including reference
lines for image reconstruction. A fundamental property of
the weighting matrix W, which renders the algorithm capa-
ble of solving the bilinear problem for the coil sensitivity
maps ¢; and the image at the same time, is the assump-
tion that the coil sensitivities are much smoother than the
image.

Adaptation to Segmented MultiShot DW MRI

By combining the coil sensitivities ¢; and the motion-
associated phase maps e'P! into N x M generalized maps
cpy(x) = elPI®) ¢j(x), the mathematical problem becomes
identical to that of autocalibrated parallel imaging. In fact,
when including a low number of reference lines in each
segment of a multishot acquisition, the regularized nonlin-
ear inversion algorithm may be directly applied for image
reconstruction. The implicit combination of the coil sensi-
tivity maps and motion-associated phase maps, however,
is physically unmotivated as the occurrence of high spa-
tial frequencies in the phase maps violates the assumption
of spatial smoothness for the coil profiles. It nevertheless
turns out that a proper choice of the weighting matrix W
offers better image quality than obtainable by a simple
navigator-based approach.

An improved solution may be achieved with the use
of a two-step procedure. First, the non-DW images are
reconstructed by parallel imaging using nonlinear inver-
sion. This step also yields respective coil sensitivity maps,
which in a subsequent step are exploited to calculate indi-
vidual images for each segment by iterative linear inver-
sion. These images have the same motion robustness as any
other single-shot acquisition, so that a final image may be
calculated by averaging the magnitude images from all seg-
ments. This two-step method mimics the ideas developed
for DW echo-planar-imaging by Skare et al. (8) but differs in
the use of the nonlinear inversion algorithm to obtain opti-
mum coil sensitivities in the first step. In general, however,
the ill-conditioned parallel image reconstructions for indi-
vidual segments lead to a high noise amplification, which
affects the SNR of the final combined image.

For this reason, the above two-step method was comple-
mented by another parallel image reconstruction process
based on iterative linear inversion. This third step replaces
the simple averaging of images from all segments by a true
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reconstruction of the final image and therefore takes advan-
tage of all data from all segments and coils. The required
phase maps for each segment are obtained from the images
calculated in the second step and possess the same reso-
lution as the final image. The algorithm retains the motion
robustness of the two-step method while avoiding its inher-
ent noise amplification. Thus, the proposed three-step
method comprises three consecutive calculations:

(1) In a first step, a non-DW image, that is, an image with-
out diffusion encoding but otherwise identical acquisition
parameters, is reconstructed from the data of all segments
by regularized nonlinear inversion, as described above.
In this step, all phase issues are ignored. This is possi-
ble because the relevant brain motions do not give rise to
pronounced phase variations in the absence of diffusion-
encoding gradients. The algorithm simultaneously recov-
ers a high-quality image and sensitivity profile for each
receiver coil.

(2) In a second step, complex-valued DW images are
reconstructed separately for each segment (and all diffu-
sion directions) by linear inversion, that is, with the use
of an iterative conjugate-gradient version of the SENSE
algorithm. This calculation takes advantage of the coil
sensitivities ¢; determined in the first step.

(3) In a third step, real-valued DW images are recon-
structed from the data of all segments, again by iterative
SENSE. This resonstruction uses the coil sensitivities c;
from the first step and the phase maps e'?! that are avail-
able from the images of each segment in the second step.
This final step is similar to navigator-based reconstructions
but differs in its use of motion-associated phase maps with
much higher spatial resolution.

Taken together, the first step serves to calculate the coil
sensitivity maps while ignoring phase problems, the sec-
ond step estimates high-resolution phase maps that repre-
sent motion-associated phase variations (for each segment),
and the third step calculates real-valued images (com-
bining the data of all segments) by using the previously
determined coil sensitivities and phase maps.

MATERIALS AND METHODS

Experiments were performed at 3Tesla(T) (TIM Trio;
Siemens Healthcare, Erlangen, Germany) using either an
eight-channel or 32-channel phased-array head coil. Apart
from preliminary studies of water phantoms, applications
involved diffusion tensor imaging of the brain of young
healthy adults. Written informed consent was obtained
from all subjects prior to the examination.

Segmented DW MRI was based on a rapid STEAM MRI
sequence (12,13) without cardiac gating. As shown in
Fig. 1a, the first 90° pulse of the STEAM sequence is
replaced by a spin-echo diffusion module 90° — DW —
180° — DW — spin-echo, while the final acquisition part
is repeated in order to generate n stimulated echoes (STE)
— corresponding to n Fourier lines — for each segment.
This readout interval employs radiofrequency pulses with
variable flip angles to ensure similar signal strengths for
each stimulated echo. The flip angles may be iteratively
calculated according to

ai_q = arctan(sin ;) - e TR/ T (7]
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FIG. 1. a: Schematic diagram of a segmented multi-shot STEAM
diffusion tensor imaging sequence comprising an initial spin-echo
(SE) diffusion module and a high-speed STEAM MRI sequence. The
sequence generates differently phase-encoded stimulated echoes
(STE) by repeating the final readout interval with variable low-flip
angle RF pulses («, repetition time TRgrte). The acquisition of mul-
tislice diffusion-weighted images is repeated for multiple segments
and different diffusion-encoding gradient directions (repetition time
TR). b: Coverage of (segmented) k-space for Cartesian encoding
with centric reordering. The example refers to the acquisition of 84
Fourier lines with the use of three segments and eight reference lines.
For details see text.

with ¢, = 90° and T; the spin-lattice relaxation time. For
studies of the human brain, T; was chosen to be 800 ms for
white matter at 3 T.

Diffusion tensor imaging was performed at 2-mm
isotropic spatial resolution using one non-DW image and
24 DW images with b values of 1000 s mm~2 along differ-
ent directions. A total of 51 transverse-to-coronal 2-mm-
thick sections (orientation along the anterior to posterior
commissure) covered the brain with a rectangular 168 x
192mm? field of view and a matrix of 84 x 96 complex
data points (corresponding to a full Fourier acquisition).
For display purposes, individual DW images were mildly
processed by adaptive filtering, taking into account the
local intensity distribution and continuation of structures
(software supplied by the manufacturer).

The coverage of k-space by segmented acquisitions with
central reference lines is illustrated in Fig. 1b. The exam-
ple refers to the case of three segments and eight reference
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FIG. 2. Motion-associated phase maps from a four-segment DW
MRI data set of the human brain (single section). The images were
obtained during application of the second step of the proposed
three-step method. They represent a non-DW image (upper left cor-
ner) and all DW images (b = 1000smm~—2, 24 directions) for one
selected segment. The color encodes phase values between 0 and
2 7. Some images are affected by marked phase changes with high
spatial frequencies (arrows).

lines. For the abovementioned image matrix, three seg-
ments reduce the number of k-space lines (stimulated
echoes) per segment from 84 to 33 or 34. While a simple
division would lead to 28 lines that homogeneously cover
the entire k-space, the use of eight reference lines adds five
or six more lines, not counting those lines that are already
included in the original 28 lines.

For the sequence with three segments and eight refer-
ence lines, the repetition time per segment was 15.3 s for 51
sections. The corresponding measuring time was 19 min for
a diffusion tensor imaging data set with 24 diffusion direc-
tions. Studies with four segments and 16 reference lines
yielded 33 lines per segment, a repetition time of 15.0s,
and a measuring time of 25 min. The total reconstruction
time on a computer with two quad-core central processing
units was 7 min for the three-segment data set with eight
channels and 30 min for the four-segment data set with 32
channels.

The non-DW images were obtained with nonlinear inver-
sion using weights for the coil sensitivities that were
calculated according to (1 + 225 - || k||?)!®. The initial regu-
larization parameter was set to ¢y = 1 and reduced in each
step of the four-step iteration process. The linear inver-
sion algorithm for the estimation of the DW images for
individual segments was regularized with @ = 0.1. The
final reconstruction of the combined DW image from all
segments employed a regularization with « = 0.01. This
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iteration process was stopped when the residual became
smaller than 107%.

RESULTS

Figure 2 shows motion-associated phase maps for a
selected section and one segment of a four-segment DW
MRI data set of the human brain. These maps were esti-
mated according to the second step of the proposed recon-
struction algorithm, taking into account the coil sensitivity
maps obtained in the first step. The phase maps refer to
the non-DW image (upper left corner) and 24 DW images.
The color code facilitates the recognition of major phase
changes. The absence of any visible phase variations in
the non-DW image confirms the assumption of a con-
stant phase in the first step, that is, for the determination
of the coil sensitivities from the non-DW acquisitions by
regularized nonlinear inversion. While most DW images
lead to maps with only moderate phase variations, some
images are affected by phase changes with high spatial

FIG. 3. DW images (b = 1000 s mm~2, four sections) reconstructed
from a three-segment DW MRI data set of the human brain with
the use of (a) a direct application of the nonlinear inversion algo-
rithm, (b) a two-step approach averaging the magnitude images
reconstructed for individual segments, and (c) the proposed three-
step method. The motion-induced signal void obtained for the first
approach (arrows) is avoided by the more complex strategies, while
the three-step method further reduces the sensitivity of the two-step
approach to noise.
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frequencies (arrows). In particular, this applies to the vicin-
ity of the brain stem where brain pulsations are most
pronounced.

Figure 3 compares the performance of three different
reconstruction techniques for four selected sections of a
three-segment acquisition. The results shown in Fig. 3a
represent a direct application of the nonlinear inversion
algorithm. It yields the final DW image in only one recon-
struction step but merges the information from the coil
sensitivities and phase variations into a single map. In this
case, the images still suffer from residual motion artifacts
(some signal void, arrows). Such problems are avoided by
the two- and three-step methods shown in Fig. 3b and c,
respectively. However, because the two-step method aver-
ages the noise-affected magnitude images from the individ-
ual segments, the final DW images (Fig. 3b) exhibit a lower
SNR than the images obtained by the proposed three-step
method (Fig. 3c) in spite of an identical regularization.

The general performance of the new method is demon-
strated in Figs. 4 and 5 for a three- and four-segment
acquisition, respectively. Figure 4 summarizes 24 of 51
DW images of a multislice data set for a single diffusion
direction (Fig. 4a), as well as all 24 DW images of a sin-
gle section (Fig. 4b). Finally, using the proposed algorithm,
Fig. 5 shows non-DW images, DW images for one diffu-
sion direction, isotropically DW images, and maps of the
fractional anisotropy for four selected sections.

Uecker et al.

DISCUSSION

It is common knowledge that segmented multishot DW
MRI is affected by motion-associated phase differences
that preclude the reconstruction of artifact-free images
by a straightforward combination of respective k-space
segments. Here it is demonstrated that the typical phase
variations in DW MRI of the human brain that are due
to cardiac-induced brain pulsations and residual sub-
ject movements cannot be represented by low-resolution
k-space data, as usually obtained from (external) navigator
acquisitions or (internal) autocalibration or reference lines.
Instead, a substantial fraction of DW images presents with
phase variations that have to be characterized at full spatial
resolution using the entire available k-space data.

In a first attempt, the direct application of a regularized
nonlinear inversion algorithm turned out to be suboptimal
as it forces smooth (low-resolution) coil sensitivities and
irregular (high-resolution) motion-associated phase maps
into a single “reference” map that complements the image
of the true object. An improvement was achieved by a two-
step procedure that first reconstructs the non-DW images
by nonlinear inversion and then exploits the respective coil
sensitivities to obtain DW images for all segments with the
use of an iterative SENSE-like algorithm. However, when
simply averaging the magnitude images of the individual
segments to calculate the desired DW image (8), then the

FIG. 4. a: Selected 24 of 51 multislice DW images for a single diffusion direction and (b) all 24 DW images of a single section (b =
1000 s mm~2) reconstructed from a three-segment DW MRI data set of the human brain with the proposed three-step method.
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FIG. 5. a: Non-DW images, (b) DW images for a single diffusion
direction b(= 1000smm~2), (c) isotropically DW images, and (d)
maps of the fractional anisotropy reconstructed from a four-segment
DW MRI data set of the human brain with the proposed three-step
method (four sections).

enhanced noise sensitivity of the ill-conditioned recon-
struction problem for the undersampled segments affects
the SNR of the final image. The least motion sensitivity
and best SNR were obtained by adding another reconstruc-
tion by iterative linear inversion that exploits both the coil
sensitivities from the first step and the motion-associated
phase maps that may be extracted from the reconstructions
of the second step. Because this third step uses the comple-
mentary k-space data from all segments, it is much better
conditioned than the reconstructions from individual seg-
ments in the second step. The corresponding absence of any
detectable noise amplification during the final reconstruc-
tion leads to a better SNR than obtainable by the two-step
method.

In comparison with other reconstruction techniques for
segmented motion-affected data sets, the main advantage
of the proposed three-step method is the consideration
of phase disturbances with high spatial frequencies. With
respect to the work by Skare et al. (8), the approach further
benefits from the high-quality coil sensitivities obtained
by nonlinear inversion in the first step, the more flexible
conjugate gradient-based version of the SENSE algorithm
in the second step (see below), and the avoidance of
any noise amplification in the third true reconstruction
step.

The current implementation employed a Cartesian
encoding scheme wherein each segment of both the non-
DW and the DW acquisitions the center of k-space is fully
sampled by eight or 16 lines. It should be noted, however,
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that the reference lines for the DW images are not necessar-
ily required for the proposed three-step algorithm. Their
use was originally motivated to allow for a fair comparison
with the direct use of the nonlinear inversion technique,
while later trials with reference lines and iterative SENSE-
like reconstructions in the second and third step helped to
improve the SNR. As far as non-DW images are concerned,
the nonlinear inversion technique has already been demon-
strated to be much less sensitive to a low number of central
reference lines than conventional approaches (10).

In addition, also other specific aspects of the actual work
such as the use of a full Fourier acquisition or even the
choice of a Cartesian encoding scheme pose no general
restrictions for the three-step method. Preliminary trials of
both partial Fourier schemes and radial encoding schemes
for the same segmented DW STEAM MRI sequence proved
to be successful.

In order to be applicable, the proposed method has to
meet only two experimental conditions: (i) the non-DW
images must be reconstructable by nonlinear inversion, and
(ii) each undersampled segment must contain enough data
to allow for a reasonable reconstruction by parallel imag-
ing, e.g., iterative SENSE. The first condition simply refers
to the fact that the joint k-space of the non-DW images
from all segments constitutes a fully sampled center. It is
needed to properly estimate the coil sensitivities by regu-
larized nonlinear inversion. The second condition requires
the k-space lines in each segment of the DW images to be
sampled in a sufficiently interleaved and dense manner to
enable adequate reconstructions by parallel imaging. Apart
from these requirements, however, the algorithm imposes
no further constraints on the trajectory.

An interesting question arises for the dependence of
the final image on the accuracy or noise of the estimated
phase maps. For the experimental parameters chosen in
this work, no difficulty was observed. In general, however,
this may become a concern for very high reduction factors,
that is, a large number of segments and a correspondingly
ill-conditioned linear system. A possible solution may be
to constrain the second reconstruction step by an even
stronger regularization. Of note, the choice of regulariza-
tion is not critical in the first and third step. Another
possible source of reconstruction error may be due to alter-
ations of the coil sensitivities that could occur due to
severe macroscopic motions during the acquisition pro-
cess. If this does not lead to a total corruption of the data
set but emerges as a tractable problem, then a possible
remedy may be obtained by using a regularized nonlinear
inversion algorithm also in the second step. This would
allow for a re-estimation of the coil sensitivities for each
segment.

Finally, a most elegant algorithm to tackle the recon-
struction problem in segmented DW MRI would be a reg-
ularized nonlinear inversion method that simultaneously
treats coil sensitivities, motion-associated phase maps, and
an object image as three independent unknowns. Such a
method should achieve the same quality and robustness
as the three-step algorithm proposed here but not suffer
from the need to first reconstruct images from individ-
ual segments. Unfortunately, preliminary trials required
a good initial guess for the phase maps, which so far
renders the approach useless. Nevertheless, foreseeable
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improvements of the algorithm are likely to alter the
situation in future.

CONCLUSIONS

This work presents a new inverse reconstruction method
for segmented multishot DW MRI that is based on the con-
cepts of parallel imaging. Experimental applications deal
with DW STEAM MRI of the human brain using three or
four segments. The algorithm first determines separate coil
sensitivity and motion-associated phase maps for each seg-
ment by taking advantage of the entire k-space data from
multiple receiver coils. Subsequently, these maps are used
to reconstruct object images without motion artifacts, again
by parallel imaging based on the data from all segments. In
contrast to existing approaches, the proposed method pro-
vides robust solutions without compromised SNR, even in
cases where the phase variations are characterized by high
spatial frequencies.
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