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SUMMARY

Small regulatory RNAs including small interfering
RNAs (siRNAs) and microRNAs (miRNAs) guide Argo-
naute (Ago) proteins to specific target RNAs leading
to mRNA destabilization or translational repression.
Here, we report the identification of Importin 8 (Imp8)
as a component of miRNA-guided regulatory path-
ways. We show that Imp8 interacts with Ago proteins
and localizes to cytoplasmic processing bodies (P
bodies), structures involved in RNA metabolism.
Furthermore, we detect Ago2 in the nucleus of HeLa
cells, and knockdown of Imp8 reduces the nuclear
Ago2 pool. Using immunoprecipitations of Ago2-
associated mRNAs followed by microarray analysis,
we further demonstrate that Imp8 is required for the
recruitment of Ago protein complexes to a large set
of Ago2-associated target mRNAs, allowing for effi-
cient and specific gene silencing. Therefore, we
provide evidence that Imp8 is required for cytoplasmic
miRNA-guided gene silencing and affects nuclear
localization of Ago proteins.

INTRODUCTION

Small noncoding RNAs including microRNAs (miRNAs), small

interfering RNAs (siRNAs), and Piwi-interacting RNAs (piRNAs)

are important regulators of gene expression in many different

organisms (Filipowicz et al., 2005; Seto et al., 2007; Zamore

and Haley, 2005). miRNA genes are transcribed by RNA poly-

merases II and III generating primary miRNA transcripts, which

are further processed to stem-loop-structured miRNA precur-

sors by the nuclear RNase III Drosha and its partner DGCR8/

Pasha (Bushati and Cohen, 2007). Pre-miRNAs are exported to

the cytoplasm where processing of Dicer, another RNase III

enzyme, generates 21–23 nucleotide (nt) long double-stranded
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(ds) miRNA/miRNA* intermediates with characteristic 2 nt 30

overhangs and 50 phosphate groups (Meister and Tuschl,

2004; Zamore and Haley, 2005). After further processing and/or

unwinding steps, one strand gives rise to the mature miRNA

and is incorporated into miRNA-protein complexes often

referred to as miRNPs (Leuschner et al., 2006; Matranga et al.,

2005; Mourelatos et al., 2002; Rand et al., 2005).

Members of the Argonaute protein family constitute the

cellular binding partners of miRNAs as well as other small

RNAs and are therefore key components of miRNPs. The human

genome encodes for eight different Argonaute genes, which can

be phylogenetically divided into four Ago and four Piwi subfamily

members (Peters and Meister, 2007; Tolia and Joshua-Tor,

2007). Expression of the Piwi subfamily members HIWI1-3 and

HILI seems to be restricted to testes, and different Piwi subfamily

members bind to different classes of testes-specific piRNAs

(Aravin et al., 2006; Girard et al., 2006). The mouse Piwi member

MILI, for example, binds to a developmentally regulated piRNA

cluster and influences transposon expression (Aravin et al.,

2007). The individual members of the human Ago subfamily,

namely Ago1–4, are ubiquitously expressed and most likely

bind to similar populations of miRNAs.

Depending on the degree of complementarity between the

miRNA and the target RNA, miRNAs guide sequence-specific

cleavage, deadenylation, or translational repression of specific

target mRNAs (Pillai et al., 2007). It has been shown by in vitro

translation assays that miRNAs inhibit translation of reporter

constructs at early stages of translational initiation (Mathonnet

et al., 2007; Thermann and Hentze, 2007; Wakiyama et al.,

2007; Wang et al., 2006). In contrast, on the basis of the finding

that miRNAs cosediment with polysomes it has been proposed

that miRNAs function on the level of translational elongation

(Maroney et al., 2006; Olsen and Ambros, 1999; Seggerson

et al., 2002). Other models of miRNA functions suggest rapid

ribosome drop-off from mRNAs upon miRNA inhibition or

miRNA-guided degradation of the nascent polypeptide chain

by the proteasome (Nottrott et al., 2006; Petersen et al., 2006).

mRNA profiling studies have recently shown that miRNAs affect
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the stability of many mRNAs that contain imperfect miRNA

binding sites. Moreover, it appears that miRNA effects on

mRNA levels are as common as translational repression (Bagga

et al., 2005). Consistently, miRNAs guide mRNA deadenylation

processes followed by decapping and degradation (Behm-

Ansmant et al., 2006; Giraldez et al., 2006; Humphreys et al.,

2005; Wu et al., 2006).

While miRNA processing is well understood, target mRNA

recognition and binding is only poorly understood. It has been

demonstrated that HuR (ELAV1) can release miRNA repression

of the CAT-1 mRNA upon cellular stress (Bhattacharyya et al.,

2006). Moreover, a protein termed dead end 1 (Dnd1) can occupy

miRNA binding sites on the 30 untranslated regions (UTRs) of

specific target mRNAs and thus inhibit miRNA-guided gene

silencing (Kedde et al., 2007). Although only a few mRNA binding

proteins with effects on miRNA function have been identified thus

far, it is very likely that many more protein factors exist that influ-

ence recruitment or stable binding of miRNPs to specific mRNAs.

Here, we report the identification of Imp8 as component of

human Ago protein complexes. We show that Imp8 is required

for binding of Ago proteins to a variety of mRNA targets and

that depletion of Imp8 interferes with miRNA-guided gene

silencing. Furthermore, we demonstrate that Imp8 modulates

nuclear localization of Ago2. We have therefore identified Imp8

as specificity factor in the miRNA pathway, which may fulfill addi-

tional functions in nuclear Ago import.

RESULTS

Imp8 Interacts with Human Ago Proteins
Human Ago1 and Ago2 complexes have been analyzed bio-

chemically in the past (Gregory et al., 2005; Hock et al., 2007;

Liu et al., 2004; Meister et al., 2005). However, the function of

Ago3 and Ago4 in human cells has not been addressed yet.

Therefore, we performed biochemical purification studies using

FLAG/HA (FH)-tagged Ago3 and Ago4. HEK293 cells were trans-

fected with FH-Ago3 or FH-Ago4, and immunoprecipitates were

analyzed by mass spectrometry (Figure 1A, Tables S1 and S2

available online). We found known Ago-associated proteins

such as TNRC6B, but also a variety of factors that have not

been linked to Ago function thus far. Among them, we found

the Importin b-like import receptor Imp8 (Gorlich et al., 1997).

Cosedimentation studies revealed that FH-Imp8 comigrates

with Ago proteins in sucrose gradients (Figure S1). For in vitro

interaction studies, recombinant GST-Imp8 was immobilized

on glutathione-coated beads and incubated with [35S]-labeled

Ago1–4 (Figure 1B). All Ago proteins interacted with GST-Imp8

(lanes 1–4), whereas no signal was observed in control reactions

where GST alone was immobilized (lanes 6–9). Next, we investi-

gated the interaction of Ago proteins with Imp8 in vivo. HEK293

cells were cotransfected with myc-tagged Ago proteins and

FH-Imp8. Consistent with the in vitro data, all myc-Ago proteins

were readily detectable in the anti-FLAG immunoprecipitates

(Figure 1C, lanes 2, 5, 8, and 11). No myc-Ago was detected in

FH-GFP control experiments (lanes 3, 6, 9, and 12). Furthermore,

treatment of the immunoprecipitates with RNase A demon-

strated that interaction of Ago proteins with Imp8 is independent

of RNA (lanes 1, 4, 7, and 10). In contrast, interaction of Ago2 with
the poly-A binding protein C1 (PABPC1) was impaired upon

RNase A treatment (lane 13), demonstrating efficient RNase A

digestion. In order to validate endogenous Imp8-Ago2 interac-

tions, we generated a polyclonal antibody against Imp8. The

purified anti-Imp8 serum immunoprecipitates transfected FH-

Imp8 (Figure 1D, lane 2) and endogenous Imp8 (lane 4, lower

panel). Moreover, with an antibody against Ago2 (Rüdel et al.,

2008), endogenous Ago2 was detectable in the Imp8 immuno-

precipitate (lane 4, upper panel). Import receptors require inter-

action with the GTPase Ran for cytoplasmic substrate binding

and nuclear transport. Therefore, we added recombinant Ran

or RanQ69L, a mutant that promotes the dissociation of the

cargo-Importin complexes, to the FH-Imp8 immunoprecipitate

(Figure 1E, lanes 2 and 3). RanQ69L strongly reduced Ago2

binding to Imp8 (lane 3) compared to Ran (lane 2) or a sample

where no protein was added (lane 1), indicating that Ago proteins

bind to Imp8 in a Ran-dependent manner. By using a proteomics

approach, we have identified and validated Imp8 as Ago-inter-

acting protein in human cells.

Imp8 and Ago Proteins Colocalize in P Bodies
Human Ago proteins localize to P bodies and stress granules

(Leung et al., 2006; Liu et al., 2005; Sen and Blau, 2005). We

therefore analyzed the subcellular localization of Imp8. FH-

Imp8 was transfected into HEK293 cells, and fixed cells were

stained with anti-HA antibodies (Figure 2A). FH-Imp8 was

detectable in the nucleus as well as cytoplasmic structures

that were positive for the P body marker LSm4, indicating that

Imp8 localizes to P bodies. Moreover, Imp8 localizes to arse-

nite-induced stress granules, as indicated by the colocalization

with the known stress granule marker FMRp. As control, FH-Im-

portin 4 (Imp4) was analyzed, and it localizes neither to P bodies

nor to stress granules (Figure S2). We next analyzed whether Ago

proteins colocalize with Imp8 in P bodies (Figure 2B). Myc-Ago2

and FH-Imp8 were cotransfected and fixed cells were analyzed

with anti-myc or anti-FLAG antibodies. Indeed, Ago2 colocalizes

with Imp8 in P bodies, suggesting a function for Imp8 in RNA

metabolism. Similar results were obtained when other human

Ago proteins were analyzed (data not shown and Figure S3B).

Consistently, the anti-Imp8 serum stained P bodies in cells ex-

pressing FH-Ago2 (Figure 2B, panels 5–8) or the known P body

component FH-TNRC6B (panels 9–12) (Meister et al., 2005),

indicating that endogenous Imp8 is present in P bodies as well.

The Ran-dependent interaction of Imp8 and Ago proteins

prompted us to analyze whether localization of Imp8 to P bodies

depends on Ran as well (Figure 2C). FH-Imp8 was cotransfected

with myc-Ran (panels 1–4), myc-RanQ69L (panels 5–8), or myc-

RanT24N (panels 9–12), a mutant that stabilizes importin-cargo

interaction, into HEK293 cells and localization was analyzed

with anti-HA antibodies. Coexpression of RanWT or RanT24N

had no effect on Imp8 P body localization. However, cotransfec-

tion of RanQ69L, which promotes the dissociation of import

receptors from their cargo proteins, resulted in disruption of

Imp8 P body localization, whereas P body formation itself was

not impaired, as indicated by LSm4 analysis. Interestingly, Ago

protein localization remained unaffected when RanQ69L was ex-

pressed (Figure S3). Of note, in the RanQ69L expression exper-

iments, FH-Imp8 could be detected in cytoplasmic granules that
Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc. 497



Figure 1. Imp8 Interacts with Human Ago1–4

(A) SDS-PAGE analysis of proteins interacting with human Ago4. FH-Ago4 or FH-GFP plasmids were transfected into HEK293 cells. FH-Ago4 (lane 1) and FH-GFP

(lane 2) were immunoprecipitated from cell lysates, and immunoprecipitates were separated by SDS-PAGE. Lane 3 shows a molecular weight standard. Proteins

interacting with FH-Ago4 but not with FH-GFP are shown to the left. A complete list of FH-Ago4- and FH-Ago3-interacting proteins is shown in Tables S1 and S2.

(B) GST-Imp8 (lanes 1–5) or GST alone (lanes 6–10) was immobilized on glutathione sepharose beads and incubated with [35S]-methionine-labeled in vitro-

translated His-Ago1–4 or His-Gemin2 control protein. Autoradiograms of bound [35S]-labeled proteins (lanes 1–10) and radioactive input signals (lanes

11–15) are shown in the upper panels. Lower panels show coomassie stainings of coupled GST-Imp8 (lanes 1–5) or GST (lanes 6–10).

(C) FH-Imp8, FH-GFP or FH-PABPC1 plasmids were cotransfected with myc-Ago1 (lanes 1–3), myc-Ago2 (lanes 4–6, 13–15), myc-Ago3 (lanes 7–9), or myc-

Ago4 plasmids (lanes 10–12) into HEK293 cells. FH-tagged proteins were immunoprecipitated from cell lysates with anti-FLAG sepharose beads in the presence

or absence of 20 mg/ml RNase A. The immunoprecipitate was analyzed by anti-myc western blotting (upper panel) and anti-HA western blotting (lower panel). Ig,

Immunoglobulin heavy chain.

(D) Left panel: HEK293 cells were transfected with FH-Imp8. Immunoprecipitation was performed from cell lysates using preimmune serum (lane 1) or anti-Imp8

(lane 2). FH-Imp8 was detected with anti-HA antibodies. Right panel: Lysate from untransfected HEK293 cells was immunoprecipitated with preimmune serum

(lane 3) or anti-Imp8 (lane 4). The immunoprecipitate was analyzed by anti-Ago2 western blotting (upper panel) and anti-Imp8 western blotting (lower panel).
498 Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc.



(E) myc-Ago2 and FH-Imp8 plasmids were cotransfected into HEK293 cells. FH-Imp8 was immunoprecipitated from cell lysates with anti-FLAG antibodies. The

immunoprecipitate was incubated with PBS/5mM GTP containing either 100 mM RanWT (lane 2), RanQ69L (lane 3) or no protein (lane 1). Myc-Ago2 and FH-Imp8

proteins were detected by western blotting (upper panel and lower panel).
are clearly distinct from P bodies (panel 7) and might correspond

to stress granules. Thus, Imp8 colocalizes with Ago proteins to

P bodies in a Ran-dependent manner.

Imp8 Affects Nuclear Localization of Ago Proteins
Import receptors target cargo proteins to the nucleus. Since

human Ago proteins have been shown to function in the nucleus

(Janowski et al., 2006; Kim et al., 2006), we investigated nuclear

Ago protein import (Figure 3). The monoclonal anti-Ago2 (11A9)

antibody stained P bodies, as well as the diffuse cytoplasm

and the nucleus of fixed HeLa cells (panels 1–4) (see Rüdel

et al., 2008 for a detailed characterization of anti-Ago2 [11A9]).

Knockdown of Ago2 led to a loss of the cytoplasmic and the

nuclear signal, indicating that Ago2 is indeed in the nucleus (Rü-

del et al., 2008). We quantified nuclear and cytoplasmic signals

from average pixel intensities and calculated ratios of cyto-

plasmic versus nuclear Ago2 for each set of samples

(Figure 3B). We found that upon Imp8 knockdown, the localiza-

tion of Ago2 is shifted from the nucleus to the cytoplasm,

whereas the total amount of soluble Ago2 remained unaffected

(Figure 3B). Similar results were obtained when a HEK293 cell

line stably expressing EGFP-Ago2 was analyzed by fluores-

cence correlation spectroscopy (Figure 3C) (Ohrt et al., 2008).

As control, Imp4 knockdown was performed, and it had no effect

on nuclear EGFP-Ago2 localization. The used Imp4 siRNAs were

as efficient as the Imp8 siRNAs (data not shown). In summary, we

provide evidence that Imp8 can influence nuclear import of Ago

proteins in human cells.

Imp8 Is Required for miRNA-Guided Gene Silencing
The interaction and colocalization of Ago proteins with Imp8

prompted us to analyze whether Imp8 is functionally involved in

miRNA-guided gene silencing. We first analyzed the conse-

quence of Imp8 depletion on sequence-specific cleavage of a

luciferase reporter perfectly complementary to miR-21 (Fig-

ure 4A). As expected, knockdown of the slicer endonuclease

Ago2 (Liu et al., 2004; Meister et al., 2004) led to a strong increase

of luciferase expression. However, luciferase activity was not

altered after Imp8 depletion, indicating that Imp8 is not required

for Ago2-mediated cleavage of target RNA (for siRNA validation,

see Figure S4).

Next, we investigated whether Imp8 is necessary for miRNA-

guided silencing of known target mRNAs (Figure 4B). Luciferase

reporters fused to full-length 30 UTRs of previously validated

miRNA targets (Beitzinger et al., 2007) were transfected into

HeLa cells where either Imp8 or as controls Ago2 or TNRC6B

had been depleted by RNAi. Depletion of Ago2 or TNRC6B,

which are required for miRNA function, resulted in elevated lucif-

erase expression from all constructs. Strikingly, knockdown of

Imp8 led to an increase of luciferase activity as well, indicating

that Imp8 is required for repression of the tested 30 UTRs. We

further tested whether the observed Imp8 effects on gene

expression are linked to the miRNA pathway or whether Imp8

functions independently of Ago proteins on 30 UTRs. For further
studies, we used the 30 UTR of Hmga2, which is strongly dere-

pressed when endogenous let-7a is inhibited with 20-O-methyl-

ated antisense oligonucleotides (Figure 4C). Knockdown of

TNRC6B or Imp8 led to increased luciferase activity similar to

other miRNA targets. As specificity control, we mutated all let-

7a binding sites in the Hmga2 reporter construct (Figures 4C

and 4D and Figure S5). Indeed, the mutated 30 UTR did not

respond to Imp8 knockdown anymore, indicating that Imp8

functions together with Ago proteins in the miRNA pathway.

Since miRNAs can trigger target mRNA degradation, we investi-

gated whether knockdown of Imp8 affects the level of endoge-

nous miRNA target mRNAs (Figure 4E). We found that Imp8

depletion led to a moderate increase of some miRNA targets

relative to GAPDH or b-Actin mRNAs (Figure S6). Thus, Imp8 is

required for silencing of endogenous miRNA targets.

Imp8 Is Involved in Loading of Ago Complexes
onto mRNA Targets
We next investigated individual steps of the miRNA pathway for

Imp8 requirement. It has been suggested that Importin b-like

proteins function as chaperones and increase the solubility of

RNA binding proteins by preventing unspecific aggregation

with nucleic acids (Jakel et al., 2002). Therefore, we analyzed

soluble Ago protein levels after Imp8 knockdown in HeLa cells

(Figure 5A). Cells transfected with siRNAs against Imp8 or

control siRNAs were analyzed by western blotting with specific

antibodies against endogenous Ago1–4 or b-actin as loading

control. Because of the low Ago3 and Ago4 expression levels,

Ago3 and Ago4 were immunoprecipitated prior to western

blotting. Knockdown of Imp8 had no effect on the steady-state

levels of soluble Ago proteins. Next, we analyzed Ago2 protein

turnover using pulse-chase experiments (Figure 5B). HEK293

cells were cotransfected with a construct expressing FH-Ago2

and a plasmid expressing short hairpin RNAs (shRNAs) against

Imp8 or control shRNAs. After 3 days, cells were pulsed with

[35S]-methionine-containing medium followed by chase in

normal medium, and [35S]-labeled Ago2 complexes were immu-

noprecipitated with anti-FLAG antibodies. Both in control and

Imp8 knockdown cells, [35S]-labeled Ago2 was strongly reduced

after 13 hr chase. Therefore, our data suggest that Imp8 has no

effect on the steady-state levels or turnover of Ago proteins in

human cells.

Next, we asked whether Imp8 is involved in miRNA biogen-

esis, which would explain the effects of Imp8 on miRNA target

expression (Figure 5C). HeLa cells were transfected with siRNAs

directed against Dicer or Imp8, and total RNA was analyzed by

northern blotting with probes specific for let-7a, miR-21, or

miR-16. As expected, Dicer knockdown resulted in lower miRNA

levels (lane 1). However, Imp8 knockdown had no effect on

mature miRNA levels, suggesting that Imp8 is not involved in

miRNA biogenesis (lanes 3 and 4). Using anti-Ago2 immunopre-

cipitations, we further investigated whether Imp8 affects the

loading of Ago2 with miRNAs (Figure 5D). Endogenous Ago2

was immunoprecipitated from cell lysates transfected with
Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc. 499



Figure 2. FH-Imp8 Localizes to P Bodies

and Stress Granules

(A) HEK293 cells were transfected with FH-Imp8.

Cells were fixed and stained for FH-Imp8 with

anti-HA antibody (1) and for endogenous LSm4

(2). Lower panel: Cells were treated with 500 mM

sodium arsenite for 30 min, fixed, and stained for

FH-Imp8 with anti-FLAG antibody (5) and for

endogenous FMRp (6). DAPI was used as nuclear

counterstain (4 and 8).

(B) Upper panel: HEK293 cells were transfected

with FH-Imp8 and myc-Ago2, fixed, and stained

with anti-FLAG antibody (1), anti-myc antibody

(2), and DAPI (4). Lower panels: HEK293 cells

were transfected with FH-Ago2 (5-8) or FH-

TNRC6B (9-12), fixed, and stained with anti-HA

antibody (5 and 9), anti-Imp8 antibody (6 and 10),

and DAPI (8 and 12).

(C) HEK293 cells were cotransfected with FH-

Imp8 and myc-RanWT (1–4), myc-RanQ69L (5–

8), or myc-RanT24N (9–12), fixed, and stained

with anti-HA antibody (1, 5, and 9), anti-LSm4

antibody (2, 6, and 10), and DAPI (4, 8, and 12).

Scale bars represent 10 mm.
500 Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc.



control siRNAs (lanes 1 and 3) or siRNAs directed against Imp8

(lanes 2 and 4), and the presence of let-7a or miR-21 in the immu-

noprecipitate was analyzed by northern blotting. Knockdown of

Imp8 did not change the levels of miRNAs coprecipitated with

Ago2 complexes, suggesting that Imp8 is not required for

loading of Ago proteins with miRNAs.

Finally, we analyzed Imp8 requirements for binding of Ago2 to

miRNA target mRNAs (Figure 5E). We and others have reported

earlier that Ago complexes stably associate with miRNA targets

(Beitzinger et al., 2007; Easow et al., 2007; Karginov et al., 2007).

Endogenous Ago2 complexes were immunoprecipitated with

anti-Ago2 antibodies, and the coprecipitated mRNAs were

further analyzed by quantitative real-time PCR (qRT-PCR). As

expected, endogenous Hmga2 mRNA was strongly enriched in

the anti-Ago2 immunoprecipitate. Specific binding was abro-

gated when either let-7a antisense inhibitor or an Ago2 siRNA

was transfected, indicating that the enrichment in the immuno-

Figure 3. Imp8 Affects nuclear Localization of Ago

Proteins

(A) HeLa cells were transfected with a control siRNA (1–4)

or Imp8 siRNAs (5–8 and 9–12), fixed, and stained with

anti-Ago2 (11A9) antibody (1, 5, and 9), anti-LSm4 anti-

body (2, 6, and 10), and DAPI (3, 7, and 11). The scale

bar represents 10 mm.

(B) Upperpanel: Cells were treated as in (A), and nuclear and

cytoplasmic Ago2 signal intensities were quantified from at

least 15 cells per sample. The figure shows the mean ratio of

cytoplasmic versus nuclear signal intensities ± SEM. Lower

panel: siRNA-transfected cells were lysed, and total Ago2

levels were assessed by western blotting, with b-Actin

used as a loading control.

(C) A HEK293 subline stably transfected with EGFP-Ago2

was transfected with a control siRNA, an Imp4 siRNA, or

an Imp8 siRNA. The fluorescence intensities of cyto-

plasmic and nuclear EGFP-Ago2 were quantified with

live microscopy, and mean ratios (± SEM) of cytoplasmic

versus nuclear EGFP-Ago2 signals were calculated from

20 cells per sample.

precipitate is miRNA specific and depends on

the presence of Ago2. Strikingly, Hmga2

mRNA enrichment was significantly reduced (p

< 0.01) when Imp8 was targeted by two different

siRNAs, suggesting a role for Imp8 in recruiting

Ago proteins to miRNA target mRNAs. Similar

results were obtained when myc-Ago2 was

analyzed (Figure 5F, left panel).

Our finding that Imp8 is required for Ago2

binding to miRNA targets as well as nuclear

Ago import could potentially be explained by

recruitment of Ago proteins to target mRNAs in

the nucleus. In order to analyze binding of

Ago2 to mRNAs in the nucleus, we fused Ago2

to a SV40-NLS, leading to Imp8-independent

nuclear localization (Figure S7). Binding of

SV40 NLS-Ago2 to the miRNA target HMGA2

is still dependent on Imp8 (Figure 5F, right panel,

and Figure S8), suggesting that Imp8 functions

in the miRNA pathway independently of nuclear

Ago import and that Ago proteins are loaded onto mRNAs in the

cytoplasm.

Imp8 Is Required for Binding of Ago2 to a Large Set
of Target mRNAs
Next, we analyzed Imp8 effects on global Ago2 transcript

binding. Endogenous Ago2 was immunoprecipitated from cell

lysates that were transfected with control siRNAs or siRNAs

directed against Imp8. Coimmunoprecipitated mRNA was ex-

tracted and investigated by affimetrix microarray analysis

(Figure 6A and Table S3). The Ago2-associated transcripts that

were most enriched compared to total RNA levels were identified

in the data set where control siRNAs had been transfected.

Indeed, most of the top 30 Ago2-associated mRNAs are reduced

in Ago2 immunoprecipitates from Imp8-depleted cells, indi-

cating that Imp8 not only affects Ago2-binding to HMGA2 but

also many other mRNA targets (Figure 6B).
Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc. 501



Figure 4. Imp8 Is Required for miRNA Function, but Not for RNAi

(A, B, and D) HeLa cells were sequentially transfected with the indicated siRNAs and pMIR-RL dual luciferase reporter plasmids. Firefly/renilla luminescence

ratios are displayed as mean derepression of the reporter constructs (± SEM), which is calculated by normalization of the luminescence ratios of the construct

of interest to the corresponding values of the empty plasmid.

(C) A Hmga2 30 UTR dual luciferase reporter construct or a corresponding reporter construct bearing mutated let-7 binding sites was cotransfected with either

hsa-let-7a antisense 20O-methyl oligonucleotide or a control oligonucleotide into HeLa cells. Data are displayed as mean derepression of luciferase activity

(± SEM), normalized to negative control oligonucleotide transfections.

(E) HeLa cells were transfected with Imp8 or control siRNAs. RNA was isolated and reverse transcribed, and miRNA target mRNA levels were quantified by qPCR.

Data were normalized to GAPDH mRNA levels and to control siRNA-transfected samples.
502 Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc.
qRT-PCR (Figure 6F). None of the Ago2-associated mRNAs

analyzed in Figure 6C, however, were enriched in the Imp8

immunoprecipitate, suggesting that Imp8 does not bind to

Ago2 on mRNA targets. Alternatively, Imp8-miRNA target inter-

actions may not be stable enough to resist immunoprecipitation

conditions. Our data suggest that Imp8 is required for binding of

Ago2 to a broad set of mRNAs. Thus, Imp8 is a general gene-

silencing factor that regulates target mRNA repression on the

level of miRNP-mRNA interactions.

DISCUSSION

Ago proteins bind to miRNAs and mediate repression of target

mRNA expression. However, only little is known about how

Ago proteins find their specific binding sites on the 30 UTRs of
The requirement of Imp8 for Ago2 mRNA binding was further

validated by qRT-PCR (Figure 6C). Indeed, knockdown of Imp8

reduced the Ago2 association of all mRNAs that have been

tested. Moreover, the 30 mRNAs analyzed in Figure 6B are

significantly stabilized when TNRC6B, a component of the

miRNA pathway guiding mRNA destabilization processes, is

depleted (Figure 6D). In contrast, a control set of mRNAs, which

is not specifically enriched on Ago2, was not stabilized upon

TNRC6B knockdown (Figure 6D). These results strongly suggest

that the analyzed Ago2-bound mRNAs are indeed targets of the

miRNA pathway. This is further supported by the finding that

miRNA seed sequence matches are enriched in Ago2-associ-

ated mRNAs (Figure 6E). In order to investigate the step at which

Imp8 affects Ago2 mRNA target binding, endogenous Imp8 was

immunoprecipitated and the associated mRNAs analyzed by



Figure 5. Imp8 Functions in Ago Protein

Recruitment to Target mRNAs

(A) RNAi depletion of Imp8 does not affect soluble

Ago protein levels in human cells. HeLa cells were

transfected with a control siRNA (lane 1) or Imp8

siRNA (lane 2). Cells were lysed, and insoluble

cellular fractions were pelleted by centrifugation.

Supernatants were analyzed for Ago1/2 levels by

SDS-PAGE/western blotting, with b-Actin used

as loading control. Note that because of the low

abundance of endogenous Ago3 and Ago4 in

HeLa cells, Ago3 and Ago4 were immunoprecipi-

ated with specific monoclonal antibodies prior to

western blot analysis to obtain detectable signals.

(B) Plasmids for the expression of FH-Ago2 and an

Imp8 shRNA (lanes 5–8) or a control shRNA (lanes

1–4) were cotransfected into HEK293 cells. Cells

were pulsed with medium containing [35S]-labeled

amino acids, incubated with nonradioactive chase

medium, and harvested at the indicated time

points. FH-Ago2 was immunoprecipiated with

anti-FLAG beads. The immunoprecipitate was

analyzed for [35S]-labeled FH-Ago2 (upper panel)

and for total FH-Ago2 levels by western blotting

(lower panel).

(C) HeLa cells were transfected with a Dicer siRNA

(lane 1), control siRNA (lane 2), or Imp8 siRNAs

(lanes 3–4). Total RNA was analyzed by denaturing

RNA-PAGE/northern blotting for let-7a, miR-21,

and miR-16, with lys-tRNA used as loading

control.

(D) HeLa cells were transfected with a control

siRNA (lanes 1 and 3) or Imp8 siRNA (lanes 2 and

4). IP was performed from cell lysates with a

control antibody (lanes 1 and 2) or anti-Ago2

(11A9) monoclonal antibody (lanes 3 and 4). The

immunoprecipitate was analyzed for Ago2 by

western blotting (lower panel) and for let-7a and

miR-21 by northern blotting (upper and middle

panels, respectively).

(E) Cells were transfected and treated as in (D), except that additional siRNAs and a let-7a antisense 20O-methyl inhibitor were used. RNA was isolated from immu-

noprecipitates and reverse transcribed. The levels of Ago2-associated Hmga2 mRNA were quantified by qPCR relative to GAPDH mRNA. For each anti-Ago2 IP

sample, relative Hmga2 mRNA levels were normalized to the corresponding input samples.

(F) HeLa cells were sequentially transfected with Imp8 or control siRNAs and myc-Ago2 (left panel) or myc-SV40-NLS-Ago2 (right panel). Myc-tagged proteins

were immunoprecipitated from cell lysates with anti-myc beads. Associated mRNAs were analyzed as in (E).

(E and F) Data are displayed as mean ± SEM.
repression of many known miRNA targets. Therefore, we

propose that Imp8 might be a general factor in the miRNA

pathway. Specific factors negatively regulating miRNA binding

to target 30 UTRs have been identified recently. It has been

shown in liver cells that HuR (ELAV1), which binds to AU-rich

elements on target mRNAs, antagonizes miR-122 repression

on the CAT-1 30 UTR upon cellular stress (Bhattacharyya et al.,

2006). Moreover, Dnd1, a protein expressed in primordial germ

cells, prevents miRNA-guided repression by binding to the

vicinity of miRNA binding sites (Kedde et al., 2007). In contrast,

Imp8 is required for efficient binding of miRNAs to 30 UTRs and

therefore functions in the opposite manner of factors such as

HuR or Dnd1. Interestingly, Imp8 is not required for RNAi, sug-

gesting that the assembly of miRNP-mRNA structures might

be a highly coordinated process, which may differ from

sequence-specific cleavage events. Notably, imb-5, the closest

C. elegans homolog of human Imp8, has been identified in
target mRNAs. In this study, we provide evidence that Imp8 is

required for efficient binding of Ago proteins to target mRNAs.

We have identified Imp8 in proteomic analyses of Ago complex

purifications (this study and Hock et al. [2007]) and show that

Imp8 is required for binding of Ago2 to the let-7a target

Hmga2. Imp8 knockdown had no effect on Ago stability, miRNA

biogenesis, or miRNA loading onto Ago proteins. However,

Hmga2 mRNA was strongly reduced in anti-Ago2 immunopre-

cipitations when Imp8 was depleted by RNAi, suggesting that

Imp8 is involved in loading of Hmga2 mRNA with Ago2

complexes or in stabilizing the Ago2-target interaction. Similar

results were obtained for many other mRNA targets, as shown

by affymetrix arrays. However, we show that Imp8 is not stably

associated with Ago2-bound mRNAs, suggesting that Imp8

may be required for efficient binding of Ago2 to target mRNAs

rather than for stabilization of such interactions. We further

show that depletion of Imp8 interferes with efficient miRNA
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Figure 6. Imp8 Is Required for Binding of Ago2 to a Large Set of Target mRNAs

(A) HeLa cells were transfected with control or Imp8 siRNAs. Each sample was divided into two parts for total RNA extraction (upper arrow), and anti-Ago2 immu-

noprecipitation followed by RNA extraction (lower arrows). Total RNA samples and immunoprecipitated RNA samples were hybridized to separate Human

Genome U133 Plus 2.0 Affymetrix microarrays. The specific enrichment of each individual transcript was calculated from its normalized measurement value

in the immunoprecipitation sample, divided by its value in the total RNA sample.

(B) A heat map of 30 transcripts most highly enriched in anti-Ago2 immunoprecipitates from control siRNA-transfected cells. The heat map shows normalized

measurements for total RNA from control siRNA-transfected cells (lane 1), Imp8 siRNA-transfected cells (lane 2), and Ago2-associated RNA from control

siRNA-transfected cells (lane 3) and Imp8 siRNA-transfected cells (lane 4).

(C) Ago2 association of transcripts was validated by qRT-PCR and quantified relative to GAPDH and to input lysate samples. Ago2 association of transcripts in

control siRNA transfected cells was normalized to 1.

(D) Box-whisker plot for log2 changes in transcript abundance after TNRC6B knockdown. The plot shows the top 30 Ago2-associated transcripts (right side) and

transcripts which are not specifically associated (enrichment = 1 ± 0.05; left side). Outliers are denoted by asterisks. Mean changes of Ago2-associated transcript

levels are significant (p = 0.017; Student’s t test from four microarray replicates from immunoprecipitated RNA).

(E) The number of 6-mer (left panel) and 7-mer (right panel) seed sequence matches was calculated for 30 UTRs of all transcripts more than 2-fold Ago2-enriched

in at least three out of four microarray replicates compared to seven control groups of not enriched transcripts (enrichment = 1 ± 0.1). Enrichment was calculated

for nine miRNAs highly expressed in HeLa cells and nine absent miRNAs, followed by normalization to 30 UTR length.

(F) HeLa cell lysates were immunoprecipitated with anti-Imp8 antibodies. RNA was isolated from immunoprecipitates, and the specific association of transcripts

with Imp8 was calculated relative to the input sample and to GAPDH.
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of Imp8 reduced the pool of nuclear Ago2, suggesting that Imp8

is involved in targeting Ago proteins to the nucleus. Biochemical

analyses have suggested before that miRNAs as well as Ago

proteins localize and function in the nucleus (Meister et al.,

2004; Robb et al., 2005). siRNAs directed against nuclear

RNAs such as 7SK RNA efficiently reduced 7SK RNA levels in

nuclear fractions, suggesting that Ago2-mediated cleavage of

target RNA occurs in the nucleus (Robb et al., 2005). Notably,

a significant portion of Ago2 remained in the nucleus after

Imp8 depletion, suggesting that alternative nuclear import path-

ways for Ago proteins may exist. Human Ago proteins have been

implicated in transcriptional silencing processes (Janowski et al.,

2006, 2007; Kim et al., 2006; Morris et al., 2004). It is possible

that the nuclear Ago pool might also be involved in small RNA-

guided transcriptional silencing processes in human cells. It is

also conceivable that novel nuclear Ago functions exist that

have yet to be defined.

Our data strongly suggest that Imp8 plays a major role in Ago-

mediated gene silencing (Figure 7). In the cytoplasm, Imp8 local-

izes together with Ago proteins to P bodies and is involved in effi-

cient loading of Ago proteins onto a variety of different target

mRNAs. Moreover, Imp8 may also direct Ago proteins to the

nucleus of human cells. Currently, it is unclear which factors

direct Imp8 for nuclear import and which factors for Ago protein

loading onto mRNA targets. It is likely that other factors that are

present in our proteomic data set might be involved in regulating

Imp8 function in small RNA pathways.

EXPERIMENTAL PROCEDURES

Antibodies and Recombinant Proteins

The following antibodies were used: mouse-anti-HA (Covance, Princeton, NJ),

rabbit-anti-FLAG (Sigma, St. Louis, MO), rabbit-anti-myc (Abcam, UK), mouse

anti-b-Actin AC15 (Abcam, UK), chicken-anti-Lsm4 (Genway, San Diego, CA),

anti-rabbit-HRP (Sigma), anti-mouse-HRP (Sigma), anti-rat-HRP (Jackson,

West Grove, PA), goat-anti-rat-Texas Red, goat-anti-rabbit-Texas Red,

horse-anti-mouse-fluorescein, horse-anti-mouse-Texas Red (all Vector Labo-

ratories, Burlingame, CA), and anti-chicken-fluorescein (Sigma).

Anti-Ago2 clone 11A9 has been described elsewhere (Rüdel et al., 2008). Rat-

anti-Ago1 clone 1C9, rat-anti-Ago3 clone 5A3, and rat-anti-Ago4 clone 6C10

were generated as described (Beitzinger et al., 2007). Anti-Imp8 polyclonal anti-

serum was generated by immunization of KLH-CMQSNNGRGEDEEEEDDDWD

into rabbits. Purification of anti-Imp8 polyclonal antibody was performed with

CNBr-activated Sepharose 4 Fast Flow (GE Healthcare) according to the manu-

facturer’s instructions. Recombinant GST-Importin 8 dialyzed against coupling

buffer (0.1 M NaHCO3 [pH 8.3], 0.5 M NaCl) served as ligand.

Coupled sepharose beads were washed with 10 ml PBS and subsequently

incubated with 10 ml serum overnight at 4�C. Serum was removed from the

columnbygravity flow, and beadswerewashed twicewith10mlPBS.Forelution

of the purified antibody, 1 ml fractions of elution buffer (0.1 M Glycine [pH 2.3])

were added to the beads, and the column was emptied by gravity flow into reac-

tion tubes containing 0.1 ml 1M Tris-HCl (pH 8.8) to neutralize the eluate.

Recombinant GST-Imp8 was expressed and purified as follows: pGEX6P1-

Imp8 was transformed into E. coli BL21 Rosetta bacteria. Overnight cultures

were diluted into fresh medium, grown to 0.8 OD600, and induced at 18�C

with 1 mM IPTG for 18 hr. Bacteria were disrupted by sonication in purification

buffer [500 mM NaCl/50 mM Tris/HCl (pH 7.5)/5 mM MgCl2/1 mM 4-(2-Amino-

ethyl) benzenesulfonyl fluoride hydrochloride (AEBSF)], and debris was

removed by centrifugation. Supernatants were incubated with Glutathione

sepharose beads (GE healthcare) for 2 hr. Beads were washed twice with

purification buffer (pH 8.0). GST-Imp8 was eluted in purification buffer

(pH 8.0) containing 3 mg/ml glutathione and dialyzed against PBS.
a genetic screen for factors essential for small RNA-guided gene

silencing (Kim et al., 2005).

Notably, among the most highly enriched Ago2-associated

transcripts we found the noncoding RNAs H19 and MALAT-1.

Most miRNA target predictions published thus far have been

restricted to 30 UTRs of mRNAs. Our data suggest that other non-

coding RNAs are targeted by miRNAs as well. On the basis of the

analysis of Ago2-associated mRNAs, we suggest that miRNA

target searches should be extended to the entire transcriptome

and should include larger noncoding transcripts.

Interestingly, Imp8 localizes together with Ago proteins to P

bodies in human cells. It is therefore tempting to speculate that

Ago proteins bind to Imp8 in P bodies presumably after target

mRNA degradation and that Imp8 subsequently transfers free

Ago-miRNA complexes to new target mRNAs (Figure 7). Since

Imp8 has no obvious RNA binding domain, Imp8 might tran-

siently interact with other protein factors that interact with

specific binding sites on target 30 UTRs. Alternatively, binding

of Imp8 to Ago proteins may alter the structure of Ago proteins,

allowing for efficient binding to target mRNAs.

Ago proteins have been implicated in transcriptional silencing

processes in different organisms (Lippman and Martienssen,

2004). The intriguing finding that the import receptor Imp8 asso-

ciated with human Ago complexes led us to investigate whether

or not Ago proteins are imported into the nucleus. Using a mono-

clonal anti-Ago2 antibody, we provide evidence that Ago2 is

indeed found in the nucleus of human cells. Moreover, depletion

Figure 7. A Model for Imp8 Function
Imp8 may bind to Ago proteins in P bodies, followed by shuttling to the

nucleus. Alternatively, Imp8 assists Ago protein recruitment to miRNA target

mRNAs in the cytoplasm by delivering Ago proteins to target mRNAs, followed

by dissociation of the Imp8-Ago protein complex and aggregation of

repressed mRNPs. Please note that the Ran binding cycle was omitted from

the figure for simplification.
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Coimmunoprecipitation and Mass Spectrometry

For coimmunoprecipitation (Co-IP) experiments, 3 3 15 cm plates of HEK293

cells per sample were transfected with appropriate plasmids for 2 days. Cells

were washed twice with PBS and lysed in 500 ml lysis buffer (150 mM KCl/25

mM Tris-HCl [pH 7.5]/2 mM ethylenediaminetetraacetic acid [EDTA]/1 mM

NaF/0.5% NP-40/0.5 mM dithiothreitol [DTT]/0.5 mM AEBSF) per plate. Ribo-

lock (Fermentas, 1 ml per ml of lysis buffer) was added for RNA IPs. Lysates

were cleared by centrifugation at 16,000 g for 10 min. For IP of FLAG-tagged

proteins, lysates were incubated with 60 ml anti-FLAG M2 agarose beads for

3 hr at 4�C with or without RNaseA (QIAGEN, 20 mg/ml). For IP of endogenous

proteins, 6 ml monoclonal antibody-containing hybridoma supernatant was

coupled to 60 ml protein G-Sepharose (GE Healthcare) for 2 hr at 4�C. Coupled

beads were washed twice with PBS and subsequently incubated with cell

lysate for 3 hr at 4�C. All IP samples were washed three times with IP wash

buffer (300 mM NaCl/50 mM Tris [pH 7.5]/1 mM NaF, 0.01% NP-40/5 mM

MgCl2) and once with PBS. For the detection of proteins, beads were boiled

in protein sample buffer. For the detection of associated RNAs, proteins

were digested with 1 mg/ml proteinase K for 1 hr at 42�C, followed by

phenol/chloroform/isopropyl alcohol extraction and precipitation of RNA in

80% ethanol at �20�C. Mass spectrometry of Ago complexes was performed

as previously described (Hock et al., 2007).

Ago2-Associated mRNA Analysis

HeLa cells were reverse transfected in 10 cm plates with Imp8 or control

siRNAs. For the analysis of mRNA binding to myc-tagged Ago2, cells were

transfected 2 days later with 15 mg/plate pCS2-Ago2 or pCS2-SV40-NLS-

Ago2 with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s

instructions. Three days after plasmid transfection, cells were lysed and

treated analogous to IP samples. IP for myc-tagged proteins was performed

for 2.5 hr at 4�C with 40 ml anti-myc beads (Sigma) per sample. For analysis

of mRNA binding to endogenous Ago2, siRNA-transfected cells were har-

vested 5 days after transfection and treated as described for IP samples.

Immunoprecipitates were washed three times with IP wash buffer and once

with PBS. IP samples and corresponding samples containing 10% of input

lysate were proteinase K digested, followed by phenol/chloroform/isopropyl

alcohol extraction and precipitation of RNA in 80% ethanol at �20�C. RNA

was pelleted, dried, and treated with DNaseI (Fermentas) for 30 min at 37�C,

followed by thermal inactivation of DNaseI. RNAs were detected via cDNA

synthesis and qPCR. Hmga2 mRNA levels were normalized to GAPDH

mRNA or Ile tRNA levels for input and IP samples. Specific binding of

Hmga2 mRNA to Ago proteins was calculated from the relative Hmga2

mRNA abundance in IP samples, divided by the relative abundance in the

corresponding input samples.

Microarray Hybridization and Data Analysis

RNA for microarray analysis was isolated with PrepEase Kit for total RNA (USB,

Cleveland, OH) and phenol/chloroform/isopropyl alcohol extraction for IP

samples. RNA was processed and hybridized with the Gene Chip (Affymetrix)

kit and the hybridization procedure for eukaryotic samples, used according

to the manufacturer’s instructions. Samples were hybridized to Human

Genome U133 Plus 2.0 arrays. All arrays were performed in at least two biolog-

ical replicates.

Microarray data were analyzed with Agilent Genespring software. Expres-

sion values below 0.01 were set to 0.01. Each measurement was divided by

the 50th percentile of all measurements in that sample. All IP samples were

normalized to the corresponding total RNA samples: the IP sample from control

siRNA-transfected cells was normalized against the median of the correspond-

ing total RNA sample, and the IP sample from Imp8 siRNA-transfected cells

was normalized against the median of the corresponding total RNA sample.

Each measurement for each gene in the IP samples was divided by the median

of that gene’s measurements in the corresponding total RNA samples.

Using this normalization procedure, the normalized expression value of each

transcript in IP samples directly reflects its over- or underrepresentation in the

immunoprecipitated transcript pool relative to the total RNA pool. So that tran-

scripts bound by Ago2 could be filtered, all transcripts with raw measurements

over 50 that were more than 4-fold enriched in immunoprecipitates from

control siRNA-transfected cells were displayed (Table S3). p values for
506 Cell 136, 496–507, February 6, 2009 ª2009 Elsevier Inc.
enriched transcripts were calculated on the basis of expression levels with

the Genespring software.
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