
Abstract Understanding protein function requires detailed knowledge about 
protein dynamics, i.e. the different conformational states the system can adopt. 
Despite substantial experimental progress, simulation techniques such as molecu-
lar dynamics (MD) currently provide the only routine means to obtain dynamical 
information at an atomic level on timescales of nano- to microseconds. Even with 
the current development of computational power, sampling techniques beyond MD 
are necessary to enhance conformational sampling of large proteins and assemblies 
thereof. The use of collective coordinates has proven to be a promising means in 
this respect, either as a tool for analysis or as part of new sampling algorithms. 
Starting from MD simulations, several enhanced sampling algorithms for biomo-
lecular simulations are reviewed in this chapter. Examples are given throughout 
illustrating how consideration of the dynamic properties of a protein sheds light 
on its function.

9.1 Molecular Dynamics Simulations

Over the last decades, experimental techniques have made substantial progress in 
revealing the three-dimensional structure of proteins, in particular X-ray crystal-
lography, nuclear magnetic resonance (NMR) spectroscopy and cryo-electron 
microscopy. Going beyond the static picture of single protein structures has proven 
to be more challenging, although, a number of techniques such as NMR relaxation, 
fluorescence spectroscopy or time-resolved X-ray crystallography have emerged 
(Kempf and Loria 2003; Weiss 1999; Moffat 2003; Schotte et al. 2003), yielding 
information about the inherent conformational flexibility of proteins. Despite this 
enormous variety, experimental techniques having spatio-temporal resolution in the 
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nano- to microsecond as well as the nanometre regime are not routinely available, 
and thus information on the conformational space accessible to proteins in vivo often 
remains obscure. In particular, details on the pathways between different known 
conformations, frequently essential for protein function, are usually unknown. Here, 
computer simulation techniques provide an attractive possibility to obtain dynamic 
information on proteins at atomic resolution in the nanosecond to microsecond time 
range. Of all ways to simulate protein motions (Adcock and McCammon 2006), 
molecular dynamics (MD) techniques are among the most popular.

Since the first report of MD simulations of a protein some 30 years ago 
(McCammon et al. 1977), MD has become an established tool in the study of bio-
molecules. Like all computational branches of science, the MD field benefits from 
the ever increasing improvements in computational power. This progression also 
allowed for advancements in simulation methodology that have led to a large 
number of algorithms for such diverse problems as cellular transport, signal trans-
duction, allostery, cellular recognition, ligand-docking, the simulation of atomic 
force microscopy and enzymatic catalysis.

9.1.1 Principles and Approximations

Despite substantial algorithmic advances, the basic theory behind MD simulations 
is fairly simple. For biomolecular systems having N particles, the numerical solu-
tion of the time-dependent Schrödinger equation
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for the N-particle wave function ψ(r,t) of the system is prohibitive. Several approxi-
mations are therefore required to allow the simulation of solvated biomolecules at 
timescales on the order of nanoseconds. The first of these relates to positions of 
nuclei and electrons: due to the much lower mass and consequently much higher 
velocity of the electrons compared to the nuclei, electrons can often be assumed to 
instantaneously follow the motion of the nuclei. Thus, within the Born-Oppenheimer 
approximation, only the nuclear motion has to be considered, with the electronic 
degrees of freedom influencing the dynamics of the nuclei in the form of a potential 
energy surface V(r).

The second essential approximation used in MD is to describe nuclear motion 
classically by Newton’s equations of motion
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where m
i
 and r

i
 are the mass and the position of the i-th nucleus. With the nuclear 

motion described classically, the Schrödinger equation for the electronic degrees 
of freedom has to be solved to obtain the potential energy V(r). However, due to 
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the large number of electrons involved, a further simplification is necessary. 
A semi-empirical force field is introduced which approximates V(r) by a large 
number of functionally simple energy terms for bonded and non-bonded interac-
tions. In its general form
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The simple terms are often harmonic (e.g. V
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) or motivated by 
physical laws (e.g. Coulomb V

Coul
, Lennard-Jones V

LJ
). They are defined by their 

functional form and a small number of parameters, e.g. an atomic radius for van der 
Waals interactions. All parameters are determined using either ab initio quantum 
chemical calculations or comparisons of structural or thermodynamical data with 
suitable averages of small molecule MD ensembles. Between different force fields 
(Brooks et al. 1983; Weiner et al. 1986; Van Gunsteren and Berendsen 1987; 
Jorgensen et al. 1996) the number of energy terms, their functional form and their 
individual parameters can vary considerably.

Given the above description of proteins as point masses (positions r
i
, velocities v

i
) 

moving in a classical potential under external forces F
i
, a standard MD simulation 

integrates Newton’s equations of motion in discrete timesteps Δt on the femtosec-
ond timescale by some numerical scheme, e.g. the leap-frog algorithm (Hockney 
et al. 1973):
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Besides interactions with membranes and other macromolecules, water is the prin-
cipal natural environment for proteins. For a simulation of a model system that 
matches the in vivo system as close as possible, water molecules and ions in physi-
ological concentration are added to the system in order to solvate the protein. 
Having a simulation box filled with solvent and solute, artefacts due to the boundaries 
of the system may arise, such as evaporation, high pressure due to surface tension 
and preferred orientations of solvent molecules on the surface. To avoid such artefacts, 
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periodic boundary conditions are often applied. In this way, the simulation system 
does not have any surface. This, however, may lead to new artefacts if the molecules 
artificially interact with their periodic images due to e.g. long-range electrostatic 
interactions. These periodicity artefacts are minimized by increasing the size of the 
simulation box. Different choices of unit cells, e.g., cubic, dodecahedral or trun-
cated octahedral allow an optimal fit to the shape of the protein, and, therefore, 
permit a suitable compromise between the number of solvent molecules while 
simultaneously keeping the crucial protein-protein distance high.

As the solvent environment strongly affects the structure and dynamics of pro-
teins, water must be described accurately. Besides the introduction of implicit sol-
vent models, where water molecules are represented as a continuous medium 
instead of individual “explicit” solvent molecules (Still et al. 1990; Gosh et al. 
1998; Jean-Charles et al. 1991; Luo et al. 2002), a variety of explicit solvent mod-
els are used these days (e.g. Jorgensen et al. 1983). These models differ in the 
number of particles used to represent a water molecule and the assigned static 
partial charges, reflecting the polarity and, effectively, in most force fields, polari-
zation. Because these charges are kept constant during the simulation, explicit 
polarization effects are thereby excluded. Nowadays, several polarizable water 
models (and force fields) exist, see Warshel et al. (2007) for a recent review.

In solving Newton’s equations of motion, the total energy of the system is con-
served, resulting in a microcanonical NVE ensemble having constant particle 
number N, volume V and energy E. However, real biological subsystems of the size 
studied in simulations constantly exchange energy with their surrounding. 
Furthermore, a constant pressure P of usually 1 bar is present. To account for these 
features, algorithms are introduced which couple the system to a temperature and 
pressure bath (Anderson 1980; Nose 1984; Berendsen et al. 1984), leading to a 
canonical NPT ensemble.

9.1.2 Applications

Molecular Dynamics simulations have become a standard technique in protein sci-
ence and are routinely applied to a wide range of problems. Conformational dynamics 
of proteins, however, is still a demanding task for MD simulations since functional 
conformational transitions often occur at timescales of microseconds to seconds 
which are not routinely accessible with current algorithms and computer power.

9.1.2.1 Nuclear Transport Receptors

Despite their computational demands, MD simulations have been successfully 
applied to study functional modes of proteins. As an illustration, we will discuss in 
some detail a recent study (Zachariae and Grubmüller 2006) that revealed a strik-
ingly fast conformational transition of the exportin CAS (Cse1p in yeast) from the 
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open to the closed state. CAS/Cse1p is a nuclear transport receptor consisting of 
960 amino acids that binds importin-α and RanGTP in the nucleus. The heterot-
rimeric complex (Fig. 9.1) can cross nuclear pores and dissociates by catalyzed 
GTP hydrolysis in the cytoplasm and, thus, represents an important part of the 
nucleocytoplasmic transport cycle in cells.

For the function of the importin-α/CAS system it is essential that, after disso-
ciation of the complex in the cytoplasm, CAS/Cse1p undergoes a large conforma-
tional change that prevents reassociation of the complex. X-ray structures of 
Cse1p show that the cargo bound conformation adopts a superhelical structure 
with curls around the bound RanGTP (Fig. 9.2 left), whereas the cytoplasmic 
form exhibits a closed ring conformation that leads to occlusion of the RanGTP 
binding site (Fig. 9.2 right). In order to understand the mechanism of this confor-
mational switch, Zachariae and Grubmüller carried out MD simulations of Cse1p 
starting from the cargo bound conformation. They found that, mainly driven by 
electrostatic interactions, the structure of Cse1p spontaneously collapses and 
adopts a conformation close to the experimentally determined cytoplasmic form 
within a relatively short timescale of 10 ns. Simulations of mutants with different 
electrostatic surface potentials did not reveal a significant conformational change 
but remained in an open conformation which is in good agreement with experi-
mental findings (Cook et al. 2005). This example shows that functionally rele-
vant conformational changes that occur on short time scales can be studied by MD 
simulations. However, in this particular case the simulation has – due to the removal 
of importin-α and RanGTP – not been started from an equilibrium conformation 

Fig. 9.1 Heterotrimeric complex of Cse1p (blue), RanGTP (yellow) and importin-α (red). Cse1p 
adopts a superhelical structure and binds RanGTP and importin−α. The complex can cross nuclear 
pores and dissociates by catalyzed GTP hydrolysis in the cytoplasm
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and thus, presumably, no significant energy barrier had to be overcome to reach 
the closed conformation. When simulations are started from a free energy mini-
mum, which is usually the case, the accessible time scales are often too short to 
overcome higher energy barriers and, thus, to observe functionally relevant con-
formational transitions. This is known as the “sampling problem” and is a general 
problem for MD simulations.

9.1.2.2 Lysozyme

MD simulations of bacteriophage T4-lysozyme (T4L), an enzyme which is six 
times smaller than Cse1p, impressively illustrate this sampling problem for rela-
tively long MD trajectories. T4L has been extensively studied with X-ray crys-
tallography (Faber and Matthews 1990; Kuroki et al. 1993) and, since it has been 
crystallized in many different conformations, represents one of the rare cases 
where information about functionally relevant modes can be directly obtained at 
atomic resolution from experimental data (Zhang et al. 1995; de Groot et al. 
1998). The domain character of this enzyme is very pronounced (Matthews and 
Remington 1974) and from the differences between crystallographic structures 
of various mutants of T4L it has been suggested that a hinge-bending mode of 
T4L (Fig. 9.3) is an intrinsic property of the molecule (Dixon et al. 1992). 
Moreover, the domain fluctuations are predicted to be essential for the function 
of the enzyme, allowing the substrate to enter and the products to leave the 
active site in the open configuration, with the closed state presumably required 
for catalysis.

Fig. 9.2 Nucleoplasmic (left) and cytoplasmic (right) form of Cse1p. In the nucleoplasmic form, 
Cse1p is bound to RanGTP and importin-α (both not shown) and adopts a superhelical structure. 
After dissociation in the cytoplasm, Cse1p undergoes a large conformational change and forms a 
ring conformation that occludes the RanGTP binding site and prevents reassociation of the com-
plex. The structures are coloured in a spectrum from blue (N-terminus) to red (C-terminus)
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The wealth of experimental data also provides the opportunity to assess the reli-
ability and sampling performance of simulation methods. Two MD simulations 
have been carried out using a closed (simulation 1) and an open conformation 
(simulation 2) as starting points, respectively. In order to assess the sampling effi-
ciency a principal components analysis (PCA, see Section 9.2 below) has been car-
ried out on the ensemble of experimentally determined structures and the X-ray 
ensemble and the two MD trajectories have been projected onto the first two eigen-
vectors. The first eigenvector represents the hinge-bending motion, whereas the 
second eigenvector represents a twist of the two domains of T4L. The projections 
are shown in Fig. 9.4. The X-ray ensemble is represented by dots, each dot repre-
senting a single conformation. Movement along the first eigenvector (x-axis) 
describes a collective motion from the closed to the open state. It can be seen that 
neither of the individual the MD trajectories, represented by lines, fully samples the 
entire conformational space covered by the X-ray ensemble, although the simula-
tion times (184 ns for simulation 1 and 117 ns for simulation 2) are one order of 
magnitude larger than in the previously discussed Cse1p simulation. From the 
phase space density one can assume that an energy barrier exists between the closed 
and the open state and neither simulation achieves a full transition, from the closed 
to the open state, or vice versa.

Fig. 9.3 Hinge-bending motion in bacteriophage T4-lysozyme. Domain fluctuations (domains 
are coloured differently) are essential for enzyme function, allowing the substrate to enter and the 
products to leave the active site
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9.1.2.3 Aquaporins

Aquaporins present a prime example of how MD simulations have contributed to the 
understanding of protein function both in terms of dynamics and energetics. 
Aquaporins facilitate efficient and selective permeation of water across biological 
membranes. Related aquaglyceroporins in addition also permeate small neutral sol-
utes like glycerol. Available high-resolution structures provided invaluable insights 
in the molecular mechanisms acting in aquaporins (Fu et al. 2000; Murata et al. 
2000; de Groot et al. 2001; Sui et al. 2001). However, mostly static information is 
available from such structures and we can therefore not directly observe aquaporins 
“at work”. So far, there is no experimental method that offers sufficient spatial and 
time resolution to monitor permeation through aquaporins on a molecular level. MD 
simulations therefore complement experiments by providing the progression of the 
biomolecular system at atomic resolution. As permeation is known to take place on 
the nanosecond timescale, spontaneous permeation can be expected to take place in 
multi-nanosecond simulations, allowing a direct observation of the functional 
dynamics. Hence, such simulations have been termed “real-time simulations” 
(de Groot and Grubmüller 2001).

Indeed, spontaneous permeation events were observed in MD simulations of 
aquaporin-1 and the aquaglyceroporin GlpF. These simulations identified that the 

Fig. 9.4 Principal components analysis of bacteriophage T4-lysozyme. The X-ray ensemble is 
represented by dots, MD trajectories by lines. A movement along the first eigenvector (x-axis) 
represents a collective motion from the open to the closed state. Neither simulation 1 – started 
from a closed conformation – nor simulation 2 – started from an open conformation – show a full 
transition due to an energy barrier that separates the conformational states
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efficiency of water permeation is accomplished by providing a hydrogen bond com-
plementarity inside the channel comparable to bulk water, thereby establishing a low 
permeation barrier (de Groot and Grubmüller 2001; Tajkhorshid et al. 2002). The 
simulations furthermore identified that the selectivity in these channels is accom-
plished by a two-stage filter. The first stage of the filter is located in the central part 
of the channel at the conserved asparagine/proline/alanine (NPA) region; the second 
stage is located on the extracellular face of the channel in the aromatic/arginine (ar/R) 
constriction region (Fig. 9.5). As water permeation takes place on the nanosecond 
timescale, permeation coefficients can be directly computed from the simulations, 
and compared to experiment. Quantitative agreement was found between permeation 
coefficients from experiment and simulation, thereby validating the simulations.

A long standing question in aquaporin research has been the mechanism by 
which protons are excluded from the aqueous pores. The MD simulations address-
ing water permeation revealed a pronounced water dipole orientation pattern 
across the channel, with the NPA region as its symmetry centre (de Groot and 

Fig. 9.5 (a) Water molecules are strongly aligned inside the aquaporin-1 channel, with their 
dipoles pointing away from the central NPA region (de Groot and Grubmüller 2001). The water 
dipoles (yellow arrows) rotate by approximately 180 degrees while permeating though the AQP1 
pore. The red and blue colours indicate local electrostatic potential, negative and positive, respec-
tively. (b) Hydrogen bond energies per water molecule (solid black lines) in AQP1 (left) and GlpF 
(right). Protein-water hydrogen bonds (green) compensate for the loss of water-water hydrogen 
bonds (cyan). The main protein-water interaction sites are the ar/R region and the NPA site
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Grubmüller 2001). In the simulations, the water molecules were found to rotate by 
180 degrees on their path through the pore (Fig. 9.5a). In a series of simulations 
addressing the mechanism of proton exclusion it was found that the pronounced 
water orientation is due to an electric field in the channel centred at the NPA 
region (de Groot et al. 2003; Chakrabarti et al. 2004; Ilan et al. 2004). Electrostatic 
effects therefore form the structural basis of proton exclusion. A debate continues 
about the origin of the electrostatic barrier, where both direct electrostatic effects 
caused by helix dipoles has been suggested (de Groot et al. 2003; Chakrabarti 
et al. 2004), as well as a specific desolvation effects (Burykin and Warshel 2003). 
The most recent results suggest that both effects contribute approximately equally 
(Chen et al. 2006).

Recently, MD simulations allowed for the elucidation of the mechanism of 
selectivity of neutral solutes in aquaporins and aquaglyceroporins. Aquaporins 
were found to be permeated solely by small polar molecules like water, and to some 
extent also ammonia, whereas aquaglyceroporins are also permeated by apolar 
molecules like CO

2
 and larger molecules like glycerol, but not urea (Hub and de 

Groot 2008). For aquaporins, an inverse relation was observed between permeability 
and solute hydrophobicity – solutes competing with permeating water molecules 
for hydrogen bonds with the channel determine the permeation barrier. A combina-
tion of size exclusion and hydrophobicity therefore underlies the selectivity in 
aquaporins and aquaglyceroporins.

9.1.3 Limitations – Enhanced Sampling Algorithms

Although molecular dynamics simulations have become an integral part of struc-
tural biology and provided numerous invaluable insights into biological processes 
at the atomic level, limitations occur due to both methodological restrictions and 
limited computer power. Methodological limitations arise from the classical 
description of atoms and the approximation of interactions by simple energy terms 
instead of the Schrödinger equation. This means that chemical reactions (bond 
breaking and formation) can not be described. Also polarization effects and proton 
tunnelling lie out of the scope of classical MD simulations.

The second class of limitations arises from the computational demands of MD 
simulations. Although bonds are usually treated as constraints thereby eliminating 
the highest frequency motions, the timestep length in MD simulations usually can-
not be chosen longer than 2 fs. Hence, a nanosecond simulation requires 500,000 
force calculations and integration steps. Given current algorithm techniques and 
computer power, timescales of 100 ns are accessible within 3–4 weeks for a solvated 
200 amino acid protein.

However, biologically relevant protein motions like large conformational transi-
tions, folding and unfolding usually take place on the micro- to (milli)second 
timescale. Thus it becomes evident that, despite ever increasing computer power, 
which roughly grows by a factor of 100 per decade, MD simulations will not solve 
the “sampling problem” anytime soon by just waiting for faster computers. 
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Therefore, alternative methods – partly based on MD – have been developed to 
specifically address the problem of conformational sampling and to predict func-
tionally relevant protein motions.

Reducing the number of particles is one approach. Since proteins are usually 
studied in solution most of the simulation system consists of water molecules. 
The development of implicit solvent models is therefore a promising means to 
reduce computational demands (Still et al. 1990; Gosh et al. 1998; Jean-Charles 
et al. 1991; Luo et al. 2002). Another possibility to reduce the number of parti-
cles is the use of so-called coarse-grained models (Bond et al. 2007). In these 
models, atoms are grouped together, for instance typically four water molecules 
are treated as one pseudo-particle (bead). These groupings have two effects. 
First, the number of particles is reduced and, second, the timestep, depending 
on the fastest motions in the system, can be increased. However, coarse-graining 
is not restricted to water molecules. Representations of several atoms up to 
complete amino acids by a single bead are nowadays used. This allows for a 
drastic reduction of computational demands, thereby enabling the simulation of 
large macromolecular aggregates on micro- to millisecond timescales. This 
gain in efficiency, however, comes with an inherent reduction of accuracy com-
pared to all-atom descriptions of proteins, restricting current models to semi-
quantitative statements. Essential for the success of coarse-grained simulations 
are the parametrizations of force fields that are both accurate and transferable, 
i.e. force fields capable of describing the general dynamics of systems having 
different compositions and configurations. As the graining becomes coarser, 
this process becomes increasingly difficult, since more specific interactions 
must effectively be included in fewer parameters and functional forms. This has 
led to a variety of models for proteins, lipids and water, representing different 
compromises between accuracy and transferability (see e.g. Marrink et al. 2004).

Other MD based enhanced sampling methods, which retain the atomistic 
description, include replica exchange molecular dynamics (REMD) and essential 
dynamics (ED) which are discussed in subsequent sections. Moreover, a number of 
non-MD based methods are discussed that aim towards the prediction of functional 
modes of proteins.

9.1.3.1 Replica Exchange

The aim of most computer simulations of biomolecular systems is to calculate 
macroscopic behaviour from microscopic interactions. Following equilibrium 
statistical mechanics, any observable that can be connected to macroscopic 
experiments is defined as an ensemble average over all possible realizations of 
the system. However, given current computer hardware, a fully converged sam-
pling of all possible conformational states with the respective Boltzmann weight 
is only attainable for simple systems comprising a small number of amino acids 
(see e.g. Kubitzki and de Groot 2007). For proteins, consisting of hundreds to 
thousands of amino acids, conventional MD simulations often do not converge 
and reliable estimates of experimental quantities can not be calculated.
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This inefficiency in sampling is a result of the ruggedness of the systems’ free 
energy landscape, a concept put forward by Frauenfelder (Frauenfelder et al. 1991; 
Frauenfelder and Leeson 1998). The global shape is supposed to be funnel-like, with 
the native state populating the global free energy minimum (Anfinsen 1973). 
Looking in more detail, the complex high-dimensional free energy landscape is 
characterized by a multitude of almost iso-energetic minima, separated from each 
other by energy barriers of various heights. Each of these minima corresponds to one 
particular conformational substate, with neighboring minima corresponding to simi-
lar conformations. Within this picture, structural transitions are barrier crossings, 
with the transition rate depending on the height of the barrier. For MD simulations 
at room temperature, only those barriers are easily overcome that are smaller than or 
comparable to the thermal energy k

B
T and the observed structural changes are small, 

e.g. side chain rearrangements. Therefore the system will spend most of its time in 
locally stable states (kinetic trapping) instead of exploring different conformational 
states. This wider exploration is of greater interest, due to its connection to biologi-
cal function, but requires that the system be able to overcome large energy barriers. 
Unfortunately, since MD simulations are mostly restricted to the nanosecond times-
cale, functionally relevant conformational transitions are rarely observed.

A plethora of enhanced sampling methods have been developed to tackle this 
multi-minima problem (see e.g. Van Gunsteren and Berendsen 1990; Tai 2004; 
Adcock and McCammon 2006 and references therein). Among them, generalized 
ensemble algorithms have been widely used in recent years (for a review, see e.g. 
Mitsutake et al. 2001; Iba 2001). Generalized ensemble algorithms sample an arti-
ficial ensemble that is either constructed from combinations or alterations of the 
original ensemble. Algorithms of the second category (e.g. Berg and Neuhaus 
1991) basically modify the original bell-shaped potential energy distribution p(V) 
of the system by introducing a so-called multicanonical weight factor w(V), such 
that the resulting distribution is uniform, p(V)w(V) = const. This flat distribution 
can then be sampled extensively by MD or Monte-Carlo techniques because poten-
tial energy barriers are no longer present. Due to the modifications introduced, 
estimates for canonical ensemble averages of physical quantities need to be 
obtained by reweighting techniques (Kumar et al. 1992; Chodera et al. 2007). The 
main problem with these algorithms, however, is the non-trivial determination of 
the different multicanonical weight factors by an iterative process involving short 
trial simulations. For complex systems this procedure can be very tedious and 
attempts have been made to accelerate convergence of the iterative process (Berg 
and Celik 1992; Kumar et al. 1996; Smith and Bruce 1996; Hansmann 1997; 
Bartels and Karplus 1998).

The replica exchange (REX) algorithm, developed as an extension of simulated 
tempering (Marinari and Parisi 1992), removes the problem of finding correct 
weight factors. It belongs to the first category of algorithms where a generalized 
ensemble, built from several instances of the original ensemble, is sampled. Due to 
its simplicity and ease of implementation, it has been widely used in recent years. 
Most often, the standard temperature formulation of REX is employed (Sugita and 
Okamoto 1999), with the general Hamiltonian REX framework gaining increasing 
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attention (Fukunishi et al. 2002; Liu et al. 2005; Sugita et al. 2000; Affentranger 
et al. 2006; Christen and van Gunsteren 2006; Lyman and Zuckerman 2006).

In standard temperature REX MD (Sugita and Okamoto 1999), a generalized 
ensemble is constructed from M + 1 non-interacting copies, or “replicas”, of the 
system at a range of temperatures {T

0
,…,T

M
} (T

m
 ≤ T

m + 1
; m = 0,…,M), e.g. by dis-

tributing the simulation over M + 1 nodes of a parallel computer (Fig. 9.6 left). 
A state of this generalized ensemble is characterized by S = {…,s

m
,…}, where s

m
 

represents the state of replica m having temperature T
m
. The algorithm now consists 

of two consecutive steps: (a), independent constant-temperature simulations of each 
replica, and (b), exchange of two replicas S = {…,s

m
,…,s

n
,…}→ S′= {…,s

n
′,…

,s
m
,…} according to a Metropolis-like criterion. The exchange acceptance probability 

is thereby given by
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. Iterating steps a and b, the tra-

jectories of the generalized ensemble perform a random walk in temperature space, 
which in turn induces a random walk in energy space. This facilitates an efficient 
and statistically correct conformational sampling of the energy landscape of the 
system, even in the presence of multiple local minima.

The choice of temperatures is crucial for an optimal performance of the algo-
rithm. Replica temperatures have to be chosen such that (a) the lowest tempera-
ture is small enough to sufficiently sample low-energy states, (b) the highest 
temperature is large enough to overcome energy barriers of the system of interest, 
and (c) the acceptance probability P(S→S¢) is sufficiently high, requiring 
adequate overlap of potential energy distributions for neighboring replicas. For 
larger systems simulated with explicit solvent the latter condition presents the 
main bottleneck. A simple estimate (Cheng et al. 2005; Fukunishi et al. 2002) 
shows that the potential energy difference ΔV~N
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(T1 , T0)
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Fig. 9.6 Schematic comparison of standard temperature REX (left panel) and the TEE-REX 
algorithm (right panel) for a three-replica simulation. Temperatures are sorted in increasing order, 
T

i + 1
 > T

i
. Exchanges («) are attempted (…) with frequency ν

ex
. Unlike REX, only an essential 

subspace {es} (red boxes) containing a few collective modes is excited within each TEE-REX 
replica. Reference replica (T

0
, T

0
), containing an approximate Boltzmann ensemble, is used for 

analysis
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tion of the total number of degrees of freedom N
df

 of the system. Obtaining a 
reasonable acceptance probability therefore relies on keeping the temperature 
gaps ΔT= T

m+1
−T

m
 small (typically only a few Kelvin) which drastically 

increases computational demands for systems having more than a few thousand 
particles. Despite this severe limitation, REX methods have become an estab-
lished tool for the study of peptide folding/unfolding (Zhou et al. 2001; Rao and 
Caflisch 2003; García and Onuchic 2003; Pitera and Swope 2003; Seibert et al. 
2005), structure prediction (Fukunishi et al. 2002; Kokubo and Okamoto 2004), 
phase transitions (Berg and Neuhaus 1991) and free energy calculations (Sugita 
et al. 2000; Lou and Cukier 2006).

Going beyond conventional MD, another class of enhanced sampling algorithms 
is successfully applied to the task of elucidating protein function. These algorithms 
make use of the fact that fluctuations in proteins are generally correlated. Extracting 
such collective modes of motion and their application in new sampling algorithms 
will be the focus of the following two sections.

9.2 Principal Component Analysis

Principal component analysis (PCA) is a well-established technique to obtain a 
low-dimensional description of high-dimensional data. Its applications include 
data compression, image processing, data visualization, exploratory data analysis, 
pattern recognition and time series prediction (Duda et al. 2001). In the context of 
biomolecular simulations PCA has become an important tool in the extraction and 
classification of relevant information about large conformational changes from an 
ensemble of protein structures, generated either experimentally or theoretically 
(García 1992; Gō et al. 1983; Amadei et al. 1993). Besides PCA, a number of 
similar techniques are nowadays used, most notably normal mode analysis (NMA) 
(Brooks and Karplus 1983; Gō et al. 1983; Levitt et al. 1983), quasi-harmonic 
analysis (Karplus and Kushick 1981; Levy et al. 1984a, b; Teeter and Case 1990) 
and singular-value decomposition (Romo et al. 1995; Bahar et al. 1997).

PCA is based on the notion that by far the largest fraction of positional fluctua-
tions in proteins occurs along only a small subset of collective degrees of freedom. 
This was first realized from NMA of a small protein (Brooks and Karplus 1983; Gō 
et al. 1983; Levitt et al. 1983). In NMA (see Section 9.4.1), the potential energy 
surface is assumed to be harmonic and collective variables are obtained by diago-
nalization of the Hessian1 matrix in a local energy minimum. Quasi-harmonic anal-
ysis, PCA and singular-value decomposition of MD trajectories of proteins that do 
not assume harmonicity of the dynamics, have shown that indeed protein dynamics 

1 Second derivative (¶2V)/(¶x
i
¶x

j
) of the potential energy
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is dominated by a limited number of collective coordinates, even though the major 
modes are frequently found to be largely anharmonic. These methods identify those 
collective degrees of freedom that best approximate the total amount of fluctuation. 
The subset of largest-amplitude variables form a set of generalized internal coordi-
nates that can be used to effectively describe the dynamics of a protein. Often, a 
small subset of 5–10% of the total number of degrees of freedom yields a remarka-
bly accurate approximation. As opposed to torsion angles as internal coordinates, 
these collective internal coordinates are not known beforehand but must be defined 
either using experimental structures or an ensemble of simulated structures. Once 
an approximation of the collective degrees of freedom has been obtained, this infor-
mation can be used for the analysis of simulations as well as in simulation protocols 
designed to enhance conformational sampling (Grubmüller 1995; Zhang et al. 
2003; He et al. 2003; Amadei et al. 1996).

In essence, a principal component analysis is a multi-dimensional linear least 
squares fit procedure in configuration space. The structure ensemble of a mole-
cule, having N particles, can be represented in 3N-dimensional configuration 
space as a distribution of points with each configuration represented by a single 
point. For this cloud, always one axis can be defined along which the maximal 
fluctuation takes place. As illustrated for a two-dimensional example (Fig. 9.7), 
if such a line fits the data well, all data points can be approximated by only the 
projection onto that axis, allowing a reasonable approximation of the position 
even when neglecting the position in all directions orthogonal to it. If this axis is 
chosen as coordinate axis, the position of a point can be represented by a single 
coordinate. The procedure in the general 3N-dimensional case works similarly. 
Given the first axis that best describes the data, successive directions orthogonal 
to the previous set are chosen such as to fit the data second-best, third-best, and 
so on (the principal components). Together, these directions span a 3N-dimensional 
space. Mathematically, these directions are given by the eigenvectors μ

i
 of the 

covariance matrix of atomic fluctuations

x

y
x’y’

a b

Fig. 9.7 Illustration of PCA in two dimensions. Two coordinates (x, y) are required to identify a 
point in the ensemble in panel (a), whereas one coordinate x′ approximately identifies a point in 
panel (b)
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C x t x x t x
T

= −( ) −( )( ) ( ) ,

with the angle brackets á×ñ representing an ensemble average. The eigenvalues λ
i
 

correspond to the mean square positional fluctuation along the respective eigenvec-
tor, and therefore contain the contribution of each principal component to the total 
fluctuation (Fig. 9.8).

Applications of such a multidimensional fit procedure on protein configura-
tions from MD simulations of several proteins have proven that typically the first 
10 to 20 principal components are responsible for 90% of the fluctuations of a 
protein (Kitao et al. 1991; García 1992; Amadei et al. 1993). These principal com-
ponents correspond to collective coordinates, containing contributions from every 
atom of the protein. In a number of cases these principal modes were shown to be 
involved in the functional dynamics of the studied proteins (Amadei et al. 1993; 
Van Aalten et al. 1995a, b; de Groot et al. 1998). Hence, the subspace responsible 
for the majority of all fluctuations has been referred to as the essential subspace 
(Amadei et al. 1993).

The fact that a small subset of the total number of degrees of freedom (essential 
subspace) dominates the molecular dynamics of proteins originates from the pres-
ence of a large number of internal constraints and restrictions defined by the atomic 
interactions present in a biomolecule. These interactions range from strong covalent 
bonds to weak non-bonded interactions, whereas the restrictions are given by the 
dense packing of atoms in native-state structures.

Overall, protein dynamics at physiological temperatures has been described 
as diffusion among multiple minima (Kitao et al. 1998; Amadei et al. 1999; 
Kitao and Gō 1999). The dynamics on short timescales is dominated by fluctua-
tions within a local minimum, corresponding to eigenvectors having low eigen-
values. On longer timescales large fluctuations are dominated by a largely 
anharmonic diffusion between multiple wells. These slow dynamical transitions 
are usually represented by the largest-amplitude modes of a PCA. In contrast to 
normal mode analysis, PCA of a MD simulation trajectory does not rest on the 
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Fig. 9.8 Typical PCA eigenvalue spectrum (MD ensemble of guanylin backbone structures). The 
first five eigenvectors (panel a) cover 80% of all observed fluctuations (panel b)
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assumption of a harmonic potential. In fact, PCA can be used to study the degree 
of anharmonicity in the molecular dynamics of the simulated system. For pro-
teins, it was shown that at physiological temperatures, especially the major 
modes of collective fluctuation that are frequently functionally relevant, are 
dominated by anharmonic fluctuations (Amadei et al. 1993; Hayward et al. 1995).

9.3 Collective Coordinate Sampling Algorithms

Analyzing MD simulations in terms of collective coordinates (obtained e.g. by 
PCA or NMA) reveals that only a small subset of the total number of degrees 
of freedom dominates the molecular dynamics of biomolecules. As protein 
function could in many cases been linked to these essential subspace modes 
(e.g. Brooks and Karplus 1983; Gō et al. 1983; Levitt et al. 1983), the dynamics 
within this low-dimensional space was termed “essential dynamics” (ED). 
This not only aids the analysis and interpretation of MD trajectories but also 
opens the way to enhanced sampling algorithms that search the essential sub-
space in either a systematic or exploratory fashion (Grubmüller 1995; Amadei 
et al. 1996).

9.3.1 Essential Dynamics

The first attempts in this direction were aimed at a simulation scheme in 
which the equations of motion were solely integrated along a selection of pri-
mary principal modes, thereby drastically reducing the number of degrees of 
freedom (Amadei et al. 1993). However, these attempts proved problematic 
because of non-trivial couplings between high- and low-amplitude modes, 
even though after diagonalization the modes are linearly independent (orthog-
onal). Therefore, instead, a series of techniques has prevailed that take into 
account the full-dimensional simulation system and enhance the motion along 
a selection of principal modes. The most common of these techniques are 
conformational flooding (Grubmüller 1995) and ED sampling (Amadei et al. 
1996; de Groot et al. 1996a, b). In conformational flooding, an additional 
potential energy term that stimulates the simulated system to explore new 
regions of phase space is introduced on a selection of principal modes, 
whereas in ED sampling a similar goal is achieved by geometrical constraints 
along a selection of principal modes. With these techniques a sampling effi-
ciency enhancement of up to an order of magnitude can be achieved, provided 
that a reasonable approximation of the principal modes has been obtained 
from a conventional simulation. However, due to the applied structural or 
energetic bias on the system, the ensemble generated by ED sampling and 
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conformational flooding is not canonical, restricting analysis to structural 
questions.

9.3.2 TEE-REX

Enhanced sampling methods such as ED (Amadei et al. 1996) achieve their sam-
pling power (Amadei et al. 1996; de Groot et al. 1996a, b) primarily from the fact 
that a small number of internal collective degrees of freedom dominate the configu-
rational dynamics of proteins. Yet, systems simulated with such methods are always 
in a non-equilibrium state, rendering it difficult to extract thermodynamic, i.e. equi-
librium properties of the system from such simulations. On the other hand, general-
ized ensemble algorithms such as REX not only enhance sampling but yield correct 
statistical ensembles necessary for the calculation of equilibrium properties which 
can be subjected to experimental verification. However, REX quickly becomes 
computationally prohibitive for systems of more than a few thousand particles, 
limiting its current applicability to smaller peptides (Pitera and Swope 2003; 
Cecchini et al. 2004; Nguyen et al. 2005; Liu et al. 2005; Seibert et al. 2005). The 
newly developed Temperature Enhanced Essential dynamics Replica EXchange 
(TEE-REX) algorithm (Kubitzki and de Groot 2007) combines the favourable prop-
erties of REX with those resulting from a specific excitation of functionally relevant 
modes, while at the same time avoiding the drawbacks of both approaches.

Figure 9.6 shows a schematic comparison of standard temperature REX (left) 
and the TEE-REX algorithm (right). TEE-REX builds upon the REX framework, 
i.e. a number of replicas of the system are simulated independently in parallel with 
periodic exchange attempts between neighbouring replicas. In contrast to REX, in 
each but the reference replica, only those degrees of freedom are thermally stimu-
lated that contribute significantly to the total fluctuations of the system (essential 
subspace {es}). This way, several benefits are combined and drawbacks avoided. In 
contrast to standard REX, the specific excitation of collective coordinates promotes 
sampling along these often functionally relevant modes of motion, i.e. the advan-
tages of ED are used. To counterbalance the disadvantages associated with such a 
specific excitation, i.e. the construction of biased ensembles, the scheme is embed-
ded within the REX protocol. Thereby ensembles are obtained having approximate 
Boltzmann statistics and the enhanced sampling properties of REX are utilized. The 
exchange probability (equation 9.1) between two replicas crucially depends on the 
excited number of degree of freedom of the system. Since the stimulated number of 
degrees of freedom makes up only a minute fraction of the total number of degrees 
of freedom of the system, the bottleneck of low exchange probabilities in all-atom 
REX simulations is bypassed. For given exchange probabilities, large temperature 
differences ΔT can thus be used, such that only a few replicas are required.

Figure 9.9 shows a two-dimensional projection of the free energy landscape of 
dialanine, calculated with MD (panel A) and TEE-REX (panel B). The thermody-
namic behaviour of a system is completely known once a thermodynamic potential 
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such as the relative Gibbs free energy ΔG is available. Comparing free energies thus 
enables us to decide to which degree ensembles created by different simulation 
methods coincide. In doing so, ensemble convergence is an absolute necessity. For 
the dialanine test case, this requirement is met. A detailed analysis of the shape of 
the free energy surfaces generated by MD and TEE-REX shows that the maximum 
absolute deviations of 1.5 kJ/mol @ 0.6 k

B
T from the ideal case ΔG

TEE-REX
 − G

MD
= 0, 

commensurate with the maximum statistical errors of 0.15 k
B
T found for each 

method. The small deviations found for the TEE-REX ensemble are presumably 
due to the exchange of non-equilibrium structures into the TEE-REX reference 
ensemble.

The sampling efficiency of the TEE-REX algorithm compared to MD was evalu-
ated for guanylin, a small 13 amino-acid peptide hormone (Currie et al. 1992). 
Trajectories generated with both methods-using the same computational effort-
were projected into (φ,ψ)-space as well as different two-dimensional subspaces 
spanned by PCA modes calculated from an MD ensemble of guanylin structures. 
From these projections, the time evolution of sampled configuration space volume 
was measured. Overall, the sampling performance of MD is quite limited compared 
to TEE-REX, the latter outperforming MD on average by a factor of 2.5, depending 
on the subspace used for projecting.

9.3.2.1 Applications: Finding Transition Pathways in Adenylate Kinase

Understanding the functional basis for many protein functions (Gerstein et al. 1994; 
Berg et al. 2002; Karplus and Gao 2004; Xu et al. 1997) requires detailed knowl-
edge of transitions between functionally relevant conformations. Over the last years 
X-ray crystallography and NMR spectroscopy have provided mostly static pictures 
of different conformational states of proteins, leaving questions related to the 
underlying transition pathway unanswered. For atomistic MD simulations, eluci-
dating the pathways and mechanisms of protein conformational dynamics poses a 
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challenge due to the long timescales involved. In this respect, E. coli adenylate 
kinase (ADK) is a prime example. ADK is a monomeric enzyme that plays a key 
role in energy maintenance within the cell, controlling cellular ATP levels by cata-
lyzing the reaction Mg2+:ATP + AMP«Mg2+:ADP + ADP. Structurally, the enzyme 
consists of three domains (Fig. 9.10): the large central “CORE” domain (light 
grey), an AMP binding domain referred to as “AMPbd” (black), and a lid-shaped 
ATP-binding domain termed “LID” (dark grey), which covers the phosphate groups 
at the active centre (Müller et al. 1996). In an unligated structure of ADK the LID 
and AMPbd adopt an open conformation, whereas they assume a closed conforma-
tion in a structure crystallized with the transition state inhibitor Ap

5
A (Müller and 

Schulz 1992). Here, the ligands are contained in a highly specific environment 
required for catalysis. Recent 15N nuclear magnetic resonance spin relaxation stud-
ies (Shapiro and Meirovitch 2006) have shown the existence of catalytic domain 
motions in the flexible AMPbd and LID domains on the nanosecond time scale, 
while the relaxation in the CORE domain is on the picosecond time scale (Tugarinov 
et al. 2002; Shapiro et al. 2002). For ADK, several computational studies have 
addressed its conformational flexibility (Temiz et al. 2004; Maragakis and 
Karplus 2005; Lou and Cukier 2006; Whitford et al. 2007; Snow et al. 2007). 
However, due to the magnitude and timescales involved, spontaneous transitions 
between the open and closed conformations have not been achieved until now by 
all-atom MD simulations. Using TEE-REX, spontaneous transitions between the 
open and closed structures of ADK are facilitated, and a fully atomistic description 
of the transition pathway and its underlying mechanics could be achieved (Kubitzki 
and de Groot 2008). To this end, different essential subspaces {es} were con-
structed from short MD simulations of either conformation as well as from a com-
bined ensemble holding structures from both the open and closed conformation. In 
the latter case, {es} modes were excited containing the difference X-ray mode con-
necting the open and closed experimental structures.

The observed transition pathway can be characterized by two phases. Starting 
from the closed conformation (Fig. 9.10 left), the LID remains essentially closed 

CLOSED phase 1 phase 2 OPEN

LID

AMPbd

CORE

Fig. 9.10 Closed (left) and open (right) crystal structures of E. coli adenylate kinase (ADK) 
together with intermediate structures characterizing the two phases of the closed-open transition. 
ADK has domains CORE (light grey), AMPbd (black) and LID (dark grey). The transition state 
inhibitor Ap

5
A is removed in the closed crystal structure (left)
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while the AMPbd, comprising helices α
2
 and α

3
, assumes a half-open conforma-

tion. In doing so, α
2
 bends towards helix α

4
 of the CORE by 15 degrees with 

respect to α
3
. This opening of the AMP binding cleft could facilitate an efficient 

release of the formed product. For the second phase, a partially correlated opening 
of the LID domain together with the AMPbd is observed. Compared to coarse-
grained approaches, all-atom TEE-REX simulations allow detailed analyses of 
inter-residue interactions. For ADK, a highly stable salt bridge between residues 
Asp118 and Lys136 forms during phase one, connecting the LID and CORE 
domains. Estimating the total non-bonded interaction between LID and CORE, it 
was found that this salt-bridge contributes substantially to the interaction of the 
two domains. Breaking this salt bridge via mutation, e.g. Asp118Ala, should thus 
decrease the stability of the open state. From a comparison of fourteen Protein 
Data Bank (PDB) structures from yeast, maize, human and bacterial ADK, eleven 
structures feature such a salt-bridge motif at the LID-CORE interface.

Alternative transition pathways seem possible, however an analysis of all TEE-REX 
simulations suggests a high free energy barrier obstructing the full opening of the 
AMPbd after the LID has opened. Together with the observed larger fluctuations in sec-
ondary structure elements, indicating high internal strain energies, the enthalpic penalty 
along this route possibly renders it unfavourable as a transition pathway of ADK.

9.4 Methods for Functional Mode Prediction

As discussed in the previous section, functional modes in proteins are usually those 
with the lowest frequencies. Apart from molecular dynamics based techniques, 
there are several alternative methods that focus on the prediction of these essential 
degrees of freedom based on a single input structure.

9.4.1 Normal Mode Analysis

Normal mode analysis (NMA) is one of the major simulation techniques used to 
probe the large-scale, shape-changing motions in biological molecules (Gō et al. 
1983; Brooks and Karplus 1983; Levitt et al. 1983). These motions are often cou-
pled to function and a consequence of binding other molecules like substrates, 
drugs or other proteins. In NMA studies it is implicitly assumed that the normal 
modes with the largest fluctuation (lowest frequency modes) are the ones that are 
functionally relevant, because, like function they exist by evolutionary “design” 
rather than by chance.

Normal mode analysis is a harmonic analysis. The underlying assumption is that 
the conformational energy surface can be approximated by a parabola, despite the 
fact that functional modes at physiological temperatures are highly anharmonic 
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(Brooks and Karplus 1983; Austin et al. 1975). To perform a normal mode analysis 
one needs a set of coordinates, a force field describing the interactions between 
constituent atoms, and software to perform the required calculations. The perform-
ance of a normal mode analysis in Cartesian coordinate space requires three main 
calculation steps.

1. Minimization of the conformational potential energy as a function of the atomic 
coordinates.

2. The calculation of the so-called “Hessian” matrix

which is the matrix of second derivatives of the potential energy with respect to the 
mass-weighted atomic coordinates.

3. The diagonalization of the Hessian matrix. This final steps yields eigenvalues 
and eigenvectors (the “normal modes”).

Energy minimization can require quite a lot of CPU time. Furthermore, as the 
Hessian matrix is a 3N × 3N matrix, where N is the number of atoms, the last step 
can be computationally demanding.

9.4.2 Elastic Network Models

Elastic or Gaussian network models (Tirion 1996) (ENM) are basically a simplifi-
cation of normal mode analysis. Usually, instead of an all atom representation, only 
Cα atoms are taken into account. This means a ten-fold reduction of the number of 
particles which decreases the computational effort dramatically. Moreover, as the 
input coordinates are taken as representing the ground state, no energy minimization 
is required.

The potential energy is calculated according to

V r rij ij

r Rij C

= −
<

∑γ
2

0 2

0

( )

where γ denotes the spring constant and R
C
 the cut-off distance. Regarding the 

drastic assumptions inherent in normal mode analysis, these simplifications do 
not mean a severe loss of quality. This, together with the relatively low computa-
tional costs, explains the current popularity of elastic network models. ENM cal-
culations are also offered on web servers such as ElNemo (Suhre and Sanejouand 
2004a, b) (http://www.igs.cnrs-mrs.fr/elnemo/) and AD-ENM (Zheng and 
Doniach 2003; Zheng and Brooks 2005) (http://enm.lobos.nih.gov/).
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9.4.3 CONCOORD

CONCOORD (de Groot et al. 1997) uses a geometry-based approach to predict 
protein flexibility. The three-dimensional structure of a protein is determined by 
various interactions such as covalent bonds, hydrogen bonds and non-polar inter-
actions. Most of these interactions remain intact during functionally relevant 
conformational changes. This notion lies at the heart of the CONCOORD simula-
tion method: based on an input structure, alternative structures are generated that 
share the large majority of interactions found in the original configuration. To this 
end, in the first step of a CONCOORD simulation (Fig. 9.11) interactions in a 
single input structure are analyzed and turned into geometrical constraints, 
mainly distance constraints with upper and lower bounds for atomic distances but 
also angle constraints and information about planar and chiral groups. This geo-
metrical description of the structure can be compared to a construction plan of the 
protein. In the second step, starting from random atomic coordinates, the struc-
ture is iteratively rebuilt based on the predefined construction plan, commonly 
several hundreds of times. As each run starts from random coordinates, the 
method does not suffer from sampling problems like MD simulations and the 
resulting ensemble covers the whole conformational space that is available within 
the predefined constraints. However, the method does not provide information 
about the path between two conformational substates or about timescales and 
energies (Fig. 9.12).

9.4.3.1 Applications

CONCOORD and the newly developed extension tCONCOORD (t stands for 
transition) (Seeliger et al. 2007) have been applied to diverse proteins. Adenylate 
kinase displays a distinct domain-closing motion upon binding to its substrate 
(ATP/AMP) or an inhibitor (see Fig. 9.13 left) with a Cα-RMSD of 7.6 Å 
between the ligand-bound and the ligand-free conformation. Two tCONCOORD 
simulations were carried out using a closed conformation (PDB 1AKE) as input. 
In one simulation the ligand (Ap

5
A) was removed. Fig. 9.13 (right) shows the 

result of a principal components analysis (PCA) applied to the experimental 
structures. The first eigenvector (x-axis) corresponds to the domain-opening 
motion indicated by the arrow in Fig. 9.13 (left). Every dot in the plot represents 
a single structure. Red dots represent the ensemble that has been generated using 
the closed conformation of adenylate kinase without ligand as input. Green dots 
represent the ensemble that has been generated using the ligand-bound structure 
as input. Whereas the simulation with inhibitor basically samples closed confor-
mations around the ligand-bound state, the ligand-free simulation samples both, 
open and closed conformations, thereby reaching the experimentally determined 
open conformations with RMSD’s of 2.4, 2.6, and 3.1 Å for 1DVR, 1AK2, and 
4AKE, respectively. In structure-based drug design, often the reverse problem, 
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Fig. 9.11 Schematic representation of the CONCOORD method for generating structure ensem-
bles from a single input structure. In a first step (program dist) a single input structure is analyzed 
and turned into a geometric description of the protein. In a second step (program disco) the struc-
ture is rebuilt based on the predefined constraints, starting from random coordinates



9 Protein Dynamics: From Structure to Function 241

predicting ligand-bound structures from unbound conformations, needs to be 
addressed. A tCONCOORD simulation starting with an open conformation 
(4AKE) as input produced structures that approach the closed conformations 
with RMSD’s of 2.5, 2.9, and 3.3 Å for 1DVR, 1AK2, and 1AKE, respectively. 
Thus, the functional domain-opening motion has been predicted in both cases, 
when using a closed, ligand-bound conformation as input and when using an 
open, ligand-free conformation as input.

Because of its computational efficiency, CONCOORD can be routinely applied 
to extract functionally relevant modes of flexibility for molecular systems that are 
beyond the size limitations of other atomistic simulation techniques like molecular 
dynamics simulations. An application to the chaperonin GroEL-GroES complex 

Fig. 9.12 Comparison of the sampling properties of Molecular Dynamics and CONCOORD on 
hypothetic energy landscapes. A MD-trajectory (left) “walks” on the energy landscape, thereby 
providing information about timescales and paths between conformational substates. The (non-
deterministic) CONCOORD-ensemble (right) “jumps” on the energy landscape, thereby offering 
better sampling of the conformational space

Fig. 9.13 Left: Overlay of X-ray structures of adenylate kinase. Right: principal component 
analysis. Two tCONCOORD ensembles are projected onto the first two eigenvectors of a PCA 
carried out on an ensemble of X-ray structures. The ensemble represented by red dots has been 
started from a closed conformation (1AKE) with removed inhibitor. The generated ensemble 
samples both, closed and open conformations. The ensemble represented with green dots has also 
been started from a closed conformation (1AKE) but with inhibitor present. The generated 
ensemble only samples closed conformations around the ligand bound conformation
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Fig. 9.14 Asymmetric GroEL-GroES complex (left), together with CONCOORD simulation 
results (right). The GroEL-GroES complex consists of the co-chaperonin GroES (blue), the trans-
ring of GroEL, bound to GroES (red), and the cis-ring (green). A principal component analysis 
revealed two main structural transitions per GroEL ring, upon nucleotide binding (vertical axis in 
the right panels) and GroES binding (horizontal axis), respectively. In simulations of the double 
ring, but not in a single ring, these modes were found to be coupled, suggesting a coupling 
between intra-ring and inter-ring cooperativity

that contains more than 8,000 amino acids revealed a novel form of coupling 
between intra-ring and inter-ring cooperativity (de Groot et al. 1999). Each GroEL 
ring displays two main modes of collective motion: the main conformational transi-
tion upon binding of the co-chaperonin GroES, and a secondary transition upon 
ATP binding (Fig. 9.14 upper right panel). CONCOORD simulations of a single 
GroEL ring did not show any coupling between these modes, whereas simulations 
of the double ring system showed a strict correlation between the two modes, 
thereby providing an explanation for how nucleotide binding is coupled to GroES 
affinity in the double ring, but not in a single ring.

9.5 Summary and Outlook

Computational methods gain growing recognition in structural biology and protein 
research. Protein function is usually a dynamic process involving structural rear-
rangements and conformational transitions between stable states. Since such 
dynamic processes are difficult to study experimentally, in silico methods can sig-
nificantly contribute to the understanding of protein function at atomic resolution. 
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The most prominent method to study protein dynamics is molecular dynamics 
(MD), where atoms are treated as classical particles and their interactions are 
approximated by an empirical force field. Newton’s equations of motion are solved 
at discrete time steps, leading to a trajectory that describes the dynamical behaviour 
of the system. Despite their growing popularity the scope of application for MD 
simulations is limited by computational demands. Within the next 10 years the 
accessible timescales for the simulation of average sized proteins will, in all likeli-
hood, not exceed the low microsecond range for most biomolecular systems. 
However, since functionally relevant protein dynamics is usually represented by 
collective, low-frequency motions taking place on the micro- to millisecond times-
cale, standard MD simulations are ill-suited to be routinely applied to study confor-
mational dynamics of large biomolecules.

Different methodologies have been developed to alleviate this sampling problem 
that standard MD suffers from. One approach is to reduce the number of particles, 
either by fusing groups of atoms into pseudo-atoms (coarse-graining), or by replac-
ing explicit solvent molecules with an implicit solvent continuum model. In both 
cases the number of particles is significantly reduced, facilitating much longer time 
scales than in all-atom simulations using explicit solvent. However, the loss of 
“resolution” inherent to both methods may limit their accuracy and hence, their 
applicability. Other approaches retain the atomistic description and pursue different 
sampling strategies.

Generalized ensemble algorithms such as Replica Exchange (REX) make use of 
the fact that conformational transitions occur more frequently at higher tempera-
tures. In standard temperature REX, several copies (replicas) of the system are 
simulated with MD at different temperatures, with frequent exchanges between 
replicas. Thereby, low-temperature replicas utilize the enhanced barrier-crossing 
capabilities of high-temperature replicas. Although dynamical information gets lost 
in this setup, each replica still represents a Boltzmann ensemble at its correspond-
ing temperature, providing valuable information about thermodynamics and thus 
the stability of different conformational substates. Although often used in the con-
text of protein folding, REX simulations at full atomic resolution quickly become 
computationally very demanding for systems comprising more than a few thousand 
atoms.

Whereas REX is an unbiased sampling method, several other methods exist 
that bias the system in order to enhance sampling predominantly along certain 
collective degrees of freedom. Functionally relevant protein motions often corre-
spond to those eigenvectors of the covariance matrix of atomic fluctuations hav-
ing the largest eigenvalues. If these eigenvectors are known from a principal 
component analysis (PCA), either using experimental data or previous simula-
tions, they can be used in simulation protocols like Conformational Flooding or 
Essential Dynamics (ED). However, in both methods the enhancement in sam-
pling is paid for by losing the canonical properties of the resulting trajectory.

The recently developed TEE-REX protocol combines the favourable properties of 
REX with those resulting from a specific excitation of functionally relevant modes (as 
e.g. in ED), while at the same time avoiding the aforementioned drawbacks of each 
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method. In particular, approximate canonical integrity of the reference ensemble is 
maintained and sampling along the main collective modes of motion is significantly 
enhanced. The resulting reference ensemble can thus be used to calculate equilibrium 
properties of the system which allows comparison with experimental data.

Although significant progress has been made in the development of enhanced 
sampling methods, computational demands of MD based methods are still large 
and simulations usually take several weeks to months of computation time on mul-
tiprocessor state-of-the-art computer clusters. For many questions in structural 
biology it is already beneficial to have an idea about possible protein conformations 
and functional modes without the need to get detailed information about energetics 
and timescales. In this respect, elastic network models offer a cheap way to get an 
estimate of possible functional protein motions. Although drastic assumptions are 
made and no atomistic picture is obtained the predicted collective motions are often 
in qualitatively good agreement with experimental results. Another computational 
efficient way which retains the atomistic description of protein structures is the 
CONCOORD method where a protein is described with geometrical constraints. 
Based on a construction plan derived from a single input structure, an ensemble of 
structures is generated which represents an exhaustive sampling of conformational 
space that is available within the predefined constraints. However, no information 
about timescales or energies is obtained.

Right now there is no single method that is routinely applicable to predict func-
tionally relevant protein motions from a given three-dimensional structure. 
However, there are a large number of methods available, capturing different aspects 
of the problem and contributing to our understanding of protein function. Thus, 
combinations of existing methods will presumably be the most straightforward way 
of enhancing the predictive power of in silico methods.
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