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Numerically accurate analytical fittings for partial wave capture probabilities in the field

of R�n potentials (n = 4 and 6) are presented across practically interesting ranges of probabilities.

The results demonstrate the performance of the Bethe and Wigner threshold laws at low collision

energies and should be useful for practical applications.

1. Introduction

Cross sections and rate coefficients for complex-forming

encounters between two particles under the action of isotropic

attractive interparticle potentials are completely determined

by capture probabilities Pc. They correspond to the close

approach of the partners to an absorbing complex surface in

a particular channel with the orbital momentum quantum

number c, and the set of Pc determines the partial and total

complex-forming cross sections sc and s through

sðkÞ ¼
X1
‘¼0

s‘ðkÞ; s‘ðkÞ ¼
p ð2‘þ 1Þ

k2
P‘ðkÞ ð1Þ

Here k is the wave vector of the relative motion of the

partners. For complete capture, the probabilities Pc(k) are

identified with the probabilities Tc(k) of transmission either

above the potential drop for the channel with c = 0 or

through the potential barrier created by the attractive poten-

tial and the repulsive centrifugal potential for c 4 0. For

potentials of the form Un(R) = �cn/Rn, cn 4 0 and the

additional assumption that the relative motion of the partners

near the complex surface is quasiclassical, the numerical

quantities T(n)
c (k) = P(n)

c (k) are well known1 up to cmax that

is large enough such that P(n)
c (k) with c 4 cmax can be well

approximated by classical step functions of the energy. As was

shown in ref. 1 the accurate capture probabilities P(n)
c depend

only on the reduced wave vector kn = Rnk where Rn are

characteristic lengths of the potentials Un that mark the position

of the region where the reflection occurs. For n= 4 and n= 6,

these quantities are R4 = (2mc4/�h
2)1/2 and R6 = (2mc6/�h

2)1/4.2

In practical applications, often the need arises to use the

functions P(n)
c (k) in approximate analytical form and to under-

stand the applicability of their threshold energy dependence.

In particular, for n = 4, some analytical representations of

Pc(k) were suggested, in ref. 1,2 for c = 0 and in ref. 3 for

c = 1, 2, 3, and 4. These analytical expressions were designed

only by consideration of their accuracy and without resorting

to basic criteria. In this note, we return to this question for the

practically interesting cases n = 4 and n = 6 and we suggest

approximate analytical expressions P(n),app
c (k) that are forced

to comply with the known properties of the accurate

probabilities P(n)
c (k).

The properties of the probabilities, which we take into

account in constructing P(n),app
c (k), are given in the following.

(i) The approximate probabilities should approach the

Bethe–Wigner dependences of the probabilities on the wave

vector k for small k which are given by ref. 4

P(n),app
c (k)|small k = P(n)

c (k)|small k = C(n)
c (Rnk)

2c+1 (2)

The coefficients C(n)
c can be found from the solution of the

Schroedinger equation at zero energy, and are known in

analytical form,5 see below.

For the particular case c = 0, when written through the

imaginary part of the scattering length a0 0, the partial cross

sections can be represented in the more extended form

[ref. 4, Sect.143]

s0ðkÞjsmall k¼
4p a00j j
k
ð1� 2 a00j jkÞ ð3Þ

The comparison of eqn (3) and eqn (1) leads to the

representation of the probability through second order in k:

Papp
0 (k)|small k = P0(k)|small k

= 4|a0 0|k � 8|a0 0|2 k2 + O(k3) (4)

(ii) The approximate and accurate probabilities should coincide

at that value k = k(1/2)c where the accurate probabilities are

equal to 1/2:

Papp
‘ ðkÞ k¼kð1=2Þ

‘

���� ¼ P‘ðkÞ k¼kð1=2Þ
‘

���� ¼ 1=2 ð5Þ

(iii) The approximate probabilities should have the correct

asymptotic behavior at large k,

P(n),app
c (k)|large k , P(n)

c (k)|large k - 1 (6)

In connection with the condition (i) we note that the linear

dependence of the s-wave capture probability on k and the

super-linear dependence for higher momenta are due to

different physical effects, the partial transmission of the

incoming wave above the drop of the potential for c = 0

(Bethe law6) and the passage of the incoming waves through
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the centrifugal barriers for c 4 0 (Wigner law7). However, as

remarked in ref. 8, the Wigner threshold law can be formally

extended down to c = 0 in such a way that the coefficients

Cc for c Z 0 are given by a unified expression (see ref. 5 and

the review8),

C
ðnÞ
‘ ¼

4p2

22mðn� 2Þ2nmn GðmÞGðnÞ½ �2
ð7Þ

with m = c + 1/2, n = (2c + 1)/(n � 2).

In what follows, we consider the case n = 4 in some detail

(Section 2), and the case n = 6 in shorter form (Section 3),

since the latter it basically similar to n = 4. For simplicity, we

also omit super- and sub-scripts in P(n)
c and kn once the context

permits. Our results are summarized in Section 4.

2. Capture of charged particles by isotropically

polarizable neutral molecules (n = 4)

2a. s-Wave capture (c = 0)

Within the considered capture model, P0 is identified with the

transmission probability T0 across the potential drop. The

latter quantity is obtained from eqn (2) and (7) as T0(k)|k-0 = 4k.
eqn (4) then implies |a0 0| = R4 such that P0(k) for small k can

be written as

P0(k)|k{1 = 4k � 8k2 + O(k3) (8)

A function that satisfies eqn (2)–(4) may, e.g., be chosen in

the form

Papp
0 (k) = 1 � A exp(�ak) � B exp(�bk) (9)

with four fitting parameters, A, a, B, and b. These should be

determined from the conditions

Papp
0 (k)|k=0 = 0, (10a)

dPapp
0 (k)/dk|k=0 = 4 (10b)

d2Papp
0 (k)/dk2|k=0 = 16 (10c)

Papp
0 (k(1/2)0 ) = 1/2 (10d)

Here, k(1/2)0 = 0.1836 is derived from the equation P0(k
(1/2)
0 ) = 1/2

where P0(k) is determined numerically. Rather unexpectedly

we found that the form of the analytical expression in eqn (9)

with four fitting parameters is not flexible enough to satisfy all

four conditions of the eqn (10). We, therefore, determined the

values of A, a, B, and b from eqn (10a), (10b) and (10d)

requiring a minimum deviation of d2Papp
0 (k)/dk2|k=0 from the

value of 16 as given in eqn (10c). In particular, this fitting

yields the DLNT (acronym for the authors of ref. 3) capture

probability in the form

PDLNT
0 = 1 � 0.25 exp(�1.41k) � 0.75 exp(�4.86k) (11)

(In our previous work3 we have also used the simpler forms

P0 E 1 � 0.5 exp(�2k) � 0.5 exp(�6k) or P0 E 1 � 0.25

exp(�1.387k) � 0.75 exp(�4.871k) which are slightly less

accurate than eqn (11)). Another form for Papp
0 (k) was discussed

by Quack and Troe9 for transmission above a truncated Morse

potential, called also the Woods–Saxon step potential and

elaborated also in ref. 4 and 8. When the height of the

potential is large (which is the case here), this potential

approaches an attractive exponential potential for which the

transmission coefficient assumes the form

T(k) = 1 � exp(�pLk) (12)

where L is the characteristic length parameter. By choosing

L from the condition that eqn (12) satisfies the small k
expansion (see eqn (8)), one gets an interpolation formula

valid across the whole range of the collision energies. This was

later recognized by Klots2 who used the expression (12) by

choosing L from the condition that the capture probability

should be consistent with the Vogt–Wannier limit10 of the

s-wave capture cross section. In this way, the Quack–Troe–Klots

(QTK) expression for the capture probability assumes the

form (see also ref. 8)

PQTK
0 (k) = 1 � exp(�4k) (13)

Interestingly, eqn (13) can be also regarded as a particular case

of eqn (9) whose parameters are determined from

eqn (10a)–(10c), ignoring eqn (10d). From the above, we

expect that the DLNT approximation (eqn (11)) will be superior

to the QTK approximation (eqn (13)) for noticeable

probabilities (since the DLNT approximation satisfies the

condition (10d) while the QTK approximation does not)),

but the reverse will be true for small probabilities (since the

QTK approximation, being derived from the accurate solution

of the transmission problem, satisfies the three conditions

(10a), (10b) and (10c), while DLNT does not satisfy condition

(10c), yielding 18 instead of 16). This is illustrated by Fig. 1

which shows the ratios PDLNT
0 (k)/P0(k) and PQTK

0 (k)/P0(k).
Note that the maximum deviation of the ratio PQTK

0 (k)/P0(k)
from unity is about 8% while PDLNT

0 (k)/P0(k) does not

deviate from unity by more than 0.8%. Fig. 2 shows the ratio

PDLNT
0 (k)/P0(k) superimposed on the graph of the accurate

capture probability P0(k) and its small-k counterpart (eqn (8))

extrapolated up to the point where the relative deviation

(P0–P0|small k)/P0 becomes well visible. This representation

helps to visualize the regions of k which are of interest for

applications.

2b. Capture of higher waves (c 4 0)

Approximate expressions for capture probabilities with c 4 0

have to be split into two parts, one for small k and one for k

Table 1 Fitting parameters for PDLNT
c (k) in potentials with n = 4

c Cc Cc* CWKB
c k(1/2)c kc* ac bc cc

1 0.444 0.45 0.553 1.187 0.68 1.5 �0.5 0.1
2 1.98 � 10�3 2.2 � 10�3 2.26 � 10�3 3.186 2.12 0.89 �0.138 0.018
3 1.61 � 10�6 2.0 � 10�6 1.77 � 10�6 6.189 4.95 0.63 �0.055 0.004
4 4.05 � 10�10 6.0 � 10�10 4.37 � 10�10 10.185 9.14 0.46 �0.02 0.003
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that correspond to energies near to the maximum of the

barrier.

In the standard interpretation of the Wigner law, the

dependence Pc(k) p k2c+1 for small k is attributed to the

tunneling asymptotics of the wave function of free motion which

at a distance Rm matches with the wave function of the complex

characterized by an ‘‘internal’’ short-range potential.4 In other

words, the tunneling asymptotics terminates at R= Rm with Rm

being independent from c. In our case, the tunneling asymptotic

of the wave function of free motion determines the flux toward

the complex surface after the wave leaves the centrifugal barrier

and proceeds in the direction of decreasing interfragment

distance. Thus, the tunneling asymptotics terminates somewhere

at the internal part of the centrifugal barrier, at a position which

depends on c. Under these circumstances, one would have

expected deviations of the capture probabilities from the form

of eqn (2). Nonetheless, it was found analytically, by solving

the wave equation for zero energy,5 and numerically1 that

transmission (i.e. capture) probabilities comply with eqn (2).

In other words, the P‘ðkÞ k�kð1=2Þ
‘

���� can be presented as

P‘ðkÞ k�kð1=2Þ
‘

���� ¼ C‘k2‘þ1 ð14Þ

with the coefficients Cc given by eqn (7) for m = n = c + 1/2

(see Table 1). On the other hand, one can try to estimate small

transition probabilities within the WKB approximation by

‘‘working with WKB waves far from the semiclassical limit’’.8

The standard WKB form of the small transmission probability

through a centrifugal barrier reads

PWKB
‘ ðkÞ ¼ exp �2

Z rmax

rmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘þ 1=2Þ2

.
r2 � 1=r4 � k2

r
dr

 !

ð15Þ

where rmin and rmax are the roots of the radicand, and the

centrifugal energy is written with the Langer modification,4

c(c + 1) - (c + 1/2)2. We have found that the quantities

CWKB
c defined as

CWKB
c = PWKB

c (k)/k2c+1 (16)

do not depend on k for k o 0.1 and agree with known

analytical expression (see eqn (220) from ref. 8). As expected,8

CWKB are larger than the accurate coefficients C, see

Table 1.

For medium and large k, one can try to approximate the

capture probability by the expression for the transmission

probability across a parabolic barrier

P‘ðkÞ � Ppar
‘ ðkÞ ¼

1

1þ expð�2Hpar
‘ ðkÞÞ

ð17Þ

with 2Hpar
‘ ðkÞ ¼ ðp

ffiffiffi
2
p

=‘3=2ð‘þ 1Þ3=2Þðk2 � k2‘ Þ, kc=c(c+1)/2.

In our earlier work,1 we have found that the expression (17)

is useful in constructing overall probabilities, but the accuracy

of the approximation is not high enough, especially for low

values of c when the centrifugal barrier deviates strongly from

the parabolic form near to its maximum k2c/2. We therefore

modified the expression (16) writing

P‘ðkÞ � g‘ðkÞ ¼
1

1þ expð�2H‘ðkÞÞ
ð18Þ

with a fitting monotonically-increasing function Hc(k) that

vanishes at k = k(1/2)c and guaranties the correct asymptotics

gc(k)|kc1 - 1. (The function gc(k) in eqn (18) is equivalent to

the function Gc(k) introduced in the Appendix of ref. 3

provided that the misprinted term 0.5 is removed from the

r.h.s. of the expression that defines Gc(k)). With expression

(18), the condition in eqn (5) is automatically satisfied, and the

only remaining problem is a satisfactory matching of expressions

in eqn (14) and (18) through a certain function Papp
c at an

intermediate point k= k*c. We have found that the matching is

achieved by piece-wise definition of Papp
c (k) whose explicit form,

PDLNT
c (k), is

PDLNT
‘ ðkÞ ¼ ðk=k�‘ Þ

2‘þ1g‘ðk�‘ Þ; k 	 k�‘
g‘ðkÞ; k 
 k�‘

�
ð19Þ

where k*c is determined from the condition

(k*c)
�2c�1g(k*c) = Cc (20)

The matching is reasonably smooth (though it contains a visible

kink in the derivative) and the asymptotic behavior of Papp
c (k)

is satisfactory when Hc(k) is taken as a linear function of

Fig. 2 Accuracy PDLNT
0 (k)/P0(k) (right ordinate axis) and accurate

capture probabilities P0(k) (left ordinate axis). The arrow at the

abscissa marks the value of k = k(1/2)0 . The two dotted curves

correspond to the linear and quadratic approximations in eqn (8).

Fig. 1 Accuracy of the approximate capture probabilities PQTK
0 and

PDLNT
0 .
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(k � k(1/2)c ). If one accepts a more complicated form of

Hc(k), viz:

Hc(k) = ac(k � k(1/2)c ) + bc(k � k(1/2)c )2 + cc(k � k(1/2)c )3

(21)

and considers the matching position k*c as a fitting parameter

by relaxing the condition in eqn (14), then the analytical

functions PDLNT
c (k) become quite close to the graphical

representation of P (see Fig. 1 of ref. 1). This procedure

transforms the expression (14) into

PDLNT
‘ ðkÞ

k�kð1=2Þ
‘

���� ¼ C�‘k
2‘þ1 ð22Þ

with the coefficients C*c listed in Table 1. We note here

that the relaxation of the constraint imposed by eqn (14) for

c 4 0, is similar in spirit to the relaxation of the constraint by

eqn (10c) for c = 0. In both cases, tolerating an incorrect

behavior of the small probability in the limit k- 0 allows one

to achieve a better approximation in the region where the

probability is noticeable. Fig. 3 shows the ‘‘accuracy’’ graphs,

the ratio PDLNT
c (k)/P1(k) superimposed on the graphs of

capture probabilities P1(k). The kink in the derivative of

now is seen in the ‘‘accuracy’’ graph which shows the overall

accuracy to be better than about 2.5%. The arrow marks the

point k = k(1/2)1 where PDLNT
1 = 1/2. The vertical dashed line

separates the regions where PDLNT
1 (k) is given either by the

‘‘Wigner’’ or by the ‘‘parabolic’’ expressions (the upper or

lower lines in the r.h.s. of eqn (19)), and the dotted line

corresponds to the Wigner threshold relation, eqn (14) as

obtained from numerical calculations. Fig. 4–6 show similar

graphs for l = 2–4. One notices that the maximum deviations

of PDLNT
c (k)/P0(k) from unity increase with increasing l.

However, they remain below 5% for Pl 4 0.1 and thus appear

acceptable in practical applications.

The parameters k*c,k
(1/2)
c ,ac,bc, and cc entering into eqn (19)

and (21) are listed in Table 1. It turns out that the values of

k(1/2)c are very close to the quantities kc, and the coefficients

ac are close to the respective coefficient in the linear term of

Hpar
c . The comparison of correct andWigner-type probabilities

at small k is also displayed in Fig. 2–6.

3. Capture of isotropically polarizable neutral

molecules (n = 6)

This section essentially repeats the material of Section 2, but

now for n = 6. For c = 0, the counterparts of eqn (11) and

(13) read:

PDLNT
0 (k) = 1 � 0.9312 exp(�2.0165k)

� 0.0688 exp(�0.500k) (23)

PQTK
0 (k) = 1 � exp(�1.912k) (24)

The accuracy of the DLNT approximation in eqn (23) is

about 0.5%. The maximum deviation of QTK approximation

in eqn (24) from the accurate probability is about 3%.

(see Fig. 7 and 8). Compared to the previous case n = 4, the

Fig. 3 Accuracy PDLNT
1 (k)/P1(k) (right ordinate axis) and accurate

capture probability P1(k) (left ordinate axis). The arrow marks the

point k = k(1/2)1 and the vertical dashed line at k = k*1 separates the
regions where PDLNT

1 (k) is given by the upper or lower expressions in

the r.h.s. of eqn (19). The dotted curve corresponds to the Wigner

threshold relation, eqn (14).

Fig. 4 As in Fig. 3, but for c = 2.

Fig. 5 As in Fig. 3, but for c = 3.

Fig. 6 As in Fig. 3, but for c = 4.
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QTK formula works noticeably better here, especially for

small k. This is expected since the potential pR�6 is more

steep compared to that pR�4, and therefore it is better

simulated by an exponential drop, for which QTK expression

is exact.

For c=1–4, the counterparts of eqn (19) and (21) retain the

same form with different set of parameters. Table 2 lists the

values of the relevant parameters. The plots of the capture

probabilities and accuracy graphs for c = 0–4 with n = 6 are

qualitatively similar to those for n= 4, and are not given here.

4. Conclusion

The aim of this work was twofold: to study, for attractive

isotropic R�n potentials (n= 4 and n= 6), the performance of

the Bethe–Wigner threshold laws for small wave vectors k (and

small probabilities P(n)
c (k)) and to provide practically useful

approximate analytical fits of P(n),app
c (k) to numerical capture

probabilities when P(n)
c (k) are not small.

For small k, we demonstrate the accuracy of the

Bethe–Wigner analytical expression for the capture probabilities

by comparing them with accurate numerical results. For

medium k, the accurate graphs of P(n)
c (k) are supplemented

with the plots of the ratio P(n),app
c (k)/P(n)

c (k) that demonstrate

the accuracy of the fitted P(n),app
c (k) which were forced to

coincide with P(n)
c (k) when the latter equals 1/2.

The results obtained serve for quick estimates of partial

cross sections and rate coefficients for quantum capture, as

well as for considering limitations in the application of the

threshold relations. (We also note in passing that P(4),app
c (k)

provides an approximation to the reference curves P(l,Z)|Z=c

that lie on the two-dimensional surface P = P(l,Z) in Fig. 1 of

ref. 11, which represent the probabilities of capture of a

charged particle by a stationary isotropically-polarizable dipole).

We, therefore, recommend the use of eqn (11) and (23) for

l = 0 and n = 4 and 6, respectively. For l = 1–4 on the other

hand, eqn (19) is recommended with gl(k) defined by eqn (18)

and Hl(k) taken from eqn (21) with the coefficients given in

Table 1 and 2 for n = 4 and n = 6, respectively. The given

approximate analytical expressions are of considerable practical

use. They appear particularly useful in the modeling of

electron attachment to polarizable neutral molecules

(and the reverse detachment processes), see e.g. ref. 14–18,

and may serve for describing the ‘‘quantum onset’’ of

neutral-neutral reactions (n = 6) at low temperatures.1,12,13,19
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