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Precursor-messenger RNA (pre-mRNA) splicing encom-

passes two sequential transesterification reactions in dis-

tinct active sites of the spliceosome that are transiently

established by the interplay of small nuclear (sn) RNAs

and spliceosomal proteins. Protein Prp8 is an active site

component but the molecular mechanisms, by which it

might facilitate splicing catalysis, are unknown. We have

determined crystal structures of corresponding portions of

yeast and human Prp8 that interact with functional

regions of the pre-mRNA, revealing a phylogenetically

conserved RNase H fold, augmented by Prp8-specific

elements. Comparisons to RNase H–substrate complexes

suggested how an RNA encompassing a 50-splice site (SS)

could bind relative to Prp8 residues, which on mutation,

suppress splice defects in pre-mRNAs and snRNAs. A

truncated RNase H-like active centre lies next to a

known contact region of the 50SS and directed mutagenesis

confirmed that this centre is a functional hotspot. These

data suggest that Prp8 employs an RNase H domain to

help assemble and stabilize the spliceosomal catalytic

core, coordinate the activities of other splicing factors

and possibly participate in chemical catalysis of splicing.
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Introduction

Nuclear precursor-messenger RNA (pre-mRNA) splicing con-

stitutes an essential step in the maturation of most eukaryotic

primary transcripts, during which non-coding intervening

sequences (introns) are removed and neighbouring coding

regions (exons) are concatenated. Each round of splicing

proceeds through two sequential transesterification reactions

that are facilitated by the spliceosome, a dynamic molecular

machine composed of five small nuclear RNAs (snRNAs) and

more than 120 proteins (Will and Lührmann, 2006). In the

first step, the 20-hydroxyl of an invariant adenosine in the

intronic branch point sequence (BPS) attacks the 50SS (splice

site), liberating the 50-exon and an intron lariat-30-exon. In the

second step, the 30-hydroxyl of the 50-exon carries out a

nucleophilic attack on the 30SS, leading to exon ligation and

excision of the branched intron (Moore et al, 1993).

Spliceosomes form only in the presence of a pre-mRNA

substrate, on which they initially assemble as inactive parti-

cles that subsequently undergo catalytic activation (Brow,

2002). Spliceosome assembly and maturation are accompa-

nied by profound changes in the snRNA–pre-mRNA network

(Nilsen, 1998; Staley and Guthrie, 1998) and by the dynamic

exchange of many proteins (Will and Lührmann, 2006;

Bessonov et al, 2008). They proceed through landmark

intermediates that are defined by the sequential incorporation

and release of spliceosomal sn ribonucleoprotein particles

(snRNPs; U1, U2, U4/U6 and U5). Initially, U1 and U2

snRNPs recognize, through base pairing, the 50SS and BPS,

respectively, forming complex A, which is then joined by the

U4/U6–U5 tri-snRNP, generating complex B. Subsequently,

the U1 and U4 snRNPs are expelled and the Prp19/Cdc5

multi-protein complex (the nineteen complex, NTC, in yeast)

is stably integrated, generating the activated spliceosome

(complex B*). During activation, the U4/U6 duplex is un-

wound, U6 snRNA base pairs with U2 and forms a function-

ally important intramolecular stem loop (ISL) and the 50SS is

handed over from the 50-end of U1 to a conserved ACAGAGA-

box of U6.

Several lines of evidence suggest that the two transester-

ification reactions are chemically facilitated by the spliceoso-

mal RNA components through a two metal ion mechanism

(Steitz and Steitz, 1993; Sontheimer et al, 1997).

Phosphorothioate suppression experiments (Yean et al,

2000) and structural studies (Huppler et al, 2002) had de-

monstrated that the U6 ISL positions a catalytically or struc-

turally important metal ion. Furthermore, fragments of the U2

and U6 snRNAs alone can mediate a reaction that resembles

the first step of splicing (Valadkhan and Manley, 2001).

However, spliceosomal proteins are indispensable for the

assembly and stabilization of a fully active snRNA–pre-

mRNA network; for example, some 35 proteins are integral

components of a salt-stable step-one spliceosomal core

(Bessonov et al, 2008). Thus, the question remains whether

and how any of these proteins might contribute directly to

splicing catalysis (Collins and Guthrie, 2000).

Prp8 is the largest (2413 and 2335 residues in yeast and

human) and most highly conserved spliceosomal protein

(62% identity between yeast and human) and is considered

a master regulator of the spliceosome (Collins and Guthrie,

2000; Grainger and Beggs, 2005). It can be physically cross-
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linked to U5 (Dix et al, 1998) and U6 snRNAs (Vidal et al,

1999), to a conserved GU dinucleotide at the 50-end of an

intron (Reyes et al, 1996, 1999), the BPS (MacMillan et al,

1994; McPheeters and Muhlenkamp, 2003) and the 30SS

(Teigelkamp et al, 1995a, b). Furthermore, it interacts geneti-

cally with U4 and U6 snRNAs (Kuhn et al, 1999), both splice

sites, the BPS, and a polypyrimidine (PPy) tract (Umen and

Guthrie, 1995a, 1996; Collins and Guthrie, 1999; Siatecka

et al, 1999) located between the BPS and the 30SS. Prp8 is also

thought to regulate the activities of key protein splice factors.

It forms a salt-stable complex (Achsel et al, 1998) with the

Brr2 helicase that is required for spliceosome catalytic activa-

tion (Laggerbauer et al, 1998; Raghunathan and Guthrie,

1998) and disassembly (Small et al, 2006) and with the

Snu114 GTPase that regulates Brr2 activity (Small et al,

2006). To understand the molecular mechanisms underlying

the functions of Prp8 in the spliceosome, we started to

characterize its 3D structure.

Results

A newly identified compact portion of Prp8 contains an

RNase H domain expanded by unique elements

Apart from a putative RNA-recognition motif in the centre

(Grainger and Beggs, 2005) and a Jab1/MPN domain at the

very C terminus (Pena et al, 2007; Zhang et al, 2007), no

known domains are discernable based on the Prp8 sequence.

Guided by conservation patterns and disorder predictions,

we expressed residues 1796–2092 of yeast (sc) Prp8

(scPrp81796�2092), located directly N-terminal of the Jab1/

MPN domain. Limited proteolysis with chymotrypsin gave

rise to a fragment, scPrp81827�2092, which could be crystal-

lized directly or after recloning as scPrp81836�2092. We solved

the structures of scPrp81836�2092 and scPrp81827�2092 at

2.0- and 2.1-Å resolution, respectively, and the structure of the

corresponding human (hs) Prp8 protein (hsPrp81755�2016),

obtained by a similar strategy, at 1.9-Å resolution (Table I).

scPrp81836�2092 and hsPrp81755�2016 crystallized with one,

scPrp81827�2092 with two protein molecules per crystallo-

graphic asymmetric unit.

The yeast and human Prp8 structures each comprise an

B160-residue N-terminal a/b domain (NTD; encompassing

strands b1–b6 and b1a/b1b, a-helices a1–a3 and 310-helices

Z1–Z5) and an B95-residue C-terminal helical domain (CTD;

encompassing a-helices a4–a7 and 310-helices Z6 and Z7),

which are closely associated (ca. 2000 Å2 of combined buried

surface area; Figure 1A). The overall structures are reminis-

cent of a left-hand mitten (Figure 1A, inset), in which a

central six-stranded mixed b-sheet and the surrounding

a-helices of the NTD correspond to the palm, an extended

b-hairpin of the NTD comprises the thumb and the a-helical

CTD represents the fingers. The thumb and fingers frame

a channel across the palm, the width of which at half

height varies between a minimum of 16.5/24.0 Å in the

hsPrp81755�2016 structure (distances between side chains/

between Ca atoms of facing residues) and 22.2/29.0 Å in

the scPrp81827�2092 structure (Figure 1B and C). The floor and

the front opening of this channel are carpeted with extensive

patches of positive surface potential (Figure 1B). The struc-

tures of scPrp81836�2092 and scPrp81827�2092 exhibit pairwise

root-mean-square deviations (r.m.s.d.s) of 0.8–1.0 Å and

align to hsPrp81755�2016 with r.m.s.d.s of 1.2–1.7 Å over ca.

230 Ca atoms, demonstrating that the structures of the yeast

and human proteins are very similar. Superimposition of the

independent structures showed that the palm regions are

essentially invariant (Figure 1C). In contrast, the thumbs

and the C-terminal portions of the fingers retain their intrinsic

structures but adopt different relative orientations with re-

spect to the palm, indicating that these elements are in

principle mobile.

Comparison of the present Prp8 structures to known struc-

tures in the Protein Data Bank (http://www.pdb.org) revealed a

striking similarity of the palm region of the NTD to an RNase H

fold (r.m.s.d. of 3.0 Å over 95 Ca atoms when compared with

human RNase H1 (Nowotny et al, 2007); pdb entry 2QKK).

RNase H-fold proteins exhibit a topologically identical and

structurally very similar five-stranded mixed b-sheet and three

corresponding a-helices surrounding the sheet (Figure 1A). The

extended b-hairpin and the a-helical CTD are unique to the Prp8

protein, generating the mitten-like structure. The core of other

RNase H-fold proteins can be likewise augmented by other

elements (Supplementary Figure S1).

A 50SS-contacting peptide has a variable sequence but a

conserved structure

Residues 1894–1898 within the present portion of human Prp8

have been UV-crosslinked to the 50SS in a trans-splicing system

at the stage of U4/U6–U5 tri-snRNP addition and after estab-

lishment of the 50SS-U6 ACAGAGA-box interaction (Reyes et al,

1996, 1999). The similarity of the protein to an RNase H fold

suggests that its mode of RNA binding may resemble that of

RNase H. To approximate how RNA may bind to this region of

Prp8, we transplanted the RNA strand of an RNase H-DNA–

RNA substrate complex (pdb ID 1ZBL) (Nowotny et al, 2005)

on scPrp81827�2092 by superimposing the proteins. The nucleic

acid came to lie on the central ridge between the thumb and

the fingers (Figure 2A). At this position, the negatively charged

sugar-phosphate backbone can favourably interact with the

positively charged surfaces (Figure 1B).

We next asked whether we could use the scissile phos-

phate from the RNase H reaction as a landmark to assign the

approximate positions of the 50-exon and the intron around

the 50SS. Remarkably, considering this scissile phosphodie-

ster bond as equivalent of the 50-exon–intron junction, placed

in the nucleotides, which would correspond to the conserved

GU at positions þ 1 and þ 2 of the intron, directly next to the

five amino-acid peptide that UV-crosslinks to this GU dinu-

cleotide (Figure 2A) (Reyes et al, 1996, 1999). Thus, the

simple model resulting from our structural comparison pro-

vides a facile explanation for the zero-length crosslink

mapped between Prp8 and the 50SS. In further agreement

with this model, an 11-residue oligomer mimicking the 50SS

still specifically crosslinks to a recombinant portion of hsPrp8

comprising residues 1669–2034 (corresponding to scPrp8

residues 1741–2106; cited in Grainger and Beggs, 2005).

The peptide of hsPrp8 that crosslinks to the 50-end of an

intron and the corresponding yeast fragment designate the

only portions of the present domains that significantly di-

verged in sequence (1894-QACLK-1898 and 1966-SAAMS-

1970, respectively; Figure 3). Yet in both proteins, the

peptides adopt an almost identical extended 310-helical

structure (helix Z5) at the centre of the pronounced channel

(Figure 1C), suggesting that the unusual structure rather than

the sequence of helix Z5 may be functionally important.
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Table I Crystallographic data

Data collection

ScPrp81836–2092 Inflection Remote scPrp81827–2092 hsPrp81755–2016

Peak

Wavelength (Å) 0.97968 0.97987 0.91841 0.91841 0.91841
Temperature (K) 100 100 100 100 100
Space group P31 P212121 P3221
Unit cell (a, b, c) (Å) 46.9, 46.9, 103.0 77.1, 84.2, 95.1 83.4, 83.4, 96.3
Resolution (Å)a 50.0–2.0 (2.07–2.00) 50.0–2.10 (2.18–2.10) 50.0–2.1 (2.18–2.10) 50.0–2.1 (2.18–2.10) 50.0–1.95 (2.02–1.95)

Reflectionsb

Unique 33148 (3005) 29 331 (1906) 29 376 (1929) 36 691 (3623) 28 624 (2828)
Completeness (%) 96.8 (88.2) 98.8 (98.2) 99.1 (98.5) 99.6 (99.9) 99.9 (100.0)
Redundancy 1.9 (1.7) 2.0 (1.9) 2.0 (2.0) 3.6 (3.7) 7.9 (8.0)

I/s(I) 16.8 (2.1) 18.3 (3.9) 12.6 (2.6) 10.4 (1.9) 31.6 (4.9)
Rsym(I)c 3.2 (24.6) 3.8 (14.0) 8.2 (22.0) 10.4 (56.2) 4.9 (29.2)

Phasing

Resolution (Å) Se sites CC/CCweak
d FOMe

50.0–2.5 8 35.3/25.0 0.42

Refinement

Resolution (Å) 30.0–2.0 (2.05–2.00) 30.0–2.1 (2.15–2.10) 30.0–1.95 (2.00–1.95)

Reflections
Number 16 963 (1175) 36 392 (2696) 28 264 (2035)
Completeness (%) 99.5 (93.1) 98.9 (99.9) 98.7 (98.8)
Test set (%) 5 5 5

Rwork
f 17.7 (23.4) 24.0 (27.9) 20.5 (22.2)

Rfree
f 24.5 (32.0) 29.8 (30.7) 24.8 (32.1)

ESU (Å)g 0.13 0.20 0.10
Protein atoms 2107 4217 2126
Water oxygens 269 259 315
Ions — — 2 Na+, 1 Cl�

Mean B-factors (Å2)
Wilson 21.4 35.3 31.4
Protein 20.2 36.4 37.5
Water 31.4 41.1 47.2
Ions — — 38.7

f/c favoured/allowed/
outliersh (%)

98.4/1.6/0 95.1/3.7/1.2 96.9/3.1/0

r.m.s.d. geometry
Bond lengths (Å) 0.009 0.009 0.009
Bond angles (deg) 1.15 1.22 1.12

r.m.s.d. B-factors (Å2)
Main chain bonds 0.50 0.48 0.49
Main chain angles 0.87 0.85 0.91
Side chain bonds 1.70 1.28 1.45
Side chain angles 2.59 1.94 2.40

PDB ID 3E9O 3E9P 3E9L

aData for the highest resolution shell in parentheses.
bFriedel pairs for anomalous data sets of scPrp81836–2092 were not merged during processing but were merged for refinement against the peak
data set.
cRsym(I)¼

P
hkl

P
i|Ii(hkl)�/I(hkl)S|/

P
hkl

P
i|Ii(hkl)|; for n independent reflections and i observations of a given reflection; /I(hkl)S—average

intensity of the i observations.
dCC¼ [

P
wEoEc

P
w�
P

wEo

P
wEc]/{[

P
wEo

2P
w�(

P
wEo)

2] [
P

wEc
2Pw�(

P
wEc)

2]}1/2; w—weight (see http://shelx.uni-ac.gwdg.de/SHELX/
shelx_de.pdf for full definitions).
eFOM—figure of merit¼ |F(hkl)best|/|F(hkl)|; F(hkl)best¼

P
aP(a)Fhkl(a)/

P
aP(a).

fR¼
P

hkl||Fobs|�|Fcalc||/
P

hkl|Fobs|; Rwork�hkleT; Rfree�hklAT; T—test set.
gESU—estimated overall coordinate error based on maximum likelihood.
hCalculated with MolProbity (http://molprobity.biochem.duke.edu/).
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Figure 1 Structure of an RNase H domain in Prp8. (A) Ribbon diagram of scPrp81827�2092 (left) and human RNase H1 (right; pdb ID 2QKK;
Nowotny et al, 2007) in the same orientations. Top panels: the shape of scPrp81827�2092 resembles a mitten (inset) with palm, thumb and finger
regions. Secondary structure elements and termini are labelled. Equivalent a-helices and b-strands in Prp8 and RNase H are blue and red,
respectively; b-hairpin comprising the thumb (strands b1a and b1b)—magenta; Z5 encompassing the peptide crosslinked to the 50SS in human
Prp8—cyan; C-terminal domain of Prp8—green. Acidic residues I–IV involved in metal ion binding in RNase H (the asparagine at position III is
an aspartate in the wild-type enzyme) as well as D1853 and D1854 in Prp8, which may correspond to carboxylate I, are shown as sticks
(carbon—yellow; oxygen—red; nitrogen—blue). Bottom panels: view on the RNase H-like NTD of scPrp81827�2092 (left) and hsRNase H1
(right) rotated 901 about the vertical axis as compared with the top panels. The CTD of scPrp81827�2092 was removed for clarity. In
scPrp81827�2092, the C-terminal helix a3 of hsRNase H1 is divided into helix Z5 and the perpendicular helix a3. (B) Electrostatic potential
mapped to the surface of scPrp81827�2092. Blue—positive charge; red—negative charge. The position of the crosslinked peptide is circled (‘XL’).
(C) Superimposition of scPrp81836�2092 (white/yellow) with two independent structure of scPrp81827�2092 (light grey/green and dark grey/red)
and with hsPrp81755�2014 (black/blue). The thumbs, the peptides that crosslink to the 50SS in the human system (‘XL peptide’) and the
C-terminal portions of the fingers are shown in colours. Thumbs and fingers are evidently flexibly hinged to the central palms.
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Prp8 mutants that suppress pre-mRNA defects map on

both sides of the putative path of the 50SS RNA

Numerous Prp8 mutants (prp8-D143 (K1864E), prp8-151

(N1869D), prp8-152 (N1869D/S1970R), prp8-153 (T1982A),

prp8-154 (T1982A, SA1966/7AG), prp8-155 (T1982A,

V1987A), prp8-162 (V1870N)) that suppress second-step

defects (Query and Konarska, 2004) in the 50SS, 30SS or BPS

(Umen and Guthrie, 1995a, 1996; Collins and Guthrie, 1999;

Siatecka et al, 1999) map to the present Prp8 region. Residues

1966, 1967 and 1970 are part of the central peptide, the

human equivalent of which crosslinks to the 50SS

(Figure 2A). The other mutants cluster in the flexible

thumb and at its base (Figure 2A). According to our place-

ment of RNA, the thumb is ideally positioned to directly

interact with bound RNA. Similar hairpins that mediate RNA

interactions are found in several ribosomal proteins, such as

S5, S10, L4, L22 or L28 (Ban et al, 2000; Wimberly et al,

2000). However, unlike in Prp8, these modules are typically

not stably structured off the ribosome (Worbs et al, 2000).

These observations suggest that the above alleles exert an

effect by affecting Prp8 regions that directly contact the 50SS.

As one possibility, the mutations may confer increased struc-

tural plasticity on the thumb and the central 50SS-binding

peptide, allowing them to accommodate deviant substrates.

Prp8 mutants that restore catalytic activation in the

presence of a hyperstable U4-cs1/U6 duplex map to the

flexible thumb

A variant U4 snRNA, U4-cs1, is thought to sequester the U6

ACAGAGA-box in base pairing and thereby inhibit catalytic

activation (Kuhn et al, 1999) (Figure 2B). prp8-201 (T1861P)

and other prp8-cat alleles (F1851L, V1860D/N, V1862A/D/Y

and I1875T) suppress u4-cs1 phenotypes (Kuhn et al, 1999;

Kuhn and Brow, 2000) and in their majority map at the base

of the flexible thumb in direct vicinity of the positioned 50SS

RNA mimic (Figure 2A). On the basis of this observation, we

Figure 2 Functional interactions. (A) Diametrical views on the surface of scPrp81836�2092 with a modelled RNA mimicking a bound 50SS
region. The left orientation is identical to that in Figure 1A, top. 50-exon—brown; 50SS phosphate—black; intron—beige. The conserved GU at
positions þ 1 and þ 2 of the intron are labelled. The surface patch corresponding to the peptide, which in hsPrp8 crosslinks to the 50SS, is
encircled. Positions that exhibit genetic interactions with the pre-mRNA or snRNAs are highlighted in colour. Interactions with 50SS, 30SS or
BPS—blue; interactions with the PPy tract—purple (mutations at positions 1922 and 1946 always occur together with a mutation at 1834);
interactions with u4-cs1—red. The region, in which mutations affect the physical interaction with Brr2, is in green. Residues changed in Prp8
mutants are listed. Conserved and invariant residues that lie in the region corresponding to the active site in RNase H enzymes (D1853, D1854,
T1855, T1936 and R1937) are in gold. (B) RNA networks around the 50SS shown on top of an outline of the present Prp8 domain. Before
catalytic activation, U4 and U6 are base paired 30 of the U6 ACAGAGA-box. U1 snRNA and U6 ACAGAGA-box interact at the 50SS. In U4-cs1
(grey), an AAA sequence of U4 (underlined) is changed to UUG (lower case italics), which can form additional base pairs with U6 that involve
the ACAGAGA-box as indicated.
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suggest that the present Prp8 domain also interacts with

U4/U6 and couples U4/U6 unwinding to U1-for-U6 strand

exchange at the 50SS (Figure 2B), consistent with a previous

suggestion by Brow and coworkers (Kuhn et al, 1999).

Residues implicated in PPy tract recognition cluster on

the Prp8 RNase H domain

Results from genetic suppression screens suggest that the

present region of Prp8 is also involved in the recognition of

the PPy tract (Umen and Guthrie, 1996). The corresponding

alleles, prp8-101 and prp8-D102 to prp8-D107, exhibit

E1960K/G or F1834L/S amino-acid exchanges; in prp8-D103

and prp8-D104, a change at position 1834 occurs together

with a V1946A and R1922G mutation, respectively. The

affected residues are all contained in the current Prp8 struc-

tures. Strikingly, although they are some 130 residues apart in

the protein sequence, the primary sites, 1834 and 1960,

cluster immediately next to each other opposite to the flexible

thumb and below the finger region (Figure 2A). This obser-

vation suggests that pre-mRNA regions close to the BPS and

30SS may come to lie at the front entrance of the pronounced

channel next to the 50SS RNA. Consistent with this interpre-

tation, crosslinking of the G-1 residue at the 30SS to scPrp8

is reduced in the E1960K mutant of prp8-101 (Umen and

Guthrie, 1995b). Furthermore, binding of RNA at this location

would be supported by the positive surface potential

(Figure 1B).

Prp8 contains an incomplete RNase H-like active site

Our discovery of an RNase H fold in the region of Prp8

investigated herein naturally led to the question whether an

RNase H-like active centre is present in Prp8. Canonical

RNase H enzymes contain four conserved carboxylates in

their active sites, used to position two catalytic metal ions

(Nowotny et al, 2005) (Figure 4A). Two aspartates (positions

I and III; Figure 1A; Supplementary Figure S1) are found in

the first b-strand and C-terminal of the fourth b-strand of the

RNase H core (corresponding to strands b1 and b4, respec-

tively, of the present Prp8 domain); two additional acidic

residues (positions II and IV; Figure 1A; Supplementary

Figure S1) originate from the first and last helix of the

RNase H core domain (equivalent to Prp8 helices a1 and

Z5/a3, respectively). In Prp8, the invariant D1853/1781 and

D1854/1782 (yeast/human numbering; Figure 3) are found

directly C-terminal of strand b1 in topologically equivalent

positions to the first aspartate (I) of RNase H (Figure 4A and

B), the carboxylate of which bridges the two metal ions in the

RNase H catalytic situation (Nowotny and Yang, 2006). We

Figure 3 Multiple sequence alignment of Prp8 proteins. Darker background corresponds to higher conservation. Aligned orthologues are
H.s.—Homo sapiens; N.c.—Neurospora crassa; Y.l.—Yarrowia lipolytica; C.g.—Candida glabrata; S.c.—Saccharomyces cerevisiae. Icons above/
below the alignment indicate secondary structure elements of hsPrp81755�2016/scPrp81827�2092 as derived from the present crystal structures.
Residues that exhibit genetic interactions with the 50SS, 30SS and BPS—blue; with u4-cs1—red; with the PPy tract—purple. Residues mutated in
this work—yellow. Black triangles—conserved residues around the functional hotspot. The region of Prp8 crosslinked to the 50SS and the
region, in which mutations affect the interaction with Brr2, are boxed (cyan and green, respectively). Green residues in the Brr2-interacting
region correspond to changes in the prp8-52 allele.
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did not find equivalents in Prp8 of the other RNase H catalytic

residues, which would be topologically and spatially con-

served. There is no acidic residue C-terminal of strand b4.

Although two glutamates (E1915/1843 and E1916/1844)

originate from helix a1, they lie on the backside of the

helix and extend away from D1853/1781 and D1854/1782.

The C-terminal helix of RNase H enzymes is represented by

two elements in Prp8, helix Z5, which in human Prp8 cross-

links to the 50SS, and helix a3, positioned at a right angle to

Z5 (Figure 1A). No acidic residue is found in helix Z5.

D1972/E1900 and D1976/1904 originate from helix a3 but

are again remote from D1853/1781 and D1854/1782. Large

conformational changes would be required to recruit any of

these residues to a common active site centred on D1853/

1781 or D1854/1782. Thus, the present Prp8 domain contains

an incomplete set of metal-chelating residues or adopts a

structure, in which these residues occupy non-productive

spatial positions.

We tested whether divalent metal ions could bind to any of

the Prp8 structures by soaking the crystals in solutions

containing up to 20 mM Mg2þ , Mn2þ or Zn2þ . No metal

ions were observed close to D1853/1781 or D1854/1782

(searching, for example, the anomalous difference Fourier

maps of Mn2þ - and Zn2þ -soaked crystals). In one structure,

a Mn2þ ion bound fortuitously between neighbouring mole-

cules in the crystal lattice, remote from these aspartates.

Although the failure to bind metal ions may be due to the

lack of appropriately positioned carboxylates, any metal ion

coordination would most likely be also strongly dependent on

the presence of RNA, as observed earlier in other systems

(Song et al, 2004).

A novel functional hotspot in Prp8

On transplanting the RNA strand from RNase H onto Prp8,

the presumed 50-exon–intron junction came to rest directly

next to D1853/1781 and D1854/1782. These two aspartates

are surrounded by additional invariant Prp8 residues, T1855/

1783, T1936/1864 and R1937/1865 (Figures 3 and 4B). We

investigated whether this cluster of residues was functionally

important by mutagenesis. Single-residue mutants were

brought into a genetic background, in which we could test

whether they supported cell viability. All mutants were

associated with dramatic growth defects (Figure 4C and D).

D1853/1781 was lethal on conversion to alanine (Figure 4C)

and produced both cold- and temperature-sensitive pheno-

types on mutation to asparagine (Figure 4D). R1937/1865

Figure 4 Identification of a novel functional hotspot. (A) Active site of hsRNase H1 in complex with two divalent metal ions (A and B; green
spheres) and a DNA–RNA substrate duplex (carbons—light/dark grey; phosphorus—violet; other colours as in Figure 1). The four active site
carboxylates (I–IV) are shown as sticks and are colour-coded as before (the asparagine at position III is an aspartate in the wild-type enzyme).
Landmark secondary structure elements are labelled. The view is rotated 801 about the vertical axis and 201 about the horizontal axis as
compared with the view in Figure 1A, top. (B) Close-up of the region of scPrp81827�2092, which is spatially equivalent to the RNase H active site,
in the same orientation as in (A). The invariant D1853, D1854, T1855, T1936 and R1937 are shown as sticks and are colour-coded as above.
Other conserved residues are labelled. Dashed lines indicate hydrogen bonds and salt bridges. Selected secondary structure elements are
labelled. D1853 occupies the same topological and spatial position as carboxylate I of hsRNase H1, the carboxylate of D1854 spatially coincides
with the carboxylate II of hsRNase H1. (C) Failure of D1853A and R1937A mutants of scPrp8 to grow on 5-FOA plates. (D) Cell viability assay
monitoring the effects of exchanging invariant Prp8 residues D1853, D1854, T1855, T1936 and R1937 as indicated. After selection of clones, the
culture and serial dilutions were spotted and grown at the indicated temperatures for 2 days.
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was similarly lethal on mutation to alanine (Figure 4C) and

conditionally lethal at low and high temperatures on change

to a lysine (Figure 4D). D1854/1782, T1855/1783 and T1936/

1864 were both cold- and temperature-sensitive on mutation

to asparagine or alanines, respectively (Figure 4D). As some

changes at each of the positions supported cell growth at

moderate temperatures, we exclude a general folding pro-

blem as a source of the observed phenotypes. Remarkably, in

a previous screen of 300 mutants covering the C-terminal

three-quarters of the Prp8 sequence less than 10% (20 alleles)

were found temperature sensitive and no cold-sensitive mu-

tation was detected (Umen and Guthrie, 1996). Therefore, our

findings mark a novel functional hotspot on Prp8 that coin-

cides with a region spatially equivalent to an RNase H active

centre.

Discussion

U2, U5 and U6 snRNAs and a single protein, Prp8, have been

implicated as active site components of the spliceosome by

the evolutionary conservation of regions that physically or

genetically interact with the functional sites on the pre-mRNA

(Collins and Guthrie, 2000). Here, we have investigated

one such conserved region of yeast and human Prp8 by a

combination of crystal structure analysis and site-directed

mutagenesis. We find that this portion of Prp8 adopts an

RNase H fold with additional elements specific to Prp8

orthologues. This observation motivated us to derive an

approximate 50SS-RNA-binding model from comparison

with the structure of an RNase H–substrate complex, which

was consistent with the surface topology and charge distribu-

tion of the Prp8 domain. Strikingly, on this crude model,

biochemical and genetic interaction data quite naturally ‘fall

into place’. Numerous Prp8 mutants that genetically interact

with the pre-mRNA, snRNAs or other protein splice factors

mapped close to each other and around a peptide that can be

UV-crosslinked to the 50SS on the structure of the Prp8 RNase

H domain (Figure 2A), strongly suggesting that the genetic

interactions represent direct physical contacts. Our results

provide a structural basis for expected Prp8 activities (Kuhn

et al, 1999; Collins and Guthrie, 2000), suggesting how the

protein mediates and proofreads RNA transactions on the

way to a functional catalytic core (50SS-U1 to 50SS-U6 strand

exchange, U4/U6 unwinding) and how it stabilizes RNA

networks during catalysis (50SS-U6 ACAGAGA-box, apposi-

tion of 50SS and BPS). While this paper was under review,

a paper describing a structure consistent with ours of a

very similar fragment of yeast Prp8 appeared in press

(Yang et al, 2008).

An RNase H domain as an ideal device to mediate

nucleic acid transactions at the 5 0SS on the way to the

activated spliceosome

Genetic and physical interaction studies show that the Prp8

RNase H domain is involved in RNA rearrangements at the

50SS during catalytic activation. At that time, the 50SS-U1

snRNA duplex is unwound and the 50SS-U6 ACAGAGA-box

duplex is concomitantly formed. The RNase H domains of

different enzymes are tuned to interact with diversely struc-

tured nucleic acids, such as DNA–RNA hybrids in the case of

bona fide RNase H’s (Nowotny et al, 2005), RNA duplexes in

the case of Argonaute proteins (Song et al, 2004) or DNA

duplexes in the case of retroviral integrases, DNA transpo-

sases or Holliday junction resolvases (Rice and Baker, 2001).

Furthermore, the latter domains handle more than one nu-

cleic acid strand or duplex at the same time as is also required

during formation of the spliceosomal active sites and during

splicing catalysis. Therefore, an RNase H domain seems to be

the ideal choice for a device that needs to control coordinated

structural rearrangements involving multiple RNA strands

and duplexes (Figure 2B).

Coordination of activities and events during catalytic

activation

Apart from Prp8, the activity of the DEAD-box protein Prp28

is also required for strand exchange at the 50SS (Staley and

Guthrie, 1999). Interestingly, the prp8-201 allele (mapped at

the base of the thumb of the Prp8 RNase H domain) and the

prp8-501 allele (I1825K and L1835F; coinciding with the PPy

tract recognition region) interact genetically with the prp28

locus (cited in Grainger and Beggs, 2005). In the framework

of a dysfunctional U1-C protein, Prp28 is dispensable for

catalytic activation (Chen et al, 2001) but becomes essential

again in the presence of prp8-201 or prp8-501. Thus, the Prp8-

201 or Prp8-501 mutant proteins may interfere with U1-50SS

unwinding or with pairing of the U6 ACAGAGA-box to the

50SS. It is possible, for example, that they stabilize the U1-50SS

duplex or inhibit positioning of the 50SS.

The above genetic interactions suggest that Prp28 and the

Prp8 RNase H domain exert an effect in close physical

neighbourhood during catalytic activation. Indeed, a 50SS

RNA can be crosslinked to a position in Prp28 close to its

ATP-binding site in the same spliceosomal assembly stage

(Ismaili et al, 2001), in which the 50SS GU dinucleotide

crosslinks to the Prp8 RNase H domain (Reyes et al, 1996).

Taken together, these observations show that the RNase H

domain of Prp8 is involved in the recognition of the 50SS early

during the splicing cycle when it is still base-paired with U1

snRNA, and that it closely cooperates with Prp28 to provide

the trans-helicase activity required for hand-over of the 50SS

from U1 to U6 during catalytic activation. In yeast Prp8,

regions different from the RNase H domain can be cross-

linked to the 50SS (Turner et al, 2006). Thus, it is possible that

the 50SS binds only transiently at the present domain during

early assembly stages of the spliceosome and is then trans-

ferred to other domains of Prp8.

The mapping of prp8-cat alleles (that suppress u4-cs1

phenotypes) at the base of the thumb, close to the 50SS

interaction channel, indicates that the present domain of

Prp8 also exerts an effect to couple U4/U6 unwinding to

the rearrangements at the 50SS, a previously postulated

function of Prp8 (Kuhn et al, 1999). The exact nature of

this coupling is not clear. Positioning of U4/U6 appropriately

for unwinding could be affected by binding of the U6

ACAGAGA-box by the present Prp8 domain, which in turn

may be dependent on correct positioning of the 50SS RNA. In

this picture, the prp8-cat suppressors may destabilize the

non-natural U4-cs1/U6 duplex to allow catalytic activation.

Prp8 has also been implicated in coordinating the activities

of other proteins that mediate spliceosome assembly and

remodelling steps, including those of the DEXD/H-box pro-

tein Brr2 that is required for U4/U6 unwinding (Laggerbauer

et al, 1998; Raghunathan and Guthrie, 1998). Interestingly,

substitutions in region 2033–2067 of Prp8 (e.g. Y2037H and
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I2051T in the prp8-52 allele), which encompasses a long a-

helix and the preceding loop on the backside of the finger

region (Figure 2A), enhance the physical interaction with

Brr2 in yeast two-hybrid and pull-down assays (van Nues and

Beggs, 2001). Thus, apparently the Prp8 RNase H domain

also coordinates RNA structural transitions by either recruit-

ing the RNA remodelling enzyme Brr2 (directly or indirectly

by interacting with a Brr2-binding site), by allosterically

influencing its activities or by competing for its substrates.

We have shown earlier that the Jab1/MPN domain of Prp8,

which lies immediately C-terminal of the RNase H domain,

also serves as a binding module for Brr2 (Pena et al, 2007). In

the light of their close proximity, it appears feasible that Brr2

jointly recognizes epitopes on both of these Prp8 domains.

The Prp8 RNase H domain may also organize pre-mRNA

regions close to the 3 0SS

Fe-BABE-directed hydroxyl radical probing has demonstrated

that the 50-end of U2 snRNA is in close proximity of pre-

mRNA functional regions and of U1 snRNP in early spliceo-

somal complexes (Dönmez et al, 2007). U2 snRNA base pairs

with the BPS of the intron close to the PPy tract. The close

proximity of U1, U2 and the functional pre-mRNA regions

they bind would favour concomitant recognition of the 50SS-

U1 snRNA duplex and regions close to the U2-BPS duplex by

Prp8, consistent with the mapping of PPy tract recognition

mutants close to the 50SS-binding region on our structures

(Figure 2A). As the PPy tract marks the approximate position

of the BPS, which attacks the 50SS in the first step, we suggest

that the Prp8 RNase H domain is involved in correct position-

ing of the two pre-mRNA regions that react in the first step of

splicing. In activated spliceosomes, portions of the U6 ISL

also approach the U2 BP-binding sequence and the 50SS

(Rhode et al, 2006). These data place the Prp8 RNase H

domain in close proximity of the U6 ISL that is expected to

constitute another active site component. Thus, the U6 ISL

and the Prp8 RNase H domain may cooperate to achieve

splicing catalysis.

The Prp8 RNase H domain facilitates structural

transitions between two or more competitive

conformations of the spliceosome

In analogy to the ribosome, the spliceosome may toggle

between competing pre-step-one, step-one and step-two con-

formations, where the first and third states may resemble

each other (Query and Konarska, 2004). According to this

model, alleles that suppress step-two defects destabilize a

step-one conformation (or interaction network), thus favour-

ing adoption of the step-two conformation. Step-one mutants

can be rationalized by a negative effect on a conformation (or

interaction network) of the second step or of a pre-step-one

stage. Significantly, both step-one (prp8-101/D102 and prp8-

D103/4/5/6/7) and step-two alleles (suppressors of all other

pre-mRNA defects) map to the present structures. Combining

our data with the toggling model, the step-one suppressor

mutations could impair recognition of 30-portions of the

intron by the Prp8 RNase H domain in a pre-step-one stage

(affecting assembly) or in the second step (affecting conver-

sion of step one to step two or catalysis of step two). The

step-two suppressor alleles could exert an effect by destabi-

lizing Prp8–50SS interactions required for the first step (affect-

ing stabilization of a step-one situation or catalysis of step

one). Thus, the Prp8 RNase H domain provides a platform

that may exert an effect during catalytic activation and

throughout both catalytic steps.

Possible roles of the Prp8 RNase H domain in the

catalysis of pre-mRNA splicing

Pre-mRNA splicing chemically recapitulates self-splicing by

group II introns and several snRNA elements resemble cata-

lytic portions of group II introns. A recent crystal structure of

a hydrolytic group IIC intron in the post-catalytic state (Toor

et al, 2008) revealed that the U6-like ISL binds two metal ions

3.9 Å apart, in agreement with a two-metal-ion mechanism

mediated by that site, which may also apply to the spliceo-

some. However, details of the spliceosomal catalytic strate-

gies may have diverged from the RNA-based mechanisms of

group II introns (Michel and Ferat, 1995; Collins and Guthrie,

2000). Most obviously, catalysis by the spliceosome depends

on many protein splice factors but their precise roles are

normally not known. Our results show how an RNase H

domain of the Prp8 protein is involved in the correct pre-

paration and positioning of substrates during pre-mRNA

splicing. As positioning is a crucial catalytic function, this

finding alone attributes to Prp8 a direct role in splicing

catalysis.

Similar to group II introns, RNase H-fold enzymes employ

a two-metal-ion mechanism that invariably leads to retention

of the phosphate group on the 30-portion of the product and a

free 30-hydroxyl on the 50-portion, as observed in both steps

of splicing. Our mutational analysis has identified candidate

residues on the RNase H domain in Prp8 (Figure 4B), through

which the protein might even chemically facilitate splicing

catalysis. For example, Prp8 may contribute D1853/1781 or

D1854/1782 (yeast/human numbering; equivalent to the

RNase H carboxylate I) to a composite RNA–protein active

site, in which they could assist RNA residues in coordinating

a catalytic metal ion.

Previous data indicated a particular importance for the

recognition of the base moiety at position þ 2 of the intron

(Reyes et al, 1996). Residues in the functional hotspot and the

neighbouring Q1907/1835, which is conserved and recog-

nizes substrate bases in other RNase H-fold enzymes

(Supplementary Figure S2), are appropriately positioned to

mediate such interactions (Figure 4B). Residues in this region

may also recognize backbone functionalities. They could

sequester the 20-hydroxyl group of a scissile phosphate,

which in an irregular RNA structure, such as around the

50SS in the first step, could otherwise function as a nucleo-

phile and lead to aberrant 50-OH and 20–30-cyclic phosphate

products. However, none of the 20-OH groups is absolutely

required for trans-splicing of a 50SS oligo (Konarska, 1998)

and the 20-OH at the 50SS is not essential for the first step of

splicing (Moore and Sharp, 1992), in general agreement with

the conditional phenotypes we observe with many mutants.

It is also conceivable that R1937/1865, which is notably

conserved in resolvases and transposases (Supplementary

Figure S2), could carry out functions normally associated

with the catalytic metal ions (activation of the nucleophile,

stabilization of the transition state or stabilization of the

negative charge on the leaving group) in one of the steps.

An analogous situation has been observed in EcoRV, in which

a lysine cooperates with metal ions (Horton et al, 1998).
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Additional invariant residues (N1856/1784, R1859/1787,

K1910/1838 and K1938/1866) surround the functional hot-

spot (Figure 4B) and are suitably positioned for RNA binding.

Furthermore, the invariant F1965/1893 rests on another

conserved phenylalanine, F1851/1779, and fixes the N termi-

nus of the Z5 helix. Extended 310-helices are rarely found in

proteins and may interconvert with a-helices (Topol et al,

2001). Such transitions at Z5 could be important for the

remodelling around the 50SS during spliceosome assembly

and catalysis. For example, structural transitions on RNA

binding could expose F1965/1893 and allow it to stack with

nucleobases. Interestingly, F1865L is the only prp8-cat muta-

tion that maps to the present domain outside of the thumb.

A leucine at position 1851 provides a smaller platform for

F1965, which could in turn more easily rearrange to interact

with an RNA ligand.

Taken together, our results point to various mechanisms by

which the spliceosome may function as a veritable ribo-

nucleoprotein enzyme (‘RNPzyme’).

Truncation of the Prp8 RNase active site may protect the

pre-mRNA during assembly

The activation of substrates in the two transesterification

reactions of pre-mRNA splicing has to be timed with exquisite

precision. An RNase H domain that handles functional pre-

mRNA regions during assembly and catalysis poses the

danger of activating a water molecule that could initiate an

inappropriate hydrolytic attack on the pre-mRNA. Thus,

mechanisms must be at work, which inactivate the Prp8

RNase H domain as a hydrolytic enzyme. In the conformation

seen in the present structures, the Prp8 RNase-like active site

is incomplete and does not support metal ion binding on its

own. It is conceivable that conformational changes on sub-

strate binding could lead to rearrangements that bring about

a complete active site. Perhaps more likely, the contraction of

multiple RNA elements on the surface of the present Prp8

domain in proximity of the 50SS could lead to complementa-

tion of the truncated protein active site by RNA elements.

Similar mechanisms have been observed before in proteins

that were originally presumed to be pseudoenzymes

(Mukherjee et al, 2008). The expected molecular crowding

may additionally help to exclude water molecules from the

active site environment.

Materials and methods

Details of the cloning, expression, purification and the crystal-
lographic procedures are given in the Supplementary data.

Limited proteolysis
For analytical digestion, 10mg of scPrp81796�2092 was mixed with
increasing amounts of chymotrypsin (Sigma-Aldrich) and incubated
for 1 h on ice. The reactions were stopped by the addition of SDS–

PAGE loading buffer and incubation at 951C. A stable band resulting
from treatment with chymotrypsin was analysed by tryptic
peptide mass fingerprinting (Griffin et al, 1995) and indicated
scPrp81827�2092 as a stable subfragment of scPrp81796�2092.

For preparative digestion of scPrp81796�2092 with chymotrypsin,
3.5 mg of scPrp81796�2092 was mixed with 0.075 mg chymotrypsin
and incubated for 19 h at room temperature. The reaction was
stopped by the addition of phenylmethylsulphonylfluoride (PMSF)
to 1 mM and dialysis against 10 mM Tris–HCl, pH 7.5, 150 mM NaCl,
1 mM DTT and 5% glycerol. The digested protein was concentrated
to 7 mg/ml.

For preparative digestion of hsPrp81747�2016 with chymotrypsin,
10 mg of the protein was mixed with 0.4 mg of chymotrypsin and
incubated for 2 h at 161C. The reaction was stopped by the addition
of PMSF to 0.1 mM and the buffer was exchanged to 10 mM Tris–
HCl, pH 7.5, 150 mM NaCl, 1 mM DTT, 5% glycerol on a NAP-25
column (GE Healthcare). A stable band that resulted from the
proteolysis was analysed by tryptic peptide mass fingerprinting and
identified as hsPrp81755�2016. The truncated protein was concen-
trated to 37 mg/ml.

Site-directed mutagenesis and plasmid shuffling
The desired substitutions were introduced into the PRP8 gene of
plasmid pJU186 (Umen and Guthrie, 1995a) (wild-type PRP8 on
plasmid pSE362 (CEN, HIS) was a kind gift of Catherine Collins and
Christine Guthrie, University of California, San Francisco, USA) by
the QuikChange site-directed mutagenesis strategy (Stratagene) and
verified by sequencing. Wild-type and mutant plasmids were
transformed into yeast strain JDY8.06 (kindly provided by Richard
Grainger and Jean Beggs, University of Edinburgh, UK), containing
wild-type PRP8 on a counter-selectable URA3-marked plasmid
(Brown and Beggs, 1992). Before plasmid shuffling (Boeke et al,
1987), cells were selected at 251C in a medium lacking histidine.
Transformants were streaked once on medium lacking histidine and
grown at 251C and patches were streaked three times on 5-
fluoroorotic acid (5-FOA) plates to select for cells lacking the URA3
plasmid. Cells that survived on 5-FOA plates were streaked on rich
medium, and their growth phenotypes were analysed by incubating
cells (ca. 5�104 cells) and serial eight-fold dilutions at 37, 30, 25
and 161C for 1–2 days. Cold- and temperature-sensitive strains
failed to grow on �Ura plates at any of the temperatures and, in
addition, did not grow in rich medium at 16 or 371C, respectively,
but grew at 25 or 301C.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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