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SUMMARY

The protein kinase C (PKC) family of serine-threonine
kinases plays a central role in T lymphocyte activa-
tion. Here, we identify NR2F6, a nuclear zinc-finger
orphan receptor, as a critical PKC substrate and es-
sential regulator of CD4+ T cell activation responses.
NR2F6 potently antagonized the ability of T helper
0 (Th0) and Th17 CD4+ T cells to induce expression
of key cytokine genes such as interleukin-2 (IL-2)
and IL-17. Mechanistically, NR2F6 directly interfered
with the DNA binding of nuclear factor of activated
T cells (NF-AT):activator protein 1 (AP-1) but not
nuclear factor kB (NF-kB) and, subsequently, tran-
scriptional activity of the NF-AT-dependent IL-17A
cytokine promoter. Consistent with our model,
Nr2f6-deficient mice had hyperreactive lympho-
cytes, developed a late-onset immunopathology,
and were hypersusceptible to Th17-dependent
experimental autoimmune encephalomyelitis. Our
study establishes NR2F6 as a transcriptional repres-
sor of IL-17 expression in Th17-differentiated CD4+

T cells in vitro and in vivo.

INTRODUCTION

Immune responses are exquisitely controlled, requiring multiple

finely tuned activation and inactivation signals. Engagement of

the T cell receptor (TCR) and coreceptors triggers immediate ac-

tivation of the critical transcription factors nuclear factor kB (NF-

kB), nuclear factor of activated T cells (NF-AT), and activator pro-

tein 1 (AP-1), whose activation results in, e.g., interleukin-2 (IL-2)

expression and, ultimately, in T cell activation and differentiation

into effector-memory subsets. Protein kinase C (PKC) isotypes

are serine-threonine kinases that play a key role in these cellular

signaling pathways in lymphocytes (Baier, 2003; Spitaler and

Cantrell, 2004; Tan and Parker, 2003). PKCq has been shown

to be critical in cytokine responses in vitro (Altman et al., 2004;

Pfeifhofer et al., 2003; Sun et al., 2000) and T cell immune re-
sponses in vivo including T helper 17 (Th17)-mediated autoim-

munity (Anderson et al., 2006; Chaudhary and Kasaian, 2006;

Tan et al., 2006). Additionally, studies have shown that also the

classical PKC isotypes, PKCa and PKCb, are critical for T cell ac-

tivation processes (Pfeifhofer et al., 2006, Volkov et al., 2001).

PKC-mediated signals induce NF-AT:AP-1 transactivation in

T cells (Isakov and Altman, 2002; Tan et al., 2006); nevertheless,

direct effectors of PKC, as well as the biochemical basis by

which PKC isotypes mediate this, have remained enigmatic.

The rise of intracellular Ca2+ triggered by antigen binding to the

TCR leads to the activation of the phosphatase activity of calci-

neurin followed by dephosphorylation of NF-AT and, finally, to

nuclear import of NF-AT. In effector CD3+ T cells, this Ca2+-cal-

cineurin-NF-AT pathway crosstalks with the Ras-MAPK-AP-1

signaling pathway, and NF-AT forms complexes with the tran-

scription-factor family of AP-1 proteins in order to bind with

high affinity to DNA (Rao et al., 1997; Macian et al., 2001).

Here we describe a mechanism by which NF-AT activities in-

duced by antigen-receptor stimulation are regulated in CD4+

T cells. This involves the nuclear orphan receptor NR2F6 (nuclear

receptor subfamily 2, group F, member 6; previously known as

‘‘Ear2’’ [Nuclear Receptors Nomenclature Committee, 1999;

Miyajima et al., 1988; Giguere, 1999]) as a player in T cell atten-

uation. A defining feature of the three mammalian NR2F subfam-

ily members, NR2F1, NR2F2, and NR2F6, is their role in the

regulation of organogenesis, neurogenesis, and cellular differ-

entiation during embryonic development (Park et al., 2003;

Takamoto et al., 2005; You et al., 2005; Zhang and Dufau,

2004). NR2F6 as transcription factor binds to a TGACCT direct-

repeat motif and has been established in controlling facets of

central nervous system (CNS) (Liu et al., 2003; Warnecke et al.,

2005); however, a function for NR2F6 in the immune system

has yet to be demonstrated. Mechanistically, lymphocyte-

expressed NR2F6 acts as a critical regulatory factor during T lym-

phocyte activation, potently antagonizing antigen-receptor-

induced cytokine responses in vitro and in vivo. DNA binding

of NR2F6 is under the direct control of TCR-induced PKC signal-

ing, the latter known to positively adjust activation thresholds

in CD3+ T cells (Baier, 2003; Tan and Parker, 2003).

Physiologically, NR2F6 appeared of particular importance

in the effector-memory CD4+ T cell lineage—known as Th17
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cells—that produces IL-17. Th17 cells are critically involved in

the pathophysiology of tissue inflammation and autoimmunity

(Bettelli et al., 2007; Harrington et al., 2005, 2006; McKenzie

et al., 2006; Ivanov et al., 2007; Jankovic and Trinchieri, 2007;

Weaver et al., 2007; Sundrud and Rao, 2008). Th17 differentia-

tion is directed by two lineage-specific nuclear orphan recep-

tors, RORa (NR1F1) and RORg (NR1F3), that positively regulate

IL-17 transcription (Yang et al., 2008). Opposite to the estab-

lished roles of RORa and RORg isotypes, here we found that

NR2F6 acted as a nuclear repressor of IL-17 expression and

suppressed Th17 cell functions. Therefore, NR2F6 represents

a nuclear orphan receptor family member that acts as a transcrip-

tional suppressor of the Th17 CD4+ T cell subset.

RESULTS

Ser-83 on Recombinant NR2F6 Is a PKC Substrate Site
We employed a PKC-phosphorylation-site prediction approach

to identify PKC substrates (Fujii et al., 2004) and identified Ser-

83 on nuclear orphan receptor NR2F6 (nuclear receptor subfam-

ily 2, group F, member 6; previously known as ’’Ear2’’ [Nuclear

Receptors Nomenclature Committee, 1999]; domain schematic

in (Figure S1A available online) as a candidate PKC substrate

site in silico. NR2F6 has been established in controlling facets

of CNS development (Warnecke et al., 2005). Endogenous ex-

pression of Nr2f6 mRNA has been reported to be high in the em-

bryonic brain and in the developing liver (Miyajima et al., 1988;

Warnecke et al., 2005). We detected Nr2f6 expression in the thy-

mus, spleen, lymph node, and bone marrow (Figures 1A and 1B),

as well as in CD3+ T and CD19+ B lymphocytes (not shown),

indicating a potential function for NR2F6 in the immune system.

Of note, a decrease of Nr2f6 mRNA expression was associated

with T cell activation, suggesting a silencing effect on Nr2f6

gene transcription by the TCR-mediated signaling pathway

(Figure S1B).

We confirmed the in silico prediction by biochemical analysis

of NR2F6 and PKC. PKCa, d, and q, as well as, to a much lower

extent, PKCz, PKA, and PKB, were able to phosphorylate

recombinant NR2F6 in vitro (Figure 1C and data not shown).

Mutation of Ser-83 (but not Ser-89) to alanine strongly reduced

PKC-mediated NR2F6 phosphorylation, confirming Ser-83 as

the major PKC phosphorylation site in NR2F6 (Figure 1D). Con-

sistent with its identification as a PKC substrate, transfected

NR2F6 bound to endogenous PKCa and PKCq (but not PKB) in

pulldown assays from T cell lysates (Figure S2A). The presence

of this phosphosite on NR2F6 was confirmed with a phospho-

specific (p)Ser-83 antiserum that reacted with wild-type NR2F6

but not with the S83A mutant in PDBu-stimulated Jurkat

T cells (Figure 1E). Electrophoretic-mobility band-shift assays

(EMSAs) revealed that in nuclear extracts from unstimulated

cells transiently expressing NR2F6, wild-type NR2F6 bound to

its established TGACCT direct-repeat DNA motif (Figure 2A

and Figure S2B). Notably, wild-type NR2F6 DNA binding de-

creased in CD3 plus CD28-activated cells. The phosphomimetic

replacement of Ser-83 with glutamic acid (S83E) completely ab-

rogated DNA binding of NR2F6 in nuclear extracts in both resting

and stimulated cells (Figures 2A and 2B), suggesting that the

DNA-binding capacity of NR2F6 is antagonized by a (p)Ser-83

switch on NR2F6.
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We extended the NR2F6 DNA-binding results to examine

a role of NR2F6 as transcriptional regulator of the PKC-depen-

dent NF-AT:AP-1 signaling pathway established to cooperatively

regulate IL-2 target-gene expression in T cells (Macian et al.,

2001). Transfection of wild-type NR2F6 in Jurkat cells resulted

in a repression of the NF-AT:AP-1-dependent promoter lucifer-

ase reporter expression, containing the composite NF-AT:AP-1

DNA-binding element derived from the IL-2 minimal promoter

region (Figure 2C). The S83E mutation in NR2F6 abolished its re-

pressor activity on the NF-AT:AP-1 reporter, confirming the

observation that the phosphorylation of Ser-83 abrogates DNA-

binding capacity and, subsequently, transcriptional repressor

function of NR2F6 (Figure 2C). Subcellular location analysis by

confocal microscopy also defined NR2F6 as nuclear protein in

both unstimulated and TCR-stimulated Jurkat T cells (Figure 2D).

To establish whether NR2F6 is directly involved in the regula-

tion of NF-AT, we monitored the transcriptional activity of a

cis-acting NF-AT-promoter reporter construct (containing multiple

copies of only the NF-AT enhancer element) in a conditionally ac-

tivated NR2F6 estrogen-receptor (ER) fusion mutant (NR2F6-ER;

see Figure S3 for illustration) expressing Jurkat T cells. Exposure

to 4-hydroxytamoxifen (OHT), the selective agonist of ERmut-

LBD within the recombinant NR2F6-ER, selectively induced

transrepression of the TCR-activation-induced NF-AT reporter

gene transcription in NR2F6-ER-expressing Jurkat T cells (Fig-

ures 2E and 2F). NF-AT reporter activity was not affected by ex-

pression of NR2F6-ER without OHT treatment, nor by OHT treat-

ment in control transfected cells (Figure 2F and data not shown).

Similarly, and consistent with published studies that defined

NF-AT as cis-acting transactivator for IL-17A gene transcription

(Liu et al. [2004] and, for review, Chen et al. [2007]), NR2F6-ER

also repressed TCR-induced IL-17A promoter-reporter activity

(Figure 2G). This indicates that NF-AT is one critical transcription

factor downstream of NR2F6 in the regulation of IL-17A pro-

moter transcription. Again, phosphorylation status of Ser-83 af-

fected NR2F6-ER cellular function, because the S83E mutation

on NR2F6-ER completely rescued reporter transcription to con-

trol levels. Similarly, the C112S zinc-finger mutant of NR2F6, es-

tablished to be defective in DNA binding (Liu et al., 2003 and data

not shown), lost its transcriptional repressor activity, indicating

that NR2F6-mediated transcriptional repression is strictly de-

pendent on its DNA-binding ability (Figures 2E–2G). These find-

ings validate NR2F6 as a critical negative modulator of both

NF-AT DNA binding and NF-AT-dependent IL-17A promoter

transcriptional responses in Jurkat T cells.

T and B Cell Development Is Normal
in NR2F6-Deficient Mice
Nr2f6�/� mice are viable and fertile (Warnecke et al., 2005) and

show normal thymocyte development (Table 1A). Nr2f6�/� thy-

mocytes demonstrated normal susceptibility to TCR-ligation-

mediated apoptosis both in vitro (not shown) and in vivo

(Figure S4), suggesting normal sensitivity to negative selection

signals of immature thymocytes. B lymphocyte development in

the bone marrow of Nr2f6�/� mice was not different from wild-

type controls, resulting in normal mature B cell subsets

(Figure S5 and Table 1B). Consistent with this observation,

FACS analysis of spleen and lymph nodes of 6–10-week-old

Nr2f6�/� mice revealed no gross differences in the distribution
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of CD3-, CD4-, CD8-, and CD19-positive cells. In the spleen, sur-

face expression of CD3, CD4, CD8, CD44, CD62L, ICOS, TCR,

Vb8, CD19, B220, IgM, IgD, CD43, CD5, CD21, CD23, Ger1,

Mac1, and Thy1, as well as ratios of T and B cell populations,

was comparable to that of Nr2f6+/+ mice (Table 1B and data

not shown), suggesting that NR2F6 is dispensable for normal

lymphocyte development.

Nr2f6�/�Mice Have a Hyperreactive Immune Phenotype
The critical function of NR2F6 in lymphocytes was revealed by

a late-onset autoimmune pathology. Of all 1-yr-old Nr2f6�/�

mice investigated, 55% displayed enlarged spleens (Figure 3A

and Figure S6) with increased numbers of T (p = 0.033) and B

(p = 0.046) lymphocytes (Figures 3B–3D). Consistently, un-

treated Nr2f6�/� mice revealed high titers of IgG1 (Figure 3E

and Figure S7) and autoantibodies against nuclear antigens

Figure 1. (p)Ser-83 on NR2F6 Is a PKC Phos-

phorylation Site

(A) Nr2f6 in situ hybridization was positive in thymus

sections of wild-type (I) but not Nr2f6�/� (IV) E14.5

embryonic thymus sections. Neither the expression

pattern nor the intensity of the other COUP-TF

family members NR2F1 (II, V) and NR2F2 (II, VI) was

altered in the Nr2f6�/� thymus.

(B) qRT-PCR revealed Nr2f6 expression in spleen,

lymph node, and bone marrow in the wild-type mouse.

Nr2f6�/� samples served as specificity negative con-

trols, data were normalized to GAPDH, and expres-

sion in the spleen was arbitrarily taken as 1. Mean of

three independent experiments is shown; error bars

represent standard error.

(C and D) Kinase assays of full-length GST-NR2F6

(wild-type or S83A or S89A mutant) incubated with re-

combinant PKC family members (a, q, d, and z) or pro-

tein kinase A (PKA) as control. Specific phosphoryla-

tion of NR2F6 by the PKC isotypes a, q, d, and, to

a much lower extent, PKC z and PKA could be ob-

served. This specific PKC-mediated phosphorylation

was mostly lost after mutation of the S83 site (but

not Ser-89) into a S83A site. The anti-GST immunoblot

(lower panel) confirmed equal loading.

(E) Jurkat cells were transfected with GFP, NR2F6

wild-type, or S83A mutant, and NR2F6 was immuno-

precipitated from resting cells (�) or cells stimulated

for 20 min with 50 nM phorbol ester (PDBu) (+) and im-

munoblotted with the anti-(p)Ser-83 NR2F6-specific

pAb.

(Figures 3F–3H) were detected in sera from

these animals. Nr2f6�/� CD4+ T (p = 0.025)

and B (p = 0.036) cells were less sensitive

to apoptosis induced by antigen-receptor li-

gation in vitro (Figure S8). The hyperplasia of

CD4+ T and B cells in 1-yr-old Nr2f6�/�mice

confirmed this observation in vivo (Table 1C).

To determine the functional capacity of

peripheral T and B cells in the absence or

presence of NR2F6, we analyzed the activa-

tion thresholds. Nr2f6�/� T cells were hyper-

reactive to stimulation, and the CD4+ T sub-

set (unlike the CD8+ T cells) showed an

enhanced proliferation response upon CD3 plus CD28 stimu-

lation (Figures S9A and S9B). Stimulated Nr2f6�/� CD4+

T cells produced more IL-2 (p = 0.0007) than wild-type T cells

(Figure 4A), whereas IFN-g secretion in Nr2f6�/� CD8+ T cells

was not elevated much more than wild-type (Figure S9C).

Nr2f6�/� B cells displayed an enhanced proliferative response

upon IgM plus IL-4 stimulation (Figure S10). We used siRNA

and overexpression analysis to independently confirm the sup-

pressor function of NR2F6 in CD4+ T cells. The IL-2 secretion re-

sponse in Nr2f6 siRNA-transfected cells was higher (Figure 4B),

whereas NR2F6-overexpressing cells showed diminished IL-2

activation responses (Figure S11A) when compared to control

transfected cells. For delivery controls, both the increase in

Nr2f6 mRNA expression (5-fold) in plasmid-transfected cells

(see Figure S11B) and the reduction in Nr2f6 mRNA expression

(>95%) in siRNA-transfected (Figure S12) was measured.
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Consistent with an in vivo role of NR2F6 in signaling attenua-

tion, Nr2f6 deficiency resulted in a profound augmentation of

IL-2 in the plasma 2 hr after intraperitoneal (i.p.) injection of

superantigen staphylococcal enterotoxin B (SEB), which selec-

tively activated the TCR-Vb8-positive T cells (Figure 4C). These

elevated activation responses were not due to an upregulation

of either CD3 or TCR-Vb8 receptor expression on the surface

of T cells (Figures S13A and S13B). Ex vivo differentiation exper-

iments of naive CD4+ T cells thereby defined the selective role

of NR2F6 in Th0 and Th17 (but not Th1 and Th2) cells (Figures

4D–4G and Figure S14A and S14B).

NR2F6 Represses NF-AT:AP-1 DNA Binding
in CD4+ T Cells
Mechanistically, no differences in the extent or kinetics of mem-

brane-proximal phosphorylation events, such as (p)Tyr-783 on

PLCg1, (p)Ser-32 on I-kBa, or the activation loops on (p)ERK1

and (p)ERK2, were observed upon CD3 plus CD28 stimu-

lation of Nr2f6 wild-type versus Nr2f6-deficient CD3+ T cells

(Figure 5A). EMSA analysis of nuclear extracts with sequences

containing critical enhancer elements demonstrated amplified

NF-AT:AP-1 DNA binding in CD3+ T cells derived from Nr2f6�/�

mice (Figure 5B). Similarly, activated Nr2f6�/� CD4+ T cells

showed a strong augmentation in DNA binding of the NF-

AT:AP-1 complex in comparison to wild-type controls (Figures

5C and 5D). However, AP-1-binding ability was the same in

both wild-type and Nr2f6�/�CD8+ T cell subsets (Figure 5D). Un-

like NF-AT:AP-1, NF-kB DNA binding was not affected by the ab-

sence of NR2F6 in either T cell subset (Figures 5B and 5E). These

data physiologically confirm the observation that NR2F6 selec-

tively functions as a negative regulator of both NF-AT:AP-1

transactivation responses in CD4+ T cells.

EMSA analysis of ex vivo-differentiated Th17 effector-memory

cells established NR2F6 as a Th17 cell-intrinsic repressor of the

DNA-binding capabilities of NF-AT:AP-1 (Figures 6A–6C). Con-

sistent with the proposed model of NR2F6 as repressor of NF-

AT-dependent IL-17 expression, NR2F6 directly interfered with

NF-AT DNA binding to an IL-17-promoter-derived enhancer se-

quence in Th17 cells (Figure 6D). In contrast to DNA binding and

transcriptional-activity regulation of NF-AT, NR2F6 deficiency

had neither an effect on activation-induced upregulation (not

shown) nor on nuclear translocation of NF-AT in activated pri-

mary CD4+ as well as NR2F6-ER-overexpressing Jurkat T cells
(Figures S15A and S15B). Taken together, these results substan-

tiate the biological significance of NR2F6 in Th17 cells and pro-

vide mechanistic data of NR2F6 as a nuclear repressor of NF-AT

DNA binding and NF-AT-dependent transactivation in the con-

text of the IL-17A promoter. This newly discovered repression

pathway of the PKC substrate NR2F6 in CD4+ T cells thereby

extends the mechanism of action of NF-AT regulation.

NR2F6-Deficient Mice Are Hypersusceptible
to Antigen-Induced Autoimmunity
To gain more insight into NR2F6 immune function in vivo, we im-

munized 6–10-week-old female mice with the myelin component

MOG35-55 to induce experimental autoimmune encephalomyeli-

tis (EAE), a multiple sclerosis-like autoimmune disease. The

numbers and ratios of T and B cell populations, including

FOXP3+ Treg and Th17 cell lineages, in EAE-diseased mice did

not differ between the genotypes (Figure S16). Thus the initial

commitment to differentiation of Th17 cells appears mostly inde-

pendent of NR2F6, both in vitro and in vivo.

Nevertheless, Nr2f6�/�mice demonstrated both a faster onset

and an overall higher clinical score than wild-type mice when

progressive paralysis was scored from tail to head (Figure 7A).

Accelerated disease in the Nr2f6�/� mice was associated with

higher numbers of CNS-infiltrating IL-17-IFN-g double-positive

CD4+ effector T cells (p = 0.049) (Figure 7B). Furthermore, an in-

crease of IL-17 (p = 0.00019) and IFN-g (p = 0.0277) cytokine re-

sponse in MOG35-55 antigen-dependent recall assays ex vivo

(Figures 7C and 7D) could be observed, indicating that Th17

cell functions were hyperreactive in Nr2f6�/�mice. Th17 cell-in-

trinsic defects in Nr2f6�/�mice were already independently con-

firmed by the elevated IL-17 cytokine expression of ex vivo-dif-

ferentiated Nr2f6�/� Th17 cells, shown also by single-cell flow

cytometry and qRT-PCR analysis (Figure 4G, Figure S14, and

data not shown).

DISCUSSION

IL-17 production of Th17 cells has been linked to the ‘‘decision

making’’ that regulates the balance between immunological tol-

erance versus autoimmunity (Bettelli et al., 2007; Harrington

et al., 2005, 2006; McKenzie et al., 2006; Ivanov et al., 2007; Jan-

kovic and Trinchieri, 2007; Weaver et al., 2007; Sundrud and

Rao, 2008). The IL-17A promoter has been shown to contain
Figure 2. (p)Ser-83 on NR2F6 Regulates NR2F6 DNA Binding in Jurkat T Cells

(A) NR2F6 Ser-83 phosphorylation directly influenced DNA binding in nuclear extracts as analyzed by EMSA. Jurkat T cells were transfected with NR2F6 wild-

type, S83E mutant, or GFP control and were left unstimulated (�) or were CD3 plus CD28 stimulated (+). Supershift analysis was performed with a mAb for NR2F6.

In contrast to the NR2F6 wild-type, the S83E mutant did not bind DNA.

(B) Equal expression of NR2F6 wild-type and S83E mutant proteins in the nuclear fractions was confirmed by immunoblotting (DNA polymerase served as loading

control). NR2F6 wild-type and mutant protein expression remained unaltered also during CD3 plus CD28 stimulation (not shown).

(C) Transfected wild-type NR2F6 interfered with CD3 plus CD28-induced transcriptional activation of the NF-AT:AP-1 promoter luciferase reporter; this repressor

activity was abolished by the S83E mutation in NR2F6.

(D) Jurkat T cells transfected with NR2F6-GFP (green) were used to form conjugates with SEE-pulsed B cells stained with the cell tracker blue (CTKB). Cells were

then fixed and nuclei were stained with TOPRO-3 (red). Conjugates were analyzed for NR2F6 localization at different time points. Similar results were obtained

with an RGS-His6-tagged NR2F6 and an anti-RGSHis6 mAb staining (not shown).

(E–G) Cotransfection experiments in Jurkat T cells showed that recombinant NR2F6-ER wild-type but not DNA-binding-defective mutants, S83E and C112S,

induced repression of CD3 plus CD28-induced NF-AT-dependent reporter luciferase gene transcription. CD3 plus CD28-induced IL-17-dependent promoter

luciferase reporter was similarly repressed by recombinant NR2F6-ER wild-type in transfected Jurkat T cells. Reporter induction rates were normalized for

the transfected cells, and CD3 plus CD28-induced reporter activity without OHT treatment was arbitrarily set as 100%. Mean of at least two independent

experiments analyzed in triplicates is shown. Error bars represent standard error. Equal expression of NR2F6 wild-type and S83E and C112S mutant proteins

in the nuclear fractions was confirmed by immunoblotting (DNA polymerase served as loading control).
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Table 1. T Cell Development and T and B Lymphocyte Subsets in Young and Old Nr2f6+/+ and Nr2f6�/� Mice

A. Thymus

Nr2f6+/+ Nr2f6�/� p Values n

Total (x 106) 241.6 ± 9.0 206.6 ± 20.1 0.156 6

CD4+CD8– 20.3 ± 4.1 17.5 ± 4.4 0.343 6

CD4–CD8+ 7.1 ± 0.6 3.8 ± 0.8 0.010 6

CD4+CD8+ 200.4 ± 8.3 175.9 ± 16.3 0.223 6

B. Spleen (6–10-Week-Old Mice)

Nr2f6+/+ Nr2f6�/� p Values n

Total (x 106) 92.6 ± 10.6 79.0 ± 8.2 0.7166 10

T Cells

CD4+ 16.2 ± 1.1 18.8 ± 1.4 0.6777 8

CD44lo+CD62Lhi 9.6 ± 1.5 12.7 ± 1.7 0.5441 8

CD44hi+CD62Llo 7.4 ± 2.4 4.9 ± 0.6 0.7817 8

CD8+ 11.3 ± 0.8 8.6 ± 0.7 0.1421 8

CD44lo+CD62Lhi 7.4 ± 0.8 6.4 ± 0.8 0.1478 8

CD44hi+CD62Llo 3.2 ± 1.3 1.6 ± 0.4 0.6351 8

B Cells

CD19+ 29.1 ± 4.1 35.0 ± 4.4 0.4783 8

IgM+IgD 34.1 ± 3.7 41.9 ± 5.0 0.3082 8

T1 2.8 ± 0. 4 2.7 ± 0.4 0.9605 8

MZ 3.4 ± 1.0 6.1 ± 1.8 0.2638 8

C. Spleen (1-Yr-Old Mice)

Nr2f6+/+ Nr2f6�/� p Values n

Total (x 106) 64.8 ± 6.2 131 ± 26 0.0065 11

T Cells

CD3+ 26.6 ± 7.1 45.3 ± 11 0.0331 11

CD4+ 13.6 ± 2.7 30.1 ± 6.2 0.0039 11

CD44lo+CD62Lhi 7.1 ± 0.4 11.6 ± 0.9 0.0677 5

CD44hi+CD62Llo 4.8 ± 0.6 13.0 ± 5.5 0.3486 5

CD8+ 8.7 ± 1.3 8.9 ± 2.7 0.6769 11

CD44lo+CD62Lhi 3.9 ± 0.6 3.6 ± 0.4 0.7918 5

CD44hi+CD62Llo 6.3 ± 0.9 8.0 ± 2.0 0.5778 5

B Cells

CD19+ 32.6 ± 3.5 62.4 ± 15.5 0.1250 11

IgM+IgD 17.5 ± 2.1 35.4 ± 9.3 0.0460 11

T1 3.6 ± 0.8 6.5 ± 1.5 0.5591 7

T2 1.5 ± 0.2 2.5 ± 0.3 0.0087 7

MZ 2.8 ± 0.5 5.6 ± 1.5 0.1210 7
two cis-acting NF-AT sites (Liu et al. [2004]; see for review Chen

et al. [2007]). Consistently, pharmacological inhibition studies

employing the calcineurin inhibitor CsA abrogated MOG35-55-

stimulated IL-17 expression in antigen-dependent recall assays

ex vivo (data not shown), confirming the observation that IL-17

gene regulation strictly depends on the Ca2+-calcineurin-NF-AT

pathway. Complementary data, employing both NR2F6 over-

expression and Nr2f6-deficient T cells, thus demonstrated that

NR2F6 is a nuclear attenuator that directly interferes with DNA

binding of NF-AT and, subsequently, transcriptional activity of

the NF-AT-dependent IL-17 expression. The antagonistic cross-

talk of NF-AT and NR2F6 in Th17 cells provided a plausible

explanation for the hypersusceptibility of Nr2f6�/� mice to EAE
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induction. Nevertheless, at the moment, one cannot exclude

the possibility that Th17 cell-intrinsic NR2F6-mediated transcrip-

tional suppression of other transcription factors (both dependent

and independent of NF-AT repression) also contributes to the

observed phenotype of Nr2f6�/� mice.

NR2F6 negatively interfered with transcriptional cytokine re-

sponses and acted as a barrier against autoimmunity. Consis-

tent with this observation, several other nuclear receptors

(NRs), predominately the steroid receptors but also PPARs,

LXR, RXR, and RAR, are documented to repress the ability of

e.g., NF-kB and/or AP-1 to transcribe its target genes (Moore

et al., 2006). The nuclear orphan receptor superfamily also in-

cludes several prominent molecular regulators of adaptive
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Figure 3. Nr2f6�/� Mice Develop a Late-Onset Immunopathology

(A–D) Twelve-month-old Nr2f6�/�mice displayed enlarged spleens with increased lymphocyte numbers in Nr2f6�/�mice. (A) Splenic weight, (B) total cellularity,

and (C) T cell (CD3+) and (D) mature B cell numbers (IgM+ and IgD+) are shown (Nr2f6+/+, n = 11; Nr2f6�/�, n = 11; unpaired t test; (A) p = 0.009, (B) p = 0.006, (C)

p = 0.033, (D) p = 0.046; means are shown with error bars).

(E) Serum immunoglobulin levels of IgG1 young (6–10 weeks) and old (>12 months) Nr2f6�/�mice were determined via ELISA. Twelve-month-old Nr2f6�/�mice

show significantly elevated IgG1 plasma titers (unpaired t test, Nr2f6+/+, n = 8; Nr2f6�/�, n = 8; p = 0.007).

(F–H) Aged Nr2f6�/�mice generate autoantibodies against nuclear antigens (ANA; unpaired t test, Nr2f6+/+, n = 9; Nr2f6�/�, n = 9; p = 0.023) and double-stranded

(ds) DNA (Nr2f6+/+ n = 9; Nr2f6�/� n = 9; p = 0.037) as determined by staining of rat liver sections with mouse serum (F) and ELISA (G and H). Means are shown;

error bars represent standard error.
immunity (Winoto and Littman, 2002). Nur77 has been reported

to abrogate NF-kB activation and acts as regulator of TCR-

mediated clonal deletion of immature thymocytes (Harant and

Lindley, 2004; Lin et al., 2004; Sohn et al., 2007). RORg-t, a spe-

cific splice variant of the orphan nuclear receptor RORg, is crit-

ical in the differentiation program of lymphoid tissues, lymph

nodes, Peyer’s patches, lymphoid tissue inducer (LTi) cells,

and the proinflammatory Th17 subset (Eberl and Littman,

2004; Eberl et al., 2004; Ivanov et al., 2006). Similarly, RORa

has been established to be essential in Th17 differentiation

and positively direct Th17 development in vitro and in vivo

(Yang et al., 2008). Strikingly, RORa and RORg double-

deficient mice were completely protected against EAE disease

induction (Yang et al., 2008). Opposite to RORa and RORg,

however, NR2F6 acted as suppressor in Th17 cells and Nr2f6-

deficient mice and demonstrated both increased progression

and severity of EAE scores.

In the present study, we described an autoimmune-aug-

mented phenotype of Nr2f6-deficient mice unique to those pre-

viously described in other nuclear orphan receptor knockouts.

The transcription factor NR2F6 appeared to be essential for

the attenuation of a robust Th17 function; exaggerated produc-
tion of the IL-17 cytokine in Nr2f6-deficient mice indicated a pre-

viously unknown biochemical mechanism for fine tuning the ac-

tivation threshold of Th17-dependent autoimmune pathologies.

NR2F6 may be a critical player in the mechanism that relays

signals between induction and/or maintenance of peripheral

immunological tolerance and autoimmunity.

EXPERIMENTAL PROCEDURES

Nr2f6�/� Mice

These mice were described previously (Warnecke et al., 2005) and were kept

under specific pathogen-free (SPF) conditions. All experiments comply with

the current laws of Austria.

Protein Kinase Assay

Recombinant E. coli-expressed GST-NR2F6 fusion proteins were purified

with glutathion-sepharose (Amersham). PKC isotype-dependent phosphory-

lation was measured by incorporation of 32Pi from g32P ATP and incubation

of 200 ng of purified recombinant GST-NR2F6 in kinase assay buffer (40 mM

Tris [pH 7.5], 40 mM MgCl2, 0.2 mM DTT, 0.0002% Triton X-100, 0.3 mg ml�1

BSA) containing 1 mM ATP, 2 mCi [32P-ATP], 1 mM PDBu, and 160 mM phos-

phatidylserine. After 20 min at 30�C, the reaction was stopped by addition of

stop solution (10 mM ATP, 5 mM EGTA [pH 7.5], 0.1% Triton X-100).

Immunity 29, 205–216, August 15, 2008 ª2008 Elsevier Inc. 211



Immunity

NR2F6 Represses Th17 Cell Activation
Incorporated radioactivity was measured by SDS-PAGE and X-ray autoradi-

ography.

expression assays for Nr2f6 (Mm01340321-m1); expression was normalized

to GAPDH.

Figure 4. Nr2f6�/� T Cells Hyperrespond to Antigen-Receptor Stimulation

(A) CD3 plus CD28-induced IL-2 cytokine secretion responses of Nr2f6-deficient T cells (black bars) were significantly higher than wild-type controls (white bars).

Data shown are the mean of three independent experiments performed in duplicate (split-plot ANOVA, p = 0.0007).

(B) Similarly, siRNA-mediated Nr2f6 knockdown in CD4+ T cells resulted in enhanced IL-2 cytokine secretion upon CD3 plus CD28 stimulation, compared to

siRNA nontargeting controls (n = 2).

(C) IL-2 cytokine concentrations in plasma taken 2 hr after injection with SEB i.p. (10 mg/kg) were significantly higher in Nr2f6�/� mice (unpaired t test; Nr2f6+/+,

n = 10; Nr2f6�/�, n = 10; p = 0.0004).

(D–G) Naive CD4+ T cells were differentiated under neutral Th0 (D), (E) Th1, (F) Th2, and (G) Th17 conditions (conditions are defined in the Experimental Proce-

dures), and relevant cytokines were measured from the supernatant after 4–5 days. One of two independent experiments with consistent results is shown for Th0,

Th1, and Th2. IL-17 cytokine secretion in Nr2f6-deficient Th17 cells (black bars) was significantly higher than wild-type controls (white bars) (split-plot ANOVA

Nr2f6+/+, n = 5; Nr2f6�/�, n = 5; p = 0.004162) Error bars represent standard error.
Immunoblot Analysis

T cells were stimulated with solid-phase hamster anti-CD3 (clone 145–2C11)

and hamster anti-CD28 (clone 37.51; BD Biosciences) at 37�C for various

time periods. Cells were lysed in ice-cold lysis buffer (5 mM NaP2P, 5 mM

NaF, 5 mM EDTA, 50 mM NaCl, 50 mM Tris [pH 7.3], 2% Nonidet P-40, and

50 mg ml�1 each aprotinin and leupeptin) and centrifuged at 15,000 3 g for

15 min at 4�C. Protein lysates were subjected to immunoblotting with anti-

bodies against (p)Y-783 PLCg1 (Cell Signaling); PLCg1, Fyn and, DNA poly-

merase (Santa Cruz Biotechnology); (p)S-32 I-kBa (Cell signaling); (p)ERK,

ERK, and PKCq (Cell Signaling); PKCa (UBI); and NR2F6 (Perseus Proteomics).

The (p)S-83 NR2F6 polyclonal antiserum was raised in rabbits against the 12

amino acid NH2-SFFKR-(p)S-IRRNL–COOH phosphopeptide.

RNA Transcript Analysis by qRT-PCR

RNA was prepared from defined cells and tissues with either Trizol (Invitrogen)

or the MagAttract direct mRNA M48 kit (Quiagen). First-strand cDNA synthesis

was performed with oligo(dT) primers (Promega) with the Quiagen Omniscript

RT kit according to the instructions of the supplier. Expression analysis for

Nr2f6 was performed via real-time PCR done in duplicates on an ABI PRIM

7000 Sequence Detection System (Applied Biosystems) with TaqMan gene-

212 Immunity 29, 205–216, August 15, 2008 ª2008 Elsevier Inc.
siRNA Transfection

CD4+ T cells were negatively selected by magnetic cell sorting (Miltenyi Bio-

tec). T cell populations were typically 95% CD4+, as determined by staining

and flow cytometry. Cells were resuspended in solution from Nucleofector

mouse T cell kit and program X-01 following the Amaxa guidelines for cell-

line transfection. In brief, up to 1 3 107 cells mixed with 1.5 mM of synthetic

ON-TARGETplus siRNA predisgened by Dharmacon (#045088) or ON-

TARGETplus siCONTROL nontargetingpool were nucleofected with the Amaxa

Nucleofector apparatus and immediately transferred into 37�C prewarmed cul-

ture medium and cultured for a minimum of 24 hr before experimental analysis.

Plasmid transfections of CD4+ T cells were performed identically, employing 6–

10 mg of plasmid DNA and cultured for 24 hr before experimental analysis.

Analysis of Proliferation Responses

Antibody- and alloantigen-induced proliferation was described (Pfeifhofer

et al., 2003, 2006).

Th0, Th1, Th2, and Th17 In Vitro Differentiation

For T cell differentiation, naive CD4+ cells were isolated via the CD4+ CD62L+ T

Cell Isolation Kit II (Miltenyi Biotec). Polarization of T cells into Th0, Th1, Th2, or
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Th17 cells was performed by solid-phase anti-CD3 (5 mg/ml) and soluble anti-

CD28 (1mg/ml) in the absence (for neutral differentiation) or presence of polar-

izing cytokines (Th0: IL-2 [30 ng/ml]; Th1: m IL-12 [10 n g/ml], aIL-4 [5 mg/ml];

Th2: IL-4 [10 ng/ml], a IL-12 [5 mg/ml] and aIFN-g [5 mg/ml]; Th17: IL-23 [10 ng/

ml], TGF-b [5 ng/ml], IL-6 [20 ng/ml], aIL-4 [2 mg/ml], aIFN-g [2 mg/ml]) as de-

scribed (Yang et al., 2008). Supernatant was collected on day 4 or 5 and ana-

lyzed via BioPlex multianalyte technology (BioRad). For FACS analysis, cells

were washed and restimulated with phorbol 12-myristate 13-acetate (PMA)

and ionomycin in the presence of Golgi-plug for 5 hr, after which IL-17-produc-

ing cells were analyzed via intracellular staining.

Analysis of Cytokine Production

IL-2 in the plasma was determined 2 hr after 1 mg of staphylococcus entero-

toxin B (SEB) injection i.p. into Nr2f6�/� or Nr2f6+/+ controls. IL-2, IL-4,

IL-17, and IFN-g cytokine amounts from culture supernatant of the relevant

CD3+, CD8+ naive, or differentiated CD4+ T cells were measured by BioPlex

multianalyte technology (BioRad).

Figure 5. NR2F6 Acts as Repressor of

NF-AT:AP-1 DNA-Binding Capability

(A) CD3+ T cells (5 3 106 per lane) from Nr2f6+/+

and Nr2f6�/� mice were stimulated with CD3

plus CD28 for the indicated time periods, and the

phosphorylation status of proteins was detected

by immunoblotting, as indicated. One representa-

tive experiment of two is shown.

(B–E) Analysis of DNA-binding activity in nuclear

extracts of Nr2f6�/� CD4+ and Nr2f6�/� CD8+

T cells showed that NF-AT DNA binding is higher

in both CD4+ and CD8+ T cells, whereas AP-1

DNA binding is higher only in CD4+ T cells. No

change was detected in NF-kB binding. Super-

shift analysis was performed with antibodies

against c-fos, NF-ATc, and p50, as indicated.

One representative experiment out of four is

shown.

Induction of EAE

MOG35-55 peptide was synthesized by NeoSys-

tems, France. Female 8–12-week-old mice were

immunized in the hind flank (200 ml) by one injec-

tion of 200 mg MOG35-55 peptide in CFA, supple-

mented with 5 mg ml�1 Mycobacterium tuberculo-

sis H37 Ra (Difco Laboratories) emulsified 1:1 in

PBS (200 ml). In addition, 200 ng of pertussis toxin

(Sigma Aldrich) dissolved in 200 ml PBS was

injected 24 and 72 h later intravenously (i.v.) (tail

vein). Mice were monitored daily for clinical signs

of EAE and graded on a scale of increasing sever-

ity from 0 to 4 by two independent investigators

(Schmidt et al., 2005).

Preparation of CNS Mononuclear Cells

We followed the protocol of Korn et al. (2007) to

purify mononuclear cells from the CNS; in brief,

mice were perfused through the left cardiac ven-

tricle. The forebrain and the cerebellum were

dissected and flushed with PBS. CNS tissue was

digested with collagenase D (2.5 mg/ml, Roche

Diagnostics) and DNaseI (1 mg/ml, Sigma) at

37�C for 45 min. Mononuclear cells were isolated

by passing the tissue through a cell strainer (70

mm), followed by a percoll gradient (70%-30%)

centrifugation. Mononuclear cells were removed
from the interphase, washed two times, and resuspended in RPMI complete

medium.

Antigen Recall Assay

On day 21, splenocyte suspensions were isolated from MOG35-55 peptide-

immunized Nr2f6�/� or Nr2f6+/+ mice along with PBS-treated control mice.

Splenocytes from individual mice, depleted of RBC with lysing buffer (R&D),

were plated in duplicates (5 3 105/well) in 200 ml proliferation medium (RPMI

supplemented with 10% FCS, 2 mM L-glutamine, and 50 U ml�1 penicillin/

streptomycin) containing 0, 1, 10, or 100 mg ml�1 MOG35-55 peptide and

cultured at 37�C in 5% C02. After 60 hr, cytokine production after MOG35-55

peptide restimulation was measured in the cell-culture supernatants. Cyto-

kines amounts were analyzed with BioPlex multianalyte technology (BioRad).

Gel Mobility-Shift Assays

Nuclear proteins from naive (Pfeifhofer et al., 2003, 2006) and Th17 cells (re-

stimulated overnight in the presence of 5 mg/ml anti-CD3) were prepared and
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Figure 6. NR2F6 Suppresses NF-AT:AP-1

DNA Binding Specifically in CD4+ Th17

Effector-Memory T Cells

(A–C) EMSA analysis of nuclear extracts prepared

from Th17-differentiated and aCD3-antibody-re-

stimulated cells (IL-23, TGF-b, IL-6, aIL-4, aIFN-g).

NF-AT:AP-1 DNA binding was higher in Nr2f6-

deficient extract when the NF-AT:AP-1 derived

from the minimal IL-2 promoter was used, whereas

NF-kB remained unchanged.

(D) To distinguish between NF-AT:AP-1 and NF-

AT-only binding, we used the NF-AT-specific

probe #3 derived from the IL17A minimal promoter

region (Liu et al., 2004); this again revealed a higher

NF-AT binding in the Nr2f6-deficient nuclear Th17

cell extracts when compared to the wild-type

control. Supershift analysis was performed with

antibodies against c-fos, NF-ATc, and p50 as indi-

cated. Controls are the radiolabeled probe with or

without the supershifting Ab. One representative

experiment out of two is shown.
used in electrophoretic mobility-shift assays (EMSAs). The following oligonu-

cleotides were used as probes and competitors: NF-kB, 50-GCCATGGGGG

GATCCCCGAAGTCC-30; AP-1, 50-CGCTTGATGACTCAGCCGGAA-30; IL-2p

NF-AT, 50-GCCCAAAGAGGAAAATTTGTTTCATACAG-30 (Nushift, Active Mo-

tif); IL-17p NF-AT oligo 3 (Liu et al., 2004), 50-CATTGGGGGCGGAAATTTTAAC

CAAA-30; NR2F6 EMSAs were performed with the probe set for the COUP-TF

family member NR2F1 (Panomics). This contains the same binding sequence

as for NR2F6 (50-GTGTCAAAGGTCGTGTCAAAGGTC-30).

NR2F6 Localization by Confocal Microscopy

Jurkat E6-1 cells transfected with NR2F6-GFP construct (containing a COOH-

terminal GFP tag) were stimulated with SEE presented by Raji B cells. Raji cells

were labeled with cell tracker blue (CTKB) (Molecular Probes) and incubated in

the presence or absence of 10 ng/mL SEE at 37�C for 90 min. Jurkat E6.1 cells

(106) were then mixed with an equal number of Raji B cells and incubated at

37�C for 30 min, 1 hr, 3 hr, or 6 hr. Jurkat-Raji conjugates were transferred

on polylysine-coated slides and then fixed with 4% paraformaldehyde and

4% sucrose in PBS. Nuclei were stained with TOPRO-3 (Molecular Probe). Im-

munofluorescence was analyzed with Zeiss LSM 510 confocal laser scanning

microscope and Zeiss LSM software v3.2.

Reporter Gene Assays

Jurkat-TAg cells (a kind gift from G.R. Crabtree, Stanford University, CA) have

been transiently transfected with circular plasmid DNA by electroporation

(BTX-T820 ElectroSquarePorator, ITC, Biotech, Heidelberg, Germany), with

predetermined optimal conditions (1 3 107 cells in 200 ml RPMI medium at

450 V/cm and 5 pulses of 99 ms), yielding �40% transfection efficiency. NF-

AT:AP-1 reporter gene expression was measured in transient cotransfection

assays using 10 mg pSRa-CD28, 15 mg of the GFP or Nr2f6 expression vectors,

and 15 mg of the promoter firefly luciferase reporter (RLU1). The latter were

a NF-AT:AP-1 composite site reporter (Macian et al., 2001), a NF-AT reporter

construct containing three tandem copies of the NF-AT minimal consensus se-

quence, and the proximal IL-17A promoter reporter (Liu et al., 2004). For nor-

malization, 0.3 mg of the renilla luciferase reporter vector pTK-Renilla-Luc

(Promega, Medison, WI) (RLU2) has been used. After 21 hr, cells were stimu-

lated with solid-phase CD3 and CD28 agonistic antibodies for 16 hr or left un-

stimulated, as indicated, and the firefly luciferase (RLU1) and Renilla luciferase

(RLU2) activity in the cell lysates was measured with the dual luciferase detec-

214 Immunity 29, 205–216, August 15, 2008 ª2008 Elsevier Inc.
tion kit (Promega, Madison, WI) and the bJet-Luminometer (WALLAC, Turku,

Finland).

Statistical Analysis

Statistical analysis was performed with the statistical package R as described

by Dalgaard (2002) and Everitt and Rabe-Hesketh (2001).

SUPPLEMENTAL DATA

Supplemental data include Supplemental Experimental Procedures and six-

teen figures and can be found with this article online at http://www.

immunity.com/cgi/content/full/29/2/205/DC1/.
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