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SUMMARY

CASK is a unique MAGUK protein that contains an
N-terminal CaM-kinase domain besides the typical
MAGUK domains. The CASK CaM-kinase domain is
presumed to be a catalytically inactive pseudokinase
because it lacks the canonical DFG motif required for
Mg2+ binding that is thought to be indispensable for
kinase activity. Here we show, however, that CASK
functions as an active protein kinase even without
Mg2+ binding. High-resolution crystal structures
reveal that the CASK CaM-kinase domain adopts
a constitutively active conformation that binds ATP
and catalyzes phosphotransfer without Mg2+. The
CASK CaM-kinase domain phosphorylates itself
and at least one physiological interactor, the synaptic
protein neurexin-1, to which CASK is recruited via its
PDZ domain. Thus, our data indicate that CASK com-
bines the scaffolding activity of MAGUKs with an un-
usual kinase activity that phosphorylates substrates
recuited by the scaffolding activity. Moreover, our
study suggests that other pseudokinases (10% of
the kinome) could also be catalytically active.

INTRODUCTION

Protein kinases account for z1.7% of human genes. Ten per-

cent of all kinases contain evolutionary changes that are thought

to render them catalytically inactive, prompting them to be

designated ‘‘pseudokinases’’ (Manning et al., 2002). Sequence

analyses of these kinases revealed evolutionarily conserved

alterations in otherwise highly invariant motifs. For instance,

the Ca2+/calmodulin-dependent (CaM)-kinase domain of CASK

(Ca2+/calmodulin-activated Ser-Thr kinase) is one of nine known

pseudokinases, which contain alterations in the canonical Mg2+-

binding DFG motif that are thought to abolish catalytic activity

(Boudeau et al., 2006; Manning et al., 2002).
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CASK was simultaneously discovered in biochemical experi-

ments in vertebrates because of its binding to synaptic cell-ad-

hesion molecules called neurexins (Hata et al., 1996); in genetic

experiments in C. elegans because it is encoded by the Lin-2

gene that is essential for vulva development (Hoskins et al.,

1996); and by sequence analyses in D. melanogaster because

of its N-terminal CaM-kinase domain (Martin and Ollo, 1996). De-

letion or mutation of CASK leads to anomalous synaptic function

and perinatal death in mice (Atasoy et al., 2007), severe develop-

mental deficits in C. elegans (Hoskins et al., 1996), and behav-

ioral and neurotransmitter-release abnormalities in Drosophila

(Lopes et al., 2001; Martin and Ollo, 1996; Zordan et al., 2005).

In humans, the CASK gene has been linked to X-linked optic

atrophy and mental retardation (Dimitratos et al., 1998; Froyen

et al., 2007). The evolutionary conservation of CASK and the

severe deletion phenotypes suggest that CASK performs impor-

tant biological roles, but the precise nature of its function has

remained elusive.

CASK is composed of an N-terminal CaM-kinase domain that

accounts for approximately half of its primary structure and a

C-terminal set of domains that is typical of MAGUKs (mem-

brane-associated guanylate kinases), including an L27 domain,

a PDZ domain, an SH3 domain, and a C-terminal guanylate

kinase domain that engages in inter- and intramolecular interac-

tions (Hsueh et al., 2000; Nix et al., 2000). Since the CASK CaM-

kinase domain was presumed inactive, studies of CASK function

have focused on its protein interactions. A large array of CASK

interactions has been described. CASK associates stoichiomet-

rically with Mint-1 (also called X11 or Lin-10) and Velis (also

called MALS or Lin-7) (Butz et al., 1998; Borg et al., 1998). The

CASK PDZ domain binds to neurexins, syndecans, and Syn-

CAMs, putative synaptic cell-adhesion molecules (Hata et al.,

1996; Cohen et al., 1998; Hsueh et al., 1998; Biederer et al.,

2002). CASK also interacts with protein-4.1, and a trimeric com-

plex composed of CASK, protein-4.1, and the cytoplasmic tail of

neurexin-1 is a potent nucleator of actin polymerization (Biederer

and Sudhof, 2001). CASK may bind Ca2+ channels (Maximov

et al., 1999), K+ channels (Leonoudakis et al., 2004), and/or the

Ca2+ pump 4b/Cl (Schuh et al., 2003). CASK was proposed to
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associate with CASKins (Tabuchi et al., 2002) and PARKIN

(Fallon et al., 2002) and/or act as a nuclear transcription factor

(Hsueh et al., 2000). In C. elegans, the CASK homolog Lin-2 me-

diates proper localization of the EGF receptor LET-23 (Hoskins

et al., 1996). Moreover, CASK enhances Ether-a-go-go K+

currents via increasing its phosphorylation (Marble et al.,

2005). Finally, CASK may associate with CaM kinase II (CaMKII)

and modulate its phosphorylation state (Hodge et al., 2006;

Lu et al., 2003; Zordan et al., 2005). The regulation of phosphor-

ylation was thought to be indirect in both the cases, as CASK

was deemed a pseudokinase.

Here, we describe high-resolution crystal structures of the

CaM-kinase domain of CASK complexed to different nucleo-

tides. These structures led us to hypothesize that despite the

lack of an appropriate Mg2+-binding motif, CASK may neverthe-

less function as a protein kinase. Indeed, we show that unlike any

known kinase, the CASK CaM-kinase domain catalyzes auto-

phosphorylation and phosphotransfer to the cytoplasmic tail

of neurexin-1 in the absence of Mg2+. Our data suggest that

CASK is unique among protein kinases in that its CaM-kinase

domain uses an unusual mechanism to phosphorylate sub-

strates that are recruited via its MAGUK component.

RESULTS

The CASK CaM-Kinase Domain Adopts a Constitutively
Active Conformation
Based on sequence comparisons between the CASK CaM-

kinase domain and the homologous kinases CaMKI (z37%

identity) and CaMKII (z44% identity; Figure S1 available online),

we produced a recombinant CASK CaM-kinase domain (resi-

dues 1–337; note that these residues are identical in mouse,

rat, and human CASK) and determined its crystal structure.

The CASK CaM-kinase domain was crystallized in two space

groups, a reticularly twinned triclinic form (P1 form; Protein

Data Bank (PDB) ID: 3C0G) and an orthorhombic form (P212121

form; PDB ID: 3C0I). The structures of both forms were solved by

molecular replacement using the coordinates of the CaMKI-

kinase domain (Goldberg et al., 1996) (PDB ID: 1A06) and refined

at 2.2 Å (P1 form) and 1.85 Å resolution (P212121 form; Figures 1

and S3 and Table S1). The structures of the CASK CaM-kinase

domain in the two crystal forms are highly similar (pairwise Ca

root-mean-square deviation z 0.4 Å), indicating that the overall

structure was not significantly influenced by the crystalline envi-

ronment (Figures 1A, 1B, S2A, and S3). Both the P1 and P212121

structures exhibited uninterrupted backbone electron densities

throughout the entire domain from residues 5 to 304.

The catalytic core of protein kinases can be divided into an

N-terminal lobe that is involved in ATP binding and a C-terminal

lobe that binds and positions the substrate in addition to contrib-

uting to ATP binding and ATP activation (Taylor et al., 2004). In the

active state conformation, protein kinases adopt a similar overall

fold that positions the elements in the N- and C-terminal lobes in-

volved in substrate binding and catalysis in a canonical fashion

(Huse and Kuriyan, 2002; Nolen et al., 2004). In the inactive state,

in contrast, protein kinases adopt different overall folds.

The CASK CaM-kinase domain exhibits a typical protein kinase

fold with an N-terminal lobe dominated by a five-stranded b sheet
and an a-helical C-terminal lobe (Figures 1A, 1B, S2, and S3).

Comparison of the CASK CaM-kinase domain structures with

those of other protein kinases revealed that the relative orienta-

tion of N- and C-terminal lobes in the CASK CaM-kinase domain

is similar to that of the active state of the death-associated protein

kinase 1 (DAPK1) in a complex with the ATP analog AMPPNP

(Tereshko et al., 2001) (PDB ID: 1IG1), thus resembling the cata-

lytically active ‘‘closed conformation’’ (Figures 1A, 1B, 1D, and

S2C). In contrast, the inactive form of CaMKI adopts a distinct

‘‘open conformation’’ with respect to the two lobes, resulting

in a diminished affinity for nucleotides (Figures 1C and S2B)

(Goldberg et al., 1996) unlike the CASK CaM-kinase domain.

Specific Structural Elements
of the CASK CaM-Kinase Domain
Equivalents of all essential elements of protein kinases were

found in the CASK CaM-kinase domain (Figures 1A, 1B, S2,

and S3). The N-terminal lobe encompasses a Gly-rich loop (res-

idues 19–24 in CASK; brown) and a Lys-Glu ion pair (Lys41 and

Glu62 in CASK) (Figure S5C). Furthermore, it displays an opti-

mally positioned catalytic loop (residues 141–146 in CASK; yel-

low) and an activation segment (green) (Figures S5A and S5B).

In kinase structures corresponding to an inactive state, such

as the structures of CaMKI, MnK1, and MnK2, the activation

segment is often displaced from its binding site in the C-terminal

lobe and frequently is disordered (Figures 1C and S2B) (Gold-

berg et al., 1996; Jauch et al., 2006). However, in the CASK

CaM-kinase domain, the activation segment is fully ordered,

and its C-terminal portion is cradled in an active state conforma-

tion within the C-terminal lobe, much like CDK2 in complex with

a substrate peptide and ATP (PDB ID: 1QMZ). Superimposition

of CDK2 with the CASK structure suggests that substrate

peptides can bind on top of the activation segment of the

CASK CaM-kinase domain oriented toward the g-phosphate of

ATP in the nucleotide-binding cleft (Figure S4B).

The C-terminal lobe of the CASK CaM-kinase domain contains

an equivalent of the Mg2+-binding loop. This loop is ordered in

the CASK CaM-kinase domain structure (orange) as in DAPK1,

while it is partially disordered in the CaMKI structure (Figures

1C and S2B). Overall, the potential catalytic elements of the

CASK CaM-kinase domain could be superimposed onto corre-

sponding elements in the DAPK1-AMPPNP cocrystal structure

(Figure S2C), confirming that the structures exhibit core features

and functional elements of an inherently active-state fold dissim-

ilar to the inactive CaMKI fold.

The nucleotide-binding pocket of the CASK CaM-kinase

domain was occupied by 30-AMP in the native crystal structures

(Figures 1A, 2D, S2A, and S3 and Table S1). The bound 30-AMP

is likely a byproduct of bacterial RNA degradation during protein

purification. Upon soaking the crystals in 50-AMPPNP in the

presence of equimolar Mg2+, the 30-AMP could be displaced

by 50-AMPPNP, suggesting a readily accessible adenine-nucle-

otide-binding site (Figures 1B, 2B, and 2E, and S2A). The CASK

CaM-kinase domain, thus, adopts an intrinsically active confor-

mation amenable to nucleotide binding.

To better characterize the mode of nucleotide binding to the

CASK CaM-kinase domain, we solved the structure of the best

derivative crystals containing 50-AMPPNP at 2.3 Å resolution
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Figure 1. Structure of the CASK CaM-Kinase Domain

(A and B) Ribbon diagrams depicting the overall fold of the CASK CaM-kinase domain in a complex with 30-AMP (orthorhombic form, A; see Figure S3 for the

triclinic form) or AMPPNP (triclinic form, B).

(C and D) Ribbon diagrams of rat CaMKI (C; Goldberg et al., 1996; PDB ID: 1A06) and rat DAPK1 in a complex with Mn2+-AMPPNP (D; Tereshko et al., 2001;

PDB ID: 1IG1).

All structures are shown in the same orientation with the N-terminal lobes (dark gray) at the top and the C-terminal lobes (light gray) at the bottom. Specific struc-

tural elements are color-coded: portion of the glycine-rich loop (GR-loop) = brown; catalytic loop (C-loop) = yellow; D/GFG of the Mg2+ binding loop = orange (the

third residue is disordered in the CaMKI structure); activation segment = green; C-terminal Ca2+/CaM-binding segment (CaM-segment) = red. Bound nucleotides

in (A) (30-AMP), (B) (50-AMP portion of AMPPNP), and (D) (AMPPNP) are shown in ball-and-sticks.
(P1 form; PDB ID: 3C0H; Table S1). The binding mode of the nu-

cleotide in the pocket is reminiscent of the AMPPNP-bound

DAPK1 structure (Tereshko et al., 2001). The N1 and N6 amino

groups of the adenine form hydrogen bonds with the backbone

NH of Met94 and the oxygen of Glu92, respectively. Similar to the

orientation of AMPPNP in the DAPK1 structure, the adenine base

of the 50-AMP moiety was found in an anti conformation, and the

sugar retained a C20-endo conformation (Figure 2B). The overall

binding and orientation of the 50-AMP portion of the nucleotide is

in agreement with the binding of ATP to generic protein kinases

in an active conformation (Figures 2A–2E).

In protein kinases, bound nucleotides are coordinated by

Mg2+ and by amino acid residues in the surrounding pocket.

DAPK1 coordinates the a phosphate of AMPPNP through a

hydrogen bond with Lys42. In addition, a Mg2+ ion (that in turn

is bound to the Asp of the DFG motif and Asn of the catalytic

loop) bridges the a and b phosphates (Tereshko et al., 2001) (Fig-

ure 2C). In the CASK CaM-kinase structure containing AMPPNP,

the a phosphate was resolved and found to be positioned

between the side chains of His145 and Lys41, without directly

contacting either residue. Rather, the a phosphate is heavily hy-

drated and maintains water-mediated contacts to various sites

in the pocket (Figures 2B and S5C). The b and g phosphates,

in contrast, were disordered; no Mg2+ ion could be discerned
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in the pocket, despite its presence in the crystallizing milieu.

Thus, the structural data suggest that the CASK CaM-kinase do-

main is capable of coordinating ATP in a canonical orientation

without Mg2+ and is equipped with all the structural components

of a catalytic kinase, with both noticeable substitutions in the

Mg2+-coordinating residues (Asp162Gly of the Mg2+-binding

loop and Asn146Cys of the catalytic loop) and a consequential

decoordination of the b and g phosphates of ATP. These results

indicate that the CASK CaM-kinase domain may bind unche-

lated nucleotides. To explore this hypothesis, we studied

nucleotide binding to the CASK CaM-kinase domain.

ATP Binds to the CASK CaM-Kinase Domain
in an Mg2+-Sensitive Manner
We first tested whether the CASK CaM-kinase domain interacts

with the ATP analog TNP-ATP that becomes fluorescent when

inserted into the hydrophobic ATP-binding pocket (Stewart

et al., 1998).

In the presence of EDTA, the CASK CaM-kinase domain in-

duced a 3- to 5-fold increase in fluorescence intensity of TNP-

ATP and a blue-shift of its emission maximum (Figure 3A). ATP

titrations revealed that a 500-fold excess of ATP reduced the

TNP-ATP fluorescence by 50% (Ki
ATP z 0.365 mM), consistent

with competitive binding of ATP and TNP-ATP to a single site



that exhibits a much higher affinity for TNP-ATP than for ATP

(Stewart et al., 1998). Even a 1000-fold excess of GTP had no ef-

fect on TNP-ATP binding (Figure 3B). To further dissect the spec-

ificity of nucleotide binding to the CASK CaM-kinase domain, we

examined the inhibition of TNP-ATP binding by adenine, ATP,

ADP, 50-AMP, 30-AMP, and cAMP. Only ATP efficiently inhibited

TNP-ATP binding to the CASK CaM-kinase domain, while all

other tested nucleotides had little effect (Figure 3C), suggesting

that the CASK CaM-kinase domain specifically binds ATP.

Figure 2. Architecture of the CASK CaM-Kinase

Domain Nucleotide-Binding Pocket

(A) Stereo view comparing the binding of the 50-AMP

portion of AMPPNP in the present CASK structure (carbon

atoms = beige) and the binding of AMPPNP as seen in

a DAPK1-AMPPNP cocrystal structure (PDB ID: 1IG1; car-

bon atoms = gray). The nucleotides are shown after global

superpositioning of the DAPK1-AMPPNP cocrystal struc-

ture onto the CASK CaM-kinase domain-AMPPNP

cocrystal structure.

(B and C) Stereo plots of the nucleotide-binding pockets of

the CASK (B, in complex with AMPPNP; triclinic form) and

the DAPK1 CaM-kinase domains (C, in a complex with

AMPPNP). Strands b1 and parts of the Gly-rich loops are

removed for an unobstructed view. Portions of the Gly-

rich loops (carbon = brown), the catalytic loops (carbon =

yellow), the Mg2+-binding loops (carbon = orange; GFG

and DFG, respectively), and the nucleotides (carbon =

beige) are shown as ball-and-sticks (cyan spheres = water

molecules; purple sphere in DAPK1-AMPPNP = Mn2+ ion).

Other elements are color-coded as in Figure 1. Hydrogen

bonds and salt bridges are shown as dashed lines. The

hinge regions (only backbone atoms are shown; residue

numbers are indicated) connecting the N- and C-terminal

lobes and critical residues are labeled.

(D and E) Electron densities around the bound nucleo-

tides. 2Fo-Fc electron density maps contoured at the 1s

level around the nucleotides bound to the CASK CaM-

kinase domain are shown for the 30-AMP of the orthorhom-

bic crystal form (D) and the 50-AMP portion of AMPPNP in

the soaked triclinic crystal form (E). Atoms of the nucleo-

tides are color-coded by atom type as before.

Since Mg2+ is the only divalent cation avail-

able at optimal concentration in vivo, it is invari-

ably used as a cofactor for kinase catalysis

(Waas et al., 2004). Surprisingly, however,

Mg2+ inhibited the increase in TNP-ATP fluores-

cence induced by the CASK CaM-kinase

domain (Figure 3A). Titrations demonstrated

that the TNP-ATP–CASK CaM-kinase domain

complex is diminished at higher than equimolar

concentrations of Mg2+ (Ki
Mg2+ z 10.41 mM),

suggesting that Mg2+ competitively inhibits

ATP binding to the CASK CaM-kinase domain

(Figure S6B). Mn2+ and Ca2+ could also inhibit

TNP-ATP binding (Figure 3D).

The TNP moiety of TNP-ATP could potentially

form atypical contacts in the binding site (Bilwes

et al., 2001), and TNP-ATP binding may not be representative of

ATP binding. To address this possibility, we tested binding of the

CASK CaM-kinase domain to g32P-ATP using a dot-blot assay

(Figure S6A). This assay confirmed that g32P-ATP binds to the

CASK CaM-kinase domain and that Mg2+ significantly inhibits

this binding. Hence, ATP binds to the CASK CaM-kinase domain

in a manner inhibited by Mg2+ and Ca2+, consistent with the

absence of the DFG motif Asp and the C-loop Asn in the CASK

CaM-kinase domain.
Cell 133, 328–339, April 18, 2008 ª2008 Elsevier Inc. 331



Figure 3. Nucleotide Binding by the CASK CaM-Kinase Domain: Inhibition by Divalent Ions

(A) Fluorescence emission spectra (excitation = 410 nm) of TNP-ATP (1 mM) in Tris-Cl buffer containing 2 mM MgCl2 without the CASK CaM-kinase domain (blue),

or after addition of the CASK CaM-kinase domain (1 mM; red), subsequent addition of EDTA (4 mM; yellow trace), and final addition of Na+-ATP (0.5 mM; green).

(B) Titration of the TNP-ATP (1 mM) fluorescence as a function of the GTP and ATP concentration in two parallel cuvettes containing CASK CaM-kinase domain

(1 mM) in Tris-Cl buffer supplemented with 4 mM EDTA (excitation = 410 nm; emission = 540 nm). Data shown represent fluorescence units after subtraction of

the TNP-ATP fluorescence background, normalized to the initial reading (rel. units).

(C) Inhibition of TNP-ATP binding to the CASK CaM-kinase domain by adenine nucleotides. The fluorescence (excitation = 410 nm; emission = 540 nm) of the

CASK CaM-kinase domain/TNP-ATP complex (1 mM each) was measured in EDTA (4 mM) before and after addition of the indicated nucleotides (0.5 mM).

Fluorescence units were normalized after background subtraction to the respective initial readings (rel. units).

(D) Inhibition of TNP-ATP binding to the CASK CaM-kinase domain by divalent ions. The fluorescence (excitation = 410 nm; emission = 540 nm) of the CASK

CaM-kinase domain/TNP-ATP complex (1 mM each) was measured in Tris-Cl buffer supplemented with EDTA (4 mM) or 2 mM of the indicated divalent cations.

Data represent normalized fluorescent units (rel. units) with background subtraction. For Mg2+-dependent inhibition of radioactive ATP binding, see Figure S6A.

Representative data from three independent experiments are shown in each panel.
CASK CaM-Kinase Domain Is an Active Kinase
Coordination of the b and g phosphates of ATP by Mg2+ ions cat-

alyzes phosphotransfer reactions by protein kinases (Adams,

2001; Hanks and Hunter, 1995). The fact that Mg2+, if anything,

impairs ATP binding by the CASK CaM-kinase domain supports

the notion that this domain is indeed a ‘‘pseudokinase,’’ despite

its constitutively active conformation and avid ATP binding. To

test this, we examined whether the CASK CaM-kinase domain
332 Cell 133, 328–339, April 18, 2008 ª2008 Elsevier Inc.
exhibits autophosphorylation activity that is typical for CaM

kinases and can be employed as a test for kinase activity (Hanley

et al., 1988).

The CASK CaM-kinase domain was autophosphorylated with

nearly 13% efficiency independent of Mg2+ (Figure 4A). Tandem

mass-spectrometry identified a single autophosphorylated

CASK peptide containing residues 141–159 (DVKPHCVLLAS

KENSAPVK; data not shown). The phosphorylated peptide is



Figure 4. Autophosphorylation of the CASK CaM-Kinase Domain

All experiments were performed at room temperature with purified CASK CaM-kinase domain (1 mM) incubated with g32P-ATP (specific activity: 2 3 107 cpm) in

Tris-Cl buffer containing 2 mM EDTA or the indicated additions. For each experiment, the upper panels depict representative autoradiograms and Coomassie

stains of SDS-gels (asterisk indicates the CASK CaM-kinase domain), and the lower panels summarize CASK autophosphorylation as measured by phosphor-

imager. Radioactivity incorporated was calculated by relating the b counts in a band to its phosphorimager quantification and protein content. Data shown are

means ± standard errors of the means (SEMs) (n = 3).

(A) Time course of CASK CaM-kinase domain autophosphorylation in 1 mM ATP.

(B) Measurement of CASK CaM-kinase domain autophosphorylation as a function of the ATP concentration for 30 min. Michaelis constant (Km
ATP) and Vmax were

calculated using Graph-Pad Prism software.

(C) Decrease of CASK CaM-kinase domain autophosphorylation by divalent cations. Autophosphorylation reactions in 1 mM ATP were carried out for 30 min, in

the absence of (supplemented with 2 mM EDTA) or after adding 4 mM of the indicated divalent cation.

(D) Effect of Mg2+ titration on CASK CaM-kinase domain autophosphorylation. Reactions were carried out in buffer supplemented with either EDTA (2 mM) or the

indicated amount of free Mg2+ (calculated with open source software WEBMAXC).
located in a surface-exposed loop preceding the GFG motif (Fig-

ure S4A). Since the autophosphorylated peptide is remote from

the substrate binding pocket, we speculate that autophosphor-

ylation occurs in trans.

The autophosphorylation assay was used to calculate the Mi-

chaelis constant (Km
ATP) of the CASK CaM-kinase domain for

ATP (Figure 4B), revealing a Km
ATP of z0.563 mM that is within

the range of Km
ATP‘s for active kinases (Warmuth et al., 2007).

We measured the limiting rate of autophosphorylation in experi-

ments that approached saturation. Again, the Vmax for autophos-

phorylation of the CASK CaM-kinase domain (z4.9 nmol/mmol

enzyme/min), although low, is similar to those of some other

kinases, such as Giardia lamblia PKA (Vmax z 6.2 nmol/mmol

enzyme/min; Abel et al., 2001).

Mg2+ and other divalent cations inhibited but did not abolish

the autophosphorylation of CASK, presumably by reducing its

ATP affinity (Figure 4C). Inhibition by superstoichiometric Mg2+

suggests that the CASK CaM-kinase domain is optimally active

in the presence of unchelated free ATP, and that Mg2+ may reg-

ulate the kinase activity of CASK in vivo by limiting the free ATP

levels in the cytosol. To examine whether catalytic phospho-

transfer can occur near neuronal levels of free Mg2+ (0.3–0.5 mM;
Taylor et al., 1991), we measured CASK autophosphorylation as

a function of incrementally increased Mg2+ concentrations. We

found that Mg2+ steeply inhibited the CaM-kinase domain auto-

phosphorylation at low concentrations, but that the inhibition

saturated at higher Mg2+ concentrations, such that a significant

amount of residual autophosphorylation (>33% of maximum) re-

mained even at very high Mg2+ concentrations (Figure 4D). The

inhibition constant for Mg2+-dependent inhibition of phospho-

transfer (Ki
Mg2+ z 61 mM; Figure 4D) resembles that of the

Mg2+-dependent inhibition of ATP binding (Ki
Mg2+ z 10.41 mM;

Figure S6B), suggesting that the inhibition of phosphotransfer

by Mg2+ is a result of the Mg2+-dependent disruption of ATP

coordination. Thus, the neuronal concentration of ATP-Mg2+

should allow physiological catalysis by CASK, but this catalytic

activity may be regulated by changes in the cytosolic divalent

ion concentration.

CASK Phosphorylates Neurexin-1 In Vitro and In Vivo
CASK is abundant in brain (Hata et al., 1996) and may associate

with the presynaptic active zone (Olsen et al., 2006). Since brain

contains relatively low and high concentrations of free Mg2+ and

ATP, respectively (Gotoh et al., 1999), the Mg2+-dependent
Cell 133, 328–339, April 18, 2008 ª2008 Elsevier Inc. 333



Figure 5. Full-Length CASK Phosphorylates the

Cytoplasmic Tail of Neurexin-1

(A) CASK-mediated phosphorylation of the cytoplasmic tail of

neurexin-1 as a function of time. Full-length CASK, bound to

the GST-neurexin-1 cytoplasmic tail (Nx-Ct) immobilized on

glutathione beads (in Tris-Cl buffer containing 2 mM EDTA),

was incubated with g32P-ATP (2 3 107 cpm; 1 mM) at room

temperature for the indicated time periods. Proteins were

eluted from the beads by thrombin cleavage, separated by

SDS-PAGE, and radioactivity was quantified on a phosphor-

imager (means ± SEMs, n = 3; corrected for protein content

using Coomassie staining). Mass spectroscopy revealed that

the peptides comprising residues 422–433 of neurexin-1

(QPSSAKSANKNK) were phosphorylated at one or two serine

residues (data not shown). Note that the phosphorylation of

the neurexin-1 cytoplasmic tail by the isolated CASK CaM-

kinase domain (lacking the PDZ domain of CASK) is inefficient

(Figure S7A).

(B) ATP-concentration-dependent phosphorylation of the

cytoplasmic tail of neurexin-1. The complex of full-length

CASK with the GST-neurexin-1 C-terminal tail protein was

incubated for 30 min at room temperature in Tris-Cl buffer

containing 2 mM EDTA and increasing amounts of g32P-

ATP. The Km
ATP and Vmax were calculated as described in

Figure 4 (means ± SEM, n = 3).
inhibition of the CASK CaM-kinase domain does not eliminate

the possibility that this domain functions as a kinase. To test

this, we examined whether CASK phosphorylates neurexin-1b

(neurexin-1), a CASK interactor at the synapses (Hata et al.,

1996).

We first investigated the in vitro phosphorylation of the cyto-

plasmic C-terminal tail of neurexin-1 by the isolated CASK

CaM-kinase domain without the associated MAGUK domains.

Although the CaM-kinase domain directly phosphorylated, in

an Mg2+-inhibited manner, the neurexin-1 C-tail, we observed

only minimal phosphotransfer (Figure S7). Next, we investigated

the ability of full-length CASK to phosphorylate neurexins be-

cause CASK binds to neurexins via its PDZ domain, suggesting

that recruitment of neurexins by the CASK PDZ domain may

facilitate neurexin phosphorylation. Indeed, we found that full-

length CASK efficiently phosphorylated neurexin-1 (Figure 5A).

These experiments were performed with a vast excess of

neurexin but nevertheless resulted in a phorphorylation stoichi-

ometry of z17%. CASK autophosphorylation was undetectable

in these reactions, possibly due to competition with a substrate.

The net rate of phosphotransfer to neurexin-1 (Vmax z 159.4

nmol/mmol enzyme/min) was 30-fold faster than the rate of

CASK autophosphorylation, suggesting that neurexin, when

complexed to CASK, is a substrate for the CASK CaM-kinase

domain (Figures 5A and 5B). The Km
ATP of neurexin-1 phosphor-

ylation by CASK (z748.7 mM) was similar to that of autophos-

phorylation reactions, consistent with the notion that ATP utiliza-

tion by CASK is not enhanced by the increased availability of

neurexin substrate (Figure 5B). The high phosphorylation effi-

ciency in CASK-neurexin-1 complexes allowed phosphopeptide

mapping of the neurexin-1 C-tail by LC-MS-MS. Peptides com-

prising residues 422–433 of neurexin-1 (QPSSAKSANKNK) were
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detected with single and double phosphates, establishing that

the neurexin-1 C-tail is directly phosphorylated by CASK (data

not shown). Consistent with a physiological neurexin phosphor-

ylation activity of CASK, coexpression of a CASK-EGFP fusion

protein with neurexin-1b in HEK293 cells recruits CASK from

the cytosol to the plasma membrane and increases phosphoryla-

tion of neurexin-1b (Figures S8A and S8C). However, neurexin-1b

was also phosphorylated, although to a lesser degree, without

coexpression of CASK, possibly because other kinases also

phosphorylate neurexin-1b.

In CASK, the L27 domain links the CaM-kinase domain to the

PDZ domain, but deletion of this linker region (CASK�linker) had

no effect on neurexin phosphorylation (Figure S10). This result

indicates that the L27 domain is not directly involved in CASK-

mediated phosphorylation, although binding of Velis to this

domain (Butz et al., 1998) may inhibit phosphorylation of a

substrate bound to the PDZ domain, an exciting possibility that

would provide for additional regulation of CASK activity.

Neurexin Phosphorylation by CASK Is Regulated
by Neuronal Activity
We next explored whether CASK phosphorylates b-neurexins in

cultured rat hippocampal neurons and detected phosphorylated

b-neurexins in mature neurons at 14 days in vitro (DIV) (Fig-

ure 6A). In these experiments, we analyzed b-neurexins instead

of a-neurexins because b-neurexins are easier to identify by

immunoblotting than a-neurexins, but all of our conclusions

also apply to a-neurexins because a- and b-neurexins contain

the same cytoplasmic tail.

Cytosolic Mg2+ and Ca2+ concentrations are enhanced by

synaptic activity (Gotoh et al., 1999). b-neurexin phosphorylation

increased dramatically (>2-fold) when synaptic activity-driven



Figure 6. CASK Phosphorylates Endoge-

nous Neurexins in Cultured Neurons

Following phosphate starvation for 30 min, neu-

rons were incubated with 50–100 nM 32Pi for 1 hr.

Neurexins were affinity-purified (Aff ppt) from the

total neuronal lysates on immobilized CASK PDZ

domain, followed by separation by SDS-PAGE

and immunoblotting (WB). 32P-incorporation into

total proteins and into b-neurexins (Nx) was visual-

ized and quantified by phosphorimager. Lysates

were also immunoblotted for CASK expression

and GDI as loading controls. All neuronal cultures

were incubated overnight in TTX (500 nM) and APV

(50 mM) unless mentioned otherwise.

(A) Neurexin phosphorylation in neurons is in-

creased by reducing synaptic activity, whereas

total protein phosphorylation is decreased as

measured by total 32P-incorporation (z58% ±

1.8%). The bar graph depicts b-neurexin phos-

phorylation levels in active and silenced neurons

(means ± SEMs, n = 3; asterisk, p = 0.0128).

(B) Neurexin phosphorylation is reduced in CASK

knockout neurons. Neurexin phosphorylation

was analyzed in wild-type (WT) and acute CASK

knockout (KO) mouse hippocampal cultures (DIV

10), as described above. Bar graph depicts b-neu-

rexin phosphorylation levels in the WT and CASK

KO neurons (means ± SEMs, n = 6; asterisk,

p = 0.000308).

(C) Endogenous neurexin is phosphorylated by

CASK. Rat hippocampal cultures (DIV 9) express-

ing GFP alone (�), WT EGFP-CASK fusion protein

(CASKwt), or SV mutant EGFP-CASK fusion pro-

tein (CASKSV) were used to analyze neurexin

phosphorylation, as described above. The bar

graph depicts b-neurexin phosphorylation levels

(means ± SEMs, n = 3; single asterisk, p = 2.9 3

10�5; double asterisk, p = 0.0016).
divalent cation fluxes were suppressed with APV, a NMDA-

receptor antagonist, and TTX, a Na+-channel blocker (Figure 6A).

These drugs had no effect on b-neurexin phosphorylation prior

to the development of mature synapses (at 6 DIV; data not

shown). Since CASK, different from other kinases, is inhibited

by divalent ions, enhanced neurexin phosphorylation upon syn-

aptic inactivation is strongly suggestive of CASK kinase activity.

To test whether CASK directly phosphorylates b-neurexin in

neurons, we employed primary hippocampal cultures from

CASK knockin mice that contain a floxed CASK gene (Atasoy

et al., 2007). We acutely deleted CASK expression in these neu-

rons using a lentivirally expressed GFP-Cre-recombinase fusion

protein and found that deletion of CASK reduced b-neurexin

phosphorylation by nearly 40% (Figure 6B).

Since CASK has been proposed to act as an adaptor for var-

ious molecules, including other kinases (Kaech et al., 1998; Lu

et al., 2003), the deletion of CASK could have reduced phosphor-

ylation of b-neurexins by disrupting another kinase. To test this

possibility, we developed a catalytically impaired CASK mutant

that could act as a dominant-negative kinase competitor when

introduced into a neuron but is still expected to have normal

adaptor functions. Guided by the stereochemistry of ATP coor-

dination within the nucleotide-binding pocket of CASK (Fig-
ure 2B), we mutated Ser24 and Val26 to Asp and Leu, respec-

tively (S24D, V26L). The CaM-kinase domain of CASK bearing

this double mutation (referred to as CASKSV) behaved as a hypo-

morph in vitro, as evidenced by a dramatic reduction in auto-

phosphorylation (Figure S11A) and neurexin C-tail phosphoryla-

tion (Figure S11B). Importantly, CASKSV retained the ability to

bind ATP (data not shown), suggesting that it still exhibits the ac-

tive conformation typical of CASK and presumably still engages

in native molecular interactions. In particular, CASKSV still binds

efficiently to neurexin-1 via its PDZ domain (data not shown),

thus acting as a dominant-negative competitor of the wild-type

kinase.

We transfected rat hippocampal neurons at high efficiency

with EGFP-fusion proteins of wild-type CASK (CASKwt) or

mutant CASKSV (Figure 6C). Expression of CASKwt produced

an almost 2-fold increase in b-neurexin phosphorylation,

whereas the expression of CASKSV caused an almost 2-fold de-

crease in b-neurexin phosphorylation (Figure 6C). Since the ex-

pression of CASKwt and the kinase hypomorph CASKSV assert

diametrically opposite effects on the b-neurexin phosphorylation

state, this phosphotransfer is likely a direct consequence of

CASK kinase activity. Together, these results demonstrate that

CASK physiologically phosphorylates endogenous b-neurexins
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in neurons, and that this phosphorylation is regulated by the syn-

aptic activity-driven fluxes of divalent ions.

DISCUSSION

In this study, we describe the crystal structure and biochemical

properties of the CaM-kinase domain of CASK. We demonstrate

that CASK functions as an active protein kinase that phosphory-

lates neurexins—and presumably other target proteins—by an

unusual mechanism. These observations are important not

only for our understanding of CASK, an enigmatic yet essential

MAGUK protein with a CaM-kinase domain that is completely

conserved in vertebrates, but also for our concept of ‘‘pseudoki-

nases’’ in the kinome, which after all may turn out to be enzymat-

ically active kinases with special properties.

Mg2+-Independent Activity of the CASK
CaM-Kinase Domain
Mg2+ acts as an obligate cofactor for ATP binding and phospho-

transfer in all known kinases (Adams, 2001; Waas et al., 2004).

Here, we demonstrate that the CASK CaM-kinase domain cata-

lyzes phosphotransfer from ATP to proteins in the complete

absence of Mg2+. To our knowledge, CASK is the first kinase, in-

deed the first nucleotidase, known to catalyze phosphotransfers

in the absence of Mg2+.

The structure of the CASK CaM-kinase domain, and compari-

son of its structure with those of other kinases, illustrates that the

CaM-kinase domain of CASK adopts a constitutively active con-

formation (Figures 1, 2, S2, and S3). Biochemical and enzymatic

assays demonstrated that CASK binds ATP and catalyzes auto-

phosphorylation and neurexin-1 phosphorylation in the absence

of Mg2+ (Figures 3, 4, and 5). Compared to other kinases, CASK

contains noncanonical residues in the nucleotide-binding pocket

that may account for its unusual catalytic mechanism. Both of the

classical metal-coordinating residues in kinases are substituted

in the CASK CaM-kinase domain (Asn146Cys and Asp162Gly;

see Figure S1). Moreover, Glu143 of the catalytic loop directly

coordinates the metal ion in DAPK1, while in CASK, this Glu is

altered to His (Glu145His). These changes likely contribute to

the divalent cation-driven inhibition of the CASK CaM-kinase do-

main. Since the adenine base of ATP makes the most important

contacts for the positioning of ATP in the nucleotide-binding

pocket (Kwiatkowski and King, 1987), an altered Mg2+-coordinat-

ing sequence does not exclude ATP binding and, as shown

here, does not exclude catalysis. Importantly, similar to the

CASK CaM-kinase domain, other pseudokinase domains with

noncanonical Mg2+-binding motifs may coordinate ATP and

phosphorylate physiological substrates as well.

Constitutively Active CASK Kinase Is Regulated
by Substrate Recruitment
CASK also differs from other CaM-kinase family members in that

its CaM-kinase domain exhibits a constitutively active conforma-

tion (Figure S2). In an archetypal CaM kinase, the catalytic do-

main is followed by an autoinhibitory domain that inhibits kinase

activity and is disinhibited by Ca2+/calmodulin binding (Goldberg

et al., 1996). The CASK CaM-kinase domain is followed by a

sequence that is homologous to the autoinhibitory domain of
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CaM kinases (Figure S1) and that also binds Ca2+/calmodulin

(Hata et al., 1996). However, unlike typical CaM kinases, the auto-

inhibitory helix (aR1) of CASK does not engage in direct contacts

with the ATP-binding cleft (Figures 1 and S3). We also did not dis-

cern evidence for further C-terminal residues interacting with the

ATP-binding cleft, as in CaMKI, and we detected no stimulatory

effect of Ca2+ and/or calmodulin on the CASK kinase activity

(data not shown). Thus, the CASK CaM-kinase domain appears

to retain a nonfunctional autoinhibitory domain as an evolutionary

vestige of CaM kinases. CASK, therefore, differs from other, evo-

lutionarily closely related CaM-kinase domains not only in its

Mg2+ independence but also in its inherently ‘‘closed’’ active

conformation that constitutively binds nucleotides.

An almost essential consequence of the constitutively active

conformation of the CASK CaM-kinase domain is that the do-

main exhibits a very low catalytic rate, as shown in autophos-

phorylation measurements (Figure 4) and in measurements of

neurexin-1 phosphorylation by the isolated CASK CaM-kinase

domain lacking the neurexin-binding PDZ domain of CASK (Fig-

ure S7). Mechanistically, this low rate is likely due to the loss of

Mg2+ coordination by the domain. The low catalytic rate of the

CASK CaM-kinase domain presumably serves to ensure that

the kinase does not phosphorylate potential substrates ran-

domly. We show that the phosphorylation rate of neurexin-1 is

increased dramatically, however, when full-length CASK forms

a complex with neurexin-1 via the CASK PDZ domain (Figure 5).

This result suggests a general mechanism for CASK kinase activ-

ity, whereby CASK couples an intrinsically slow but constitutively

active kinase domain to a PDZ domain that recruits the sub-

strates to the kinase domain, thereby increasing the local sub-

strate concentration by many orders of magnitude (see model

in Figure 7). According to this model, CASK unites two separate

functions—the recruitment activity of MAGUKs and the kinase

activity of the CaM-kinase domain—into a single unit whose

objective is phosphorylation of specific interacting proteins

(Figure 7).

Physiological Implications
CASK phosphorylates neurexin-1 in vitro and in vivo in a reaction

that depends on a catalytically active CaM-kinase domain (Fig-

ures 5 and 6). Neurexin, described here as a substrate of

CASK, is a presynaptic cell-adhesion molecule (Nam and Chen,

2005; Ushkaryov et al., 1992; reviewed in Missler et al., 2003).

Its heterotypic binding to postsynaptic neuroligins may be in-

volved in synaptic function and could induce synapse formation

even on non-neuronal cocultured cells (Graf et al., 2004). The

neurexin-neuroligin interaction is a candidate for synaptic spe-

cialization and pre-post-synapse communication. Both neurexin

and neuroligin mutations have been linked to autism spectrum

disorders (Jamain et al., 2003; Szatmari et al., 2007). Deletion of

CASK may be connected to X-linked optic atrophy and mental

retardation (Dimitratos et al., 1998; Froyen et al., 2007). The evo-

lutionary conservation of CASK and neurexins, and their central

importance for survival and synaptic function in mice (Atasoy

et al., 2007; Missler et al., 2003), indicate that neurexin phosphor-

ylation by CASK may be crucial to neuronal function.

In addition to the control of CASK kinase activity by the PDZ-

domain-mediated substrate recruitment, we examined whether



it is regulated by synaptic activity-driven rises in Ca2+ and Mg2+

levels. In neurons, synaptic activity triggers a surge in Mg2+ and

Ca2+ levels (Gotoh et al., 1999) that could regulate CASK kinase

activity. Indeed, we observed a strong increase in neurexin

phosphorylation upon silencing synapses in mature neurons, in-

dicating that contrary to other kinases, CASK kinase is inhibited

by neuronal activity (Figure 6A). We envision that CASK kinase

activity is maximal during neuronal development and synapto-

genesis and declines with the onset of synaptic function but is re-

activated when neurons are silenced. This developmentally reg-

ulated activity is in line with the phenotypic defects in CASK

knockout mice (Atasoy et al., 2007) as well as the developmental

nature of CASK- and neurexin-related pathologies (Froyen et al.,

2007; Szatmari et al., 2007).

CASK is expressed ubiquitously at low levels (Hata et al., 1996).

The non-neuronal functions of CASK are evident from develop-

mental defects in CASK/Lin-2 null animals, such as cleft palate

in mice (Atasoy et al., 2007) and vulval dysgenesis in C. elegans

(Hoskins et al., 1996). In non-neuronal cells, CASK-interacting

adhesion molecules of the syndecan or JAM families could be

substrates (Cohen et al., 1998; Hsueh et al., 1998; Martinez-

Estrada et al., 2001). These molecules share the PDZ-domain-

mediated CASK association, and at least in the case of synde-

can-2, serine residues in the cytoplasmic tail homologous to

those of neurexins are phosphorylated in vivo (Itano et al., 1996).

Finally, of the 518 known kinases in the human genome, 48 are

predicted to be pseudokinases (Boudeau et al., 2006). In each of

Figure 7. Model of Neurexin Phosphorylation by CASK

Neurexin (Nx) and neuroligin (NL) are thought to interact extracellularly with

each other across the synaptic cleft and to associate intracellularly with the

MAGUKs CASK and PSD-95, respectively. CASK is recruited to the cytosolic

C-tail of neurexin via the CASK PDZ domain and phosphorylates the neurexin

C-terminal tail. Protein 4.1, which binds the C-tail of neurexin as well as CASK,

nucleates actin filaments, modulating the presynaptic cytoskeleton. The red

indicator depicts the inhibition of CASK CaM-kinase activity due to an increase

in cytosolic divalent cations.
these pseudokinases, one or more of the invariant motifs are

altered. Nine of the presumed pseudokinases, including CASK,

lack a canonical DFG motif. Furthermore, this motif is altered

along with other canonical motifs (HRD and/or VAIK) in 22 addi-

tional pseudokinases. Our data on CASK suggest that other

pseudokinases, especially those with atypical DFG motifs, could

be active in physiologically relevant environments, indicating

that the catalytically active kinome may be more diverse than

originally envisioned.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are found in the Supplemental Data.

TNP-ATP Binding Assay

Fluorescence measurements of TNP-ATP (from Molecular Probes Inc;

Eugene, OR, USA) were obtained in Tris-Cl buffer (50 mM Tris-HCl, pH 7.2,

50 mM KCl) in 1 cm 3 1 cm fluorescence cuvettes at 25�C using a Jobin

Yvon-Spex Fluoromax-2 (Stewart et al., 1998). Samples were excited at

410 nm, and emission was recorded at 540 nm or scanned from 500–600 nm.

Signal from a TNP-ATP buffer control, in which BSA replaced CASK CaM-

kinase domain, was subtracted as background.

In Vitro Phosphorylation Assays

All assays were performed in Tris-Cl buffer containing 2 mM EDTA or the diva-

lent cations indicated. Briefly, immobilized GST-fusion proteins (either the

GST-CASK CaM-kinase domain or the GST-neurexin C-tail complexed to

CASK) were incubated with 1 mM g32P-ATP (specific activity: 2 3 107 cpm)

for 1 hr at room temperature. For determining the Km
ATP, the GST-fusion pro-

teins were incubated with increasing concentration of ATP for 30 min. After

washing in Tris-Cl buffer, proteins were eluted from the beads by thrombin

cleavage, separated by SDS-PAGE, and visualized on a phosphorimager

and by Coomassie staining. Radioactivity incorporated was calculated by cor-

relating the b counts in a band (measured with Beckman-Coulter LS-6000

scintillation system) with its phosphorimager quantification (performed with

Molecular Dynamics Storm scanner and Image-Quant software).

In Vivo Kinase Activity Assays

Dissociated hippocampal cultures at the indicated DIVs were kept in 0.5 mM

TTX and 50 mM APV overnight, washed, and incubated in phosphate-free de-

pletion buffer (10 mM HEPES-NaOH, pH 7.2, 150 mM NaCl, 4 mM KCl, 2 mM

MgCl2, 2 mM CaCl2, 10 mM D-glucose, 100 nM insulin) for 30 min at 37�C, fol-

lowed by incubation in the same buffer supplemented with 100 mCi 32Pi for 1 hr.

Cells were washed twice with phosphate-free buffer and lysed in ice-cold sol-

ubilization buffer (10 mM Tris-Cl, pH 6.8, 150 mM NaCl, 1% Triton X-100, 4 mM

EDTA), supplemented with protease inhibitor cocktail and phosphatase inhib-

itor cocktails-1 and -2 (Sigma). Debris was spun down (14,000 rpm for 10 min at

4�C) and supernatant was incubated with immobilized GST-CASK PDZ domain

overnight. Complexes were washed in solubilization buffer and separated by

SDS-PAGE, followed by phosphorimager scanning. b-neurexin immunoblots

were used as loading control. Neuronal lysates were also separated and

immunoblotted with CASK monoclonal antibody (Transduction Labs).

SUPPLEMENTAL DATA

Supplemental Data include one table, thirteen figures, and detailed Supple-

mental Experimental Procedures and can be found with this article online at

http://www.cell.com/cgi/content/full/133/2/328/DC1/.
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