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Chapter 1

Introduction

Die Natur ist das einzige Buch, das auf allen Blättern großen Gehalt bietet.

- Johann Wolfgang von Goethe

Proteins are macromolecules that are found in every living organism, in every
cell and every subunit of the cell. They have structural and mechanical functions,
catalyze chemical reactions, pump ions, recognize signals and trigger immune re-
sponses. Actually, there is no cellular function in which proteins are not involved.
Hence, understanding protein function virtually means understanding life.
The first step to understand the molecular basis of function is structure. The hu-
man genome project yielded a huge amount of protein sequence data and the chal-
lenge is to turn this data into information about the 3-dimensional structure of
proteins. So far ≈ 46000 protein structures have been resolved and serve to un-
derstand the machinery of life on the atomic level.
However, structure is only the first step, as almost always dynamics is essential
for function. Regardless of whether a protein functions as enzyme, molecular mo-
tor, transport protein or receptor, its function is often coupled to motion. These
motions range from side-chain fluctuations to reorientations of entire domains and
partial unfolding and refolding. Understanding protein function is thus strongly
coupled to insight into dynamics and flexibility. X-ray crystallography, which is
still the major source of structural information of proteins, provides mainly static
pictures of one conformation, even though a number of proteins has been resolved
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10 CHAPTER 1. INTRODUCTION

in different conformations providing insights into protein flexibility directly from
experimental data [1]. Structures resolved by NMR-spectroscopy are usually pub-
lished as an ensemble of conformations that fulfil the experimentally determined
restraints and provide more information about protein flexibility. However, the
method is still restricted to proteins of limited size.
A particularly important research area is the computational design of novel drugs.
Knowledge about protein structures in different conformational substates, either
from experimental data or simulation, has been proven to enhance protein-protein
docking [2–4] and Structure-Based Drug Design(SBDD) [5–9].

Due to the difficulties associated with derivation of information about pro-
tein flexibility from experiments, many computational approaches have been de-
veloped and successfully applied. The most widely used methodology to tackle
protein flexibility is Molecular Dynamics (MD) simulation. However, despite
the enormous increase in computer power and advances in algorithm techniques
and parallelisation, MD simulations are computationally expensive and more-
over, high energy barriers are often not overcome within accessible time. In
order to alleviate the resulting sampling problem, several advanced simulation
methods based on MD have been developed and successfully applied to numer-
ous problems within the field of protein research, among them Replica-Exchange
Molecular Dynamics (REMD) [10], Conformational Flooding [11, 12] and Tar-
geted Molecular Dynamics (TMD) [13, 14]. However, even these methods are
not routinely applicable for the efficient sampling of conformational transitions.
Computationally more efficient, but less accurate methods, are based on gaussian
network models [15, 16], normal mode analysis [17–20] or graph theoretical ap-
proaches [21].
A different approach is the CONCOORD-method [22], which is based on geo-
metrical considerations to predict protein flexibility. A given input structure is
analyzed and translated into a geometric description of the protein. Based on this
description, the structure is rebuilt, commonly several hundreds of times, leading
to an ensemble that can be analyzed and essential degrees of freedom [23], often
representing the biological relevant motions in proteins, may be extracted.
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Induced fit motions, that proteins often undergo upon binding a ligand, are one
of the most challenging problems in structure-based drug design. A commonly ac-
cepted theory of the induced fit describes this phenomenon as a consequence of
a change in the free energy landscape due to the presence of the ligand with the
effect that the conformation with the lowest free energy in the unbound state is not
identical with the lowest free energy conformation of the protein/ligand-complex.
This problem is not exclusively restricted to structural differences of bound and
unbound protein conformations. Different ligands also may cause the protein to
adopt different conformations.
This means that even resolved protein structures that have been co-crystallized
together with a ligand are not necessarily ideal targets for molecular docking or
the derivation of pharmacophore models. Larger ligands with high affinities to the
target might not fit into a binding site of a smaller ligand. Consequently interac-
tions of smaller ligands would in such cases be underestimated in the binding sites
of large ligands.
Conformational flexibility of the binding site worsens this problem. As the results
of molecular docking studies are very sensitive to even minor side-chain move-
ments, the predictive power of these methods, when applied to binding sites with
flexible loops, rapidly drops to the level of crystal ball gazing. This is particularly
concerning as a considerable number of todays most promising drug targets are
channel proteins with flexible binding sites. Thus, incorporation of protein flexi-
bility is crucial to move forward and to enhance the predictive power and reliabil-
ity of in silico approaches in the field of structure-based drug design [24–26]. The
usage of structure ensembles has been shown to improve these efforts. In some
rare cases such an ensemble can be compiled directly from experimental data and
used for molecular docking, which has been shown to be superior to docking to
a single receptor structure [8]. Also snapshots taken from Molecular Dynam-
ics trajectories have been employed [6, 7] and shown to lead to better results in
some cases. However, obtaining representative structure ensembles from exper-
imental data, covering the relevant conformational space, will also in the future
be restricted to a very limited number of proteins. Structure ensembles derived
from NMR experiments provide a better estimate of protein flexibility, though
this method is still restricted to proteins of limited size. Moreover, the lower re-
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Figure 1.1. Protein flexibility and ligand binding. A protein exists in two conformations
(P and P*) with energy difference ∆Gconv. The ligand (L) can bind the protein (P) to
give the a complex (PL), or bind to P* to give a complex (P*L). Although P* has a higher
free energy, it might offer greater scope for interactions with L, thereby giving rise to
a large, favourable interaction ∆Gint. The resulting complex (P*L) has a lower energy
than that of the complex PL. The observed affinity of L for the protein conformational
ensemble is is governed by ∆Gobs. Slow binding kinetics might well be observed, as P* is
a higher-energy conformer than P and an energy barrier ∆Gbarrier must be surmounted
before optimal binding to L can take place. This is also the bottleneck for force-field
based simulation methods, as such barriers might not be overcome within accessible
time. (Figure adapted from Simon Teague [9]).

solution of protein models derived from NMR data compared to X-ray structures
hampers structure-based drug design based on such structures.
Hence, static pictures of protein structures, derived from X-ray crystallography or
even from homology modelling are and will be used as starting points for structure
based drug design in the future and flexibility properties will have to be derived
from in silico methods.
Commonly, Molecular Dynamics simulations are employed to study protein dy-
namics and thus, are the method of choice for generating protein structures in dif-
ferent conformational states from a given 3-dimensional structure. A hypothetic
infinite trajectory contains all possible conformations of the protein together with
the corresponding free energy obtained from the phase space density, and thus,
all conformations in which ligands can bind to the protein. Here lies the weak-
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ness of force field based simulation methods for obtaining structure ensembles
to be used for structure-based drug design. As an induced fit upon ligand bind-
ing is a consequence of a change in the free energy landscape, the free energy of
the corresponding protein conformation with removed ligand is higher, in some
cases significantly higher than the lowest free energy conformation. This means,
that within accessible time, conformations in which greater scope for interactions
with a ligand is possible might not be sampled within the limited timeframe of
typical MD simulation. Because of this sampling problem MD-simulations suffer
from, it is necessary to augment the effort of finding alternative ways to efficiently
generate structure ensembles representing the relevant conformational space.

This work focuses on the development of geometry-based molecular
simulation techniques and their application to biologically relevant questions.
Based on the original CONCOORD method [22], which has been developed to
predict conformational ensembles around a known structure, a major extension,
termed tCONCOORD, was developed that expands the scope of geometry-based
molecular modeling to several fields of protein science.
In the following chapter the fundamentals of protein structure and protein
structure determination are recapitulated. Furthermore, established computational
methods are reviewed.
In the third chapter we present how the wealth of experimental data can be turned
into parameter sets for biomolecular simulations. For instance, a novel set of
atomic radii has been derived from high-resolution X-ray structures. Using these
parameters, we could show that the distance distribution of atomic contacts in
protein structures is highly conserved and exclusively resolution dependent [27].
In chapter four we describe how structures are analyzed in tCONCOORD and
how geomtrical constraints are defined. Special attention is payed to a novel
method to estimate the stability of hydrogen bonds in proteins based on the
solvation probabilities of surrounding atoms [28]. Applications of tCONCOORD
to biologically relevant questions are the objective of the subsequent chapters.
In chapter five we show how tCONCOORD can be used to predict protein
conformational flexibility. Applications to proteins as diverse as the globular
protein ubiquitin and the multi-domain protein calmodulin reveal that
experimentally observed protein flexibility and conformationl transitions are
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faithfully reproduced.
Chapter six focuses on predicting conformational flexibility of protein parts. We
show how geometry-based molecular modeling has been successfully applied to
loop modeling and modeling of a modified protein core for subsequent use in
molecular dynamics simulations.
In chapter seven we show how tCONCOORD can be useful in the field of
structure-based drug design and in modeling macromolecular assemblies.



Chapter 2

Theory and Concepts

Es gibt Leute, die glauben, alles wäre vernünftig, was man mit ernsthaftem

Gesicht tut.

- Georg Christoph Lichtenberg

2.1 Protein Structure

Proteins are polymers comprising 20 (21 if we incorporate seleno-cystein) chemi-
cally and structurally different building blocks (amino acids) that fold into highly
specific three-dimensional structures.
Naturally occuring proteins and peptides exclusively contain L-α-amino acids.
The single amino acids in a peptide chain are connected via peptide bonds, form-
ing a dihedral angle of ~180◦ between H-N-Cα-O with the exception of the rare
occurence of cis-proline. The backbone of a peptide chain consists of repeating
units of the three atoms N, Cα and C. While rotation around the C-N bond (Ω-
angle) is limited to a small range around 180◦, rotation around the N-Cα bond
(Φ-angle) and the Cα-C bond (Ψ-angle) is possible. Hence, rotation around the
backbone Φ- and Ψ-angles are the major degrees of freedom underlying protein
flexibility.

15



16 CHAPTER 2. THEORY AND CONCEPTS

Figure 2.1. Left panel: peptide chain and backbone dihedral angles. Right panel: Ra-
machandran plot

Due to sterical restrictions the Φ- and Ψ-angles of peptide chains in naturally
folded proteins only adopt a limited and well-defined part of the dihedral-angle
space (see fig. 2.1 right). These Φ-Ψ-plots, named Ramachandran-plots after
the discoverer G. N. Ramachandran [29], are an important quality criterion for
protein structures.
The structural description of proteins is seperated into four levels. Besides
the sequence, which is determined by the gene and referred to as the primary
structure, the secondary, tertiary and quaternary structure of a protein are
distinguished. The secondary structure describes the local fold and is heavily
connected to the dihedral angles of the backbone. The DSSP (Dictionary of
Protein Secondary Structure) code [30] uses hydrogen bond patterns to classify
the secondary structure.
G = 3-turn helix (310 helix). Min length 3 residues.
H = 4-turn helix (α helix). Min length 4 residues.
I = 5-turn helix (π helix). Min length 5 residues.
T = hydrogen bonded turn (3, 4 or 5 turn)
E = beta sheet in parallel and/or anti-parallel sheet conformation (extended
strand). Min length 2 residues.
B = residue in isolated beta-bridge (single pair beta-sheet hydrogen bond
formation)
S = bend (the only non-hydrogen-bond based assignment)



2.1. PROTEIN STRUCTURE 17

In DSSP, residues which are not in any of the above conformations is
designated as ’ ’ (space), which sometimes gets designated with C (coil) or L
(loop). The helices (G, H and I) and sheet conformations are all required to have
a minimal length. This means that 2 adjacent residues in the primary structure
must form the same hydrogen bonding pattern. If the helix or sheet hydrogen
bonding pattern is too short they are designated as T or B, respectively. Other
protein secondary structure assignment categories exist (sharp turns, Omega
loops etc.), but they are less frequently used.
The term “tertiary structure” is used to describe the way how the different
secondary structure elements are arranged and build the overall fold of the chain.
Quaternary structures describe how different peptide chains are arranged to build
the protein.
The SCOP database [31–33] (Structural Classification Of Proteins) currently
distinguishes approx. 1000 different folds, 1600 super families and 3000 families.
It is remarkable that despite the exponential growth of resolved protein structures
in the PDB, the last new fold has been determined in 2005. The conformation of
the native fold of a protein corresponds to the global minimum on the free energy
surface. In globular proteins, tertiary interactions are frequently stabilized by
burying hydrophobic amino acid residues in the protein core, from which water is
excluded, and by the consequent enrichment of charged or hydrophilic residues
on the protein’s water-exposed surface.
The prediction of protein structure has been a long-standing problem and is
adressed with bioinformatics based methods like homology modeling and
physics-based methods like simulations. An overview of the recent progress is
given in [34].
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2.2 Experimental Structure Determination

The three-dimensional structure of proteins is essential for understanding their
function and a prerequisite for numerous computational approaches in modern
protein research. Thus, great efforts are invested to determine structures at atomic
resolution. Once a protein sequence of interest is identified, the protein is either
isolated directly from the source cell or tissue, or molecular biology methods are
employed to express the protein of interest in a host such as Escherichia coli. The
latter represents the most common route, where DNA encoding the sequence of
the protein is inserted into vectors, facilitating the expression in E. coli.
After expression of the protein, various ways are employed for purification. Cen-
trifugation seperates particles with different mass, but also depends on molecular
shape, temperature and solution density. Another common way is “Salting in and
salting out”, which makes use of differential solubility of proteins at various ionic
strength. The solubility of most proteins increases with growing ionic strength up
to a maximum due to increased polarity of the solution. At higher ionic strengths
the solubility decreases as ions compete for water molecules against the protein.
Chromatographic methods form the core of most purification protocols. Differ-
ent proteins can be seperated using various gradients, among them ion exchange
chromatography that seperates proteins on the basis of overall charge, size exclu-
sion chromatography that seperates according to the molecular size, hydrophobic
interaction chromatography that focuses on differences in surface hydrophobicity
and affinity chromatography which is employed if proteins bind a known ligand.
The purified protein is the first step towards structure determination. The Protein
Data Bank (PDB) [35] currently contains 44700 structures of which≈ 38000 have
been resolved by X-ray diffraction and ≈ 6400 by NMR-spectroscopy. A small
fraction has been resolved by electron microscopy. However, this method does
not provide data at atomic resolution.
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2.2.1 X-ray Crystallography

X-ray crystallography is the pre-eminent technique for the determination of
protein structure. X-rays, discovered by Röntgen, were shown to be diffracted
by crystals in 1912 by Max von Laue. Bragg interpreted the spots obtained on
photographic plates and formulated the relationship between the diffraction
pattern and the crystal structure which is known as Bragg’s law

nλ = 2d sin Θ, (2.1)

where λ denotes the wavelength, d the lattice constant and Θ the angle of the
incident radiation. This formula is equivalent to

nλ = d cos Θi − d cos Θr (2.2)

with Θi the angle of the incident radiation and Θr angle of the reflected radiation
(see fig. 2.2). Extended to three dimensions we obtain the Laue set of equations,
where a, b and c refer to the spacing for each of the three dimensions.

a(cosαi − cosαr) = hλ (where h=1,2,3,...) (2.3)

b(cos βi − cos βr) = kλ (where k=1,2,3,...)

c(cos γi − cos γr) = lλ (where l=1,2,3,...)

Figure 2.2. The Laue equations. The direction of the radiation is represented by red
arrows. Θi denotes the angle of the incident radiation, Θr the angle of the reflected
radiation. d is the lattice constant.
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The Laue equations must be satisfied to assure constructive interference and
thus for diffraction to occur.
The unit cell, the basic building block of a crystal, is repeated in three dimen-
sions but is characterized by three vectors (a, b, c) that form a parallelepiped and
the three corresponding angles (α, β, γ). In biological systems, the unit cell may
posess internal symmetry containing more than one protein molecule related to
others via axes or planes of symmetry. Scattering depends on the properties of
the crystal lattice and is the result of interactions between the incedent X-rays and
the electrons of atoms within the crystal. Heavy atoms, such as metals or sulphur
are very effective at scattering X-rays whereas smaller atoms such as the proton
are ineffective. The result of an X-ray diffraction experiment is not a picture of
atoms, but a diffraction pattern composed by the reflections of all atoms within
a unit cell. As a wave consists of an amplitude f and a phase angle ψ, it can be
described as a vector

f = f cosψ + if sinψ = feiψ (2.4)

Since all atoms contribute to the observed diffraction pattern, these vectors are
summed together and are described by the vector Fhkl known as the structure
factor

Fhkl =
∑

f cosψ +
∑

if sinψ (2.5)

leading to
Fhkl = Fhkl(cosϕhkl + i sinϕhkl) = Fhkleiϕhkl . (2.6)

Fhkl is the square root of the intensity of the observed diffraction spot often called
Ihkl, whereas the ϕhkl term represents the summation of all phase terms constribut-
ing to this spot. The structure factor Fhklis the Fourier transform of the electron
density. The value of the electron density at a real-space lattice point (x,y,z) de-
noted by ρ(x,y,z) is equivalent to

ρ(x, y, z) =
1

V

+∞∑
hkl=−∞

Fhkleiϕhkle−2πi(hx+ky+lz) (2.7)

where ρ is the value of the electron density at the real-space lattice point (x,y,z),
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and V is the total volume of the unit cell, and ϕ is the phase information.
To calculate the electron density map from the measured intensities, the deter-
mination of ϕhkl is required, which is known as the phase problem. For small
molecules it is possible to make guesses about the conformation and to calculate
diffraction patterns of the ’guess’ and compare the result with the experimentally
determined diffraction pattern. For proteins this is not possible. This problem
may be overcome by irradiating crystals that have been soaked in the presence
of heavy metal ions. From the diffraction patterns of this metal labelled crystals,
structure factors can be calculated that enable the derivation of the electron den-
sity map of the protein. Other methods to resolve the phase problem include MAD
and molecular replacement. The MAD (multiwavelength anomalous diffraction)
method analyzes the phase shift that is caused by replacement of methionine
with Seleno-methionine. The positions of the methionine residues provide ini-
tial phases. Molecular replacement is employed if a structure of a related crystal
structure exists, which serves as a search model to determine the orientation and
position of the molecules within the unit cell.
The initial electron density map does not resolve individual atoms. Structures be-
fore refinement are often at resolutions> 4.5 Å where only α helices are observed
and the identification of side chains is unlikely. Computer programs fit electron
density maps and the process is assisted by assuming standard bond length and
angles. Refining models in an iterative fashion progressively improves the agree-
ment with experimental data. A structure is judged by the crystallographic R-
factor, defined as the average fractional error in the sum of the differences between
calculated structure factors (Fcal) and observed structure factors (Fobs) divided by
the sum of the observed structure factors

R =
∑ |Fobs − Fcal|∑

Fobs
. (2.8)

A cross-validated quality criterion is Rfree, which is calculated from a subset
(≈ 10%) of reflections that were not included in the structure refinement. A value
of 0.20 is often represented as an R-factor of 20 percent and ’good’ structures
have Rfree-factors ranging from 15 − 25 percent or approximately 1/10th of
the resolution of the data. The results of protein structure determination are
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files containing coordinates for all resolved atoms together with their B-factor
(Debye-Waller factor), that reflects spreading or blurring of electron density
and represents the mean square displacement of atoms in units of Å2. High
B-factors can either be due to experimental noise or indicate increased mobility
and disorder of atoms. Residues on the protein surface and particularly atoms
corresponding to long side-chains as in arginine or lysine usually display high
B-factors. The occupancy, which denotes the probability of finding the atom in a
certain position, is also stored. High resolution structures often provide alternate
positions for atoms, e.g. if side chains adopt different conformations.

The major bottleneck of structure determination using X-ray crystallography
is the production of protein crystals. Crystallization requires the ordered for-
mation of large (dimensions larger than 0.1 mm along each axis), stable crystals
with sufficently long-range order to diffract X-rays. Structures produced by X-ray
diffraction are only as good as the crystals from which they are derived. Finding
optimal conditions for crystallizing a protein is difficult as various parameters can
be changed. Different reagents to reduce protein solubility, their concentration,
pH value and protein concentration are usually varied in screening approaches,
nowadays often carried out by robots. However, this approach only works for
soluble proteins. Membrane proteins, which are of special interest from pharma-
ceutical points of view since many of them are potential drug targets, are very
difficult to crystallize.

2.2.2 Nuclear Magnetic Resonance Spectroscopy

The second important technique for determining protein structure is nuclear mag-
netic resonance spectroscopy (NMR). In contrast to X-ray crystallography, NMR
does not require protein crystals, but the proteins are studied in solution. Un-
derlying the NMR phenomenon is a property of all atomic nuclei called ’spin’.
Spin describes the nature of a magnetic field surrounding a nucleus and is char-
acterized by a spin number, I, which is either zero or a multiple of 1/2. Nuclei
whose spin number equals zero have no magnetic field and from NMR standpoint
are uninteresting. This occurs when the number of neutrons and the number of
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protons are even. Spin 1/2 nuclei represent the simplest situation and arise when
the number of protons plus neutrons is an odd number. The most important spin
1/2 nucleus is the proton with a high natural abundance (~100%) and its occu-
rance in all biomolecules. For nuclei such as 12C the most common isotope is
NMR ’silent’ and the active spin 1/2 nucleus (13C) has a low natural abundance
of ~1.1%. For spin 1/2 nuclei application of a magnetic field removes degener-
acy and the energetic levels split into parallel and anti-parallel orientations. Spins
aligned parallel with external magnetic fields are of slightly lower energy than
those aligned in an anti-parallel orientation, hence the population is different and
given by the Boltzmann distribution.

nupper/nlower = e−(∆E/kBT ) (2.9)

At thermal equilibrium the number of nuclei in the lower energy level slightly
exceeds those in the higher energy level. As a result of this small inequality it
is possible to elicit transitions between states by the application of short, intense,
radio frequency pulses.
The use of NMR spectroscopy as a tool to determine protein structure is based
around several related parameters that influence the observation of signals. These
parameters include the chemical shift (δ), spin-spin coupling constant (J), the
spin-lattice relaxation time (T1), the spin-spin relaxation time (T2), the peak
intensity, the nuclear Overhauser effect (NOE) and Residual Dipolar Couplings
(RDC).
For protein structure determination particularly the chemical shift and the nuclear
Overhauser effect are important. The chemical shift reflects the chemical nature of
groups and mainly depends on the electron density at the proton. As a reference,
Trimethylsilane (TMS) is used, which has higher electron densities at the hydro-
gen atoms than most hydrogen atoms occuring in organic molecules. Its signal
is set to zero and other chemical shifts are defined relative to the TMS signal in
parts per million (ppm). Low electron densities at the proton, for instance in polar
groups, lead to higher chemical shifts. Due to the partial double bond nature of
the amide bond, the amide proton of a polypeptide backbone has a chemical shift
between 8.0 and 9.0 ppm, whereas protons in methyl groups have chemical shifts
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between 0 and 2.0 ppm. The nuclear Overhauser effect is the fractional change
in intensity of one resonance as a result of irradiation of another resonance. As
a result of dipolar ’through space’ interactions the irradiation of one resonance
perturbs intensities of neighbouring resonances. The NOE is expressed as

η = (I − I0)/I0 (2.10)

where I0 is the intensity without irradiation and I is the intensity with irradiation.
The NOE effect is rapidly attenuated by distance and declines with the inverse
sixth power of the distance between two nuclei.

η ∝ r−6 (2.11)

Thus, the NOE provides information about nuclei which are closed in space.
Such distance restraints are used to determine the three-dimensional structure
of proteins. Usually simulated annealing, restrained molecular dynamics
simulations are employed to derive structure models from NMR data and an
ensemble of typically 10−30 models, those with the lowest energies, is deposited
in the PDB.

The major drawback in NMR structure determination is the so-called assign-
ment problem. Before distance and angle restraints from NOE’s can be deter-
mined, each resonance from the spectra has to be assigned to a pariticular pro-
ton of the protein. As a protein consisting of ~100 residues contains about 700

protons, spectral overlaps usually preclude complete assignment of all protons.
Therefore, using NMR spectroscopy for structure determination is still limited to
small proteins.
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2.3 Protein Motion

Changes in protein conformations play a vital role in biochemical processes,
from bioploymer synthesis to membrane transport. Depending on the particular
function of the protein, these motions range from side-chain movements to
re-orientation of complete domains. Table 2.1 shows a classification of protein
motions according to their frequency.

Time Scale [s] Amplitude [Å] Description
10−15 − 10−12 0.001− 0.1 bond stretching, angle bending
10−12 − 10−9 0.1− 10 side-chain motion, loop motion
10−9 − 10−6 1− 100 domain motion, small peptide folding
10−6 − 10−1 10− 100 protein folding

Table 2.1. Classification of protein motions

Proteins move on a highly complex and rugged free energy landscape with
several regions of low free energy that can be seperated by high barriers. Many of
these conformations are important for function, e.g. one conformation may allow
entrance of a ligand or binding to another protein. Ligands often cause dramatic
conformational changes as they alter the free energy landscape.

Such ligand triggered conformational changes are of tremendous importance
in signal cascades as they may stabilize a protein in an active conformation en-
abling the protein to bind another protein, a ligand, or to a specific region of
RNA/DNA. Receptor proteins for instance, bind proteins or ligands on the extra-
cellular side, causing a conformational change on the intracellular side that again
influences action within the cell. Such allosteric mechanisms denote an elaborate
way of information flow.
Despite the complexity of protein structures and the huge number of degrees of
freedom, the functionally relevant protein motions are usually not coupled with
extensive disturbance of local order. Moreover, many proteins can be described
as rigid domains connected by flexible linkers. The domains keep their internal
structure, mainly driven by the hydrophobic effect.
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Figure 2.3. Domain motion in ribosomal translocase EF-2. Right panel: apo state. Left
panel: Sordarin bound state.

2.4 Simulation Methods

As the conformational flexibility of proteins is often not directly accessible
with experimental methods, this field of research is intensively addressed
by computational methods. Predominantly molecular dynamics simulations
are employed to obtain dynamic properties of proteins. However, despite the
enormous increase in computer power and advances in algorithm techniques
and parallelisation, MD simulations are computationally expensive and
limited to the nanosecond or microsecond timescale for most systems. Thus,
conformational transitions that include crossing of high energy barriers can
often not be observed within the accessible time. In order to alleviate this
sampling problem, a number of molecular dynamics based simulation methods
have been developed and successfully applied to numerous problems within the
field of protein research, among them Replica-Exchange Molecular Dynamics
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(REMD) [10], Conformational Flooding [11, 12] and Targeted Molecular
Dynamics(TMD) [13, 14]. Computationally more efficient, however less
accurate methods, are based on gaussian network models [15, 16], normal mode
analysis [17–20] or graph theoretical approaches [21].

2.4.1 Molecular Dynamics

Molecular Dynamics (MD) simulations describe the evolution of a molecular sys-
tem in time. In conventional MD simulations atoms are treated as particles, which
obey Newton’s equations of motion. Therefore, three assumptions are made. (i)
nuclear and electronic motions are decoupled (Born-Oppenheimer approxima-
tion), (ii) nuclei behave as classical particles, and (iii) the interactions between
the particles are described using an empirical force field.
The general idea of the Born-Oppenheimer approximation is the separation of
slow and fast degrees of freedom. The wavefunction ψ in the time-dependent
Schrödinger equation

Ĥψ = i~
∂ψ

∂t
(2.12)

is a function of the cooridnates and momenta of both, nuclei and electrons. Since
nuclei are much heavier than electrons, it is a good approximation to regard the
nuclear and electronic motion as decoupled. Thus, the electronic wavefunction ψe
only depends parametrically on the nuclear coordinates and the total wavefunction
ψtot can be seperated into an electronic and a nuclear part.

ψtot(r,R) = ψn(R)ψe(r; R) (2.13)

where R = (R1,R2,...,RN ) denotes the coordinates and momenta of the N nuclei
and r = (r1,r2,...,rM ) the coordinates and momenta of the M electrons, respec-
tively. The resulting time-independent Schrödinger equation for the electrons

Ĥeψe(R, r) = Ee(R)ψe(R, r) (2.14)
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can then be solved for fixed nuclei positions. Thus, the nuclei now move in an
effective potential, given by the ground state energy Ee(R) which describes the
influence of the electron dynamics on the nuclei motion. This approximation
usually holds very well.
For a typical macromolecular simulation system with thousands of atoms, the
solution of the time-dependent Schrödinger equation for the nuclear motion is
prohibitively expensive. Therefore, in classical MD it is assumed that particles
obey Newton’s equations of motion (Newton’s second law)

−∇iV (R) = mi
d2Ri(t)

dt2
, or (2.15)

Fi = miai, (2.16)

where V (R) is the potential energy, and Ri and mi are the coordinates and
mass of atom i, respectively. The force Fi acting on this atom determines its
acceleration ai which, within a descrete time step ∆t, leads to a change of the
velocity and position of the atom. The time step ∆t has to chosen small enough
to capture the fastest motions in the system. Under normal conditions, Newton’s
second law is a good approximation for macromolecular systems. However,
quantum effects such as the behaviour at low temperatures or the tunneling of
hydrogen atoms can not be described.

The third approximation is necessary since the evaluation of the potential
V (R) by solving the electronic Schrödinger equation is currently still too expen-
sive, rendering extensive simulations of biomolecules in water unfeasible. There-
fore, the potential energy is expressed as a sum of simple and easy-to-compute
analytical functions, which, in combination with a correspnding set of empirical
parameters, make up the so-called molecular mechanical (MM) force field, e.g.,

V =
∑

bonds i

Vi
B+

∑
bond angles j

Vj
α+

∑
impropers k

Vk
imp+

∑
dihedrals l

Vl
D+

∑
pairs m,n

(Vm,n
Coul + Vm,n

LJ ) .

(2.17)
The number of energy terms, their exact function, and the individual parameters
vary between different force fields. Popular force fields are OPLS [36, 37], AM-
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BER [38, 39], CHARMM [40] and GROMOS [41, 42]. In all these force fields,
atoms are represented as point charges and electrostatic interaction between them
is described by the Coulomb law

VCoul(R, q) =
∑

pairs m,n

qmqn
4πε0ε1Rm,n

. (2.18)

Pauli repulsion and Van-der-Waals attraction is typically cast in the form of
the Lennard-Jones term,

VLJ(R) =
∑

pairs m,n

[
C12(m,n)

R12
m,n

− C6(m,n)

R6
m,n

]
(2.19)

where the parameters C12 and C6 are the repulsion and attraction coefficents.
Since bonds are approximated by a harmonic potential, bond breaking cannot
take place in a molecular mechanics force field. Moreover, since bond vibrations
represent the fastest motion in the system and limit the time step, they are often
treated as constraints by employing the SHAKE [43] or LINCS [44] algorithm,
which allows the time step to be increased to 2 fs. Molecular dynamics simula-
tions of biomolecules are usually carried out in explicit solvent. Frequently used
water model are SPC [45], SPC/E [46], TIP3P and TIP4P [47]. A detailed review
over different water models is given in [48]. An extensive study on the accuracy
of water model/force field combinations is given in [49].

2.4.2 Replica-Exchange Molecular Dynamics

Within the short nanosecond time scale accessible to conventional MD simula-
tions, the system often cannot overcome larger energy barriers to regions of the
configurational space that are sampled at physiological conditions. In this case,
the obtained conformational ensemble often does not cover all functionally rele-
vant conformations. Replica-Exchange Molecular Dynamics (REMD) is an MD-
based simulation method which enables enhanced conformational sampling by
making use of increased temperatures. In REMD simulations, a number of copies
(replicas) of the system are simulated simultaneously at differerent temperatures
with conventional MD. Pairwise exchange of replicas is attempted repeatedly af-
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ter a number of MD steps. This allows the system to overcome energy barriers
that would not be surmounted by conventional MD within accessible time. The
exchange probability is calculated using the metroplis criterion

P = min(1, e−β(E(i+1)−E(i))), (2.20)

where P is the acceptance probability of an attempted step and β denotes the
inverse temperature, β = 1

kBT
, with kB the Boltzmann constant. Although dy-

namic information gets lost in REMD simulations, the single replicas still repre-
sent Boltzmann-ensembles of the system at the respective temperatures.

2.4.3 Normal Mode Analysis

Normal mode analysis is one of the major simulation techniques used to probe the
large-scale, shape-changing motions in biological molecules [50–52]. These mo-
tions are often coupled to function and a consequence of binding other molecules
like substrates, drugs or other proteins. In NMA studies it is implicitely assumed
that the normal modes with the largest fluctuation (lowest frequency modes) are
the ones that are functionally relevant, because, like function they exist by evolu-
tionary “design” rather than by chance.
Normal mode analysis is a harmonic analysis. The underlying assumption is that
the conformational energy surface can be approximated by a parabola, which is
known to be not correct since functional modes at physiological temperatures are
highly anharmonic [51, 53]. To perform a normal mode analysis one needs a set
of coordinates, a force field describing the interactions between constituent atoms,
and software to perform the required calculations. The performance of a normal
mode analysis in Cartesian coordiante space requires three main calculation steps.
1) Minimization of the conformational potential energy as a function of the atomic
coordinates.
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2) The calculation of the so-called “Hessian” matrix

H(f) =
∂2f

∂xi∂xj
=


∂2f

∂x1∂x1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

· · · ∂2f
∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂xn∂xn

 (2.21)

which is the matrix of second derivatives of the potential energy with respect to
the mass-weighted atomic coordinates.
3) The diagonalization of the Hessian matrix. This final steps yields eigenvalues
and eigenvectors (the “normal modes”).

Energy minimization can require quite a lot of CPU time. Furthermore, as the
Hessian matrix is a 3N×3N matrix, where N is the number of atoms, the last step
can be computationally demanding.

2.4.4 Elastic Network Models

Elastic network models [54] are basically a simplification of normal mode analy-
sis. Usually, instead of an all atom representation, only Cα atoms are taken into
account. This means a ten-fold reduction of the number of particles which de-
creases the computational effort dramatically. Moreover, as the input coordinates
are taken as ground state, no energy minimization is required. The potential en-
ergy is calculated according to

V =
γ

2

∑
|r0ij |<RC

(rij − r0
ij)

2 (2.22)

where γ denotes the spring constant and RC the cut-off distance. Regarding the
drastic assumptions inherent in the normal mode analysis, these simplifications do
not mean a severe loss of quality. This together with the relatively low computa-
tional cost explain the current popularity of elastic network models.
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2.5 Geometry-Based Molecular Simulation

Molecular structures are represented by coordinates of atoms. If the topology
of the molecule is constant, which means that no chemical changes occur, the
flexibility of the molecule is restricted to conformational changes. Conformational
isomers are generated by rotating a bond of a molecule. Hence, if we regard bond
lenghts and angles as constant, the internal degrees of freedom of a molecule are
determined by the number of torsion angles and the number of conformations C
can be calculated according to

C = (
360

∆ϕ
)N , (2.23)

with N the number of torsions and ∆ϕ the torsion angle range used for
discretization. Even if we take a large bin size ∆ϕ of 30 degrees per conformation
we obtain 1728 different conformations for butane with 3 rotatable bonds, 20736

conformations for pentane and 248832 for hexane. This is still manageable on
a computer, however it examplifies that due to the power N dependency this
approach is limited to molecules of limited size.
Usually only those conformers are of interest which belong to minima on the
free energy landscape as these are the conformations most likely to be observed
according to the Boltzmann distribution

Ni

Nj

=
gi
gj
exp
−(Ei − Ej)

RT
(2.24)

where Ni and Nj denote the number of molecules in state i and j,
respectively. Ei and Ej are the corresponding energies, R the gas constant and T
the temperature. gi and gj are the degeneracies, or the number of states having
the energy Ei or Ej , respectively. This holds for small molecules as well as for
macromolecules. In this case, only a very small part of the conformational space
can be explored. Thus, the aim is to find a way to reduce the conformational
space such that it still contains the most relevant conformations, more precisely
those with low free energies. This can be achieved by introducing additional
conditions, namely constraints. In the example of linear alkanes, such an
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additional condition could be to only regard staggered conformations, which
reduces the number of conformations per rotatable bond to 3, leading to 27

conformations for butane, and 81/243 for pentane/hexane. Hence, an intelligent
choice of constraints is essential to reduce the search space to computationally
accessible dimensions.

2.5.1 Geometrical Constraints in Protein Structures

For macromolecules like proteins such an intelligent choice of constraints is a
difficult task. If we assume physiological conditions the 3-dimensional structure
of a protein is determined by its sequence, the solvent and in some cases small
molecules that interact with the protein. The amino acid chain arranges such that
the free energy is minimal. This is achieved by optimal intramolecular interac-
tions, interactions between protein and solvent and a most favourable entropic
contribution achieved by burying hydrophobic residues in the core of the protein.
Although protein function is a dynamic process and significant conformational
changes have been determined experimentally, most of the protein’s local struc-
tural properties are conserved. However, only few unfavourable interactions can
lead to a dramatic increase of the available conformational space. The discrimi-
nation between favourable and unfavourable interactions and thus, the determina-
tion of the geometrical constraints of a protein is therefore of major importance
to reduce the overall conformational space to the functionally relevant one. Con-
sequently, the thourough analysis of protein structures and the interactions deter-
mining structure and function capture a significant part of this work.
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2.5.2 Structure Generation: The CONCOORD-algorithm

As every geometric formation, a molecular structure can be described using ex-

ternal or internal coordinates. The latter define particular atom positions relative
to others. The geometry of three atoms i, j and k can be described by the squared
distances d2

ij , d2
ik, and d2

jk.

d2
ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 (2.25)

d2
ik = (xi − xk)2 + (yi − yk)2 + (zi − zk)2

d2
jk = (xj − xk)2 + (yj − yk)2 + (zj − zk)2

Mathematically this is a system of quadratic equations which can be solved
using basic linear algebra and yield the external coordinates of the atoms of the
system. In order to obtain information about the flexibility of a structure, the
equalities in 2.25 which serve as internal coordinates of the system are replaced
by constraints since relative atom positions are not fixed but allowed to adopt a
certain range of values. Constraints can be expressed as inequalities, more pre-
cisely quadratic inequalities when applied to distances.

d2
ij(min) ≤ (xi − xj)2 + (yi − yj)2 + (zi − zj)2 ≤ d2

ij(max) (2.26)

d2
ik(min) ≤ (xi − xk)2 + (yi − yk)2 + (zi − zk)2 ≤ d2

ik(max)

d2
jk(min) ≤ (xj − xk)2 + (yj − yk)2 + (zj − zk)2 ≤ d2

jk(max)

In many fields of sciences optimization problems with inequalities as side con-
ditions are addressed. In most cases however, the focus lies on optimizing a cer-
tain function (e.g. production costs in economic sciences) with inequalities as side
conditions (machine A cannot produce more than x parts per day). When generat-
ing protein structures one could think of the free or potential energy as a value to
optimize. However, the lowest energy configuration of a protein structure is not
the only interesting one, since under physiological conditions the thermal energy
causes proteins to adopt different conformations many of which are relevant for
function. Therefore, usual optimization techniques are not appropriate.
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Figure 2.4. Conformational sampling. The left panel shows a schematized sampling of
a MD-trajectory (blue line). A simulation starting from conformation A has to overcome
energy barriers to sample the conformations B and C. Depending on the barrier height,
these conformations are not sampled within accessible time. The right panel shows a
CONCOORD-sampling. The green dots represent structures which are predicted from
geometrical considerations. Energy barriers do not affect the sampling, however no in-
formation about the path between conformations is obtained. The choice of geometrical
constraints determines the size of the sampled conformational space and the energy of
the predicted structures.

Predicting protein conformations with feasible free energies based on geomet-
ric considerations is the objective of the CONCOORD-algorithm [22]. Starting
from random coordinates, atom positions are adjusted iteratively until all prede-
fined constraints are fulfilled. Repeating this procedure several times leads to an
ensemble of structures as a representation of the conformational space which is
accessible within the defined constraints. As the initial condition for each run is
a random configuration, every generated structure is independent from the previ-
ous one. On the one hand this implies that no information is obtained about the
path along which two conformations are connected and possible energy barriers
between them. On the other hand, this approach enables crossing of even high
energy barriers and finding other possible conformations. Hence, the CONCO-
ORD approach does not suffer from a sampling problem like other simulation ap-
proaches like MD. Figure 2.4 shows the sampling properties of an MD-simulation
(left) and a CONCOORD-ensemble (right) on an idealized energy landscape. In
an MD-simulation every configuration is determined by the previous one, the en-
ergy landscape is basically explored by a walk and the sampling is limited by en-
ergy barriers. In a CONCOORD simulation, all configurations are independent.
Instead of a walk jumps are performed on the energy landscape which enables
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extensive conformational sampling within few hours of CPU time. Moreover,
the generated ensembles also include conformational substates that are seperated
by energy barriers which can not be surmounted by MD-simulations within rea-
sonable time. At this point the importance of the constraint selection becomes
evident since they implicitly determine the ensemble properties of proposed con-
figurations.

2.6 Principal Components Analysis

Protein structure ensembles, either from simulation or experimental data, are often
analyzed by a Principal Components Analysis (PCA) to extract the essential de-
grees of freedom. PCA is mathematically defined as an orthogonal linear transfor-
mation that transforms the data to a new coordinate system such that the greatest
variance by any projection of the data comes to lie on the first coordinate (called
the first principal component), the second greatest variance on the second coordi-
nate, and so on.
PCA can be used for dimensionality reduction in a data set by retaining those char-
acteristics of the data set that contribute most to its variance, by keeping lower-
order principal components and ignoring higher-order ones. Such low-order com-
ponents often contain the "most important" aspects of the data.
In protein research, these data can be molecular dynamics trajectories or struc-
ture ensembles. The functionally relevant motions of proteins are often the low-
frequency motions that correspond to the eigenvectors of the covariance matrix
with the largest eigenvalues.
After superposition to a common reference structure, a variance-covariance matrix
of positional fluctuations is constructed:

C =< (x(t)− < x >)(x(t)− < x >)T > (2.27)

where <> denotes an ensemble average. The coordinates x are denoted as a
function of time for clarity, but may be provided in any order and do not need
to be time dependent. C is a symmetric matrix that can be diagonalized by an
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orthogonal transformation T:
C = TΛTT (2.28)

with Λ the diagonal (eigenvalue) matrix and T containing as comlumns the eigen-
vectors of C. The eigenvalues λ correspond to the mean square eigenvector coor-
dinate fluctuation, and therefore contain the contribution of each principal com-
ponent to the total fluctuation. The eigenvectors are usually sorted such that the
eigenvalues are decreasing eigenvalue. For a system of N atoms, C is a 3N×3N
matrix. If at least 3N configurations are used to construct C, then 3N-6 eigenvec-
tors with non-zero eigenvalues will be obtained. Six eigenvalues should be exactly
zero, of which the corresponding eigenvectors describe the overall rotation and
translation (that is eliminated by the superposition). If only M configurations are
available (with M<3N) then at most M-1 non-zero eigenvalues with correspond-
ing eigenvectors will result. If µi is the ith eigenvector of C (the ith column of
T), then the original configurations can be projected onto each of the principal
components to yield the principal coordinates pi(t) as follows:

pi(t) = µi · (x(t)− < x >) (2.29)

The variance <p2
i> equals the eigenvalue λi. These projections can be easily trans-

formed back to cartesian coordinates for visualization purposes as follows:

x′i(t) = pi(t) · µi+ < x > (2.30)

Two sets of eigenvectors µ and ν can be compared to each other by taking inner
products:

Iij = µi · νj (2.31)

Subspace overlaps are often calculated as summed squared inner products:

Om
n =

n∑
i=1

m∑
j=1

(µi · νj)2 (2.32)

expressing how much of the n-dimensional subspace of set µ is contained within
the m-dimensional subspace of set ν.
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Chapter 3

Parametrization from Experimental
Data

Durch Heftigkeit ersetzt der Irrende, was ihm an Wahrheit und Kräften fehlt.

- Johann Wolfgang von Goethe

3.1 Introduction

The 3-dimensional structure of proteins is determined by covalent bonds,
non-covalent interactions like electrostatics and Pauli-repulsion, and entropic
contributions. The sum of these interactions leads to a well-defined geometry
with restricted conformational flexibility. Although proteins are found to be
highly divers in their overall structure, their local geometry is highly conserved.
Besides well-defined length distributions of covalent bonds, also a characteristic
distribution of backbone dihedral angles and hydrogen bond geometries are
observed in all protein structures, regardless of their sequence and function. The
satisfaction of such local geometrical constraints is therefore an important quality
check for protein structures. Commonly employed structure validation programs
like WHATIF [55] and PROCHECK [56] assess the quality of a structure by
comparison of local geomtries in the given structure with the distributions of the
corresponding geometries in a database of protein structures.

39
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Since tCONCOORD1 (t stands for transition) builds protein structures, extensive
parametrization of simulation parameters is mandatory to generate structures that
satisfy the same quality criterions as for experimentally determined structures.
In this chapter we describe how simulation parameters are derived from
experimental data using a newly developed program termed PDBBrowser. Since
interatomic distances are crucial for structure quality we derived a complete set
of atomic radii from high-resolution X-ray structures and show furthermore
how these radii can be used to describe packing properties in protein structures,
thereby revealing that atomic packing is strongly resolution dependent.

3.2 Experimental Data

The Protein Data Bank [35] contains data regarding the 3-dimensional structure
of proteins. The predominant contingent of this data has been derived from X-ray
diffraction on protein crystals, however also data from NMR-experiments and
electron microscopy is available. tCONCOORD requires a lot of parameters for
constraint definition and structure generation. The quality of generated structures
as well as ensemble properties heavily depend on the chosen parameter set.
Therefore, the data set used for the derivation of simulation parameters should
represent the most reliable data currently available. Since electron microscopy
usually does not provide data at atomic resolution, its use is not eligible. Also the
reliability of structure models derived from NMR data is not sufficient for this
purpose. For the different parametrization processes in this work we exclusively
used X-ray structures that have been resolved to high resolution, depending on
the particular purpose either < 1.2 Å or < 1.6 Å.
Instead of taking the hydrogen positions that are available for a number of
high-resolution X-ray structures, hydrogen positions were generated using the
HB2NET module of WHAT IF [57]. We chose this strategy as only few data
sets are complete, and because the bond lengths for C-H, N-H and O-H are sys-
tematically underestimated in X-ray diffraction [58]. A further advantage of the

1http://www.mpibpc.mpg.de/groups/de_groot/dseelig/tconcoord.html



3.3. THE PDBBROWSER: A TOOL FOR FLEXIBLE DATABASE QUERIING41

employed hydrogen placement algorithm is that it evaluates different protonation
states and optimizes the hydrogen bond network within the structure, including
side-chain flips of histidine, glutamine and asparagine residues, when appropriate.

3.3 The PDBBrowser: A Tool for Flexible Database
Queriing

Building protein structures with low free energies without actually using explicit
energy functions requires extensive knowledge about the underlying structural de-
terminants in atomic detail. Hence, thorough parametrization from experimen-
tal data is mandatory to predict reliable protein structures. As these data cannot
be obtained by simply using the predefined query features of the Protein Data
Bank [35], protein structure data has to be transformed into a queriable storage
format, enabling the derivation of any kind of distribution which can be obtained
from protein structure files.
To this end, a database query solution has been developed that allows quick,
flexible and detailed queriing of properties from structure data, e. g. answer-
ing questions of the kind “What is the distribution of Cα-Cα distances if the two

corresponding residues form a backbone-sidechain hydrogen bond and at least

one residue is a Valine or Leucine and has a Tryptophane residue in its neigh-

borhood?” This program, termed PDBBrowser, has been developed and used to
derive all parameters that are used in the newly developed tCONCOORD pro-
gram.

3.3.1 Program Structure

The PDBBrowser consists of a C-library, an interface from the C-library to the
object-oriented scripting language Python, a Python module and a Python ex-
ecutable. The kernel, written in C, carries out all computationally demanding
operations like neighbor-searching and calculation of distances and angles. Fur-
thermore it assigns atom types, atomic radii and other properties to each atom.
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A Python-interface convertes the C-structure into a “Python-readable” structure
(PyObject *) that can be accessed from the interpreter level. At the Python-level,
the data is converted into comfortable classes (Fig. 3.1) which provide the possi-
bility to select the particularly interesting atoms or residues. A protein structure
is stored as an object of the class Model, which contains a list of Chain-objects, a
list of Molecule-objects and Atom-objects.

Figure 3.1. Schematised representation of the Python-classes in the PDBBrowser. Each
box represents a class. Different data types are indicated by different colors. Black
represents a class, green a list, blue an attribut and red refers to the superior class.

f o r atom i n model . a toms : # loop ove r a l l a toms
i f atom . name == ’CA’ : # s e l e c t CA−atoms

p r i n t atom . x # p r i n t c o o r d i n a t e s

mol = model . r e s i d u e s [ 0 ] # t h e f i r s t r e s i d u e
mol = model . c h a i n s [ 1 ] . r e s i d u e s [ 0 ] # t h e f i r s t r e s i d u e

# of t h e second c h a i n
ch = model . c h a i n s [−1] # t h e l a s t c h a i n

Listing 3.1. Examples for selections in the PDBBrowser

The structure of the Python-classes allows both, an easy way to select atoms,
residues or chains of interest and to obtain statistics of particular observables. The
latter can be done by built-in statistics functions or by incorporation of Python-
modules like scipy or numarray, which provide a broad range of optimized math-
ematical routines and statistics modules.

3.3.2 Database Queries

The PDBBrowser can be used to carry out any kind of database query. As input
information, it requires a “job file” which must be written in Python-syntax
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with additional key words (Listing 3.2). The flexibility of the program becomes
evident when non-standard distributions like distances or angles are inquired.
The user can define arbitrary functions using the Python-language and optionally
other Python-modules, e. g. optimized linear algebra routines from the scipy
package [59].

%DATABASE = ’/storage/structs/’

%MODE = ’mult’

%newjob

d e f c a _ n _ b o n d _ l e n g t h ( ) :
o u t p u t = ’ca_n_blen.dat’ # name of t h e o u t p u t f i l e
h i s t o _ s i z e = [ 1 . 2 , 1 . 6 , 0 . 0 2 ] # s i z e o f t h e h i s t o g r a m
f o r atom i n model . a toms : # loop ove r a l l a toms

i f atom . name == ’CA’ : # s e l e c t CA−atoms
f o r a t i n atom . bonds : # loop ove r bound atoms

i f a t . name == ’N’ : # s e l e c t atom
d i s t = atom−a t # c a l c u l a t e d i s t a n c e
t o _ f i l e ( d i s t ) # s t o r e t h i s v a l u e

%en d j ob

Listing 3.2. Example of job file for the PDBBrowser: Functions, written between the key-
words %newjob and %endjob are interpreted by the PDBBrowser as database functions
and run over the database defined by the key-word %DATABASE. The %MODE-key-word
defines whether the database will be loaded once (’mult’) or file by file (’single’)

The potency of this ansatz of organizing data is furthermore, that an arbitrary
number of queries can be carried out by loading the database only once. Merely
the size of the database, or actually the number of structures that can be loaded, is
limited by the memory of the computer. For the parametrizations carried out for
this work, databases of 200-300 structures were used.
Besides bond and angle parameters, non-covalent atomic contacts are of special
interest since they heavily influence structure quality and conformational freedom.
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3.4 Optimization of Atomic Radii from High-
Resolution X-ray Structures

Protein structures are stabilized by many different interactions. The lower limit
of distances between atoms can either be dominated by electrostatic repulsion
or Pauli repulsion. In our approach we do not make any assumptions about the
underlying potential, except that there is a minimum distance dij for each pair of
atoms below which strong repulsion takes place. Accordingly, a distance range
dij + ∆r is defined for atoms to be contacting.

Figure 3.2. Contact volume and overlap volume. If an atom j is found within the sphere
shell labeled as contact volume it is counted as a favourable contact. If the distance be-
tween atom i and j is smaller than the VdW sum it is counted as an overlap and weighted
with the overlap volume.

If universal atomic radii exist, many atom pairs should be found at their
contact distance. To test this hypothesis, atomic radii were derived that maximize
the number of contacts while minimizing the number of overlaps in a set of
106 high resolution X-ray structures (resolution < 1.2 Å) from the Protein Data
Bank (PDB). In total, about 5.7 million atom pairs were used in the optimization
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procedure. Atom pairs with fewer than four bonds in between were excluded.

To reflect the chemical nature of atoms in protein residues we defined 35 atom
types adapted from the OPLS-AA force field [36]. VdW distances were taken
as the sum of VdW radii Sij except for a set of polar and charged atom types
for which specific combinations were defined to realistically account for hydro-
gen bonding and electrostatic repulsion. All structures were protonated with the
WHATIF [57] software package. Since hydrogens atoms were added computa-
tionally, the obtained radii may depend on the chosen method of hydrogen place-
ment. The position of hydrogen atoms is in most cases well defined by the lo-
cal geometry of the surrounding heavy atoms. Only the hydrogen position in
OH, CH3, NH3 and the protonation state of histidines is sometimes ambiguous.
However, the number of undefined hydrogen positions is small compared to well
defined ones, and are therefore not expected to influence the optimization signifi-
cantly.
A contact Cij between two atoms i and j is defined as

Cij =


0 for dij < Sij

1 for Sij ≤ dij ≤ Sij + ∆r

0 for dij > Sij + ∆r.

(3.1)

Likewise an overlap Oij is counted if the distance is smaller than the sum of the
VdW radii.

Oij =

1 for dij < Sij

0 for dij > Sij.
(3.2)

Both values Cij and Oij are weighted statistically by their according volume
(figure 3.2). The contact volume VC(i,j) is calculated with

VC(i, j) =
4

3
π
[
(Sij + ∆r)3 − S3

ij

]
. (3.3)

For the overlap volume not the whole volume of the sphere is counted, as small
overlaps occur more frequently than large ones. Therefore, like for the contacts
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we used a sphered shell as illustrated in figure 3.2.

VO(i, j) =
4

3
π
[
S3

ij − (Sij −∆r)3
]

(3.4)

Now we defined a contact number density N k
C for each atom type k.

N k
C =

∑
i

∑
j

Cij

VC(i, j)
; i ∈ k. (3.5)

Likewise, the overlap number density N k
O is defined as:

N k
O =

∑
i

∑
j

Oij

VO(i, j)
; i ∈ k. (3.6)

The quantity to be optimised, the effective contact density, therefore is defined as:

N k = N k
C −N k

O (3.7)

which is maximised through iteration for each atom type k. This way a set of
contact atomic radii and combinations was derived.

A closer look at the derived contact radii listed in table 3.1 reveals that most
carbon, nitrogen and oxygen radii are smaller compared to those from previous
work [60–65]. This is mostly caused by the use of explicit hydrogen atoms. In
comparison to Lennard-Jones parameters from force-fields, our atomic radii are
also generally smaller. This is due to the fact that, in force-fields, the local ge-
ometry of atoms is determined also by other interactions, particularly electrostatic
interactions. Our approach aims at a geometrical description that reflects the opti-
mal contact distance between atom pairs as a combined effect of all interactions.
A number of systematic deviations became evident during the optimisation that
are found to be caused by the original classification of the atom types. Hence,
a number of additional atom types were introduced. For instance an additional
atom type was introduced for Cα atoms (atom type CA) as we found that Cα’s
form much closer contacts than other aliphatic carbon atoms. Likewise hydro-
gen atoms connected to Cα atoms (atom type HA) form closer contacts than other
un-polar hydrogens making them more similar in size to polar hydrogens (atom
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type H). This observation may indicate weak Cα-H...O bonds that have recently
been discussed [66, 67]. This example of a systematic protein-specific deviation
shows that atomic radii derived from small molecule crystals [58,62] are not read-
ily transferable to macromolecular structures like proteins and indicates the sig-
nificance of a protein-specific set of atomic radii derived from atomic-resolution
protein structures.

Additionally, a set of specific combinations of atom types was defined to real-
istically account for electrostatics like small hydrogen-bond distances. The com-
binations are listed in table 3.2. The very small radius for charged hydrogens
(atom type HC) is remarkable but may in part be due to the small number of
contacts that these atoms form. Hence, the statistics for this atom type is limited.

The distances calculated from the derived atomic radii and combinations rep-
resent the most likely observed distance for specific atom pairs in natively folded
protein structures as a result of all interactions. Therefore, they are well suited to
serve as parameter set in tCONCOORD or other simulation protocols.
The distribution of favourable contacts and overlaps in protein structures can be
interpreted as packing property. Since this property should be very sensitive to
small changes of atomic coordinates a resolution dependence might be expected.
To test this hypothesis we developed a method to quantify this resolution depen-
dence based on the derived atomic radii.

3.5 Atomic Packing in Protein Structures

Billions of years of evolution optimized proteins to fulfill their functions
efficiently. Regardless whether the protein functions as enzyme, molecular motor,
transport protein or receptor, a prerequisite for optimal function is a fine-tuned
structural and dynamical framework, either directly or indirectly provided by the
native structure of the protein. An important, but as yet unresolved question is
which functional constraints exactly are imposed on a protein structure. Sequence
and structure conservation patterns provide valuable hints in this respect, like the
conservation of the structure in the catalytic site of an enzyme. However, such
information is typically local and restricted to a specific class of proteins. The
same holds for other localized structural constraints like disulphide bridges or
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Atom
Type

Radius[Å]Description Atom
Type

Radius[Å]Description

H0 1.19 unpolar hydrogens CH2P 1.47 Cβ,γ,δ in P
HAR 1.14 aromatic hydrogen CY 1.87 Cγ in Y
HA 1.03 Hα CY2 1.63 Cη in Y
H 1.05 polar hydrogen CF 1.83 Cγ in F
HC 0.58 hydrogen in charged

groups (R,K)
CDR 1.69 Cδ in R

HDR 0.67 Hδ in arginine CR1H 1.75 Cδ2 in H
C 1.43 carbon in C=O CRHH 1.63 Cε1 in H
CA 1.48 Cα O 1.41 oxygen in C=O
CH1E 1.92 aliphatic carbon with 1

hydrogen
OC 1.33 oxygen in COO−

CH2E 1.89 aliphatic carbon with 2
hydrogens

OH1 1.31 oxygen in C-O-H

CH3E 1.81 aliphatic carbon with 3
hydrogens

NH1 1.37 nitrogen with 1 hydrogen

CR1E 1.81 aromatic carbon NH2 1.45 nitrogen with 2 hydrogens
CR1W 1.76 Cζ2,Cη2 in W NH3 1.35 nitrogen with 3 hydrogens
C5 1.76 Cγ in H NC2 1.45 Nζ in R
C5W 1.86 Cγ in W NHS 1.40 unprotonated N in H
CW 1.74 Cε in W SM 1.79 S in M
CH2G 1.76 Cα in G S 1.83 S in C

Table 3.1. Atomic radii derived from a set of 106 high-resolution X-ray structures.

specific salt bridges. Hence, the role of global structural determinants underlying
or supporting function remains to be determined.

Protein design and engineering studies suggest a crucial role for packing
in protein stability and function [68–71], including exact complementarity
of neighboring side chains [72–74]. Even conservative mutations of single
amino-acids can lead to destabilizations [75, 76]. Additionally, the inclusion of
an explicit packing term in protein design algorithms has significantly improved
the accuracy of designed predictions [73], indicating that optimal packing is a
crucial factor in protein structures. Packing densities in protein cores have been
described as high and comparable to solid crystals [60, 64]. However, beyond
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Atom Types D[Å] Atom Types D[Å]

O O 3.3 HC NHS 1.84
O H 1.86 H NHB 2.00
O OC 2.84 HC NHB 1.95
OH1 O 2.64 O NC2 2.82
O HC 1.70 O NH2 2.84
OH1 H 1.62 O NH3 2.60
OC HC 1.74 O NHS 2.66
OH1 HC 1.70 NH1 NHS 2.88
OC H 1.60 NH2 NHS 3.00
O NH1 2.82 NH3 NHS 2.84
H NHS 2.0 O CA 3.18
HA O 2.30

Table 3.2. Lower bounds for distances of specific atom type combinations

average densities and free volume considerations [77], the exact packing extent,
in terms of atomic contacts, remains unknown.

Here, we have developed an approach to quantitatively determine the pack-
ing efficiency of a large set of protein structures at different levels of resolution.
A "packing score" is introduced that allows a robust assessment of the degree of
packing efficiency, resting on our derived set of atomic contact radii derived from
a set of high resolution protein structures. We show that the distribution of close
contacts and overlaps in protein structures is invariant and highly conserved in
high-resolution X-ray structures, regardless of function, size and secondary struc-
ture.

The implications for protein structure validation, protein dynamics, structure
prediction and design are discussed.

3.5.1 Quantitative Assessment of Packing Quality

Optimal packing in molecular systems is characterized by a maximum number
of interatomic contacts. In proteins, the maximally attainable packing efficiency
is primarily limited by the distribution of unequally sized atoms (C,H,N,O,S), by
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topological restraints imposed by the connectivity between atoms, and by sec-
ondary/tertiary structure restraints. In order to assess the relative degree of pack-
ing in native protein structures, we therefore quantified the packing efficiency,
evaluated this packing score for a large number of proteins, and compared the re-
sults to a synthetic reference. The reference was constructed from a set of 1000

freely rotatable amino acids in solution, distributed according the frequency as
observed in natural proteins (see tab. 3.3).

Amino Acid Number Amino Acid Number

ALA 96 LEU 75
ARG 35 LYS 79
ASN 46 MET 15
ASP 70 PHE 43
CYS 18 PRO 46
GLN 28 SER 58
GLU 55 THR 67
GLY 78 TRP 14
HIS 26 TYR 39
ILE 42 VAL 70
SOL 180

Table 3.3. Synthetic Reference System.

This system was subjected to 20 ns of molecular dynamics simulation. Snap-
shots from this simulation were cooled down to 100K with simulated annealing.
As this reference shares the restrictions of native protein structures of unequally
sized atoms and connectivities, but has no restrictions due to secondary and ter-
tiary structure and also has no surface or active site which may display poorer
packing properties, this reference can be considered as upper limit of the pack-
ing efficiency for natively folded proteins, and hence may serve to estimate the
relative packing efficiency of protein structures.

In contrast to previous studies [60–65], we do not consider packing in terms
of occupied volume fractions. Rather, we focus on the thermodynamically
determined distribution of favorable atomic contacts and unfavorable overlaps.
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Contacts were counted for closely interacting (dij ≤ rij ≤ dij ∗ 1.3), but
non-overlapping atoms. The requirement of maximizing the number of contacts
while minimizing the number of overlaps (rij < dij) ensures counting of true
contacts in favor of any secondary maxima. A full set of protein atomic radii was
obtained by iteratively adapting the atom radii for the different atom types (see
chap. 3.4).

These contact radii were used to evaluate a packing score for a large set
of protein structures at different levels of resolution. Non-protein residues
like water and ions were neglected. The packing score was defined as the
average volume-weighted number of contacts per atom minus the average
volume-weighted number of overlaps.

Given a set of optimized atomic radii, a packing score P can be calculated
from interatomic distances as:

P =
1

N

[∑
i

∑
j>i

Cij

VC(i, j)
−
∑
i

∑
j>i

Oij

VO(i, j)

]

P is high if the number of favourable contacts per atom is high in contrast to the
number of overlaps per atom. Note that values do not exclusively depend on the
quality of the protein structure, but also on the structure itself. Surface residues are
mostly surrounded by solvent molecules which were not taken into account by this
method. Therefore the number of contacts and also the number of overlaps with
other protein atoms is rather small compared to residues located in the core of a
protein. Thus P reaches the highest values for proteins that are almost spherically
shaped.

The packing efficiency can be further illustrated by using a reduced radial dis-
tribution function R. For this, for every atom i the distance rij to the neighboring
atoms j is calculated and related to the optimal distance dopt = ri + rj for this
combination of atom types. The shape of the resulting reduced radial distribution
function (fig. 3.3)

R(r) =
rij

dopt

is found to be highly conserved in all high-resolution structures and can be consid-
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ered as structural constraint on protein architecture. Values lower than 1 represent
overlaps, whereas positive values close to 1 represent favourable contacts.

Figure 3.3. RRDF. Reduced radial distribution function of an ensemble of 106 high-
resolution X-ray structures.

3.5.2 Packing quality in protein structures

For the synthetic reference ensemble of structures, built from the final configura-
tions of the simulated annealing simulations, the same procedure for optimizing
atomic radii was employed as described in chap. 3.4. Using these radii (data
not shown), packing scores were calculated for the synthetic reference ensemble.
The average value of these scores was scaled to 1.0 and serves as reference for the
packing scores calculated from the experimental structures. The statistical error as
estimated from the standard deviation in the ensemble is about 0.01, represented
in fig. 3.4 by the thickness of the red line.
Packing scores were calculated for sets of protein structures determined by X-ray
crystallography and NMR. X-ray structures were evaluated at different levels of
resolution (see Appendix 10.1). NMR structures were compared to refined ensem-
bles from the DRESS [78] database (always the first model was taken from an
NMR-ensemble, for this usually represents the lowest energy configuration).
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Figure 3.4. Atomic Packing. Left Panel: Packing scores. red line (reference): line thick-
ness represents the standard deviation. black: the ensemble of high resolution structures
that were used to derive the atomic radii; green: X-ray structures at different levels of
resolution; blue: Ensemble of NMR-structures original from the PDB and the same struc-
tures from the DRESS database. Right Panel: Two structures of staphylococcal nuclease.
(a) PDB 1EY4, resolved by X-ray crystallography (Resolution 1.6 Å). (b) PDB 1JOR, re-
solved by NMR. The blue colored atoms are well packed and embedded in their local
environment. Red colored atoms cause overlaps with their neighbors.

The results relative to the synthetic reference are shown in fig. 3.4. Remark-
ably, packing scores of up to 88% of the synthetic reference (in red) were ob-
served, indicating a high packing density for natively folded protein structures
resolved at high-resolution. With decreasing resolution the packing efficiency is
observed to decrease. While the packing scores for X-ray structures are located in
a rather narrow range, values for NMR-structures (blue marks) show much more
spread. This behavior is further exemplified for two structures of staphylococcal
nuclease, of which one (PDB 1EY4) has been resolved by X-ray crystallography
(resolution: 1.6 Å) and the other one by NMR (PDB 1JOR). The right panel of fig.
3.4 shows the difference in atomic packing for fragments of the two structures. In
the X-ray structure, apart from surface exposed groups, all atoms are well-packed
by nearly ideal contacts (overall packing score: 0.76). In the NMR structure of
the same protein, the packing is found to be less ideal due to more overlaps and
fewer contacts (overall packing score: 0.45).
The distribution of atomic contacts can be illustrated by a reduced radial distribu-
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Figure 3.5. RRDF. Reduced radial distribution functions of sets of protein structures at
different levels of resoultion.

tion function (RRDF), which is a standard radial distribution function normalized
to the ideal contacts distance. This function displays all close contacts within a
protein structure or an ensemble of structures. Values lower than 1.0 represent
energetically unfavorable overlaps that should occur infrequently according to the
Boltzmann distribution. Fig. 3.5 shows the RRDF’s of the same structure ensem-
bles as used in fig. 3.4.

At high resolution the curves are found to be steeper, representing a favorable
ratio of contacts and overlaps. Furthermore, the plot shows that the distribution
of atomic contacts in NMR-structures differs significantly from those in X-ray
structures. While the curves for the different levels of resolution basically differ
in steepness, the curve corresponding to the NMR-structures shows a systematic
deviation. The amount of overlaps is much higher, which can be interpreted as
systematic overpacking, in agreement with previous findings [79–84].
The question arises whether the observed resolution dependence reflects protein
flexibility or, rather, a resolution-imposed coordinate uncertainty. In other words,
could inherent flexibility or disorder that results in limited resolution cause a non-
optimal packing ("packing limits resolution") or does limited resolution prevent
building of an accurate well-packed model ("resolution limits packing")?
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Figure 3.6. Comparison of identical protein structures at different levels of resolution. The
black curves represent the reduced radial distribution functions of obsolete protein struc-
tures. The red curves represent the same function of the current PDB entries of these
proteins. The green curve shows the RRDF of the reference set of 106 high-resolution
X-ray structures.

In order to address this question, we investigated several cases of the same
protein structure solved at different levels of resolution. Comparison of packing
scores of these identical protein structures shows that packing scores significantly
increase at higher resolution (Tab. 3.4). The distribution of overlaps, represented
by the left branch of the reduced radial distribution function (R(r) < 1), is a
structural invariant for all protein structures. Fig. 3.6 shows RRDF’s of identical
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PDB ID Resolution[Å] Packing
Score

PDB ID Resolution[Å] Packing
Score

1ACT 2.8 0.46 2APE 2.5 0.29
2ACT 1.7 0.89 4APE 2.1 0.73
1LZM 2.4 0.37 2TLN 2.3 0.55
2LZM 1.7 0.82 8TLN 1.6 0.84
1ALP 2.8 0.39 2FXB 2.3 0.59
2ALP 1.7 0.90 1IQZ 0.92 0.90

Table 3.4. Comparison of packing scores for identical proteins. Upper line: obsolete
structure; lower line: current PDB entry

proteins at different levels of resolution. The curves of the higher resolution
versions of these protein structures are remarkably close to the reference
curve, strongly supporting the "resolution limits packing" scenario and not the
"packing limits resolution" scenario. Hence, overlap distributions and packing
considerations could be used as quality check for protein structures. Additionally,
these results suggest that a rigorous packing term may aid structure refinement.

Our results show that high resolution natively folded protein structures display
a packing efficiency close to that of a condensed phase of free amino acids, regard-
less of the protein’s size and structural and functional origin. Efficient packing
therefore represents a universal feature of protein structure. Additionally, efficient
packing likely facilitates the restriction of protein dynamics to a limited number
of modes essential for function. The calculated packing scores suggest that atomic
packing is a structural constraint on protein architecture, offering novel opportu-
nities for the interpretation of sequence alignments and genome data. The fact
that packing efficiency shows a marked resolution dependence indicates that rig-
orous inclusion of an accurate packing term can be expected to enhance structure
refinement at low and intermediate resolution levels. Furthermore, it underscores
the significance of packing considerations for protein structure prediction, design
and docking.
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3.6 Summary

Generating protein structures with tCONCOORD requires accurate parameters
to ensure optimal geometry. In this chapter we described how arbitrary statisti-
cal observables can be derived from experimental data using a newly developed
program termed PDBBrowser. A complete set of atomic contact radii was de-
rived from high-resolution X-ray structures and used to evaluate packing proper-
ties in protein structures. We showed that packing quality and the distribution of
favourable contacts and unfavourable overlaps are exclusively resolution depen-
dent. The shape of the introduced reduced radial distribution function (RRDF)
is highly conserved in all protein structures and can therefore be regarded as a
structural constraint on protein architecture.
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Chapter 4

Constraint Definition in
tCONCOORD

These results came directly out of a computer and are not to be doubted or

disbelieved.

- Unknown

4.1 Introduction

The process of protein flexibility prediction in tCONCOORD can be subdivided
in two steps. In a first step, a given 3-dimensional structure of a protein is analyzed
and translated into geometrical constraints that can be compared to a construction
plan of the protein. This task is carried out by the program tdist. In a second
step, protein structures are built based on the predefined constraints, commonly
several hundred times, by the program tdisco, which leads to an ensemble of in-
dependent structures. Such an ensemble covers the conformational space that is
available within the boundaries of the geometrical constraints. For both steps, the
constraint definition and the structure generation, detailed knowledge about the
geometry of protein structures at the atomic level is mandatory to ensure gener-
ation of realistic structures. In the previous chapter we showed how simulation
parameters were derived from experimental data. Now we describe how protein
structures are analyzed in tdist and translated into geometrical constraints. Hy-

59
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drogen bonds play a crucial role in protein structures. Opening of only one or few
hydrogen bonds can lead to a dramtatic increase of the available conformational
space. Therefore, we have developed and implemented a method to estimate the
opening probability of hydrogen bonds based on the local environment. Also hy-
drophobic clusters are discussed and how observed structural motifs are translated
into constraints.

4.2 Evaluation of Hydrogen Bond Stability

During the analysis of experimentally known conformational transitions,
it was found that they routinely involve opening of one or more hydrogen
bonds. tCONCOORD therefore attempts to predict unstable hydrogen bonds
by estimating the solvation probability. This approach is based on the work
of Fernandez et al. [85–88] who showed that keeping a hydrogen bond “dry”
is a prerequisite for its stability and that protein folding is associated with a
systematic desolvation of hydrogen bonds by surrounding hydrophobic groups.
Thus, analyzing the neighborhood of a particular hydrogen bond should provide
hints for the probability of a water molecule to attack it, which is directly
correlated to the opening probability.

To this end, we have analyzed 35 large-scale molecular dynamics trajectories
from different proteins and calculated for each protein atom type i (a total of
167, hydrogen atoms were not taken into account) the radial distribution function
(RDF) with water-oxygen (Owat). Integrating the weighted RDFs according to
Pi =

∫ d
0
Ri−Owat(r)dr (with d = 6 Å) yields a value that may serve as solvation

parameter and allows to estimate the probability of finding a water molecule
within a certain distance to the particular atom. Since these values were obtained
by analyzing a very limited number of trajectories, an accurate statistical error
estimation is difficult. Additionally, there is a systematic error, resulting from the
low number of different folds and sequences taken into acount for this work.
However, previous studies on hydrophobic protection showed that even more
simple approaches, such as counting hydrophobic residues around a hydrogen
bond, provide valuable hints towards predicting unstable hydrogen bonds [85–88].
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PDB code simulation
time[ns]

PDB code simulation
time[ns]

1TUX 110 1RAT 110
1PGS 110 1UBI 110
1CNV 110 1UNE 110
135L 110 1VCC 110
153L 110 1WBA 110
1A3D 110 1A3H 110
1AST 110 4ICB 110
1BJ7 110 1CLM 110
1BM8 110 1CSP 198
1CPN 110 1EXR 77
1DSL 110 1EZM 110
1GBG 110 2CHE 113
1HYP 174 1MLA 110
2APR 110 4AKE 110
1CHD 110 1HKA 110
1AAJ 110 1KOE 110
1ELT 110 1OSA 110
1GBS 110

Table 4.1. Molecular dynamics trajectories that were used for the derivation of solvation
parameters. All simulations were carried out using the Gromacs suite and the OPLS-AA
force field with TIP4P water.

The obtained solvation parameters are used to evaluate the surroundings of a
particular hydrogen bond. As nearest neighbors of a hydrogen bond we consider
all atoms within two intersecting spheres with a radius of 6 Å centered at the hy-
drogen and the acceptor atom. Bonded and 1–3-neighbors were excluded. Using
the solvation parameters from these nearest neighbors, we calculate a solvation
score S according to

S =
1

N

N∑
i

Pi ; N: Number of neighbors.

This score is high if either the number of neighbors is low, which is usually
the case at the surface of a protein, or if the neighborhood mostly consists of
hydrophilic groups.



62 CHAPTER 4. CONSTRAINT DEFINITION

In order to incorporate this evaluation method into the constraint definition in
tCONCOORD, we calculated the distribution of the introduced solvation score
for all hydrogen bonds in 290 protein structures (see Appendix 10.2) from the
Protein Data Bank (PDB) [35] with a resolution higher than 1.6 Å. (fig. 4.1). For
the constraint defintion in tCONCOORD we use thresholds between 2.1 and 2.2.
A threshold of 2.2 means that hydrogen bonds with a score higher than 2.2, and
thus exceeding that of 97% of the hydrogen bonds in the analyzed subset of the
PDB, are considered to be unstable. Hence, they are disregarded and not translated
into constraints.

Figure 4.1. Left panel: Hydrogen bond and its neighborhood, which determines the solva-
tion probability. Right upper panel: RDFs for Cγ-atoms in different amino acids obtained
from large scale MD-simulations. Right lower panel: Distribution of solvation scores in a
subset of 290 protein structures from the Protein Data Bank.
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4.3 Hydrophobic Clusters

The structure of globular proteins is significantly determined by entropy, namely
the hydrophobic effect. Exposing hydrophobic residues to the solvent leads to
a descreased entropic contribution of the surrounding water to the free energy.
Therefore, these residues are usually found in the core of the protein, shielded by
hydrophilic residues that interact more favorably with water. Although there is no
conventional force in terms of the gradient of a potential energy term keeping hy-
drophobic residues together, this structural property is usually conserved during
conformational transitions. Also in simulations with implicit solvent, the intro-
duction of a hydrophobic potential of mean force (HPMF) has been shown to lead
to better free energy estimations. [89]

Figure 4.2. Left panel: Hydrophobic residues in a protein core. Right panel: Hydrophobic
cluster definition in tCONCOORD. Green sticks represent hydrophibic “interactions”

In tCONCOORD hydrophobic clusters are defined as three-body correlations
of hydrophobic residues. The side-chain carbon atoms of the residues ILE, VAL,
LEU, MET, PHE, and TRP are considered as hydrophobic atoms. If three hy-
drophobic atoms from three different residues are found within short distance (in
all simulations of this work 6 Å is used), these “interactions” are defined as con-
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straints. The left panel in fig. 4.2 shows such a hydrophobic cluster in a protein
core. The right panel shows a schematized representation of all hydrophobic con-
straints defined in a protein structure. The grey tubes connect Cα-atoms according
to the proteins sequence. Green tubes connect Cα-atoms that are constraint by hy-
drophobic clusters. As can be seen, these clusters are exclusively found in the
core of the protein.

4.4 Residue Networks

Since the conformational space of polypeptide chains is enormously large, it is
mandatory to reduce this space as much as possible by geometrical constraints in
order to faithfully predict protein flexibility computationally in a feasible manner.
Therefore, in an approach like tCONCOORD that yields protein structures based
on geometrical considerations, it is beneficial to define as many as possible indi-

rect constraints in addition to the inclusion of direct interactions from connectivity
or hydrogen bonds. Such indirect constraints have to be considered and defined
as accuratly as possible. For instance, the Cα-atoms of a residue i and a residue
i+4 can adopt all distances between their van-der-Waals-distance and three times
the Cα-Cα distance of 3.8 Å , roughly 11 Å. However, if residue i and a residue
i+4 form a backbone-backbone hydrogen bond as in α-helices the range of acces-
sible distances for this pair is significantly reduced. Furthermore, the accessible
distances for all atoms and residues connected to residue i and a residue i+4 is
reduced, too. Regarding such effects allows assignment of well-defined distance
constraints for atoms and residues that are far away in sequence and do not have
direct interactions.
tCONCOORD uses a residue network analysis in order to group residues based

on the interaction framework. Thereby residue “interaction rings” consisting of
four or five residues are identified. Different types of interaction, covalent, hydro-
gen bonds or hydrophobic interaction, are treated equally at this stage. Secondary
structure motifs of proteins can be described as fused “interaction rings”. In α-
helices for instance, the residues i and i+4 are connected by a backbone-backbone
hydrogen bond, hence the residues i to i+4 form an “interaction ring” consisting
of five nodes. Consequently the residues i+1 and i+5 form a hydrogen bond, too.
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Figure 4.3. Left panel: “Interaction rings” in an α-helix. Blue sticks represent hydrogen
bonds. The helix can be described as a system of fused rings of residues, connected by
covalent interactions and backbone-backbone hydrogen bonds. Right panel: “Interaction
groups” as defined in tCONCOORD. The red and green colored regions represent groups
with low internal flexibility. Grey colored regions are not grouped and represent flexible
regions.

This leads to an “interaction ring” using the nodes i, i+1,i+4 and i+5 with two
covalent edges and two backbone hydrogen bond edges.
Figure 4.3 illustrates how each residue can be regarded as a node that is part of
divers “interaction rings” (left panel), thus disturbance of its coordinates would
affect multiple geometric formations. As several “interaction rings” share nodes,
their motions are coupled and can therefore be fused into one “interaction group”.
Such groups have limited internal flexibility which allows assignment of well-
defined constraints within the group. The grouping-algorithm reduces the number
of “interaction groups” by merging those groups with a certain number of com-
mon members (fig. 4.3, right panel). Depending on the size and structure of the
protein, this number ranges from one to a few tens. Some residues however, are
not put into groups since they do not interact with other residues and also their
neighbors have few interactions. These residues usually represent the most flexi-
ble part of the structure, mainly loops located on the protein’s surface.
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4.5 Manual Constraint Definition

Generating structure ensembles with tCONCOORD is a two step process. In a
first step, a given input structure is analyzed and turned into geometrical con-
straints. This is done by the program tdist. In a second step, structures are rebuild
based on the predefined constraints using the program tdisco. The properties of
the resulting ensemble is thus mainly depending on the first part, the constraint
definition. tCONCOORD allows to influence the constraint definition manually.
Intercations can be switched off or defined interactively enabling the user to gen-
erate ensembles covering only parts of the conformational space or to study the
influence of mutations to conformational flexibility. For instance, if potential in-
duced fit structures should be generated from an open conformation, the program
can be forced to produce only closed conformations by imposing appropriate con-
straints on certain residues. The program tdist therefore writes information about

Figure 4.4. tCONCOORD Plugin. The left panel shows a Cα-representation of a protein
and interactions defined by tdist. The right panel shows the tCONCOORD plugin for
PyMOL. Every interaction is listed in the listbox A. Diplay B gives detailed information
about the interaction and C lists interaction statistics. The slider labeled with D can be
used to define solvation score thresholds. To switch between different interaction types,
the table E is used.

all interactions found in the input structure. These files can be visualized with
PyMOL (www.pymol.org) using the tCONCOORD plugin and specific changes
can be applied with visual support. Figure 4.4 shows the graphical user interface
(GUI) of the tCONCOORD plugin. On the left, a protein structure is shown us-
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Figure 4.5. Guanylate Kinase. A and B show the structure of guanylate kinase bound to
the ligand guanosine-5’-monophosphate (PDB 1EX7). C and D show the structure of the
apo conformation (PDB 1EX6). Upon binding the ligand, the red colored domain closes
over the ligand. The RMSD of this domain between bound and unbound state is ≈ 8 Å

ing grey tubes for Cα-atoms. Interactions are represented with colored arrows.
Details about every interaction are listed in the GUI that furthermore allows an
interactive definition of solvation parameters and the definition of exclusions. An
application is shown in fig. 4.5. Guanylate kinase undergoes a large conforma-
tional change upon binding a ligand. The binding process is associated with the
closure of a lid (colored red in fig. 4.5) over the ligand. Although a tCONCOORD
simulation started from the apo structure (PDB 1EX6, fig. 4.5C+D) samples both,
closed and open conformations, most of the generated structures are uninterest-
ing if the focus lies on ligand bound states. Imposing additional constraints that
only allow generation of closed conformations, leads to a much better sampling
of the conformational space that is relevant for binding ligands. The left panel
of fig. 4.6 shows additional imposed constraints between two protein domains.
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Figure 4.6. Conformational Sampling. Left panel: Additional constraints imposed on
the open conformation of guanylate kinase (PDB 1EX6). Right panel: Principal compo-
nent analysis. Green dot: unbound conformation, blue dot: ligand-bound conformation,
black dots: free tCONCOORD sampling, red: tCONCOORD sampling with additional
constraints.

The distance between residue 42 and 137, and 74 and 137 are forced to become
shorter than observed in the starting structure. The different sampling properties
are illustrated in the right panel of fig. 4.6. The ligand-free conformation (PDB
1EX6) is shown as green dot, the ligand-bound state (PDB 1EX7) as blue dot.
The free tCONCOORD simulation (black) samples a large conformational space,
thereby producing many conformations that are not relevant for ligand binding.
The restricted tCONCOORD simulation (red) samples a much smaller area of
the conformational space, namely closed conformations which are supposed to be
relevent for ligand binding. Hence, such considerations may aid a specific appli-
cation, like in this case drug design.

4.6 Summary

The 3-dimensional structure of proteins is determined by many interactions. In
order to predict protein flexibility and conformational transitions, it is mandatory
to distiguish between conserved und non-conserved interactions. In this chapter
we showed how interactions in proteins are analyzed and translated into geomet-
rical constraints. The opening probability of hydrogen bonds is estimated by a
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thorough analysis of the environment and the estimation of the solvation prob-
ability. The hydrophobic effect is taken into account by defining hydrophobic
clusters. Since the performance of the CONCOORD algorithm increases if long-
range constraints can be defined, a network analysis is used to determine protein
parts with reduced flexibility. Finally we introduced a PyMOL plugin that, firstly,
allows for visual control of the constraint definition process, and secondly, allows
to influence constraint definition which might be appropriate to address specific
questions. In the next chapter we show applications of tCONCOORD to selected
proteins that examplify the scope of geometry-based molecular simulation and its
usefulness in protein research.
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Chapter 5

Geometry-based Sampling of
Conformational Transitions in
Proteins

Mensch: ein vernunftbegabtes Wesen, das immer dann die Ruhe verliert,

wenn von ihm verlangt wird, daß es nach Vernunftgesetzen handeln soll.

- Oscar Wilde

5.1 Introduction

The fast and accurate prediction of protein flexibility is one of the major chal-
lenges in protein science. In this chapter we show applications of tCONCOORD
to study the conformational flexibility of proteins with biological relevance. To
allow comparison with experimental data, systems have been chosen of which
experimental data provides insights into flexibility and functionally relevant pro-
tein motions. As first example we chose adenylate kinase as a representative of
protein kinases which play important roles in signal transduction and enzyme acti-
vation by transferring phosphate groups. Many kinases are involved in cancer and
therefore interesting drug targets, however, inherent protein flexibility hampers
computational drug design with existing methods.

71
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Calmodulin, the second example, is a ubiquitous, calcium-binding protein that
can bind to and regulate a multitude of different protein targets, thereby affecting
many different cellular functions. It mediates processes such as inflammation,
metabolism, apoptosis, muscle contraction, intracellular movement, short-term
and long-term memory, nerve growth and the immune response. Upon binding to
proteins or inhibitors calmodulin undergoes large conformational changes associ-
ated with partial unfolding.
The third example, aldose reductase, is an enzyme in carbohydrate metabolism
that converts aldose to a sugar alcohol, using NADPH as the reducing agent. Its
role in diabetes is intensively discussed and several inhibitors have been discov-
ered and co-crystallized, revealing a flexible binding site consisting of several
loops.
T4-Lysozyme has been chosen since it has been crystallized in many different con-
formations, allowing direct interpretation of protein flexibility from experimental
data. Moreover, the protein has been extensively studied with MD-simulations,
shedding light on the dynamics of conformational transitions.
Staphylococcal nuclease and ubiquitin finally are proteins with completely dif-
ferent flexibility properties. Experimental data of ubiquitin did not reveal any
extensive collective conformational flexibility, whereas staphylococcal nuclease
has flexible loops. We show that tCONCOORD correctly predicts the flexibility
of these loops just as well as it predicts the limited flexibility of ubiquitin.

5.2 Adenylate Kinase

Adenylate kinase displays a distinct induced fit motion upon binding to its sub-
strate (ATP/AMP) or an inhibitor (see fig. 5.1B). Structures in different conforma-
tions have been resolved [90–93] contributing significantly to the understanding
of the catalytic mechanism of this class of enzymes. We carried out two tCONCO-
ORD simulations using the closed conformation of adenylate kinase (PDB 1AKE,
see fig. 5.1A) as input. In one simulation the ligand (AP5A) was removed. Ad-
ditionally, one simulation starting from an open X-ray conformation (4AKE) was
carried out. Fig. 5.1C and D show the result of a principal components analysis
(PCA) applied to the experimental structures. The first eigenvector (x-axis) cor-
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Figure 5.1. Adenylate Kinase. A: Crystal structure (PDB 1AKE) of adenylate kinase
(green) with bound inhibitor AP5A (orange). B: Superimposition of several X-ray struc-
tures in different conformations, indicating the induced fit motion. C and D: Principal
components analysis. Experimental structures (black circles) and three simulation en-
sembles (blue, red and green circles) are projected onto the first two eigenvectors. The
blue ensemble was generated with CONCOORD, the red one with tCONCOORD. tCON-
COORD correctly predicts the induced fit motion and samples open conformations when
started from the closed conformation with removed ligand. If the ligand remains in the
input structure, the conformational space is restricted to conformations around the closed
state (green).

responds to the induced fit motion indicated by the red arrow in fig. 5.1B. Every
dot in the plots represents a single structure. The RMSD from the closed confor-
mation (PDB 1AKE) to the open conformations is 4.0, 5.4, and 7.4 Å for 1DVR,
1AK2, and 4AKE, respectively. The red dots represent the ensemble that has been
generated with tCONCOORD using the closed conformation of adenylate kinase
without ligand as input. The blue dots in fig. 5.1C represent an ensemble that has
been generated using CONCOORD (version 1.2), using the same input. As can
be seen, the CONCOORD ensemble (blue) basically samples the conformational
space around the input structure, not sampling open conformations. The tCON-
COORD ensemble (red) behaves differently. It almost completetly samples the
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conformational space that is covered by the experimental structures, thereby also
visiting open conformations (high x-values). The experimental structures were
reached with a deviation of 2.4, 2.6, and 3.1 Å Cα-RMSD for 1DVR, 1AK2, and
4AKE, respectively. For comparison, for the CONCOORD cluster these RMSD
values are much higher with 3.4, 4.4, and 5.9 Å . In structure-based drug design of-
ten the reverse problem, predicting induced-fit structures from an open conforma-
tion, needs to be addressed. A tCONCOORD starting from an open conformation
(PDB 4AKE) as input produces closed conformations with comparable accuracy
as the open conformations are sampled when starting from a closed structure. The
experimentally determined structures are reached with RMSD’s of 2.5, 2.9, and
3.3 Å for 1DVR, 1AK2, and 1AKE, respectively.
The conformational flexibility changes significantly if the ligand remains in the
input structure. Fig. 5.1D shows a comparison of an ensemble with the ligand
present in the input structure (green dots) with the previously discussed ensemble,
generated without ligand (red dots). As can be seen, the presence of the ligand
leads to a reduction of the conformational space that is sampled by the protein
and open conformations are not sampled anymore.

5.3 Calmodulin

The structure and dynamics of calmodulin has been studied extensively by X-ray
crystallography and NMR. In its activated (Ca2+-bound) conformation [94],
calmodulin exposes hydrophobic residues to the solvent enabling binding to a
target, either a protein or an inhibitior. The binding process itself requires a large
conformational change involving the unfolding of the central helix in order to
allow rotation of the C-terminal domain to form the binding site [95](fig. 5.2A
and B).
A tCONCOORD simulation of this particularly challenging case has been
carried out. The instability of a number of hydrogen bonds in the central helix
of the activated form (PDB 1CLL) was correctly identified (see fig. 5.2C) and
incorporated accordingly into the constraint definition.
The resulting ensemble (fig. 5.2E, left) can be described as two freely rotating
domains connected by a linker. These results are in good agreement with
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NMR-studies of calmodulin [96] (fig. 5.2E, right). In fig. 5.2F the projections
of the tCONCOORD ensemble (green cloud), the NMR-ensemble (red dots),
the X-ray structures of the activated form (orange dot), and the ligand bound
conformation (blue dot) onto the first three eigenvectors of a PCA are shown. The
tCONCOORD-ensemble represents an extended sampling of the conformational
space, comprising all experimentally determined structures. The RMSD between
the activated conformation of calmodulin and the bound conformation is
14.6 Å. The closest match of a structure from the ensemble, generated with
tCONCOORD, to the experimentally known ligand bound conformation is as
low as 2.8 Å (fig. 5.2D). This is an example of a case where a ligand bound
conformation of the protein is predicted using only the structurally completely
different unbound state as input. The possibility of such predictions is of obvious
relevance for applications in the field of structure based drug design.

5.4 Aldose Reductase

Aldose reductase (AR) is believed to play an important role in diabetes and
therefore is a potential drug target [97, 98]. It adopts a TIM-barrel fold and uses
NADPH as cofactor to reduce various aldehydes. AR has been crystallized with
different inhibitors. A remarkable fact concerning these inhibitors is that they
have very different structures, sizes and molecular weights [98]. AR is able to
bind these structurally different inhibitors because of a very flexible binding site.
Figure 5.3 shows the structure of AR (PDB 2FZD) with bound cofactor (red) and
the inhibitor Tolrestat (orange). The regions that are responsible for the formation
of a hydrophic sub-pocket are labeled with A and C. The B-loop is responsible
for binding the cofactor. In order to study the influence of both, the ligand and
the cofactor, on the conformational flexibility of aldose reductase, tCONCOORD
simulations were carried out for the entire complex (AR+NADP+Tolrestat), the
complex with removed inhibitor (AR+NADP) and free AR. To compare the
flexibility of the different systems, a principal component analysis was applied to
the combined ensembles of all three runs. Subsequently the ensembles for each
system were projected onto the eigenvectors with the largest eigenvalues. The
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Figure 5.2. Calmodulin. A shows the activated form of calmodulin (PDB 1CLL) used as
input for tCONCOORD. B shows the structure of calmodulin bound to Trifluoroperazine
(TFP). The RMSD between these two structures is 14.6 Å. C shows the result of the hy-
drogen bond analysis of tCONCOORD. Red sticks represent hydrogen bonds with high
solvation probabilities and are not regarded as constraints in the tCONCOORD simu-
lation. D shows the superimposition of the ligand bound conformation (green) and the
closest match of a structure from the tCONCOORD ensemble (red) with an RMSD of
2.8 Å. E shows a tCONCOORD ensemble and a NMR- ensemble (PDB 1CFF) fitted on
the C-terminal domain. F shows the projection onto the 3 eigenvectors with the largest
eigenvalues of a PCA. The tCONCOORD-ensemble is shown as green cloud, the NMR-
ensemble as red dots. The orange dot represents the X-ray structure of the open (acti-
vated) conformation, the blue dot represents the closed (ligand bound) state.
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Figure 5.3. Aldose Reductase. Structure of human aldose reductase (PDB 2FZD) with
bound cofactor (NADP, red) and inhibitor (Tolrestat, orange). The loops labeled A and C
form parts of the Tolrestat binding site. Loop B interacts with the cofactor.

eigenvectors 1 and 2 mainly correspond to movements of the A-loop in AR, as
indicated in fig. 5.4, right panel. The projection of the ensembles onto these
eigenvectors (fig. 5.4, left) reveals the same flexibility along these eigenvectors
for the free AR (σfree1 = 5.15 nm, σfree2 = 4.34 nm) and the AR with bound
cofactor (σholo1 = 5.07 nm, σholo2 = 4.25 nm). In the third system, where also
Tolrestat is bound, the flexibility is reduced significantly due to interaction of
the ligand with the A and C-loop (σtol1 = 3.13 nm, σtol2 = 3.28 nm). Figure 5.5
compares the motions along the eigenvectors 3 and 4. The motions corresponding
to eigenvector 3 predominantly represent a movement of loop B, which is
involved in binding the cofactor. Here we observe high flexibility for the free AR
(σfree3 = 3.41 nm), whereas the fluctuation for the holo-form (σholo3 = 2.76 nm)
and the entire complex (σtol3 = 2.96 nm) along this mode is comparable.
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Figure 5.4. Projection of tCONCOORD ensembles of aldose reductase onto eigenvector
1 and 2 of a principal compnents analysis. The structures on the right represent the
predominant motions along these vectors. On the left, the 2-dimensional projection of
3 different ensembles is shown. The green dots represent the ensemble of the entire
complex, the red dots represent the holo form, and the black dots the apo form. The
projection shows the reduced flexibility of the binding site in the presence of Tolrestat.
Binding of NADP, however has no effect on these modes

Eigenvector 4 again reveals a clear difference between the holo form and the
complete complex systems. As the main component of this mode is a movement
of the C-loop, flexibility of this region is dramatically reduced by Tolrestat
(σtol4 = 1.30 nm), whilst free AR and holo AR display comparable and somewhat
higher flexibility along this eigenvector (σfree4 = 2.01 nm, σholo4 = 2.10 nm).

5.5 T4-Lysozyme

Bacteriophage T4-Lysozyme (T4L) is one of the rare cases where conformational
flexibility can be directly estimated from X-ray structures [99]. It has been crys-
tallized in many different conformational states shedding light on the dynamical
behavior. The main collective motion is a hinge-bending mode that is presumably
necessary to allow entrance and release of the substrate. This mode is described
by the first eigenvector of a principal components analysis, carried out on the ex-
perimental data. In order to predict open conformations when using the closed
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Figure 5.5. Projection of tCONCOORD ensembles of aldose reductase onto eigenvector
3 and 4 of a principal compnents analysis. The structure figures on the right represent
the predominant motions along these vectors. On the left, the 2-dimensional projection
of 3 different ensembles is shown. The green dots represent the ensemble of the entire
complex, the red dots represent the holo form and the black dots the apo form. The pro-
jection shows increased flexibility along eigenvector 3 if NADP is removed, because loop
B is predominantly involved in this motion. Eigenvector 4 mainly represents a movement
of loop C which leads to decreased flexibility for the ensemble with Tolrestat bound.

conformation as input for tCONCOORD, a correct detection of unstable hydro-
gen bonds is mandatory. As can be seen in fig. 5.6, a hydrogen bond that is
formed between Glu22 and Arg137 in the closed conformation (PDB 2LZM, left
structure) is not present in the open conformation (PDB 149L, right structure) and
the distance from the Cδ of Glu22 to Cζ of Arg137 changes from 3.8Å to more
than 18Å. The hydrogen bond analysis method of tCONCOORD correctly pre-
dicts the instability of this hydrogen bond as indicated in the picture in the central
upper panel of fig. 5.6. The blue sticks represent stable hydrogen bonds, whereas
red sticks mark those that display high probabilities of water attack. The latter
are not defined as constraints. Figure 5.6 also shows the projection of the exper-
imental structures, a tCONCOORD ensemble and 3 MD trajectories, which have
been started from different conformational states, onto the first two eigenvectors
obtained from a PCA carried out using the X-ray structures. It can be seen that the
tCONCOORD ensemble, started from a closed state (PDB 2LZM), also samples
open conformations. A closer look at the MD trajectories reveals that the longest
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Figure 5.6. T4-Lysozyme. The upper left panel shows the structure of the closed confor-
mation of T4L (PDB 2LZM). This structure has been used as input for tCONCOORD. The
picture in the middle shows the hydrogen bond stability analysis carried out by tCON-
COORD. Red marked hydrogen bonds, like the bond between GLU22 and ARG137, are
predicted to be unstable. The right picture shows the structure of an open conformation
of T4L (PDB 149L). Indeed, in this conformation this hydrogen bond is not present any-
more. The lower panel shows the result of a principal component analysis applied to the
experimental structures. The experimental structures (black), the tCONCOORD ensem-
ble (blue) and three MD trajectores (cyan, red and green) are projected on the first two
eigenvectors.

trajectory (cyan, 184ns) does not sample open conformations at all, whereas the
shorter simulations (red and green) cover more of the conformational space. The
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phase space density produced by the MD simulations indicates an energy barrier
between the closed and the open conformation, which is not overcome in the sim-
ulation represented by the cyan circles. The tCONCOORD sampling however, is
not affected by energy barriers and samples most of the space covered by the MD
trajectories. Although the tCONCOORD ensemble samples both open and closed
conformations it does not completely sample the conformational space sampled
by the MD simulations that started from open conformations. This is due to the
fact that tCONCOORD defines constraints from a single input structure, in this
particular case a closed conformation. If unstable interactions are not entirely de-
tected in the constraint definition process this can lead to an exclusion of regions
of the conformational space. The tCONCOORD ensemble furthermore samples
regions of the conformational space that are not visited by the MD simulations
and the experimental structures. This could be either due to an energy barrier that
is too high to be overcome by MD simulations within the accessible time-scale,
or the energy of this region of the conformational space is too high to be part of
the relevant conformational space.

5.6 Rigid and flexible regions in proteins

Functional studies on protein structures benefit significantly from information
about the flexibility and rigidity of protein parts. The calculation of root mean
square fluctuations (RMSF) from tCONCOORD ensembles can provide valuable
hints regarding these properties. To test the reliability of flexibility predictions
we chose two applications with completely different structure and different flexi-
bility properties, which have been experimentally determined. As a first testcase
we chose ubiquitin, a small 70 residue protein of which 46 X-ray structures are
available in the PDB (see Appendix 10.3). The RMSF determined from the X-
ray structures (fig. 5.7 red curve) shows that the protein is relatively rigid, with
the only noteworthy flexibility at the C-terminus and a loop around residue 8.
The RMSF profile calculated from the tCONCOORD ensemble generated using
PDB 1UBI [100] as input (fig. 5.7 black curve) represents the same flexibility
properties as the experimental data. Although the flexibility level of the tCON-
COORD ensemble is constantly above the X-ray ensemble (which may be due
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to the fact that most X-ray structures were solved at low temperatures), the over-
all picture of a rigid protein with flexible C-terminus is reproduced (correlation
coefficient 0.95). For comparison the RMSF of an ensemble generated with an
elastic network model [101,102] is shown (fig. 5.7 green curve). This fast and ef-
ficient method is routinely employed to predict protein flexibility and reproduces
the experimental fluctuations only slightly worse than tCONCOORD (correla-
tion coefficient 0.9). However, the structures from the tCONCOORD ensemble
all have reasonable geometry (bond lengths, angles, dihedrals, interatomic dis-
tances), which is not always the case for single structures derived from elastic
network models.

As second application we chose staphylococcal nuclease of which an NMR-

Figure 5.7. Ubiquitin. Root mean square fluctuation in ubiquitin.

ensemble [103] (PDB 1JOR) is available and provides information on the flexi-
bility of the protein. The RMSF calculated from the NMR ensemble (fig. 5.8,
red curve) shows that mainly one loop around residue 42 is very flexible. Further-
more, the loops around residues 80 and 110 show increased flexibility. The RMSF
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profile calculated from a tCONCOORD ensemble (fig. 5.8, black curve), using an
X-ray structure (PDB 1EY4) [104] as input, yields qualitatively the same picture.
The most flexible regions detected by the tCONCOORD ensemble are again in
good agreement with the experimental data (correlation coefficient 0.8) and again
slightly better than the elastic network model (green curve, correlation coefficient
0.78). The tCONCOORD ensemble predicts higher flexibility for some parts of
the protein than observed in the NMR-ensemble. This might be either due to inter-
actions tCONCOORD underestimates, or due to an overtight representation of the
NMR data which is sometimes caused by imposing time- and ensemble-averaged
experimental properties onto single structures during refinement [105–107].

Figure 5.8. Staphylococcal Nuclease. Root mean square fluctuation in staphylococcal
nuclease.
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5.7 Summary

In this chapter we reported a novel approach to accurately predict large conforma-
tional transitions in proteins and its application to selected systems with biological
relevance. Information about conformational transitions is often a prerequisite to
understand protein function. With tCONCOORD we provide an efficient simula-
tion approach to predict protein conformational transitions. The resulting ensem-
ble can be either used to study the essential degrees of freedom of a protein, to
identify flexible and rigid parts in a structure or to obtain different starting points
for other simulation protocols. Furthermore, incorporation of protein flexibility
by tCONCOORD ensembles, e.g in docking protocols, is expected to enhance the
efforts of structure based drug design.



Chapter 6

Molecular Modeling of Protein Parts

Homology modeling. This is the dark side of folding.

- Unknown

6.1 Introduction

In the previous chapter we have shown how structure ensembles generated by
tCONCOORD can be useful to gain insights into protein function, thereby focus-
ing on conformational flexibility of the complete protein. Many questions related
to protein function only concern restricted areas of protein structure, binding sites
for instance represent such a case. In tCONCOORD such a restricted sampling
can be carried out either by imposing additional constraints or keeping parts of
the protein fixed. In any case, a template structure is required for the constraint
definition.
In this chapter we show how geometry-based structure modeling of protein frag-
ments can be carried out without having a complete template. The first part fo-
cuses on loop modeling, which denotes the prediction of a protein fragment on the
surface. In the second part we show that structure modeling also can be applied to
reconstruct areas in the protein core which is often required in the field of protein
design.
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6.2 Loop Modeling

Loops often determine the functional specificity of a given protein framework
and contribute to active and binding sites and loop modeling is therefore an
intensively studied field of research and has been recently reviewed by Rossi
et. al. [108]. Experimental data however, e.g. X-ray crystallography does
not always provide structure models with all parts of the protein resolved at
atomic resolution. Flexible parts of proteins, particularly loops, are often not
resolved and hence, need to be modeled computationally. Basically two different
approaches are employed.
i) Physics-based methods. The modeling process is regarded as a mini folding
problem and loop conformation are produced by employing distance restraints
to force the loop to the anchor positions. Subsequent minimization, heating and
again minimization yields loop conformations with low energies.
ii) Knowledge-based methods. The missing loop is built using homology
modeling, thereby searching databases for fragments with the same sequence as
the missing loop.
tCONCOORD’s loop modeling approach can be regarded as a combination
of both. Geometrical constraints are derived from experimental data similar
to knowledge-based methods. However, a database of protein fragments with
known geometry is not required. Molecular geometry is a result of all forces
acting on atoms, thus incorporation of geometrical constraints yield energetically
meaningful configurations. tCONCOORD’s loop modeling approach is
applicable to loops of arbitrary size and sequence and can be used to generate
ensembles of loop configurations which can be used in subsequent refinement
or simulation protocols. tCONCOORD can build loops using geometrcial
constraints, thereby keeping the resolved part of the protein fixed. A script
(’do_loop.py’) has been developed to prepare the structure and the loop to be
inserted. The anchor positions, the last resolved protein residues, are attached to
the loop and their coordinates stored in a second input file. These coordinates
serve as target positions in the actual loop modeling process. Figure 6.1 shows an
application to a 12 residue loop. The anchor residues in the right are drawn as
ball and stick. The coordinates of these residues are used as target coordinates.
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Figure 6.1. Loop Modeling. Left: Structure of PDB 153L with removed residues 98-109.
The anchor residues 97 and 110 are shown as ball and stick representation. Right: Loop
conformations generated with tCONCOORD.

The right picture shows loops generated with tCONCOORD. The advantage of
this approach becomes evident if very long loops have to be modeled. Other
methods often use one anchor as starting position and try to find the other anchor
by exploring the torsional degrees of freedom of the backbone, which denotes
an exponential increase of computer time. tCONCOORD has been tested with
fragments up to 40 residues, thereby producing geometrical acceptable structures.
Loops generated by tCONCOORD can be used for subsequent optimizations,
e. g. for multiple copy simulations, simulated annealing or other simulation
protocols to find the best loop conformations. Moreover, knowlegde-based
methods can be combined with tCONCOORD, e. g. if a part of the loop should
adopt a certain type of secondary structure, this can be easily incorporated into
the constraint defintion. Figure 6.2 shows an application to a complex case. The
Bacteriophage Φ29 connector consists of 12 identical chains, forming a large
pore through which DNA is released. The loops which interact with the DNA
are not resolved in the X-ray structure, however, they are required for setting
up simulations to study the mechanism of this system. The missing fragments
are 16 residues long and have to adopt conformations that, i) do not form knots
whith each other, and ii) leave enough space for the DNA strand to be placed in
the center of the pore. Loops have been modeled using the monomeric chain and
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Figure 6.2. Complex loop modeling. Left: X-ray resolved structure of the Bacteriophage
Φ29 connector (PDB 1H5W). Right: The red loops were modeled with tCONCOORD.

Figure 6.3. Simulation system. Complete system of the Bacteriophage Φ29 connector
with modeled loops and DNA strand.

a DNA strand as input, thus forcing the loop to leave space for the DNA. From
the loop ensemble, configurations have been selected for subsequent simulations.
The complete system is shown in fig. 6.3.
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6.3 Protein Core Repacking

Manipulations of protein cores are of interest for industrial biotechnology since
they may stabilize or destabilize the fold, and thus affect the function of pro-
teins. Mutations in the densely packed protein core can cause reorientation of
sidechains, usually referred to as repacking. tCONCOORD can be used to gen-
erate such repacked structures for further use in other simulation protocols. For
tCONCOORD, generating structures with a mutated amino acid works exactly as
the loop modeling procedure, since it is basically the insertion of a short loop, not
at the surface but in the protein core. Merely the atoms around the inserted amino
acid should not be kept fixed to allow for reorientation.
A more complicated example is the insertion of disulfide bridges, which has been
carried out at the structure of F1-ATPase as part of a larger project in which ex-
perimental findings should be investigated by MD-simulations. F1-ATPase is an
intensively studied molecular motor which produces ATP. Figure 6.4A shows the
X-ray structure of F1-ATPase. During its functional cycle the central rotor (col-
ored red) rotates - driven by proton flow - inside the F1-part (green), thereby
sythesizing ATP.
Experimental studies on F1-ATPase [109] revealed that crosslinking the rotor with
the stator by disulfide bridges in central and bottom positions prevents rotation and
therefore ATP hydrolysis/synthesis. However, crosslinking at a top position of the
stator did not affect function. Molecular Dynamics studies of the system are ex-
pected to provide insights into these findings. In order to set up such simulation
systems, the disulfide bridges need to be inserted at different positions in the pro-
tein. Figure 6.4B shows the region of the system where one of the disulfide bridges
should be introduced. The two cysteine residues that form the disulfide bridge are
≈ 7.4 Å away from each other in the native X-ray structure. If these two cysteines
should form a bond this part of the protein core needs to be re-constructed, thereby
imposing a distance constraint on the two sulfur atoms. Figure 6.4D shows the
same region of the protein core in space fill represenation which examplifies the
dense atomic packing in the protein core. The sulfur-sulfur bond has been defined
manually in tdist. The positions of all atoms residing more than 10 Å away from
the to cysteines where kept fixed. Afterwards, the region has been reconstructed
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Figure 6.4. F1-ATPase. A: Crystal structure of F1-ATPase. B: Region where disulfid
bridge should be intoduced. C: Reconstructed region with disulfid bridge. D and E:
Space fill models of the region with and without disulfid bridge.

with tdisco, thereby generating structures with a disulfide bridge present between
the two cysteins (fig. 6.4C+E). The generated engineered structures are used to
study the structural fundamentals of the experimentally observed behaviour by
MD simulations.

6.4 Summary

Modeling of protein parts is frequently required in protein science. We have
shown that geometry-based methods can be applied to model loops of arbitrary
length which is a prerequisite for subsequent simulation or docking protocols. We
furthermore showed that tCONCOORD can be used to reconstruct protein parts,
thereby allowing for large structural rearrangements. These capabilities are ex-
pected to be useful for drug design and protein engineering studies.



Chapter 7

Molecular Modeling of Complexes

Um ein tadelloses Mitglied einer Schafherde zu sein, muß man vor allem ein

Schaf sein.

- Albert Einstein

7.1 Introduction

Non-covalent assemblies of molecules are encountered in almost every process
in living cells. Communication and control is conducted by small molecules
like neurotransmitters or hormones binding to proteins, proteins binding to other
proteins, or proteins binding to RNA and DNA. Our understanding of cell pro-
cesses is thus strongly coupled to the understanding of interactions of participating
molecules. Since each drug somehow influences signal cascades or enzymes by
specific binding to a protein, our ability to take purposeful influence on metabolic
function or malfunction requires knowledge about their structure. The prediction
of molecular assemblies is therefore an intensively studied field of research.
Finding or designing small molecules that specifically bind to a target protein is
the objective of structure-based drug design (SBDD). Despite experimental mile-
stones like combinatorial chemistry and high-throughput screening (HTS), the
number of chemically feasible, drug-like molecules, which has been estimated
to be in the order of 1060 − 10100 [110], prohibits exhaustive searching. Compu-
tational methods are desired to reduce the number of candidates for experimental
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testing. Such Virtual Screenings (VS) comprise several methodologies.
Docking small molecules (ligands) in macromolecular structures and estimating
the affinity of the resulting complex is a widely used method in structure-based
drug design and was pioneered in the early 1980s [111]. The process of molecular
docking consists of two steps.
i) The generation of a protein-ligand complex, and
ii) the scoring/estimation of the binding energy
A major shortcoming in current docking protocols is the neglect of protein flexi-
bility. Most docking programs treat the protein as rigid or only allow rotations of
selected side-chains, but do not account for backbone mobility.
A second widely used method is the comparison of compound libraries with a
pharmacophore model. Such a pharmacophore model is a simple geometric de-
scription of a molecule that is assumed complementary to the binding site of a
protein. It is either derived from known ligands or the protein structure. After-
wards, the molecules of the compound library are screened towards their ability
to adopt a conformation that fits the pharmacophore model.
Geometrical constraints can not only be used to generate structure ensembles, as
already shown in chap. 5, but also to generate protein-ligand complexes, thereby
allowing both, the protein and the ligand to be fully flexible. In contrast to the pre-
diction of protein flexibility, which requires one set of constraints, this approach
requires a geometric description of the protein, a geometric description of the lig-
and, and constraints that reflect the interaction between both. The first part, the
geometric description of the protein has been discussed in previous chapters and
applied to different structures. The functionality of generating structure ensem-
bles of arbitrary small molecules was implemented, which requires recognition of
hybridization based on the geometry of the input structure. In this chapter, we de-
scribe how geometry-based methods can be useful in structure-based drug design
and in generating protein-ligand and protein-protein complexes.
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7.2 Conformational Sampling of Small Molecules

One of the frequently employed methods in receptor-based drug design is the
calculation of a pharmacophore model from the receptor structure and its compar-
ison with large libraries of small molecules, thereby checking which ligands are
suitable to adopt a conformation complementary to the receptor structure. Thus,
a prior knowledge about possible ligand conformations is mandatory. Ususally
energy-based methods are employed to sample the conformational space of the
ligand. Afterwards a subset of conformations, corresponding to the minima on
the energy landscape, is used for comparison with the pharmacophore model. Al-
though a systematic search can be very effective for molecules with limited con-
formational flexibility, the exponential growth of the search space with the number
of rotatable bonds, as well as problems associated with ring closures, limit its util-
ity as a general conformational sampling technique.
Moreover, a recent report based on an examination of 510 crystal structures con-
cluded that bioactive conformations of ligands often have significantly higher en-
ergies than their corresponding energy minima [112]. HIV-1 protease inhibitors

Figure 7.1. HIV-1 protease inhibitors. Left picture: The macrocyclic pepidomimetic in-
hibitor HBB for HIV-1 protease (from PDB 1Z1H). The molecule contains a flexible ring
system involving 15 atoms, 10 freely rotatable bonds, 2 peptide bonds with restricted flex-
ibility and a planar aromatic group making generation of conformers with torsion-based
methods extremely difficult. The right picture shows a the inhibitor MK1 from PDB 1HSG.
In the bound state, the inhibitor adopts a very extended conformation with few intra-
molecular interactions, hence a energetically unfavoured conformation
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are paricularly challenging cases. Figure 7.1 shows two inhibitors of HIV-1 pro-
tease. The macrocyclic peptidomimetic inhibitor HBB from the structure with
PDB identifier 1Z1H (left) contains a flexible ring system involving 15 atoms,
10 freely rotatable bonds, 2 peptide bonds with restricted flexibility and a planar
aromatic group. This renders generation of conformers with torsion-based meth-
ods extremely challenging. A second known inhibitor (MK1 from PDB 1HSG)
is shown in the right picture of fig. 7.1. In the bound state, the inhibitor adopts
a very extended conformation with few intra-molecular interactions, hence a en-
ergetically unfavoured conformation. In a Virtual Screening (VS) these inhibitors
would probably not have been detected as potential binders due to either having
problems to generate conformers or due to not taking in account extended confor-
mations that have higher energies.
tCONCOORD’s ability to generate conformational ensembles of arbitrary small
molecules may alleviate this obstacle. The generation of several, say 100, con-
formations of a drug-like molecule, which usually represents a good sampling of
the conformational space, takes only a few seconds, hence making it applicable
for large compound libraries. The generated ensemble contains geometrically ac-
cessible conformations, which not necessarily correspond to a minimum of the
potential energy but may represent conformations the molecule adopts upon bind-
ing. Such compound libraries may be used for subsequent docking studies or
experimental testing. A first step in Virtual Screening is the derivation of a phar-
macophore model. Such a model represents a rough geometric description of
molecules that are believed to bind to the target protein. In a Virtual Screening
approach pharmacophore models are derived either from the receptor structures
or from known binders, for instance two hydrogen bond donor positions and one
acceptor position that form a triangle with defined geometry. Such models can be
derived using tCONCOORD’s tpharm program, which calculates preferred posi-
tions for certain atoms from the receptor structure. Figure 7.2 (left, upper) shows
the structure of the serine protease gamma chemotrypsin (PDB 8GCH) with a
bound tri-peptide. The pharmacophore model calculated with tpharm is visual-
ized with a red mesh for preferred acceptor positions and a blue mesh for pre-
ferred donor positions. Figure 7.2 (right, upper) shows that the tri-peptide adopts
a conformation such that donor and acceptor atoms reside in the preferred regions.
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Figure 7.2. Pharmacophore model. The upper left picture shows the serine protease
gamma chemotrypsin with a bound tri-peptide (PDB 8GCH). In the upper right picture the
binding site is shown. The blue mesh represents preferred postions for hydrogen bond
donors, whereas the red mesh highlights areas where hydrogen bond acceptors are pre-
ferred. The preferred positions for donor and acceptor atoms have been calculated using
the tCONCOORD program tpharm using the protein structure with removed ligand. In the
upper right picture it can be seen that the conformation of the tri-peptide fits nicely to the
calculated areas. The calculated preferred areas can be transferred to pharmacophore
model using geometrical constraints (lower picture).

A minimum requirement for a potential binder for this protein should therefore be
the satisfaction of the pharmacophore model, meaning it must have the ability to
adopt a conformation in which two acceptor positions and one donor position sat-
isfy the spatial constraints.
In order two identify such molecules a two step approach is used. First, struc-
ture ensembles of a database of drug-like molecules are generated using the tdist
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and tdisco programs. Afterwards this data is analyzed using the program tsearch

which compares the structure ensembles with the pharmacophore model. Those
molecules which satisfy the pharmacophore model (≈ 5% of the screened library)
can used for subsequent filtering or for docking studies.

7.3 Protein-Ligand Complexes

Obtaining high-resolution structures from protein-ligand complexes is a difficult
task and a major bottleneck in structure-based drug design [113,114]. Once a tar-
get protein has been crystallized successfully, protein-ligand complexes are tried
to be obtained by soaking ligands into the crystal, which often causes breaking
of the crystal. Also co-crystallization of protein and ligand often requires com-
pletely different conditions as crystallizing the protein alone. The structure of

Figure 7.3. Prediction of Holo-Structures. Left panel: X-ray structure of the binding site
of DNA beta-glucosyltransferase bound to uridine-5 -diphosphate (PDB 1JG6). Middle
panel: Holo-structure (red) together with the apo-structure (PDB 1JEJ). Arg191 moves
as much as 9Å upon ligand binding. Right panel: Overlay of the holo-X-ray structure
(brown) and a docked pose generated by tdock (green). The tdock simulation started
from the apo X-ray structure (green in the middle panel).

unbound proteins often differs significantly from the ligand bound conformation,
rendering them useless for docking studies and other receptor-based drug de-
sign methods [8]. Generating protein conformations of potential ligand bound
states is therefore of great interest in the field of structure-based drug design.
Geometry-based structure prediction is a helpful instrument to address this ques-
tion. In tCONCOORD, two different approaches can be employed. The first



7.3. PROTEIN-LIGAND COMPLEXES 97

method is expected to be helpful for cases where the apo-structure of the protein
is known as well as a binder, the natural substrate for instance. Based on few
known interactions between the protein and the ligand, either from mutational
studies or NMR-experiments, a newly developed program termed tdock gener-
ates structures of protein-ligand complexes, thereby allowing both, the ligand and
the receptor to be fully flexible. Figure 7.3 shows an application to DNA beta-
glucosyltransferase. The left panel shows the X-ray structure of the binding site
of DNA beta-glucosyltransferase bound to uridine-5 -diphosphate (PDB 1JG6).
The middle panel shows this X-ray structure (in red) together with the apo-X-
ray structure (in green, PDB 1JEJ), clearly illustrating the conformational change
upon binding. The loop including Arg191 moves as much as 9 Å upon binding the
ligand. Using the apo conformation and the ligand together with geometrical con-
straints between both as input for tdock structures are obtained (green) which re-
produce the experimentally determined binding mode (brown) shown in the over-
lay in the right panel of fig. 7.3. The generated protein-ligand complexes can be
subjected to molecular dynamics simulation or structure refinement protocols. A
second approach is useful for cases where no information about ligand binding is
available. Upon ligand binding, many proteins undergo conformational changes,
mostly referred to as induced fit. With the example of calmodulin in chapter 5 we
already showed that tCONCOORD ensembles started from unbound conforma-
tions contain conformations of ligand bound states. Current docking methods fail
to rank ligand libraries correctly [115], however, they reproduce experimentally
observed binding modes in most cases. Hence, docking a known ligand into an en-
semble of protein structures should produce protein-ligand complexes close to the
experimentally determined if the protein adopts a conformation close to the ligand
bound state. To test this hypothesis, we generated an ensemble from guanlyate
kinase, which undergoes a distinct induced fit motion upon binding guanosine-
5’-monophosphate. The ensemble, started from the unbound conformation (PDB
1EX6), contains structures close to the experimentally determined ligand bound
state. Subsequent docking of the ligand guanosine-5’-monophosphate into such a
structure reveals a binding mode close to the experimentally determined structure
(fig. 7.5).
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Figure 7.4. Guanylate Kinase. A and B show the structure of guanylate kinase bound to
the ligand guanosine-5’-monophosphate (PDB 1EX7). C and D show the structure of the
apo conformation (PDB 1EX6). Upon binding the ligand, the red colored domain closes
over the ligand. The RMSD of this domain between bound and unbound state is ≈ 8 Å.

Figure 7.5. Guanylate Kinase with Ligand. The experimentally determined structure of
guanylate kinase with bound ligand (PDB 1EX7) is shown in blue. The protein-ligand
complex, obtained by docking the ligand into a structure from a tCONCOORD ensemble,
using the unbound conformation as input, is shown in green.
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7.4 Protein-Protein Complexes

Conformational sampling of molecular assemblies is not limited to protein-ligand
systems. As part of a larger project, which addresses questions related to
potassium channel blocking by scorpion toxins, tCONCOORD has been used to
study conformational flexibility of a protein-protein assembly. Scorpion toxins,
polypeptides of 35-40 amino acids length, bind to the extracellular entrance
of potassium channels and efficiently block ion conduction [116–118]. Related
peptides constitute major toxic agents in the venoms of spiders, snakes, and sea
anemones. The interactions between peptidic toxins and potassium channels
range among the strongest of all known protein-protein complexes [118].
Kaliotoxin (KTX), a 38-residue peptide, contains an α-helix and two antiparallel
β-strands rigidified by three disulfide bonds, and specifically blocks the
voltage-gated K+ channel Kv1.3. KTX binds to a KcsA-Kv1.3 chimera with
high specificity and a very high affinity of 30 pM [117, 119]. Although a large
number of experimental and theoretical studies have been carried out to address
the interaction between toxin peptides and potassium channels, atomic structures
of these tight complexes are not available so far. The most detailed information
on the structure of the complex comes from computational studies [120], double
mutation binding cycles [121], and a recent solid state-NMR (ssNMR) study by
Lange et al. [119]. The ssNMR experiment revealed that KTX binding to the
KcsA-Kv1.3 chimera changes the conformational states of both KTX and the
channel. Based on the assessment of changes in the chemical shift of residues
from both kaliotoxin and the K+ channel chimera upon complex formation,
it was shown that toxin binding does not simply plug the channel entrance but
is also accompanied by a conformational change in the selectivity filter of the
channel [119]. The most significant changes of backbone chemical shifts were
observed in the region of the extracellular selectivity filter entrance, i.e. at
residues Gly77, Gly79, and especially at Tyr78. Among sidechain signals, the
most substantial chemical shift changes were seen next to the selectivity filter at
Glu71 and Asp80. However, the exact molecular mechanism underlying this set
of chemical shift changes remained elusive. Another important question arising
from the ssNMR study of the KTX:KcsA-Kv1.3 complex [119] was why the
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Figure 7.6. Kaliotoxin binding. The upper panel shows a side and top view of KTX
(red) bound to the potassium channel. This configuration has been derived from MD-
simulations. The lower panel shows conformations generated with tdock. KTX adopts a
variety of conformations that were stable in subsequent MD-simulations.

symmetry between the four channel subunits was kept intact in spite of tight
binding of the nonsymmetric toxin peptide. This result cannot be explained by
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averaging out the effects induced by toxin binding over the four subunits, since a
contact between the asymmetric KTX and the single channel, stable during the
timescale of the NMR experiment, should be expected to lead to an asymmetric
signal.
An intriguing observation made in the ssNMR experiment, therefore, was the
retention of the four-fold symmetry of the channel after association of the
asymmetric toxin. KTX binding was expected to induce anisotropic chemical
shift changes in the channel tetramer due to its non-symmetric shape. A possible
explanation is structural heterogeneity in the bound states, i.e. an ensemble of
tight structures formed after binding of KTX to the channel. Such an ensemble
would average out local breaches of symmetry in the tetramer.
To test this hypothesis, we produced an ensemble of complexes from our MD
structural model using tCONCOORD (fig. 7.6). As constraints, we assumed
that KTX Lys27 is inserted into the selectivity filter and that the sidechains of
Asp80 and Glu71 are charged, as seen in the MD simulations. This resulted in
a heterogenous ensemble of bound configurations, all equally geometrically
feasible. We tested the stability of ten of these structural models in 10-ns
molecular dynamics simulations, which showed a wide variation in the position
and orientation KTX adopts in the complex. The large majority of the models
remained stably bound in the simulations (fig. 7.6). It is worth noting that
spontaneous backbone flips of Tyr78 were observed in these models, i.e. they are
consistent with ssNMR. This result indicates that an ensemble of toxin-bound
states, rather than a single complexed structure, may in fact be formed by
KTX binding to KcsA-Kv1.3. The conformational changes triggered by KTX
association at Asp80 and Glu71 and the region between Gly77 and Gly79
of the selectivity filter may be sufficient to allow tight binding of KTX and
channel blockade by Lys27. Additionally, binding heterogeneity may increase
the affinity of KTX toward KcsA-Kv1.3, by entropic stabilization. Heterogeneity
of the complexes might also be an explanation for the fact that crystallization of
toxin-channel complexes has not been achieved so far.
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7.5 Summary

The prediction of molecular assemblies, protein-ligand and protein-protein com-
plexes, is of tremendous importance for understanding function of biological pro-
cesses. The treatment of protein flexibility in protein-ligand and protein-protein
docking, however, is still in its infancy. Fast and efficient conformational sam-
pling with geometry-based methods overcomes current limitations and opens pos-
sibilities for the development of new simulation protocols. In this chapter we
have shown first steps towards incorporation of geometry-based molecular mod-
eling in structure-based drug design and the prediction of molecular assemblies.
Geometry-based conformational sampling can be beneficial for different fields
of interest from virtual screening of ligand libraries, prediction of ligand bound
conformations from unboud conformations to generation of protein-protein com-
plexes. Especially further development of simulation protocols that enable the
prediction of ligand bound conformations from apo structures is expected to alle-
viate current obstacles in receptor-based drug design.
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Conclusions

Man kann nicht die Fackel der Wahrheit durch die Menschenmenge tragen,

ohne die Bärte zu versengen.

- Georg Christoph Lichtenberg

The fast and accurate prediction of protein flexibility is one of the major chal-
lenges in protein science. Since information about protein flexibility is frequently
not experimentally accessible, computational methods are often the only way to
bridge the gap between structure, motion and function. In this thesis the tCON-
COORD program is developed and applied to diverse fields of protein research.
The methods rests on a the translation of structural data into geometrical con-
straints on the basis of which structures are reconstructed subsequently. Extensive
parametrization was carried out using experimental data, thereby deriving a novel
set of atomic radii. These radii were used to study packing properties in protein
structures, revealing that the distance distribution of atomic contacts in proteins
is exclusively resolution dependent. These findings are expected to enhance pro-
tein structure prediction, structure refinement and quality assessment of protein
strutcures.
A thorough analysis of interactions in a given protein structure is the basis for
defining geometrical constraints. A novel method to estimate the stability of hy-
drogen bonds was developed and implemented in tCONCOORD. This method
allows to predict conformational transitions in proteins which has been demon-
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strated at several proteins with diverse folds. The induced fit motion that adenly-
ate kinase undergoes upon ligand binding was correctly predicted in both direc-
tions, when starting from a closed and from an open conformation. Also the large
conformational transition of calmodulin, which is associated with partial unfold-
ing and where the activated and ligand bound conformations differ as much as
15 Å RMSD, was faithfully reproduced. The ligand bound state was reached with
2.8 Å RMSD when using the activated conformation as input.
The ability to model loops was also implemented in tCONCOORD. Based on ge-
ometrical considerations, loop conformations of arbitrary length can be built. The
method was applied to model missing loops in the dodecameric bacteriophage
Φ29 connector to allow for subsequent molecular dynamics simulations. Fur-
thermore, tCONCOORD was used to partly reconstruct the core of F1-ATPase,
thereby introducing disulfide bridges which required extensive repacking.
In structure-based drug design protein conformational flexibility has been out-
lined to be a major challenge. The newly implemented capability to handle ar-
bitrary small molecules with tCONCOORD is a first step towards establishing
geometry-based sampling in this field. We demonstrated that tCONCOORD can
be used for screening compound libraries and to extract those compounds that fit
a given pharmacophore model. Even more encouraging is that protein structure
ensembles that have been generated with tCONCOORD using an unbound struc-
ture as input often sample conformations that correspond to ligand bound states.
At the example of guanylate kinase we showed that docking a known ligand into
such a structure correctly identifies the binding site and that the proposed binding
mode is comparable to the experimentally determined one. A different approach
of finding induced fit structures with tCONCOORD can be employed if infor-
mation about the binding mode is available, e. g. from experimental data. In
such a case, the program tdock can be used to generate ligand bound protein con-
formations that were shown to be close to the experimentally observed structure.
With the same methodology, protein-protein complexes in different conformations
were generated to study scorpion toxin binding to a potassium channel. Many of
these conformations remained stable in subsequent molecular dynamics simula-
tions suggesting binding heterogenity that provides a plausible interpretation of
experimental findings.
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Outlook

Geometry-based methods, based on the CONCOORD algorithm, are useful tools
for protein science. The present work provides an overview on the different fields
of protein research where geometry-based methods have been shown to be ben-
eficial so far. Future developments could go into diverse directions. Extensive
parametrization of nucleic acids to predict conformational flexibility of DNA,
RNA and nucleic acid/protein complexes is an obvious extension. The most
promising field of application however, is structure-based drug design where the
neglect of protein flexibility in todays established methods is a serious limitation.
Both in predicting ligand bound conformations from unbound states and towards
development of a fully flexible docking protocol, geometry-based methods are ex-
pected to overcome this current limitation. tCONCOORD can be easily extended
and combined with other simulation methods. Incorporation of an energy func-
tion, e.g. ROSETTA [122,123] or PFF02 [124] should further enhance the quality
of generated structure ensembles.
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steinzeitlichen Selektionsdrucks stehen exemplarisch für die schöpferische
Kraft (im streng nicht-kreationistischen Sinne), die sich hinter der Tür zu Büro
E33 verbirgt. Viel Vergnügen bereitete mir auch immer Maik’s Verhältnis
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Chapter 10

Appendix

10.1 Protein Structures at Different Levels of Reso-
lution

≤ 1.2Å
1a6g 1a6k 1a6m 1a6n 1amm 1b9o 1bkr 1bz6 1bzp 1bzr 1d2u 1d4t
1ds1 1ea7 1exr 1f86 1f98 1f9i 1gmx 1gu2 1gyo 1h4a 1h4x 1i3h
1i8o 1ifc 1ixg 1ixh 1j0o 1j0p 1j98 1jbc 1jbe 1jet 1jf8 1jm1
1jse 1k5n 1koi 1kt6 1kwn 1lf7 1lqt 1ls1 1luq 1m2d 1mc2 1mn8
1mwq 1naz 1nls 1nwz 1o7i 1obo 1odv 1oe3 1ot6 1ot9 1ota 1otb
1p5f 1pm1 1psr 1q35 1r2q 1rg8 1rqw 1rw1 1rwy 1rxj 1ryo 1sau
1sf3 1sf5 1sfd 1sfh 1soa 1swu 1sxw 1sxx 1sxy 1sy0 1sy1 1sy2
1sy3 1t1e 1t1g 1tu9 1ug6 1ugu 1uzv 1v8h 1vk1 1vyr 1x8n 1x8o

1.3Å
1amm 1atg 1bxa 1bz6 1ctq 1e29 1f41 1f4p 1fcy 1flm 1g61 1gnl
1gnt 1gyo 1gzt 1hb2 1ikj 1ird 1j2r 1jbc 1jet 1jeu 1jev 1jhg
1jr0 1jw8 1kmt 1kt7 1kwn 1kyf 1lq9 1lxz 1lzl 1m2b 1m70 1mf7
1mjn 1ml7 1obn 1obo 1ooh 1oqv 1otd 1oxc 1qau 1qks 1r29 1rro
1rtt 1ryo 1s2p 1t1i 1tjy 1tu9 1ugu 1usc 1usf 1v70 1v8h 1xub

1.5Å
1abs 1bab 1bvc 1bz0 1c1l 1ccr 1d7p 1do1 1e30 1e87 1elk 1f46
1fl0 1flp 1g7n 1gd0 1ggz 1gmu 1hbg 1hd2 1i0r 1i54 1icm 1ike
1j3w 1jr8 1jzf 1jzl 1kr7 1l7l 1lfm 1lmi 1ln4 1m2a 1mbc 1mg4
1n0r 1na5 1noa 1np4 1ntv 1o3y 1o7u 1o85 1oaq 1ocy 1pee 1pmy
1pvm 1q1f 1qto 1rat 1rhb 1rnc 1roc 1sh8 1shu 1st9 1szh 1thb
1tp6 1tua 1uxa 1vl7 1whi 1x91 1xb3 1xrk 1y2t 2arc 2bfq 2hbg
2mbw 2mcm 2rat 2sns 3ezm 3hbi 3rat 4cpv 4rat 5cyt 5rat 6rat
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1.8Å
1a01 1a3n 1a3o 1a7d 1a7e 1aaj 1ag9 1aiz 1akt 1atz 1azc 1azl
1b0w 1b1i 1bbh 1bd8 1beb 1bj7 1bje 1bwh 1bwi 1bze 1c02 1c44
1c7b 1c7c 1c7d 1c8w 1c9x 1cbm 1cbs 1cgo 1ch2 1ch9 1cj6 1cj7
1cj8 1cj9 1cjw 1ckc 1ckd 1ckf 1clm 1cmb 1cmc 1co8 1dly 1dqe
1dt1 1duz 1dxt 1dxu 1dxv 1e4h 1e5a 1eef 1ekg 1enj 1eo6 1euj
1evh 1f1m 1f63 1fao 1fd7 1fhj 1fld 1fnl 1g8e 1gbu 1gdi 1gdk
1gdl 1gn0 1gqa 1h8u 1hn2 1huq 1hxl 1hxz 1i4y 1i53 1i7u 1i8k
1ibe 1ijt 1ilk 1iq4 1iu1 1j22 1jah 1jai 1jie 1jyh 1jzj 1k2e
1k6k 1kdi 1keb 1kgi 1kl5 1kn3 1kpe 1kzb 1kze 1lav 1law 1lb6
1lds 1len 1lfa 1lhu 1m6m 1mfi 1mlk 1mlm 1mlo 1mtk 1mwd 1my5
1mz4 1n6o 1n71 1n8u 1n9f 1n9h 1nbc 1nco 1ncx 1ncz 1no5 1o1l
1o1o 1o1p 1ofj 1ofk 1oqc 1ow3 1oxj 1p90 1pc5 1pgv 1pxd 1py9
1pza 1pzb 1q5z 1qah 1qi8 1qpw 1qy0 1r1y 1r9h 1rbr 1rbs 1rbt
1rbu 1rbv 1rdi 1rdj 1rdk 1rdn 1rds 1rg0 1rha 1rlh 1rtm 1rtx
1rzy 1s7i 1sdk 1sdl 1swm 1tf1 1tr0 1tt6 1tyr 1u29 1uhi 1ulk
1uy1 1v2z 1vfa 1vfb 1wad 1wba 1wej 1wou 1wsb 1xau 1xt6 1xxo
1ye2 1ytt 2aae 2aza 2bm3 2cdv 2che 2chf 2cmm 2eif 2fax 2fcr
2flv 2fox 2fvx 2lal 2mgd 2mgf 2mgg 2myc 2myd 2pab 2rnt 2spc

2.0Å
1a00 1a0z 1a1x 1a2j 1a4f 1a6u 1a78 1a7n 1a7p 1a7q 1a7r 1a86
1aan 1acf 1afa 1afd 1aiu 1akv 1aly 1amx 1av5 1azi 1b1e 1b1j
1b8c 1b9a 1bch 1bff 1bft 1bhd 1bht 1bm7 1bm9 1bmz 1bre 1btn
1bv1 1byr 1bys 1bz8 1c3k 1c3m 1c7f 1c9h 1cdy 1cgq 1ch3 1chp
1ckh 1cp0 1cs3 1czy 1d00 1d01 1d0a 1d2o 1d2z 1d9c 1dck 1dd3
1dm9 1do6 1dpf 1dqk 1dqt 1duo 1dvo 1dvq 1dvs 1dvx 1dy2 1e3v
1e5y 1eei 1enk 1esl 1euo 1evx 1ezl 1f7s 1f9a 1fcg 1fhg 1fil
1flv 1fn0 1fso 1ftg 1fzv 1g17 1g1k 1g73 1g8z 1gbv 1gcs 1gcv
1gd7 1gmb 1gob 1gr3 1gxj 1h52 1h53 1hby 1he1 1hmd 1hmo 1hy2
1i04 1i05 1i1b 1i1o 1i4m 1i55 1iii 1iik 1iob 1is5 1iul 1iz6
1jb2 1jlm 1jra 1jvl 1jwg 1jyj 1k1k 1k5u 1kjt 1knc 1kpa 1kpb
1kuj 1kwv 1kwx 1kwy 1kx0 1kxg 1l2w 1l5b 1l5z 1lgp 1lh1 1lh2
1lh3 1lh5 1lh6 1lh7 1lho 1lhs 1lht 1lin 1ljt 1lki 1lob 1loc
1lpj 1m4r 1m7b 1mbi 1mbn 1md0 1mff 1mlf 1mlg 1mlh 1mlj 1mln
1mlq 1mlr 1moc 1mod 1mp9 1mq9 1msc 1mx4 1mx6 1myi 1n0s 1n2d
1np1 1np8 1npl 1npu 1nxv 1o1k 1ob9 1obp 1obu 1oc3 1ocw 1ogc
1oqw 1oux 1ox3 1p1l 1p27 1p4p 1pbv 1pi1 1pne 1py0 1q2y 1q5h
1q5u 1q5x 1qc5 1qhe 1qoi 1qsr 1qy7 1r7l 1rcd 1rci 1rei 1rfj
1rgl 1ris 1rj4 1rkb 1rl6 1row 1rsm 1rte 1rtp 1s3p 1sct 1sgm
1sko 1spe 1sra 1swk 1swp 1swt 1tha 1tjj 1tjl 1tn3 1tou 1tow
1ts3 1tvq 1tw4 1twu 1u90 1urv 1uxe 1v4u 1v74 1vc1 1vlg 1vxa
1vxb 1wdc 1wdj 1wmy 1wpb 1xb8 1xd5 1xd6 1xiz 1xtq 1xz4 1y2f
1y45 1y4f 1yf9 1yh2 1yih 1ylk 1yma 1ymc 1yqb 1zib 1zon 1zop
21bi 2afg 2ang 2c2c 2clr 2cym 2e2c 2fam 2gal 2hbe 2i1b 2ifb
2lh1 2lh2 2lh3 2lh5 2lh6 2lh7 2lig 2mgb 2mgh 2mgi 2mgj 2mgk
2mgl 2mhb 2mya 2np1 2rox 2scp 2tir 2tn4 2try 31bi 3cbs 3mba

2.2Å
1a0k 1aa0 1aj9 1ao3 1aqe 1awi 1azb 1b1u 1b78 1b7m 1bfa 1bfc
1bfs 1bin 1ca4 1cbq 1cdl 1cf0 1ckg 1cpw 1cqk 1cxa 1cxz 1d1j
1dqo 1dy0 1dy1 1dyn 1ecw 1eje 1eni 1ep8 1ete 1etp 1f6r 1f6s
1fdb 1few 1fga 1ftp 1fvc 1fy9 1fya 1g43 1gao 1gjy 1h6y 1hbh
1hda 1hdb 1hkf 1hro 1i1y 1i7r 1i8n 1ihk 1ils 1is1 1ise 1iwn
1j7s 1joc 1jot 1jpg 1juo 1jv5 1jyb 1jzk 1jzn 1k7u 1ked 1kj1
1kpc 1l8d 1lcw 1loa 1lt6 1lta 1mnj 1mnk 1mob 1n1q 1nq3 1nzr
1odd 1of2 1oxn 1p4u 1pbo 1pcz 1pug 1pxu 1q21 1qew 1qjh 1qsd
1qsn 1qua 1qvc 1r28 1r5p 1r6y 1rcg 1rpf 1rph 1rr7 1s9w 1sce
1si4 1sl7 1smt 1sql 1t1n 1tk6 1tkp 1tp0 1tul 1ufh 1ulg 1vi8
1vmo 1wrp 1xdd 1xwa 1xwb 1y0g 1y5k 1yca 1ycs 1yh9 1yn5 2dhn
2hbd 2hbf 2hhd 2mga 2mjp 2q21 2roy 2tsa 3cln 3tmy 421p 4cln

2.4Å
1a2b 1ap2 1azr 1bai 1bii 1bjf 1bwu 1c4p 1czv 1dd4 1e96 1en7
1f99 1fb8 1fgb 1fue 1fyr 1g1q 1gx8 1gyw 1h3q 1hul 1i1r 1i5i
1i8i 1i9h 1id1 1j4t 1j9g 1jhl 1job 1joe 1jrk 1k7t 1l9b 1lb5
1lxd 1mup 1n1i 1nbw 1nt3 1oek 1pdk 1qmt 1rcc 1rce 1rd4 1s3l
1squ 1sys 1u6m 1u74 1ugy 1umr 1uoj 1ury 1uvy 1ux9 1v5h 1vyg

2.5Å
155c 1a1r 1a4r 1a9e 1adw 1alb 1b0g 1b0o 1b4a 1b86 1b88 1btg
1c2r 1c3a 1ca7 1cdj 1ch4 1cje 1d0j 1d8l 1dp8 1dtp 1e4j 1ewa
1ewj 1f4o 1fdl 1fl9 1frx 1fx3 1g96 1gke 1gli 1gnq 1gp9 1hhi
1hhj 1hhk 1hlb 1htl 1htm 1hup 1ie4 1ies 1iiu 1itb 1ith 1iuh
1ixx 1j0r 1j42 1jaf 1ji5 1jnp 1jsg 1jy8 1l9g 1le4 1ljm 1lzw
1mbs 1mi7 1mpu 1mqa 1msp 1nk1 1npb 1nwi 1om9 1onl 1oqe 1ouu
1p1g 1p6p 1pbx 1pf5 1pl5 1pmb 1prq 1psp 1pvh 1pyb 1qd0 1qhh
1qil 1qpf 1r14 1r5v 1rtb 1rvw 1s3m 1s3n 1s9x 1sj7 1szb 1toq
1u5o 1uiz 1vhi 1vpf 1wq1 1wwa 1x8s 1xbn 1ye0 2a2u 2acg 2ans
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2.6Å
1aby 1ahn 1azn 1b1b 1b6e 1baj 1bj3 1bql 1byw 1cav 1caw 1cax
1cd8 1cqp 1div 1doa 1dp9 1dql 1dxm 1eh1 1f33 1ffp 1h0x 1hac
1hhg 1hik 1hrs 1ice 1jgc 1jnu 1jts 1jtz 1k2f 1kac 1lfq 1lft
1lkt 1ltb 1mif 1mst 1n1l 1nih 1nob 1oqd 1q8m 1qq2 1rin 1rjz
1s1c 1s1g 1stp 1tbp 1tdq 1tnf 1ulc 1vgf 1viv 1ycr 1yhr 2bjy

2.8Å
1ar2 1asx 1avo 1b0v 1baw 1bmp 1bq7 1bz9 1cid 1e0r 1f6l 1fe3
1gfw 1gmv 1h0y 1h2p 1hfv 1hng 1htn 1hv4 1i1f 1i7t 1im9 1j95
1jvm 1k8f 1kd7 1knk 1kx8 1lfv 1m4m 1mfr 1n0f 1n0g 1n9o 1nlx
1nwn 1oxz 1ozb 1pkp 1r3k 1rdd 1scm 1sk3 1uh0 1uh1 1uvh 1v4l
1xni 1xts 1y1l 1yen 1yo7 2ara 2cbr 2dhb 2mm1 2ms2 2pgh 2snv

3.0Å
1cjq 1cmy 1cry 1dcm 1dov 1efx 1fbi 1gff 1gxk 1h9v 1hbs 1hhh
1hij 1i8l 1ict 1ij9 1jh5 1kq5 1l8i 1le2 1lem 1mfh 1mva 1mvb
1niv 1ny7 1qb3 1rfb 1s0h 1tp8 1uot 1vcp 1vf5 1wat 1ypo 1zoo

NMR
1a57 1ajw 1ak6 1bbn 1blr 1bsh 1c8p 1cfc 1ck2 1ck9 1cn7 1cz4
1dc2 1e3y 1e41 1egx 1eiw 1eo1 1eza 1ezo 1f2h 1f3y 1fmm 1fo7
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10.2 Protein Structures Used for Hydrogen Bond
Statistics

Resolution ≤ 1.6Å
1A6G 1A6K 1A6M 1A6N 1A7S 1AGY 1B6G 1B9O 1BKR 1BS9 1BXO 1BYI
1BZP 1BZR 1C7K 1CEX 1CXQ 1CZB 1D2U 1D4T 1DS1 1DY5 1EA7 1EB6
1EXR 1F86 1F98 1F9I 1F9Y 1FN8 1FY4 1FY5 1G4I 1G66 1GCI 1GDN
1GDQ 1GDU 1GMX 1GOK 1GQV 1GU2 1GVK 1GVT 1GVU 1GVV 1GVW 1GVX
1GWM 1H11 1H2J 1H4A 1H4X 1H5V 1H97 1HDO 1HF6 1HJ8 1HJ9 1I1W
1I1X 1I40 1I8O 1IC6 1IEE 1IFC 1IXG 1IXH 1J0O 1J0P 1JBC 1JBE
1JF8 1JK3 1JM1 1JSE 1JSF 1K2A 1K4I 1K4O 1K4P 1K5C 1K6A 1K7C
1KCD 1KF2 1KF3 1KF4 1KF5 1KF7 1KF8 1KMS 1KMV 1KNG 1KOI 1KOU
1KQ6 1KT6 1L3K 1LJN 1LKK 1LKS 1LQP 1LS1 1LU4 1LUG 1LUQ 1LWB
1M2D 1M40 1M9Z 1MC2 1MFM 1MJ5 1MOO 1MWQ 1N55 1N9B 1NAZ 1NKI
1NLS 1NNF 1NQJ 1NWZ 1O8S 1OCQ 1OD3 1OD8 1ODV 1OE2 1OE3 1OEW
1OEX 1OH0 1ONG 1OT9 1OTA 1OTB 1OXD 1OXE 1P5F 1P6O 1P7V 1P7W
1PJX 1PM1 1PMH 1PQ5 1PQ7 1PQ8 1PSR 1Q0E 1QJ4 1QNJ 1QTW 1QV0
1QV1 1QXY 1R0R 1R2Q 1RG8 1RQW 1RTQ 1RW1 1RWY 1S0Q 1S0R 1SAU
1SEN 1SF3 1SF5 1SFD 1SFH 1SFS 1SL9 1SSX 1SWY 1SWZ 1SX2 1SX7
1SXW 1SXX 1SXY 1SY0 1SY1 1SY2 1SY3 1T1G 1T2D 1T3Y 1TJ9 1TJM
1TJX 1TK4 1TKJ 1TQG 1TT8 1U7R 1UFY 1UNQ 1UOW 1UOZ 1US0 1UTN
1UTO 1UTQ 1UZ3 1V0K 1V0L 1V0M 1V0N 1V7S 1V7T 1VL9 1VZI 1W0N
1W3L 1W66 1WKQ 1WTN 1X6X 1X6Z 1X8N 1X8O 1X8P 1X8Q 1XJU 1XMT
1XOD 1XQO 1XT5 1XVM 1XVO 1Y55 1Y93 1YLJ 1YLT 1YS1 1YWA 1YWB
1YWC 1YWD 1Z2U 1Z53 1Z70 1ZJY 1ZJZ 1ZK4 1ZLB 1ZWP 2A6Z 2AGE
2AGI 2AH4 2ANV 2ANX 2AWK 2AXW 2AYW 2B3H 2BAX 2BOE 2BOG 2BZV
2BZZ 2C71 2C9V 2CAL 2CCW 2CHH 2CI1 2CWS 2EUT 2F01 2FHL 2FHZ
2FJ8 2FOS 2FOU 2FOV 2FRG 2G58 2GH7 2GZ5 2PVB 3LZT 3PYP 4LZT
7A3H 8A3H

10.3 Ubiquitin Structures

Ubiquitin
1aar_1 1aar_2 1cmx 1f9j_1 1f9j_2 1nbf_1 1nbf_2 1p3q_1 1p3q_2 1s1q_1
1s1q_2 1tbe_1 1tbe_2 1ubi 1ubq 1uzx 1wr6_1 1wr6_2 1wr6_3 1wr6_4
1wrd 1xd3_1 1xd3_2 1yd8_1 1yd8_2 1yiw_1 1yiw_2 1yiw_3 2ayo 2c7m
2c7n_1 2c7n_2 2c7n_3 2c7n_4 2c7n_5 2c7n_6 2d3g_1 2d3g_2 2fcq_1 2fcq_2
2fid 2fif_1 2fif_2 2fif_3 2g45_1 2g45_2
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