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Sleep is regulated by both homeostatic and circadian mechanisms. The latter, termed ‘process c’, helps synchronize sleep-wake

patterns to the appropriate time of the day. However, in the absence of a circadian clock, overall sleep-wake rhythmicity is

preserved and remains synchronized to the external light-dark cycle, indicating that there is an additional, clock-independent

photic input to sleep. We found that the direct photic regulation of sleep in mice is predominantly mediated by melanopsin

(OPN4)-based photoreception of photosensitive retinal ganglion cells (pRGCs). Moreover, OPN4-dependent sleep regulation

was correlated with the activation of sleep-promoting neurons in the ventrolateral preoptic area and the superior colliculus.

Collectively, our findings describe a previously unknown pathway in sleep regulation and identify the pRGC/OPN4 signaling

system as a potentially new pharmacological target for the selective manipulation of sleep and arousal states.

The eyes collect and process light to generate an image of the world, but
pattern detection is not their only function. Retinal photoreceptors also
provide a measurement of environmental brightness (irradiance) that
regulates nonvisual responses that range from pupil constriction to the
entrainment of circadian rhythms1. The discovery that such irradiance
responses persist in the absence of the rods and cones2–4 paved the way
for the identification of a subset of pRGCs that utilize the photopig-
ment melanopsin5–8. It was originally assumed that OPN4 pRGCs and
rods/cones form two functionally distinct and nonoverlapping path-
ways, with the rods and cones mediating image detection and the
pRGCs handling irradiance-detection tasks. We now appreciate,
however, that there is considerable overlap between the two systems.
For example, both rods/cones and OPN4 contribute to the entrainment
of the circadian timing system8–10, and for pupil constriction the
rods/cones provide the primary input at low irradiances, whereas
full constriction under bright light requires functional OPN4
(refs. 4,11,12).

The regulation of sleep by light occurs via circadian clock–dependent
and clock-independent pathways13. The light/dark cycle entrains the
circadian timing system, which in turn acts to time sleep and arousal14.
Independently, light also acutely modulates sleep. Although light
promotes sleep in nocturnal animals, it increases alertness in diurnal
species. In humans, for example, exposure to broad-spectrum white
light at night has acute and dose-dependent effects on vigilance,
reaction times, attentional failures and electroencephalogram (EEG)
rhythms15. In rats, light exposure suppresses motor activity and
enhances both rapid eye movement (REM) and non-REM
sleep, whereas darkness promotes wakefulness14,16,17. Although such
responses to light have been well documented in a range of species, little

is known about the photoreceptors that mediate the direct effects of
light on sleep.

We sought to address three related issues: the synchronization
of sleep-wake rhythms by light, the acute modulation of sleep
states by light and the relative contribution of rods, cones and
pRGCs to these responses. We found that diurnal sleep-wake
synchronization involves both rod/cone and melanopsin input. In
contrast, we found that the acute induction of sleep by light is
entirely dependent on melanopsin-based pRGC input and involves
a direct activation of specific sleep-promoting centers of the
brain, including the ventrolateral preoptic nuclei (VLPO) and the
superior colliculus.

RESULTS

Diurnal entrainment of activity and sleep-wake rhythms

The synchronization of the sleep-wake cycle with external time is
believed to be mediated via the regulation of the circadian timing
system (process c)18. To assess the contribution of the different
photoreceptive systems of the retina to this synchronization, we
monitored wheel-running activity (as a readout of circadian pacemaker
function) and EEG/electromyogram (EMG) potentials (to reflect sleep
state) of mice lacking either rods and cones (rd/rd cl, carrying the rd1
mutation in the Pde6b gene (rd) and expressing diphteria toxin under
the control of the human OPN1LW promoter (cl)) or melanopsin
(Opn4–/–). Under standard 12-h light/12-h dark (L/D) conditions,
wheel-running activity rhythms were indistinguishable between
rd/rd cl animals and congenic C3H wild-type controls (Fig. 1a and
Table 1). These data confirm previous findings that indicate that visual
photoreceptors are dispensable for the normal entrainment of
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the circadian timing system2,19–21. Similarly, light entrainment of
wheel-running activity was largely unaffected in mice lacking func-
tional pRGC photoreception (Opn4–/–). Opn4–/– mice showed very
similar activity profiles when compared to Opn4+/– littermate controls
(Fig. 1b). Notably, closer inspection revealed that the activity onsets
were less precise in mice lacking Opn4 (Table 1), which supports earlier
reports of decreased, but largely sufficient, light sensitivity of the
circadian clock in Opn4–/– mice9,10.

We then monitored sleep-wake patterns and sleep macro architec-
ture by combined EEG/EMG recordings using implanted radio trans-
mitters in freely moving mice. As we observed for wheel-running
activity, the entrainment of sleep-wake rhythms in rd/rd cl animals was
indistinguishable from that of fully sighted mice (Fig. 1c and Supple-
mentary Table 1 online), suggesting again that OPN4 can fully
compensate for rod/cone loss under standard L/D conditions. Likewise,
sleep-wake–cycle entrainment was not affected by Opn4-deficiency.
Opn4–/– mice had normal sleep-wake patterns and sleep phase dis-
tribution under L/D conditions (Fig. 1d and Supplementary Table 1).
Collectively, these results demonstrate that a mixed rod/cone and
OPN4 input accounts for both wheel-running activity and sleep-
wake–cycle entrainment. Either the rods/cones alone or pRGCs alone
can provide irradiance information to synchronize these internal
rhythms with external time8–10.

Melanopsin mediates photic sleep induction

Because diurnal entrainment of the sleep-wake cycle is, at least in part,
regulated by process c18 and the circadian clock has been shown to
be regulated by both rods/cones and melanopsin-based pRGC input8,
we then explored the contribution of both systems in the clock-
independent regulation of sleep-wake states by light (see above). We
examined sleep induction in rd/rd cl and Opn4–/– mice by exposing
them to a 1-h light pulse starting 4 h after ‘lights off ’ (Zeitgeber time
(ZT) 16) (Fig. 2). In wild-type mice, white light of 200 mW cm–2

induced sleep in 5–8 min, as defined by simultaneous power spectrum
analysis of the EEG and EMG amplitude monitoring (Fig. 2a). This
effect was preserved in rd/rd cl mice (Fig. 2a). Moreover, the distribu-
tion of different sleep-wake states throughout the 60-min light expo-
sure was comparable for both genotypes (Fig. 2c–e). The time spent
awake was reduced by 60-70% in both wild-type and rd/rd cl mice
(Fig. 2c), whereas both REM and slow-wave sleep (SWS) were
correspondingly increased in both genotypes (Fig. 2d,e).

Previous experiments have shown that irradiance responses, such as
the pupillary light reflex, depend on the input of both rods/cones and
OPN4 in an intensity-dependent manner, with rods/cones acting at low
irradiances and melanopsin acting at higher light levels4,11. We there-
fore determined the full irradiance response curves for sleep induction
in both wild-type and rd/rd cl mice. The effect of light intensity on the
amount of SWS and REM sleep for the two genotypes was
indistinguishable, with both showing saturating responses between
50–100 mW cm–2 (Supplementary Fig. 1 online). Notably, sleep latency
(defined as the time between the beginning of the light exposure and
the first 10-s sleep bout) was very similar at all irradiances tested, both
within and between genotypes (Supplementary Fig. 1). This strongly
suggests that any increase in total sleep duration that we observed at
higher irradiances results from a longer lasting, rather than a quicker
acting, induction of sleep by light.

Photic sleep induction has also been correlated with the activation of
sleep-promoting neurons in the VLPO22,23. We therefore tested VLPO
activation in the absence of rods and cones by immunohistochemical
detection of FOS protein after nocturnal light exposure. In both wild-
type and rd/rd clmice, light strongly increased FOS protein levels in this
area, with no significant differences being observed between both
genotypes (P ¼ 0.7; Supplementary Fig. 2 online). These data, along
with our behavioral analysis, indicate that rods and cones are dis-
pensable for the direct photic modulation of sleep.

To asses the role of melanopsin photoreception in the acute effects of
light on sleep, Opn4–/– 11 and control Opn4+/– mice were used in the
same experimental procedure that we used for the rd/rd cl mice.
Although sleep-wake phase and distribution were unaltered in
Opn4–/– mice (Fig. 1d), light-mediated sleep induction was found to
be markedly affected. Control animals readily showed sleep induction
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Table 1 Entrainment parameters of wheel-running activity of rod/

cone- and Opn4-deficient mice

Genotype Onset time (ZT) Onset variation (min) a phase (h)

C3H 12.03 ± 0.02 3.4 ± 0.6 12.4 ± 0.3

rd/rd cl 12.02 ± 0.03 3.8 ± 1.2 12.3 ± 0.1

Opn4+/� 12.15 ± 0.02 3.6 ± 0.6 11.4 ± 0.1

Opn4�/� 12.18 ± 0.04 6.0 ± 0.8* 11.5 ± 0.3

*P o 0.05 (two-tailed Mann-Whitney test); n ¼ 10 for all genotypes.

Figure 1 Rods/cones alone or pRGCs alone are

sufficient to entrain the circadian clock and sleep-

wake rhythms. (a,b) Representative wheel-running

recordings (actograms) of C3H (a, left), rd/rd cl

(a, right), Opn4+/– (b, left) and Opn4–/– mice

(b, right). Vertical black bars represent running-

wheel activity. Consecutive days are plotted

beneath each other. Horizontal bars on top
indicate the L/D regimen. (c,d) Diurnal sleep/

wake profiles of wild-type (C3H), rodless/coneless

(rd/rd cl) (c), Opn4+/– and Opn4–/– mice (d) were

assessed by EEG/EMG recordings under L/D

conditions. Data were analyzed in 3-h bins

starting at ‘lights on’ (ZT 0). No significant

differences were detected between the different

genotypes (P 4 0.05 for all comparisons, two-way

ANOVA with the variables ‘time’ and ‘genotype’

followed by Bonferroni post test for all three sleep-

wake stages; see also Supplementary Table 1).

All data shown are averages ± s.e.m. (n ¼ 4).

NATURE NEUROSCIENCE VOLUME 11 [ NUMBER 9 [ SEPTEMBER 2008 1069

ART ICLES
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



on light exposure at ZT16 (Fig. 2b). Light-induced wake suppression
(Fig. 2c), REM (Fig. 2d) and SWS induction (Fig. 2e) were largely
comparable to the results obtained in both wild-type and rd/rd cl mice.
However, Opn4–/– mice failed entirely to respond to light, even at very
bright irradiances (4200 mW cm–2; Fig. 2b). This complete lack of
sleep modulation by even very bright light suggests that the pRGC
photoreceptive system provides the exclusive pathway for mediating
the acute effects of light on sleep.

Masking and sleep induction use non-identical pathways

It has been reported previously that negative masking, that is, the (clock
independent) suppression of locomotor activity by high illumination
levels, is attenuated by the deletion of Opn4 in mice24. Similarly, our
results indicate that masking behavior is also attenuated in Opn4–/–

mice. To evaluate the extent to which masking and photic sleep
modulation mechanisms overlap, we compared wheel-running activity
and sleep responses in our mice. Under normal L/D conditions, both
C3H and rd/rd cl mice showed continuous and robust wheel-running
behavior during the second quarter of the night (Fig. 3a). When the
lights were switched on at ZT16, animals of both genotypes rapidly and
uniformly ceased wheel-running and only resumed activity after the
lights had been switched off again (ZT17) (Fig. 3a).

In the same manner, Opn4–/– and Opn4+/– animals showed robust
wheel-running activity between ZT15 and ZT18 under L/D conditions
(Fig. 3b). When the lights were switched on at ZT16, Opn4+/– animals
rapidly stopped using the wheel for the whole time of light exposure,
whereas the suppression of running-wheel activity was incomplete in
Opn4–/– mice (Fig. 3b). The suppression levels were 95% (Opn4+/–)

versus 58% (Opn4–/–). In comparison, locomotor activity was reduced
by 97% in C3H and 95% in rd/rd cl mice, respectively (Fig. 3c). Thus,
negative masking, although at a decreased efficiency, was preserved in
the absence of OPN4, whereas sleep induction was completely abol-
ished (Fig. 3d). These data confirm previous reports that masking
utilizes both the rod/cone and pRGC photoreceptive systems24 and
demonstrate for the first time that sleep induction relies either
predominantly or exclusively on OPN4/pRGC photoreception.

OPN4-mediated activation of brain sleep-wake centers

OPN4-based pRGCs have been shown to send monosynaptic projec-
tions to various brain regions including sleep-promoting centers in the
basal forebrain and the hindbrain25. To assess whether some of these
structures might be the anatomical targets by which pRGC photo-
receptors interact with the sleep-wake regulatory system, we compared
neuronal activation of the VLPO, superior colliculus and SCN in
response to nocturnal light exposure in Opn4–/– and Opn4+/– mice
by quantifying Fos mRNA expression levels using quantitative PCR
(qPCR). In the rodent brain, the VLPO is characterized by a marked
expression of the neurotransmitter Galanin (Gal)26. We used Gal
mRNA in situ hybridization to define the VLPO in brain sections
from wild-type and Opn4–/– mice (Fig. 4a,b).

Total RNA extracts were prepared from tissue punches from the liver,
the SCN, the VLPO (Supplementary Fig. 3 online) and the superior
colliculus. The correct targeting of punches was confirmed by standard
reverse transcription–PCR (RT-PCR) using site-specific marker genes
(Six6 for the SCN27, Gal for the VLPO26 and Pax7 for the superior
colliculus28) with Ef1a as a positive control (Fig. 4c). As described
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previously10, photic induction of Fos in the SCN was attenuated, but
not absent, in Opn4–/– mice (Fig. 4d). Notably, Fos activation in the
VLPO (Fig. 4e) and in the superior colliculus (Fig. 4f) was completely
abolished in the absence of Opn4. In the VLPO, these findings were
confirmed by normalizing Fos expression to the amount of Gal
transcript that was present in the tissue punches (Supplementary
Fig. 4 online). The absence of Fos induction in sleep-regulatory centers,
together with the abolished sleep response to light in Opn4–/– mice,
strongly suggests that pRGC-originating direct activation of these
target sites forms the basis of the observed clock-independent sleep
regulation by light.

DISCUSSION

Our data provide strong evidence for a predominantly, perhaps
exclusively, OPN4-mediated photic input into the sleep-wake regula-
tory system that involves activation of neurons in the VLPO and/or the
superior colliculus. The finding that rods and cones have no apparent
role in light-induced sleep was not expected and distinguishes this
process from all other irradiance-dependent responses described thus
far. This finding is all the more notable in view of a recent study
showing that the pRGCs provide the route by which OPN4 and the
rods/cones reach many brain nuclei29, raising the question of

how OPN4 and rod/cone inputs are functionally separated at the
level of the pRGCs.

As mentioned above, circadian entrainment, pupil constriction and
masking all arise from a mixed rod/cone and OPN4 input3,4,8,11,24. It
remains unclear what sensory information the different photoreceptors
(rods, cones and OPN4) provide to these processes, but their input may
be related to both the latency and dynamic range of the response in
question. It seems probable that the rods/cones mediate short latency
and dim-light detection, whereas OPN4 controls longer latency and
bright-light responses30. This hypothesis is consistent with the results
presented here, which show that sleep is induced after 7–10 min and at
irradiances greater than 50 mW cm–2. Although a direct comparison is
complex, the irradiances needed for sleep induction are far greater than
the threshold response for pupil constriction (for example, full con-
striction occurs in seconds with less than 0.5 mW cm–2)12, circadian
phase shifting2 or melatonin suppression (15-min light stimulus at
0.001 mW cm–2)3. We suggest, therefore, that the apparent absence of a
rod/cone input to the acute regulation of sleep relates to the fact that
this is a long latency and bright-light response. At this point we cannot
entirely exclude that some residual sleep induction might occur in
Opn4–/– mice at even higher illumination levels (4200 mW cm–2)
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Figure 3 Masking responses to light are preserved in Opn4–/– mice.
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pulsed animals. (d) Quantification of total sleep induction in response to light
exposure at ZT16 in the different genotypes. Black bars represent dark

controls and white bars depict light-pulsed animals. All data are averages ±

s.e.m. (n ¼ 10 for wheel running and 4 for sleep data; *P o 0.05,

**P o 0.01, ***P o 0.001, two-tailed Mann-Whitney rank sum test).
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based on an input from rods/cones. This seem unlikely, however, as
any rod/cone input would be several log units less effective than OPN4
photoreception and, as a result, would contribute very little to the
response under natural conditions. Furthermore, rods/cones typically
mediate low-level, rather than very bright, irradiance responses to light.

Recently, pRGCs have been shown to send monosynaptic projections
to the sleep-promoting centers of the basal forebrain25. This suggests
that light can induce sleep directly via pRGC-mediated activation of
these structures. Our findings relating to the photic activation of VLPO
neurons would support this view. Such acute activation of sleep-
promoting brain nuclei might explain how circadian clock–deficient
mice can still show a 24-h activity rhythm under an L/D cycle31–35.
Furthermore, impaired masking behavior and even inverted daily
activity profiles have been observed in Opn4–/– mice (Fig. 3)24,36,
providing additional support for a direct input of the pRGCs in sleep
and arousal control. The superior colliculus has also been strongly
implicated in the photic regulation of sleep37 and receives a direct input
from OPN4-based pRGCs22,25. Here we show that Opn4–/– mice lack
any Fos induction in this region. We found this to be a particularly
surprising result in view of the major retinal projection to the superior
colliculus that originates from the rods and cones38, and it suggests that
pRGC photoreception may be more important in superior colliculus
function than previously envisaged. Collectively, our results indicate
that light does not act exclusively through one brain region (for
example, the VLPO), but that parallel signals via the superior colliculus,
and probably other retino-recipient areas, reach the arousal system and
inhibit wake-promoting neurons.

Currently, there are no studies that provide a direct link between the
alerting effects of light and the pRGCs in humans, but some strong
suggestive evidence has emerged recently. The alerting effect of light has
been studied in human subjects by comparing green (B555 nm) and
blue (B460 nm) light. Blue light was shown to be consistently more
effective at increasing levels of alertness and decreasing sleepiness15.
The spectral response of melanopsin has been shown to peak at 480 nm
in mice4, nonhuman primates39 and human subjects40. In contrast, the
human photopic visual sensitivity peaks near 555 nm. These data
provide compelling supportive evidence that humans, like mice, use
their pRGCs to provide the photoreceptive input for the acute regula-
tion of sleep. Should this be the case, then the melanopsin photo-
transduction signaling cascade12 could provide a powerful new
therapeutic target for the direct pharmacological manipulation of
sleep and arousal states in humans.

METHODS
Animals. All aspects of animal work were carried out under license and in

accordance with the Animal (Scientific Procedures) Act 1986, UK. We used

4–6-month-old male mice for all assays. rd/rd cl mice were kept on a C3H

genetic background, and age-matched C3H wild-type mice, which were not

carrying the rd mutation, were used as controls. Opn4–/– mice11 were main-

tained on a C57Bl/6 � 129Sv background as heterozygous breeders. Opn4–/–

offspring and heterozygous littermates were used for all experiments.

Wheel running–activity monitoring. We assessed locomotor activity by wheel-

running monitoring as described previously41,42. Briefly, mice were placed in

running-wheel cages under an L/D cycle for 2 weeks before the experiment. For

L/D analyses, mice were kept in L/D for an additional 10 d and entrainment,

activity onset and activity phases were determined using the ClockLab software

package (Actimetrics). Onset variation was calculated by fitting a regression line

through ten consecutive onsets and measuring the deviation of actual onsets

from that line. For masking responses, lights (white fluorescent lights, 200 mW

cm–2) were switched on for 1 h at ZT16 and wheel revolutions were compared

with those of the same time interval on the preceding day for each animal.

Sleep recordings. EEG and EMG recordings from adult male mice carrying

subcutaneously implanted telemetry transmitters (Model F20-EET, DSI) for

simultaneous recording of two biopotentials (EEG and EMG) were collected for

48 h per experiment. During the first 24 h, we obtained diurnal sleep-wake

rhythms and baseline dark control traces at 4–5 h after ‘lights off ’ (ZT16–17).

On the second day, light pulses of different irradiances (50–400 mW cm–2) were

given using a halogen light source and optical fiber guides and starting at ZT16

to assess acute photic sleep modulation. Biopotential data were analyzed using

the SleepSign software package (Kissei-Comtec) at 10-s intervals. All automatic

scoring results were independently confirmed using manual blind scoring by

experienced researchers.

Immunohistochemistry. FOS immunostaining on frozen sections with or

without prior light exposure was carried out as described previously43. Briefly,

peroxide-blocked sections were incubated with FOS antibody (1:1,000, Onco-

gene) at 4 1C overnight, followed by avidin/biotin amplification and perox-

idase/3,3¢-diaminobenzidine detection (Vectastain Elite kit, Vector Labs).

In situ hybridization. mRNA labeling for Gal on frozen sections was carried

out as described previously44. Briefly, 20-mm frozen sections were mounted on

slides, post-fixed, acetylated and hybridized with digoxinenin-labeled RNA

probes overnight at 58 1C. We carried out antigenic detection using peroxidase-

coupled antibodies followed by tyramide amplification and biotin-coupled

alkaline phosphatase/5-bromo-4-chloro-3¢-indolyphosphate p-toluidine salt/

nitro-blue tetrazolium chloride detection. We used 5¢-ACC GAG AGA GCC

TTG ATC CT-3¢ and 5¢-CAG AGG ATT GGC TTG AGG AG-3¢ as forward

and reverse primers to amplify the Gal template from whole mouse-brain

cDNA samples.

RT-PCR and quantitative PCR. Reverse-transcribed total RNA preparations

(RNeasy Micro Kit, Qiagen) from 1-mm tissue punches were PCR-amplified

using an Eppendorf Mastercycler for RT-PCR or a StepOne Realtime PCR

system (Applied Biosystems) and SYBR Green detection for qPCR. Cycling

conditions were 3 min at 94 1C and 30 (RT-PCR) or 40 (qPCR) cycles of 30 s at

94 1C, 30 s at 60 1C and 30 s at 72 1C for 30, followed by 5 min at 72 1C. We

used the following primers: 5¢-AGA GAA ACG GAG AAT CCG AAG GGA-3¢
and 5¢-ATT GGC AAT CTC AGT CTG CAA CGC-3¢ for Fos, 5¢-CAA CAC TGT

TTG CTG CCT GTG GAT-3¢ and 5¢-ACT CTT AGG ATG GGT GGC AGA

AGT-3¢ for Ef1a, 5¢-AGA GTG GTA CCT TCA GGA CCC ATA-3¢ and 5¢-AGA

ACC TGC TGC TGG AGT CTG TTT-3¢ for Six6, 5¢-ATG CCT GCA AAG GAG

AAG AGA GGT-3¢ and 5¢-TCT GTG GTT GTC AAT GGC ATG TGG-3¢ for

Gal, 5¢-GCG AGA AGA AAG CCA AAC ACA GCA-3¢ and 5¢-ATT CCA

CAT CTG AGC CCT CAT CCA-3¢ for Pax7, and 5¢-CAG CTT CTT TGC AGC

TCC TTC GTT-3¢ and 5¢-TTC TGA CCC ATT CCC ACC ATC ACA-3¢ for

Actb. Relative quantification of transcript levels was carried out as

described previously45,46.

Statistical analysis. For comparisons between and within two groups, we used

two-tailed Mann-Whitney (unpaired) or Wilcoxon (paired) rank sum tests,

reflecting the small sample sizes (n ¼ 4–10) for which Gaussian distri-

bution could not be automatically assumed. All datasets with multiple

comparisons were analyzed by two-way ANOVA followed by Bonferroni

post-test. P o 0.05 was considered to be statistically significant. Analyses were

carried out using Microsoft Excel or GraphPad Prism software. All data are

presented as means ± s.e.m.

Note: Supplementary information is available on the Nature Neuroscience website.
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