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This article, in historical retrospective, describes the development of the celebrated Landau–Teller

(LT) model of 1936 for vibrational-translational energy exchange in collisions of an atom with a

diatomic molecule. We discuss semiclassical generalizations of the classical LT model and

generalizations of the collinear LT model to account for the effects of rotation of the diatom on

the vibrational relaxation rate. The former is based on the recovery of the Landau semiclassical

exponent from the classical LT encounter time, and the latter on the definition of a 1-D driving

mode within the manifold of the translational and rotational degrees of freedom of the colliding

partners. The utility of generalized LT models is illustrated by three case studies that exemplify

weak and strong effects of the rotation as well as the efficiencies of different driving modes in the

vibrational relaxation of highly asymmetric diatoms.

1. Introduction

More than 70 years ago, Landau and Teller published their

article on the mechanism of energy transfer in molecular

collisions.1 Their work had enormous impact on the under-

standing of this important process and it continues to do so

until today. In detail, Landau and Teller (LT) explained the

reasons for the low rate of the vibrational-translational energy

exchange in diatomic gases which, among other effects, man-

ifests itself in ultrasonic dispersion. They determined the

temperature dependence of vibrational state-to-state rate co-

efficients, set up kinetic equations for the population of

molecular states, and derived the relaxation equation for the

average vibrational energy of the molecular ensemble. These

results were considered to be of such large importance that the

article was cited before it was published.2 Years later it was

realized that the LT results characterize non-equilibrium

phenomena in gas dynamics in general, e.g. in the transient

state of a gas behind shock waves. With increasing interest in

this problem during the World War II, the LT relaxation

equation, now dubbed the Bethe–Teller equation, became even

part of classified documents.3

The LT results referred to collinear collisions. As a conse-

quence there was no way to estimate the absolute value of the
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rate coefficients. Besides, the model was restricted to situations

when the vibrational quantum �ho of the harmonic molecular

oscillator was much smaller than kBT (hence called here the

‘‘classical model’’). The first attempt to relax the condition

�ho/kBT { 1 goes back to Schwartz, Slawsky, and Herzfeld4

who resorted to the quantum solution of the collinear collision

model by Jackson and Mott,5 the classical counterpart of

which was also used by Landau and Teller.1 Three-dimen-

sional versions of this model were proposed by Takayanagi6

and Schwartz and Herzfeld.7 The ultimate result of ref. 4 and

7, known as the SSH theory, for the next decade became a

cornerstone of the interpretation of various vibrational non-

equilibrium phenomena in gases.8

SSH theory used the model of a three-dimensional collision

with a short-range isotropic repulsion between a vibrating

molecule and a structureless particle, hence it was also called

the breathing sphere (BS) model. In an attempt to account for

the effect of the vibrational anisotropy of the diatom, it was

recommended that the BS rate coefficient be multiplied by a

steric factor of about 1/3.7 The SSH treatment was suggestive

of an application of a regular perturbation approach with

respect to the anisotropic part of the interaction. The antici-

pated effect of the anisotropy on the vibrational relaxation

rate stemmed from considerations that an anisotropic inter-

action should induce simultaneous vibrational and rotational

transitions, thus diminishing the amount of energy liberated in

the form of translation. Unfortunately, the approach within

the vibrational-rotational perturbation theory of the lowest-

order was not successful since one had to resort to a basis for

which the rotational-translational coupling of the atom–non-

vibrating diatom system was fully accounted for. Such a basis

cannot be found in general. However, it can be determined in

the particular case when the collision is considered as a sudden

event with respect to the rotational period of the molecule, and

when the Coriolis coupling in the body-fixed frame of the

colliding partners is ignored. Formally, this is done by sum-

mation of an infinite perturbation series in the free rotor basis,

hence the acronym IOS for ‘‘infinite order sudden’’. (The IOS

as well as CS, ‘‘coupled states’’ , and CC, ‘‘close-coupling’’,

nomenclatures are standard ones in the theory of molecular

collisions. We therefore refer to them as they are described in

the numerous textbooks, e.g. ref. 9–13). The result of the IOS

approximation is a rather simple generalization of the BS

model, within which the collision occurs in an effective iso-

tropic potential which parametrically depends on the con-

served orientation angle of the molecular axis with respect to

the collision axis. The rate coefficient is obtained by the

averaging over the orientation angles. (We note in passing

that the IOS approximation differs from the standard sudden

approximation in that the latter assumes a fixed orientation of

the molecular axis in a spaced-fixed frame rather than in the

body-fixed (BF) frame.)

The IOS approximation partially takes into account the

anisotropy of interaction but it totally ignores effects related to

channelling part of the released vibrational energy into the

rotational degrees of freedom of the diatom. A considerably

better approximation is obtained when, still ignoring the

Coriolis interaction in the BF frame, the assumption of a

sudden nature of the collision with respect to rotational

transitions is dropped. Within this approach, i.e. the coupled

state (CS) approximation, the projection of the intrinsic

angular momentum onto the collision axis is assumed to be

a conserved quantity. This partially restricts the coupling

between different rotational states. The rate coefficient within

the CS approximation is obtained by the averaging over all

possible projections of the intrinsic angular momenta.

The CS approximation differs from the accurate approach,

conventionally called the close-coupling (CC) method, only in

that it neglects the Coriolis interaction in the BF frame. Once

the Coriolis coupling is finally also taken into account, as this

is the case within the CC method, the projection of the

intrinsic angular momentum onto the collision axis is not

conserved anymore. Nonetheless, vibrational relaxation rate

coefficients calculated by CS and CC methods were found to

be close to each other. This can be understood as the result of

an averaging over different projections in a well-localized

region of the potential where the vibrational transition takes

place. One should note that the latter feature of the vibrational

coupling was a basic property already in the original LT

model.

The hierarchy of approaches of ever-increasing complexity,

LT - SSH(BS) - IOS - CS - CC, illustrates the relation

between the original classical collinear Landau–Teller model

with exponential repulsive interaction and the full quantum

treatments of the 3-D collision dynamics on ab initio potential

energy surfaces. The nowadays available numerical codes

make CS and CC calculations of vibrational state-to-state rate

coefficients an easy task for simple inelastic processes such as

collisions of closed-shell atoms with diatomic molecules in

nondegenerate electronic states. Our interest in the Land-

au–Teller model stems from the observation that in the

majority of practical cases the collisions occur in the ‘‘quasi-

classical’’ (in the sense of the WKB approximation) and near-

adiabatic (with respect to the vibrational transitions) regimes

which are disguised in quantum scattering computations. The

question addressed in the present article is whether these two

conditions can be used for generalization of the original LT

model, with the aim to formulate useful analytical models of

SSH type which are applicable to arbitrary interaction poten-

tials and which account for the contribution of rotations to the

vibrational relaxation. In answering this question, in line with

the original LT approach, we restrict ourselves to the deter-

mination of the temperature dependence of the rate coeffi-

cients rather than to the full calculation of the rates. We

employ the semiclassical near-adiabatic Landau method,14

the recovery of the Landau exponent in the expression for

the transition probability from the classical Landau–Teller

time,15,16 and generalizations of the original LT idea that a

single mode of the heat bath induces the vibrational transition.

We also restrict ourselves to direct collisions when the vibra-

tional relaxation through a transient complex as a result of the

translational-rotational energy exchange can be discarded.

This objective sets the scene for discussing, in a review style

representation, semiclassical three-dimensional generaliza-

tions of the classical collinear Landau–Teller model. Accord-

ingly, the plan of the article is the following. Section 2 shortly

describes the historical situation before the publication of the

Landau–Teller article. Section 3 presents the main results of
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the LT approach. Section 4 provides a semiclassical general-

ization of the classical collinear LT model. Section 5 is devoted

to two different 3-D generalizations of the collinear model, i.e.

the effective mass and the hindered rotor models. Section 6, by

way of case studies, illustrates various aspects of the general-

ized LT models. In summary, the present review commemor-

ates Landau and Teller’s seminal work at its 70th anniversary

and after its generalizations it exemplifies the usefulness of this

approach until today.

2. Approaches before Landau and Teller’s work

Inspired by the observation of many rebounds of a steel ball

from a rigid steel plate, Jeans17 posed the question about

molecular elasticity that would permit an exchange of transla-

tional and vibrational energy in a molecular gas. He simulated

an inelastic atom–molecule collision by an external bell-

shaped force acting on the molecular oscillator, calculated

the energy change of the molecule and compared it to the

initial translational energy. In this way, a rough estimate for

the vibration-translation (VT) transition probability was ob-

tained for two types of forces, Lorentzian and Gaussian.

However, due to uncertain values of the parameters substi-

tuted into the final expression for the energy change, the

conclusion reached was only qualitative: the molecular ‘‘elas-

ticity’’ is very high, and the VT transition probability is very

low. In this work, based totally on a classical picture, no

attempt was made to relate the perturbing force to the inter-

molecular potential.

Quite some time later, Zener18 used a semiclassical pertur-

bative approach to calculate the VT transition probability, P,

for an exponential repulsive potential between molecular

oscillators. This method, which is today known as the com-

mon trajectory approximation, or the Ehrenfest mean field

approximation or yet the external field approximation, yielded

a ‘reasonable’ value of P of about 10�5 for the deactivation of

the first vibrational state (for an energy level spacing of 0.02

eV and collisions at room temperature). In this work, the

classical perturbing force was related to the intermolecular

potential and limitations for a common trajectory approxima-

tion (not too low collision energies) were formulated. These

limitations were removed a year later by Jackson and Mott5

who, within the distorted wave approximation, considered the

quantum problem of atom–diatom collinear collisions with a

repulsive exponential potential. A consistent quantum picture

of inelastic collisions was presented which made it possible to

consider collisions at low energies as well as to derive an

analytical expression for the VT transition probability. A more

general quantum model was investigated in a series of papers

by Lennard-Jones et al.19–21 in which the authors used a Morse

potential. A quantum picture of inelastic events was presented

for free–free, bound–free and bound–bound events. In the

light of these approaches everything seemed well prepared for

approximate calculations of VT rate coefficients, at least for

simple models. Why then was the article by Landau and Teller

considered to be of such importance that its main results were

cited already in 1935?2 The answer to this question was

obviously the fact that Landau and Teller succeeded to derive

a simple expression for the temperature dependence of the

state-specific vibrational rate coefficients and, at the same

time, to set up the relaxation equation for the mean vibra-

tional energy by expressing the relaxation time through the

vibrational rate of deactivation of the first vibrational level of

the molecular oscillator. The beauty of Landau and Teller’s

approach to an intrinsically complex kinetic phenomenon still

impresses today’s scientists and well deserves appreciation

after 70 years.

3. The Landau–Teller model: common trajectory

approximation

3.1 Transition probabilities and encounter time

Landau and Teller considered collinear collisions of a struc-

tureless particle A (‘‘an atom’’ A) with a harmonic oscillator

(‘‘a diatomic molecule’’ BC) under the assumption that the

vibrational amplitude is small compared to the range of the

intermolecular forces and that the appropriately defined time t
(which we call the encounter time) is large compared to the

inverse frequency of molecular oscillations. The potential

energy surface (PES) used includes two coordinates, the dis-

tance R between A and the centre of mass of BC, and the

interatomic distance r in BC. Analytically, U(R,r) for collinear

A–BC alignment, was taken as an exponential function of the

A–B distance, U(R,r) p exp(�RAB/a), where RAB = R �
(mB/(mA +mB))r and a is the length parameter that determines

the steepness of the repulsion. For a non-vibrating diatom,

with r= re, the interaction potentialU(R)�U(R,r)r=re assumes

a simple form U(R) = C exp(�R/a).
The following properties of this model were used to derive

the dependence of the state-to-state (n0 - n00) rate coefficients

kn0n00(T) on the vibrational quantum numbers n0,n00 of the

oscillator and on the temperature T of the heat bath:

(i) equidistant energy levels of the oscillator;

(ii) weak coupling of the oscillator (linear in r � re), to the

translational mode, with a coupling interaction being propor-

tional to the interaction potential between the atom A and the

non-vibrating diatom BC;

(iii) near-adiabatic conditions of the collision with respect to

vibrational transitions.

The properties (i) and (ii) permit one, by the first-order time-

dependent perturbation approach, to derive the explicit fea-

tures of the state-to-state probabilities Pn0,n00: transitions occur

only between neighboring vibrational states, n00 = n0 � 1, and

Pn0,n00 is proportional to max(n0,n00). For instance, for the

activating collision n0 - n0 + 1, the transition probability

reads:

Pn0;n0þ1 ¼ ðn0 þ 1ÞP0;1ðo;EtÞ ð3:1Þ

where Et is the relative translational energy of A and BC that

specifies the time-dependent perturbation.

Property (iii) allows one to derive the dependence of the

probability P0,1 on the frequency. Landau and Teller outlined

general arguments why the main dependence of the transition

probability on o for nearly adiabatic conditions will be

exponential, i.e. is of the form

P0;1ðo;EtÞ / expð�2otðEtÞÞ ð3:2Þ
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The quantity t(Et) measured with time units plays a key role in

the theory of vibrational energy transfer. Landau and Teller

also indicated how to calculate the time t(Et) from the proper-

ties of a trajectory of relative motion in the field of the

potential between the atom and non-vibrating diatom.

The rate coefficients kn0,n0+1(T) are expressed through the

thermally averaged probabilities �Pn0,n0+1(T) as

kn0 ;n0þ1ðTÞ / ðn0 þ 1Þ �P0;1ðTÞ ð3:3Þ

As shown by Landau and Teller, thermal averaging of

P1,0(o,Et) for otc 1 can be carried out in the steepest descent

(SD) approximation which uses the interplay between a steep

increase of P1,0(o,Et) with Et and an exponential decrease of

the Boltzmann factor with Et. In this way, the expression (3.2)

for P0,1(o,Et) leads to

�P0;1ðTÞ / expð�2otðE�t Þ � E�t
�
kBTÞ ð3:4Þ

where the SD energy E*
t = E*

t (o,T) is found from the equation

2o
dt
dEt

����
Et¼E�t

þ 1

kBT
¼ 0 ð3:5Þ

The actual calculation of t for the exponential interaction

yields:1

tðEtÞ ¼ pa
ffiffiffi
m
p . ffiffiffiffiffiffiffi

2Et

p
ð3:6Þ

where m is the reduced mass of A and BC.

The final result of eqns (3.1)–(3.6) can be summarized as

kn0;n0þ1ðTÞ ¼ ðn0 þ 1Þk0;1ðTÞ

k0;1ðTÞ ¼ A0;1ðTÞ exp �3ðTLT=TÞ1=3
� � ð3:7Þ

Here TLT is the characteristic LT temperature

TLT ¼ p2o2ma2
�
2kB ð3:8Þ

and the pre-exponential factor A0,1(T) is supposed to depend on

the temperature in a much weaker way than the exponential.

If one used the same arguments to derive expressions for

rate coefficients for deactivating collisions n0 + 1 -n0, one

would find kn0+1,n0(T) = kn0,n0+1(T). This result contradicts

the detailed balance relation

kn0;n0þ1
�
kn0þ1;n0 ¼ expð��ho=kBTÞ ð3:9Þ

and is caused by the basic shortcoming of the common

trajectory (CT) approach. Landau and Teller realized the

importance of detailed balance in formulating the relaxation

equation, and they corrected this shortcoming of the CT

approximation putting

kn0þ1;n0 ðTÞ ¼ ðn0 þ 1Þk1;0ðTÞ

k1;0ðTÞ ¼ A1;0ðTÞ exp �3ðTLT=TÞ1=3
� � ð3:10Þ

where the pre-exponential factor A1,0(T) is related to that in

eqn (3.7) in such a way that the relation (3.9) holds true:

A0,1(T)/A1,0(T) = exp(��ho/kBT). It is thus clear that the

assumptions of weak temperature dependences of both

A0,1(T) and A1,0(T) can be valid only under the condition

�ho/kBT { 1 which was explicitly stated in the LT article.1

3.2 Relaxation equations and Landau–Teller plot

Landau and Teller constructed rate equations for the popula-

tions Nn(t) of individual vibrational levels of BC molecules

employing detailed balance arguments:

dNnðtÞ
dt

¼
X
n0an

A½ � kn0;nNn0 ðtÞ �
X
n0an

A½ � kn;n0
 !

NnðtÞ ð3:11Þ

The kinetic eqn (3.11) describes the relaxation of a system of

oscillators to their equilibrium distribution

Neq
n ¼ expð�n�ho=kBTÞ 1� expð��ho=kBTÞð Þ ð3:12Þ

provided that the rate coefficients kn,n0 and kn0,n satisfy the

detailed balance relation.

An important feature of the LT rate equation for harmonic

oscillators, eqn (3.11), using the rate coefficients from eqns

(3.7) and (3.10), is that both the kn,n+1 and the energy En of the

vibrational levels are linear in terms of the quantum number n.

This made it possible to derive a closed equation for the mean

vibrational energy �EvðtÞ ¼
P
n

EnNnðtÞ of the molecules in the

form:

d �EvðtÞ
dt

¼ � 1

tvib
ð �EvðtÞ � �E

eq
v Þ ð3:13Þ

where �Eeq
v is the equilibrium thermal energy of the oscillator in

the bath, and tvib is the vibrational relaxation time, such as

given by

�E
eq
v ¼ �ho expð��ho=kBTÞð1� expð��ho=kBTÞÞ�1

1=tvib ¼ ½A�k1;0ð1� expð��ho=kBTÞÞ
ð3:14Þ

Eqn (3.13) represents an equation for the relaxation of a

macroscopic quantity (the average energy of a molecular

ensemble) derived from the master equation for the popula-

tions of individual levels.29–32 In many important applications,

eqn (3.13) provided the missing link between gas-dynamics

and kinetics and it was extensively used for the description of

relaxation processes behind the front of shock waves.

Eqn (3.14) together with eqn (3.10) roughly predicts the

temperature dependence of the vibrational relaxation time and

of the 1 - 0 deactivation rate coefficient. If the temperature

dependence arising from the last factor of the r.h.s. of eqn

(3.14) as well as that arising from A1,0 in eqn (3.10), are

ignored, then the following relation holds

� ln tvib / ln k10 ¼ const� 3ðTLT=TÞ1=3 ð3:15Þ

where the LT temperature is defined by eqn (3.8). Eqn (3.15)

forms the basis of the frequently used Landau–Teller plot.

The following comments on some issues that are directly

related to the LT model and which are of interest for the

present article are in order:

(i) The exponential dependence of the transition probability

on the frequency is the a consequence of the Ehrenfest

adiabaticity principle and it is explained in detail within the

context of classical mechanics (see, e.g., ref. 22). It is analo-

gous to a similar dependence of the change in the vibrational

energy of classical oscillators. In the latter case, the near

adiabatic condition ot c 1 ensures that the change in the

vibrational energy is small and, therefore, a feedback of the
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oscillatory mode on the relative motion can be neglected. This

allows one to identify the collision energy Et with the initial or

final translational energy, E0t or E
00
t . For a quantum oscillator,

the adiabatic condition ot c 1 guarantees a small change in

the mean vibrational energy, though the individual energy

transfer DE = �ho may not be small. Then the collision energy

Et can be affected by DE, though in a way yet unknown.

(ii) Vibrational transitions with exponentially low transition

probabilities are classically forbidden, implying that a purely

classical solution of the collision problem will not bring the

oscillator from an energy level En to a neighboring level En � 1.

Nonetheless, transition probabilities are calculated with a

classical description of the relative motion. This is possible

due to the correspondence principle, asserting that the matrix

element of a physical quantity V(R), VEt
0Et
00, between closely-

lying semiclassical states (in the WKB sense) with energies Et
0

and E00t is equal to the Fourier component of the time

dependent quantity, V(REt
(t)), calculated for the transition

frequency o = (Et
0 � E00t )/�h along a trajectory REt

(t) that

corresponds to a certain mean (but not well defined) energy Et

(the essence of the CT approximation), see ref. 23.

(iii) Transition probabilities are calculated in the first order

in the diabatic basis, i.e. in the basis of unperturbed vibra-

tional states of an oscillator. The LT problem contains two

parameters for estimating the higher-order corrections, a small

coupling parameter Z that enters the factor A in eqn (3.7) and

the large Massey parameter Xpot that enters the exponential
in eqn (3.2). The first order diabatic (FOD) term of the

perturbation series in powers of Z roughly reads PFOD
pZ

exp(�X). The most important second-order diabatic (SOD)

correction will come as a modification not of the pre-expo-

nential factor, but of the exponent, PSOD
pZ exp(�X(1 + Z)).

Since X c 1, the product XZ may not be small, and can,

therefore, noticeably affect the first-order result. This effect,

the early breakdown of FOD in vibrational energy transfer,

was studied in ref. 24–28. It was shown that the first-order

treatment in the adiabatic basis (FOA) to a large extent

incorporates higher order corrections in the diabatic basis.

(iv) The classical limit (�ho/kBT { 1) of eqn (3.14) sheds

some light on the features of the CT approximation. The mean

energy transferred to the oscillator initially in its ground state

under the action of an external force is D �ELT
v |n=0 = �ho �PLT

01 . It

turns out that D �ELT
v |n=0 equals the mean classical energy

transferred to the oscillator initially at rest, D �ECl
v |Ev=0 =

D �ECl
0 . This permits one to recover the LT transition prob-

ability from the classical energy transfer, �PLT
01 = D �ECl

0 /�ho, and
to rewrite the single-collision classical counterpart of the

relaxation eqn (3.11) as an increment D �ECl
v (Ev) in the initial

vibrational energy Ev after a collision, D �ECl
v (Ev) = D �ECl

0 [1 �
Ev/kBT]. This equation predicts a decrease or an increase in the

vibrational energy of the oscillator after a collision, depending

on whether its initial vibrational energy is above or below the

equilibrium energy. The classical dynamical counterpart of the

above expression can be obtained as the phase-averaged

classical energy transfer to the vibrating oscillator under the

action of an external force. In the standard approach within

the CT approximation, one assumes a uniform distribution of

the phase j at the maximum of the perturbing force, which

yields hDECl
v (Ev)ij = D �ECl

0 . This result predicts an increase of

the vibrational energy after each collision that is wrong.

Attempts to derive the correct expression for the mean energy

transfer from the dynamical equations require getting beyond

the CT approximation, which amounts to more accurate

considerations of the phase averaging.33,34 On the other hand,

the purely dynamical calculation of the mean-squared energy

transfer in the CT approximation with a uniform distribution

of j and under the condition Ev c D �ECl
0 yields h(DECl

v (Ev))
2ij

= 2EvD �ECl
0 , which is in agreement with the result that can be

obtained from the kinetic eqn (3.11). One can, therefore, use

the dynamical classical CT mean-squared energy transfer as

the diffusion coefficient in the Fokker–Planck—Kramers35

relaxation equation, which incorporates the detailed balancing

by introducing the Einstein relation between diffusion and

mobility coefficients. The single collision version of the Kra-

mers equation yields, of course, correct expression for the

mean energy transfer.

(v) Finally, we comment on the correction of the CT

transition probabilities to comply with the detailed balance

relation. This question attracted attention mainly in connec-

tion with the recovery of the quantum correlation function of

the bath from its classical counterpart (see the review of ref. 36

and the recent articles ref. 37–44; in particular, ref. 44 provides

a list of the different factors which have been recommended to

correct the classical correlation function). We will address this

issue in section 4.

4. Semiclassical generalization of the common

trajectory model

4.1 The Landau exponent and the Landau–Teller time

The semiclassical generalization of the CT LT collinear model

in this section is discussed on the basis of the recovery of the

Landau semiclassical (SC) exponent from the LT classical

encounter time. (In what follows we will use the term ‘‘semi-

classical’’ as ‘‘satisfying the WKB conditions’’. In the textbook

by Landau and Lifshitz,23 as well as in the Russian literature

on quantum mechanics, states that satisfy the WKB condi-

tions are called ‘‘quasiclassical’’. However, since in the context

of molecular collision theory the notion ‘‘quasiclassical’’ is

widely used in connection with purely classical trajectory

calculations run with quantum initial conditions, we adhere

in this paper to ‘‘semiclassical’’.) In 1932, Landau14 formu-

lated a general SC method for the calculation of matrix

elements and probabilities under the condition that these

quantities are exponentially small. This method, as associated

with the WKB approximation, is outlined in the textbook by

Landau and Lifshitz.23

According to the SC Landau method,14 the exponential part

of the probability for transition between states with transla-

tional energies E0t and E00t = E0t + DE reads

PSCðE0t;DEÞ / expð�ð2=�hÞjReð ~SE0t
� ~SE0tþDEÞjÞ ð4:1Þ

In eqn (4.1), S̃E0t
(or S̃E0t + DE) is the classical action integral

taken from the turning point for the motion across the

unperturbed potential at the energy E0t (or E00t = E0t + DE)
into the classically forbidden region of this potential to a

transition distance determined by the stationary phase
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condition for the action difference. (In a more sophisticated

version of the SC approach, the exponent in the expression for

the transition probability, besides the difference in the classical

actions integrals, also depends on certain properties of the

perturbation.23 This approach in its application to vibrational

transitions is discussed in ref. 45, but will not be touched here.)

Since the SC transition probability is roughly proportional to

the square of the overlap of the initial and final WKB wave

functions, it is tempting to interpret the exponential in eqn

(4.1) as the result of an overlap of WKB functions in the

classically forbidden region of motion. However, this is not

correct, since the overlap would contain the sum and not the

difference of the classical actions. Though an excursion into

the classically forbidden region of the potential looks like a

completely nonclassical event, this is not quite so for potentials

that are represented by analytical functions, since the full

potential can be recovered from a small portion of it and,

therefore, the potential in the classically forbidden region is

completely defined by the potential in a classically allowed

region. One, therefore, would hope to find a relation between

the classical exponent in eqn (3.2) and the semiclassical

exponent in eqn (4.1). Indeed, expression (4.1) can be recast

in the form:15,16

PSC
10 ðE0t;DEÞ / exp � 2=�hð Þ

ZE0tþDE
E0t

tðEÞdE

�������
�������

0
B@

1
CA ð4:2Þ

which results in the following expression for the thermally-

averaged probability

�P
SC
10 ðT ;DEÞ /

Z
exp � 2=�hð Þ

ZE0tþDE
E0t

tðEÞdE

�������
��������

E0t
kBT

0
B@

1
CA dE0t

kBT

ð4:3Þ

that clearly complies with the detailed balance relation,
�PSC
10 (T,DE)/ �PSC

10 (T,DE) = exp(�ho/kBT)
Since the exponent in eqn (4.2) is completely determined by

the classical time t(E) we dwell on the question how this

quantity can be calculated. According to Landau and Teller,

the time t(E) is defined through the integral:

tðEtÞ ¼ Im

ZRt

Rs

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞðEt �UðRÞÞ

p
8<
:

9=
; ð4:4Þ

Here U(R) is the unperturbed interaction potential between A

and the centre of mass of BC, Rt is the turning point for the

motion in the field of the potential U(R), and Rs is a singular

point of the coupling interaction. The detailed discussion of

eqn (4.6) can be found in ref. 50. Here we only mention that

though originally the time t(E) was defined for asymptotically

free relative motion of A and BC, for E = Et 4 0, eqn (4.4)

permits a generalisation for the bound motion in the potential

well of the complex A–BC, when the energy E acquires the

meaning of the vibrational energy of the A–BC bond. This

implies that eqn (4.2) can be applied not only to free–free

transition (vibrational-translational energy transfer, both E0

and E00 are positive), but also to bound–free transitions

(vibrational predissociation, negative E0 and positive E00) and

bound–bound transitions (intramolecular energy redistribu-

tion, both E0 and E00 are negative). In the whole range of

energies, starting from the bottom of the well, the function

t(E) decreases monotonically. An analytical example is given

by the encounter time for a Morse potential.45,46

4.2 Restoring detailed balance in the CT approximation

A consistent correction of the CT approximation complying

with the detailed balance relation can be derived from the SC

approximation. To this end we consider small energy transfer

such that t(E) can be approximated by its linear expansion

tðEÞ ¼ tðE0tÞ þ
dtðE0tÞ
dE0t

ðE � E0tÞ ð4:5Þ

With this approximation we get

�P
SCðT ;DEÞ

���
DEj j small

/

Z
exp �2otðE0tÞ �

E0t
kBT

� oDE
dtðE0tÞ
dE0t

� �
dE0t
kBT

ð4:6Þ

where the last term in the exponent is assumed to be small

compared to the other two terms. Then the SD energy is

determined by the first two terms such as given by eqn (3.5). In

this way, we finally obtain the relation between the CT and

corrected CT (CCT) transition probabilities, with the latter

defined as SC transition probabilities for small |DE|:

�P
SCðT ;DEÞ

���
small DEj j

� �P
CCTðT ;DEÞ

¼ expð�DE=2kBTÞ �PCTðT ;DEÞ ð4:7Þ

where DE 4 0 for up-transitions and DE o 0 for down-

transitions, and �PCT(DE) does not depend on the sign of DE.
The relation between the CCT and CT expressions in the form

of eqn (4.7) was first established by Schwartz, Slawsky and

Herzfeld in 1952,4 for the special case of an exponentially

repulsive interaction, by analyzing the near-adiabatic SC limit

of the quantum expression derived by Jackson and Mott.5

However, Schwartz, Slawsky and Herzfeld did not identify the

leading term in the exponent of the expression for
�PSC(T,DE)|small|DE with the LT exponent, such that their

approach did not, strictly speaking, provide a correction to

the LT probability. This unfortunate initial misunderstanding,

however, was corrected later in ref. 7. In 1983, Miklavc47

repeated the use of the Jackson–Mott solution for establishing

the corrected form of the average transition probability. Most

generally and valid for arbitrary interactions, the correction

factor appearing in eqn (4.7) was suggested by Nikitin in

195948 from symmetry considerations and by Schofield in

196049 on the basis of an analytical continuation of the

classical correlation function. It should be noted, however,

that the correction term in eqn (4.7) differs from respective

quantum correction factors derived by other authors, such as

those listed in Table 1 of ref. 44. The differences are due to

different conditions under which the various corrections are

valid, and to different high-frequency limits of the Fourier

transform of the force correlation function of different heat

baths.
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The correction factor in eqn (4.7) does not depend on the

property of the heat bath except its temperature. At the same

time, this factor represents the first quantum correction to the

classical correlation function of the external force acting on

the oscillator. The influence of higher-order corrections on the

transition probabilities can be estimated by identifying the

expansion parameter in the truncated series in eqn (4.9).50

With this correction, the temperature dependence of the CCT

deactivation probability reads

ln �P
CCT
10 ¼ const� 3Xðo;TÞ þ �ho

2kBT

þO
�ho=kBTð Þ2

Xðo;TÞ

 !
ð4:8Þ

where 3X(o,T) = 2ot(E*
t ) + E*

t /kBT, E*
t is found as the

solution of the SD condition (3.5), and where O(x) means

‘‘of the order of x’’. It follows from eqn (4.8) that the condition

of small energy transfer DE = �ho, as appropriate for the CCT
approximation, is formulated as (DE/kBT)

2 { X(o,T). Since
in the near-adiabatic regime X(o,T) c 1, the latter inequality

permits the ratio |DE|/kBT to fall into the quantum range

when �ho/kBT Z 1.

Since the LT plot is based on a repulsive potential, it is

appropriate to explicitly identify also the correction that

comes from an attractive part of the interaction. For a Morse

or Lennard-Jones potential, for which the attractive part is

proportional to the square root of the repulsive part, the

logarithmic representation of k10(T) in the CCT approxima-

tion reads

ln �P
CCT
10 ¼ const� 3Xrepðo;TÞ þ

�ho
2kBT

þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

kBT
Xrepðo;TÞ

r
þO

ð�ho=kBTÞ2

Xrepðo;TÞ

 !

þO
D

kBT

� �
ð4:9Þ

where c is a numerical coefficient. Here 3Xrep(o,t) = 2otrep-
(E*) + E*/kBT and E* is found from the SD condition 2o-
(dtrep/dE)|E = E* + 1/kBT = 0 with the encounter time trep =
trep(E) calculated for the repulsive, high energy, part of the

interaction. This expression provides several reasons for cur-

vatures of Landau–Teller plots: (i) deviations of the repulsive

part from purely exponential form; (ii) attraction at larger

distances; and (iii) quantum effects of the energy release. For a

purely repulsive potential of the form U(R) p R�n, one has

Xrep(T)p T�(n+2)/(3n+2) (for reasons (i), for a Morse potential

Xrep(T,o)p T�1/3 and c= 4/p, (for reasons (ii) and (iii), while

for a Lennard-Jones potential Xrep(T)pT�7/19 and c = 4.44/p
(for all three reasons).51,52 We note that the correction for the

attraction (the third term in eqn (4.9)) is larger than that

suggested in ref. 4, namely D/kBT. The reason for this is that

the main manifestation of the attraction is the increase in the

steepness of the interaction at lower energies rather than an

additional acceleration of the partners when they pass the

potential well.48

4.3 Dependence of the SC transition probabilities on the

energy release in special cases

The dependence of the SC transition probability on the energy

release DE is determined by eqn (4.2). In the following, we

discuss approximations to the Landau exponent which are

currently used in some applications.

4.3.1 Symmetrization of common trajectories. In an at-

tempt to extend the multidimensional CT method beyond its

CCT version, a symmetrization of the initial parameters of the

trajectory with respect to the initial and final quantum states

of the oscillator was suggested. We exemplify this approach

for a single bath variable. In general, one can write

2=�hð Þ
ZE0tþDE
E0t

tðEÞdE

�������
������� ¼ 2otð �EÞ ð4:10Þ

where �E is a certain energy bracketed between E0t and E00t with

the function �E = �E(E0t,E
00
t ) being symmetric with respect to the

exchange of E0t and E00t . It is seen that this representation of the

integral introduces the quantum quantity �ho = |E0t � E00t | into

the classical collision time, and makes the semiclassical ex-

ponent look like an ‘‘effective’’ classical exponent calculated

for a common trajectory with the initial energy �E. This

approach is the basis for the so-called quantum-classical

method by Billing.53 Since the function �E = �E(E0t,E
00
t ) is not

known a priori, one can try different choices to reduce the

errors introduced by the standard CT approximation. The two

simplest ways would be to symmetrize the initial energy or the

initial velocity by putting

�E ¼ ð1=2ÞðE0t þ E00t Þ ð4:11Þ

�E ¼
ffiffiffiffiffi
E0t

p
þ

ffiffiffiffiffiffi
E00t

p� �2�
4 ð4:12Þ

An interesting feature of the symmetrization in accord with

eqn (4.12) is that, if applied to the case of an exponential

repulsive interaction, it makes the ‘‘classical’’ quantity

2ot( �E) exactly equal to its semiclassical counterpart

ð2=�hÞ
RE0tþDE

E0t

tðEÞdE
�����

�����. This might be the reason why the classi-

cal-quantum approach proved to be so successful in applica-

tions to vibrational relaxation events even when the interac-

tion potential differed to some extent from an exponential

form.

4.3.2 Energy gap regime for the collisional relaxation of an

anharmonic oscillator. The collision-induced relaxation of

anharmonic oscillators in a heat bath provides an example

for the manifestation of the so-called energy gap law.

According to eqn (4.9), the Landau exponent in the CCT

approximation reads

2=�hð Þ
ZE0tþDE
E0t

tðEÞdE

�������
������� ¼

DEj j
�h

2tðE0tÞ þ DE
dtðE0tÞ
dE0t

� �
ð4:13Þ
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In this equation, the second term at the r.h.s. ensures detailed

balancing under the condition |DE| { E0t. Since the main

dependence of the transition probability on the energy transfer

DE comes from the first term, PCCT(E0t, DE) will be nearly

exponential in |DE| which corresponds to the so-called energy

gap law. In the following we use eqn (4.13) for the calculation

of thermally averaged transition probabilities for anharmonic

oscillators.

The anharmonicity of the oscillator affects eqns (3.7) and

(3.10) in two ways: the matrix elements for the oscillator

coordinate allow for transitions with Dn 41, and the energy

change for a transition n - n + Dn depends on n. In the first

attempt to account for anharmonicity, it was assumed that,

due to a small change in the frequency with vibrational energy,

the transition probabilities �Pn,n + Dn would be proportional to
�PLT
01 with the prefactors proportional to hn|x|n + Dni2.54 This

generalization turned out to be incorrect for two reasons: first,

the transition frequency for Dn 41, being roughly a multiple

of o, makes the exponential factor negligibly small compared

to that with Dn = 1, and second, a small variation of the

transition frequency with n affects the exponential factor in the

expression for the transition probability by far more strongly

than the pre-exponential factor.55 Thus, a generalization of the

LT eqns (3.7) and (3.10) for anharmonic oscillators (AO) still

conserves the single-quantum character of the energy transfer,

but modifies the transition probabilities. For instance, for an

anharmonic oscillator with a standard expression for the

vibrational energy En = �hoe(n + 1/2) � xe�hoe(n + 1/2)2,

the transition probabilities in the CCT approximation will

read

�P
CCT-AO
nþ1;n ¼ ðnþ 1Þbnþ1 �P

CCT-HO
10

�P
CCT-AO
n;nþ1 ¼ �P

CCT-AO
nþ1;n expð�ð�hoe � 2xe�hoenÞ=kBTÞ

�P
CCT-AO
n;n0 ¼ 0; if n0an� 1

ð4:14Þ

where b = exp((TLT/T)
1/3xe) and �PCCT-HO

10 is the CCT transi-

tion probability for a harmonic oscillator calculated with a

small-amplitude frequency oe. Thus the anharmonicity

changes the linear dependence of the neighbouring transition

probabilities on n into a superlinear dependence.

4.3.3 The momentum gap regime for the relaxation of

anharmonic oscillators in vibrational predissociation. Dissocia-

tion-induced relaxation (vibrational predissociation, VP) of an

anharmonic oscillator BC in a van-der-Waals complex A� � �BC
provides an example for the manifestation of the so-called

momentum gap law.

A detailed model of vibrational predissociation for a two-

mode model (high-frequency anharmonic oscillator coupled to

a low-frequency dissociative Morse oscillator) was studied by

Beswick and Jortner 56–58. Analytical expressions that describe

the dependence of the VP rate on the parameters of a A–BC

system were obtained.

The Landau method suggests an alternative approach which

can be used for arbitrary potentials, though being restricted by

the SC conditions of motion in the initial and final states.

Usually, when the energy transferred to the dissociating

oscillator, DE, is large compared to the dissociation energy,

the final state is semiclassical. The initial state may not be

semiclassical in the global WKB sense, but it is then nearly

harmonic. The latter property ensures that the tunneling

asymptotics of the initial wave function is very close to its

WKB counterpart59 and, therefore, the Landau formula eqn

(4.2) for the SC transition probability provides a good ap-

proximation to accurate quantum results. The SC probability

for the dissociation of a low-frequency oscillator per one

vibration in its initial state with the vibrational energy E0,

induced by a vibrational transition n - n � 1 in the high-

frequency oscillator, PSC-VP
n,n �1(E

0), can be written as

PSC-VP
n;n�1 ðE0Þ / exp � 2

�h

ZE0þDEn;n�1

E0

tðEÞdE

0
B@

1
CA ð4:15Þ

If DEn,n � 1 markedly exceeds the dissociation energy D of the

complex, the recoil energy of the fragments A and BC (relative

translational energy E00t ) approximately equals the energy

release DEn,n � 1 and the integral in eqn (4.15) is dominated

by the repulsive region of interaction. Taking the latter to be

roughly exponential and putting t(E) E pa/2E/m we get an

estimate

2

�h

ZE0vþDEn;n�1

E0v

tðEÞdE

�������
D�DEn;n�1

	 2pa
�h

ffiffiffiffiffiffiffiffiffiffiffi
2mE00t

p
ð4:16Þ

The expression in eqn (4.15) in conjunction with eqn (4.16)) is

called the momentum gap law:60 the VP rate decreases ex-

ponentially with an increase in the relative momentum of

receding fragments, p00 	
ffiffiffiffiffiffiffiffiffiffiffiffi
2mE 0 0t

p
. We note in passing that

eqns (4.15) and (4.16) have only little relation to the Morse

potential of the dissociative oscillator, though, of course, they

can be derived from this model56–58 and put in such a way that

the length parameter a is expressed through the dissociation

energy and the frequency of oscillation of the van der Waals

bond. Theoretical predictions from eqns (4.15) and (4.16) can

be tested against experiment in two ways: by considering the

dependence of the predissociation rate either on the energy

release for different systems at a fixed n, or by studying the

dependence of the rate on n for the same system. The former

correlation was presented by Eving60 as a linear plot of the

logarithm of predissociation lifetimes for different systems vs.

aO2mDE/�h with an empirical fitting of the value of a. The latter

correlation can be deduced from DEn,n � 1 for an anharmonic

oscillator, DEn,n � 1 = �hoe(1 � 2xen),
61 once it is realised that

the unspecified pre-exponential factor in eqn (4.18) is propor-

tional to n (similar to that for the collisional relaxation of

anharmonic oscillator (vide supra)). In this way one can write

the following expression for the n-dependence of the VP rate:

kVPn;n�1 / PSC-VP
n;n�1 / n expðlnÞ ;

l ¼ 2pxea
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2moe=�h

p ð4:17Þ

Fig. 1, for a wide range of vibrational quantum numbers n,

illustrates the super-linear dependence on n of the vibrational

deactivation rate in the VP event for the decay of vdW

complexes I2(B
3P0, n) � Ne - I2(B

3P0, n � 1) + Ne.
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Different from vibrational relaxation which occurs in suc-

cessive collisions of BC molecules with heat bath atoms A, the

kinetics of which is described by the LT eqn (3.11) or its

diffusion Kramers counterpart, the vibrational predissociation

occurs in a ‘‘half-collision’’. However, the SC picture shows

that VP occurs, with low probability, each time when the

partners visit the repulsive branch of the potential. Thus it

became a challenge to also study the classical counterpart of

VP, i.e. the dissociation of a classical low-frequency dissocia-

tive oscillator coupled to a high-frequency mode (another

oscillator or a periodic time-dependent external field.62–74

5. Three-dimensional generalizations of the

semiclassical collinear model

Three-dimensional collisions of an atom with a non-vibrating

diatomic molecule in an adiabatically isolated electronic state

occur on a potential energy surface U(R,g). The two coordi-

nates, that are conventionally chosen, are the separation R

between A and the centre of mass of the rotor BC, and the

polar angle g between the rotor axis r and the collision axis r.

Once the conservation of the total angular momentum J is

taken into account, the Hamiltonian of the A + BC (rigid

rotor) system in the body-fixed frame contains three coordi-

nates and conjugate momenta. Besides R and g, the kinetic

energy depends on the azimuthal angle j of r in the plane

normal to r. The part of the kinetic energy that depends on j,
describes the Coriolis interaction in the BF coordinate frame.

Three-dimensional generalizations of the SC collinear model

are based on the transformation of these variables in such a

way that only one of these, to be called the driving mode, is

essentially coupled to the vibration of BC. This transforma-

tion uses the hierarchy of parameters that exists in the problem

of the vibrational relaxation under near-adiabatic conditions.

Following Ovchinnikova,75 for diagnostic purposes, we intro-

duce two encounter times, one for the radial motion, ttr, and
the other for the angular motion, trot. Each of these times is

defined as the time for characteristic variation of the interac-

tion potential with changing R (g fixed) or with changing g (R
fixed), respectively. Besides, there are two other characteristic

times, the period of rotation of BC, TBC, and the period of the

overall rotation TA–BC. Due to the short range of the interac-

tion responsible for the vibrational transition, the encounter

times ttr and trot are considerably shorter than TA–BC. This

implies that during the vibrationally-inelastic event the colli-

sion axis rotates over a small angle and, therefore, the Coriolis

interaction can be neglected for a period of the order of the

encounter times. This approximation allows one to consider j
as an ignorable (i.e. cyclic) variable and regard its conjugate

momentum m, the projection of the angular momentum of the

rotor onto the collision axis, as a constant. The quantum

version of this approximation is illustrated by the reasonably

good performance of the CS approximation, which ignores the

Coriolis coupling in the scattering equations in the J,j,m

representation, compared to the accurate CC approach.

Once the Coriolis coupling is neglected and the classical

Hamiltonian is parameterized by the conserved quantity m,

the two variables R and g can be further transformed into the

variables Q and q in order to include the major part of the

interaction with the vibration into the Q � r coupling and

minimize the interaction within the q � r coupling. If the latter

is neglected completely, the q variable becomes a spectator

mode, and Q becomes the driving mode. The choice of an

optimal transformation R,g - Q,q depends on the relation

between the encounter times, ttr and trot.
If ttr { trot, the rotation of BC only weakly affects the

vibrational relaxation. In the limit, the diatom does not rotate

at all (in the BF frame) and the anisotropy of the interaction

shows up only in the parametric dependence of the transition

probability on the orientation angle g (IOS model). A special

case of this model corresponds to an isotropic interaction (the

breathing sphere, BS, model).

If ttr is of the order of trot, translation and rotation should

be treated on the same footing. This treatment is restricted by

the condition that the range of the angular motion important

for the vibrational relaxation dynamics should be substantially

smaller than the angular range of the anisotropy (the effective

mass, EM, model). This condition does not prevent the

passage to the limit ttr { trot, implying that the IOS model

is a special case of the EM model.

If ttr c trot, the vibrational relaxation occurs mainly as the

result of energy transfer from the vibrational to the rotational

mode of the A–BC complex at a fixed (but subject to aver-

aging) interfragment distance R (the hindered rotor, HR,

model). The two versions of this model are the static (ttr {

Fig. 1 Example of a super-linear dependence of the vibrational

predissociation rate on the vibrational quantum number n. Squares

are experimental data for I2(B
3P0, n) � Ne - I2(B

3P0, n � 1) + Ne

predissociation, full line represents theoretical fitting. The deviation

from a straight line (Landau–Teller eqn (3.10)) is due to the depen-

dence of the transition probability on the energy release in the limit of

the momentum gap law, see eqn (4.15) (after ref. 61).
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TBC) and adiabatic (ttr c TBC) one. In the following, we will

discuss the semiclassical versions of the IOS, EM, and HR

models in connection with the mechanisms of the vibration-to-

translation, vibration-to-rotation-translation and vibration-

to-rotation energy transfer.

5.1 Vibrational to translational energy transfer. Breathing

sphere and infinite-order-sudden models

The first three-dimensional (3-D) generalization of the colli-

near LT model was suggested by Takayanagi6 and by

Schwartz and Herzfeld7 in the framework of the breathing

sphere (BS) model. This model is based on the assumption that

both the vibrationally unperturbed potential UBS(R) and the

vibrational perturbation are spherically symmetric. Since in

this case, the 3-D relative motion (collisions with different

relative angular momenta) reduces to 1D motion in the field of

the effective potential, one can easily generalize the collinear

LT model to three dimensions. In particular, the encounter

time will depend on the relative angular momentum L as:

t3-D BSðEt;LÞ ¼ Im

ZRt

Rs

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞðEt �UBSðRÞ � L2=2mR2Þ

p
8<
:

9=
;

ð5:1Þ

The major simplification in calculating t3-D BS comes from the

fact that the centrifugal potential varies much slower with R

than UBS(R), such that the former can be considered as a

constant with R = Ra where R = Ra is defined through the

head-on collision Et = UBS(R
a).6,7 Therefore, one writes

t3-D BSðEtr;LÞ 	 t1-D BSðERÞ

¼ Im

ZRt

Rs

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞðER �UBSðRÞÞ

p
8<
:

9=
; ð5:2Þ

Here ER = Et � L2/2m(Ra)2 and t1D-BS(ER) is the 1D

encounter time that depends on the radial energy, ER = Et

� L2/2m(Ra)2. Now, similar to the original LT model and its

CCT and SC generalisations, one calculates BS-CT, BS-CCT

and BS-SC transition probabilities and their average counter-

parts �Pnn0
1D-BS(T). When one takes into account the strong

dependence of the transition probability on the encounter

time, the 3-D BS rate coefficient, which is obtained by integra-

tion of the mean 1-D transition probability over all possible

values of L, is expressed as

kBSnn0 ðTÞ ¼ pðRaÞ2�n3-D 
 �P
1-D BS
nn0 ðTÞ ð5:3Þ

where �n3-D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBT=pm

p
is the mean 3-D relative velocity.

The first factor at the r.h.s. of eqn (5.3) is close to the gas-

kinetic collision number, and the second is the mean transition

probability for collinear collisions within the BS potential

�P
1-D BS
nn0 ðTÞ ¼

Z1
0

P1-D BS
nn0 ðEiÞ expð�Ei=kBTÞðdEi=kBTÞ

ð5:4Þ

Expressions (5.3) and (5.4) for knn0
BS may also be interpreted in

the language of transition state theory which represents the

state-to-state rate coefficient n - n0 as the product of a mean

1-D state-to-state probability density flux �n1D �Pnn0
1-D BS(T)

(with �n1D equal to the 1-D mean relative velocity,

�n1-D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=2pm

p
) and the total area of the dividing surface

4p(Ra)2. The vibrational transition is assumed to occur with

the probability �Pnn0
1D�BS each time when a trajectory crosses

normally the dividing surface, i.e. the sphere of radius Ra. An

additional correction should be introduced into the pre-ex-

ponential factor of the BS relaxation rate, which accounts for

a possible dependence of the perturbation on the angle g
between the collision axis r (the vector joining the atom and

the centre of mass of the diatomic) and the molecular axis r but

which does not affect the temperature dependence of the rate.7

For the 1 - 0 vibrational transition, the explicit tempera-

ture dependence of kBS10 in the CTC approximation with the LT

encounter time from eqn (3.6), reads:7

kBS�CTC10 / T1=3 exp �3 TBS

T

� �1=3

þTvib

2T

 !

TBS ¼ p2o2ma2
�
2kB

ð5:5Þ

where TBS coincides with TLT from eqn (3.8), and Tvib =

�ho/kB. The pre-exponential factor T1/3 results from multi-

plying T1/2 (arising from the temperature dependence of the

collision number) and T�1/6 (arising from the SD calculation

of the integral in eqn (5.4)). The temperature dependence of

this factor is too weak to be discerned in the LT plots of the

rate coefficient, ln kBS10 (T) vs. T�1/3. We therefore conclude

that, within the CTC approach, the curvatures of LT plots can

only be due to deviations of the potential from the exponential

form and to the first quantum correction, eqn (5.5).

This form of kBS-CCT10 (T) has widely been used in the inter-

pretation of experimental results on the vibrational relaxation

of symmetric (homonuclear, as N2) and slightly-asymmetric

(as CO) molecules at high and medium temperatures. For

these molecules, the noticeable curvature of the LT plots

(below, say, 500 K) was ascribed to the effect of the term

Tvib/2T in eqn (5.5).76 The SC counterpart of eqn (5.5) is

obtained from eqn (4.3)) with the LT encounter time

tðEÞ ¼ pa=
ffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
. The expression for kBS-CCT10 includes the

same parameters as eqn (5.5); however, kBS-SC10 yields a more

general description than kBS-CTC10 , being valid at lower tem-

peratures for the same type (exponential) repulsive interaction.

Fig. 2 compares the dependences of kBS-CT10 , kBS-CTC10 and

kBS-SC10 on (T/TBS)
�1/3 for a value of Tvib/TBS which is appro-

priate for the N2–He collisions.77 One sees how the incipient

curvatures of the SC results are reproduced by the CCT results

in the temperature range shown. We emphasize that eqn (5.5)

and its CS counterpart are only appropriate for the description

of the rate coefficient for a repulsive exponential potential, i.e.

for a potential with a constant steepness such as characterized

by its logarithmic derivative. At high temperatures this ap-

proximation is usually satisfactory, but at medium tempera-

tures due to the influence of the attractive part of the potential

it breaks down.

A simple generalization of the BS model is the infinite order

sudden (IOS) model. The dividing surface is now an axially-

symmetric distorted sphere specified by the equation Ra =

Ra(g). The radial motion is again considered to be the mode
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that induces the vibrational transition, while the potential that

drives this mode UIOS(R;g) is the original potential U(R,g) in
which g is regarded as a parameter. Thus, the rotation of the

molecule plays the part of a spectator that affects the

R-dependent potential but does not participate as a dynamical

mode. Therefore, the appropriate encounter time t1-D IOS,

beside ER, also depends on g, such that the following relations

follow:

�P
1-D IOS
nn0 ðT ; gÞ ¼

Z1
0

P1-D IOS
nn0 ðER; gÞ expð�ER=kBTÞðdER=kBTÞ

ð5:6Þ

kIOS
nn0 ðTÞ ¼ 2p�v1D

Zp
0

�P
1-D IOS
nn0 ðT ; gÞðRaðgÞÞ2 sin gdg ð5:7Þ

For a dividing surface Sa, whose element dSa =

2p(R=(g))sin gdg is not very different from that of a sphere,

the temperature dependence of knn0
IOS is then virtually the

same as that of knn0
BS.

5.2 Vibrational to translational and rotational energy transfer:

the effective mass model

The effective mass (EM) approach for calculating transition

probabilities was formulated in ref. 78 and 79 as a general-

ization of the model proposed byMoore.80 In the latter model,

the LT encounter time was modified in such a way that the

translational relative energy Et was replaced by the rotational

energy Er of the diatom and the reduced mass m was replaced

by the ratio I/d2 where d is the distance between the centre of

mass of BC and the peripheral atom. In this way the vibra-

tional transition was considered to be induced by the rotation

of BC, with rebound character of the rotational trajectory

similar to that of the translational trajectory of the LT model.

Within this approach, the length parameter a in the original

LT expression, was used as a purely empirical quantity.

The more sophisticated EMmodel, also called the breathing

shell model to emphasize its difference from the breathing

sphere model, is described in detail in ref. 9, and it was refined

in later articles.81–87 The EM approximation for the determi-

nation of common trajectories consists in the introduction of a

single ‘‘driving mode’’ Q in a localized region of the R,g-space
where the vibrational transition occurs. The driving mode is a

specific combination of the coordinate displacements DR and

Dg that describes the motion along the gradient of the poten-

tial U(R;g) in a small region centred at R*,g*. The 2-D

potential U(R*+DR;g*+Dg) is then replaced by a 1-D poten-

tial UEM(Q;R*,g*) ‘‘along the gradient’’ and the reduced mass

m is changed into an effective mass m* which depends on m, the
moment of inertia of the diatom I, and the contour line R* =

R*(g*,E) of the potential U(R*,g*) for a given total energy, i.e.

the function R* = R*(g*,E) is found as a solution of the

equation U(R*,g*) = E. Thus, the applicability of the EM

approach in accounting for the effect of rotation of the diatom

onto vibrational relaxation is limited by the condition that the

rotation angle of the diatom axis with respect to the collision

axis during the encounter time should be small compared to

the angular range of the interaction anisotropy (implying the

relation |dR*/dg*| { R*) and that the anisotropy of the

effective mass is not very large (see below). Under this condi-

tion the expression for the effective mass m* assumes the form

m�ðg�;EÞ ¼ m
.
ð1þ mðdR�=dg�Þ2

.
IÞ ð5:8Þ

A simple expression for the effective mass for a homonuclear

diatom, adopted in ref. 77, corresponds to a contour line

R�ðg�;EÞ ¼ R0ðEÞ � DR0ðEÞ cos2 g� ð5:9Þ

for which

m� ¼ mI
�
ðI þ mDR2

0ðEÞ sin2 2g�Þ ð5:10Þ

A useful approximation for the effective mass was suggested in

ref. 86 for the case when the interaction potential U(R,g) can
be represented, for a certain geometry of the A + BC system,

as a function of the distance RXC between the atom C and the

atom X (X = A or B) of the diatom BC. In this case, the

expression for m* � m*X reads

m�X ¼ mI
�
ðI þ mr2X sin2 y�Þ ð5:11Þ

where rX is the distance from the centre of mass of BC to atom

X (X = B or C), and y* is the angle between the vectors rAX

and rBC. The dependence of y
* on g* and E, which appears as

the g*,E dependence of the effective mass can be found from

simple geometrical considerations. In ref. 87, a more general

expression for m*X, still formally retaining the form of eqn

(5.11) but with modified meaning of rX and y*, was suggested.
Detailed discussions of the angular dependence of the effective

mass can be found in ref. 86 for Li2–noble gas and in ref. 87 for

HCl–Ar systems. Qualitatively, the angular dependence of the

EM can be characterised by the ratio of the minimum of the

EM, mw = min{m*}, to the reduced mass m of the collision

partners, mw/m. For instance, the values of this ratio were found

to be about 0.9 for N2–He,77 0.7 for Li2–Ar86 and 0.37 for

HCl–Ar.87

Fig. 2 Comparison of CT (curve 1), CCT (curve 2) and SC (curve 3)

representations of BS rate coefficients k10 vs. the LT variable (TBS/T)
1/3

(for exponential repulsive interaction with the parameter (TBS/Tvib)

appropriate for N2 + He collisions).
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Though, in principle, m* depends on the energy and the

angle, the former dependence can often be neglected due to the

weak dependence of the contour lines on the energy. Then m*

and UEM can be parameterized only through g* (i.e. m* =

m*(g*) and UEM = UEM(q,g*)), such that the EM encounter

time tEM and 1-D CT transition probability also depend on g*:

PEM-CT
10 ðEQ; g�Þ ¼ AEM-CT

10 ðEQ; g�Þ expð�2otEMðEQ; g�ÞÞ
ð5:12Þ

The 3-D EM rate coefficient is obtained from the 1D counter-

part as a result of integration of the mean probability
�P1-D EM
nn0 (T,g*) over all points on the surface Sa:

kEM-CTnn0 ðTÞ ¼ 2p
Zp
0

ffiffiffiffiffiffiffiffiffiffiffiffi
kBT

2p m�

s
�P
EM-CT
nn0 ðT ; g�ÞðR�ðg�ÞÞ2 sin g�dg�

ð5:13Þ

The contribution of �Pnn0
EM-CT to the integral in eqn (5.18) is

determined by the interplay of two g*-dependent factors, the
exponential and pre-exponential. The g* dependence of the

former is determined by vibrationally-elastic scattering, while

that of the latter arises from the coupling interaction. Such an

interplay is shown in Fig. 4 of ref. 86 for Li2–noble gas

collisions: though the effective mass decreases monotonically

within the range of 0 o y* o p/2 leading to a monotonic

increase of the exponential, the probabilities, due to the

decrease of the coupling strength with y*, attain their max-

imum at about y* = p/4. This behavior of the probability

makes it difficult to predict the temperature dependence of the

rate constant on the basis of pure vibrationally-elastic scatter-

ing, as was done in the BS model. However, if the function m*

= m*(g*) possesses a noticeable minimum at g* = gw, such that

m*(gw) = mw, the integral in eqn (5.13) is dominated by a small

range of g* values near gw that determines an optimal collision

configuration with a 1-D transition probability. This permits

one to derive the temperature dependence of the rate coeffi-

cients in an optimal effective mass (OEM) approximation. For

instance, within the CTC approach and a repulsive exponen-

tial potential, we get

kOEM-CCT
10 ðTÞ ¼ T1=2 exp �3 T

y
EM

T

 !1=3

þTvib

2T

0
@

1
A

T
y
EM ¼ p2o2my a2

�
2kB

ð5:14Þ

Different from the BS model, the pre-exponential factor in eqn

(5.14) is now proportional to T1/2: besides the T1/3 dependence

of the BS model (see comment to eqn (5.5)) it includes an

additional factor proportional to T1/6. The latter reflects the

growing contribution (with increasing temperature) of colli-

sion configurations with g* close to gw (i.e. an opening of the

acceptance cone for effective collisions). Eqn (5.14) allows one

to find corrections to the BS approximation since the latter is a

special case of the EM approximation. A proper parameter

that describes the contribution of the rotation to the ‘‘along-

the-gradient’’ mode for the elliptic equipotential surface in eqn

(5.9) is Q = m(DR)2/I88 which is the same parameter as

suggested for the characterization of rotational-to-transla-

tional energy exchange in ref. 89.

The given CCT rate coefficients can be easily reformulated

in the SC approximation since this generalization basically

repeats that for the BS or IOS models (section 4). In section 6

this is exemplified for the relaxation of N2 in He. A simplified

version of the SC generalization, based on the symmetrization

of velocities (see eqn (4.12)) within the exponential potential,

was used in ref. 87 for the HCl + Ar system.

In the case of vibrational deactivation, the EM model

predicts a release of the energy in the form of kinetic energy

with the linear momentum pq in the direction of the gradient of

the PES, with the normal (to the plane A–BC in the encounter

configuration) component jq of the angular momentum of the

diatom changing its sign as a result of the encounter. Upon

receding of the partners, two dynamical quantities, pq and jq,

combine with other dynamical quantities that played the part

of spectators, to produce asymptotically two conserved vector

quantities, the linear momentum of the relative motion p and

the angular momentum of the diatom j. This yields, in

principle, the distribution of the released energy between the

relative translation and intrinsic rotation, though the determi-

nation of this distribution is beyond the scope of the EM

model.

The trajectory calculations confirmed the above features of

the EM model for not too high values of j, but also indicated

yet another outcome of the encounter, for high values of j, in

which the component jq does not change its sign.
86 These two

types of encounters, studied for planar collisions, were dubbed

ordinary and extraordinary86 with the latter producing stronger

rotational excitation. In fact, the appearance of extraordinary

encounters is an indication that the rotational motion becomes

more effective in producing vibrational deactivation than the

along-the-gradient motion. The limiting situation, when the

latter is considered totally ineffective, is described by the hin-

dered rotor model discussed in the next section.

5.3 Vibrational to rotational energy transfer. Hindered rotor

model

The hindered rotor model (HR) was suggested by Ovchinni-

kova75 for the description of the vibrational relaxation under

the condition ttr c trot. The main idea of this approach is that

the vibrational energy of the diatom is transformed mainly

into rotational energy, with translational energy being the

mode that drives the partners into the interaction region. The

HR model is a generalization of a free-rotor model; the latter is

based on the observation that the weight of the high-frequency

Fourier components of the perturbing force increases rapidly

with the decrease in the encounter time which can be associated

with fast and, therefore, almost free rotation. Accepting this

idea, one calculates the vibrational relaxation rate coefficient as

the rotationally-induced vibrational transition probability per

one rotation, multiplied by the frequency of rotation and

averaged over a Boltzmann distribution of rotational energies.

This concept was the basis for several treatments.90–94

The HR model75,95 takes into account a hindered rotation

of the diatom. Within this approach one can consider two

limiting possibilities that differ by the ratio of the translational
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encounter time ttr of the A–BC complex and the period of

rotation of BC, TBC. Under the condition trot { ttr { TBC,

the vibrational relaxation occurs as a result of a single rota-

tional encounter during the A + BC collision while,

with the condition trot { TBC { ttr, it occurs as the

result of multiple rotational encounters during the A + BC

collision. It turned out that these two possibilities, called the

static and adiabatic mechanisms, respectively, do not differ

much in the temperature dependence of the vibrational relaxa-

tion rate, so that we will not discriminate them in the follow-

ing. The main idea of the HRmodel is that the evolution of the

rotational mode is determined by a strongly anisotropic

potential U(R,g) at fixed values of R. The trajectories of the

rotational mode and the high-frequency Fourier components

of the perturbation, needed for the implementation of the

CT and CCT approximation into the calculation of

vibrational transition probabilities at fixed values of R, were

found numerically, and the rate coefficient was calculated

by an appropriate averaging of the R-dependent transition

probabilities.

Considerable insight into the energy-transfer mechanism

within the HR model is gained by using a model potential of

the form96

Uaniso
HR ðR; gÞ ¼ U1 cosh

�2ðg=2g0Þ ð5:15Þ

Two functions of R, the prefactor U1 that yields the height of

the rotational barrier at the linear configuration at g = 0 and

the angular scale parameter g0 that characterises the sharpness
of the anisotropic interaction, should be determined by fitting

Uaniso
HR to the anisotropic part of an ab initio potential in the

region where the rotational encounter is deemed to occur. We

can see that for g0 { 1 the barrier is quite sharp and for g/g0 c
1 the angular dependence of Uaniso

HR is exponential, similar to

the potential in the LT model. An interesting feature of the

potential (5.15) is that the encounter time is quite insensitive to

the height of the rotational barrier, and for a planar motion it

does not depend on U1 at all

tHRðEgÞ ¼ Im

Zgt
gs

dgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=IÞðEg �Uaniso

HR ðR; gÞÞ
q

8><
>:

9>=
>;

¼ pg0

ffiffiffiffiffiffiffiffi
I

2Eg

s
ð5:16Þ

Here Eg is the energy of the g mode, and gs is a singular point

of the vibrational-rotational coupling potential. In distinction

to the LT, SSH, IOS and EM models, where the driving-mode

trajectory corresponds to a rebound motion, the trajectories

for the HR model show either rebound or glancing character

depending on the relation between Eg and the barrier height

U1(R). Accordingly, the turning point angle gt is real for

EgoU1(R) and imaginary for Eg 4 U1(R) while gs is always

imaginary. However, in both cases the HR encounter time

tHR(Eg) for the HR model potential in eqn (5.16) is given by

the same expression. It was shown that the vibrational transi-

tion probability decreases rapidly with increasing m, such that

the temperature dependence of the relaxation rate averaged

over m is close to that for the planar collision.97 Thus, on the

CT level of approximation, the transition probability per one

rotational encounter assumes the form

PHR-CT
10 ðEg;RÞ ¼ AHR-CT

10 ðEg;RÞ expð�2otHRðEgÞÞ ð5:17Þ

In this expression, the exponential factor assumes the same

form for rebound and glancing encounters and the difference

appears in the pre-exponential factor only. When averaged

over a thermal distribution of rotational energies, eqn (5.17)

determines the mean transition probability �PHR-CT
10 (T,R)

which, in turn, enters the expression for the HR vibrational

relaxation rate coefficient:

kHR-CT
10 ðTÞ ¼ 4p

Z1
0

nrðRÞ �P
HR-CT
10 ðT ;RÞFðR;TÞR2dR

ð5:18Þ

where ng(R) is the frequency of visiting the encounter region by

the hindered rotor mode at fixed R, and the integration over R

with a Boltzmann distribution function F(R,T) represents the

averaging over all possible separations between the collision

partners. Note that the averaging over the separations in eqn

(5.18) for the HR model is analogous to the averaging over the

angles in eqn (5.13) for the EMmodel. In a similar way, a CCT

version of the relaxation rate can be obtained, as well as its SC

counterpart.98

Since the dependence of tHR on the energy of the hindered

rotation is the same as that of the LT encounter time on the

translational energy, one can expect a similar temperature

dependence of the relaxation rate. In particular,

kHR-CCT
10 assumes the form

kHR-CCT
10 ðTÞ / exp �3 THR

T

� �1=3

þTvib

2T

 !

THR¼ p2o2Ig20
�
2kB

ð5:19Þ

However, the temperature dependence of the pre-exponential

factor in eqn (5.19) is somewhat more complicated compared

to the EM-CTC version which is due to the presence of a non-

LT pre-exponential factor in the expression for �PHR-CTC
10 (T,R)

and to the averaging over the separations affected both by the

isotropic and anisotropic parts of the interaction potential.

Fitting the parameters of the potential from eqn (5.15) to ab

initio or semiempirical potentials, the CCT version of the HR

model was used for the interpretation of experimental data on

the vibrational relaxation of hydrogen halide molecules.99

6. Temperature dependence of vibrational

relaxation rates within the EM and HR models

This section presents specific examples that illustrate the

performance of generalized LT models, describing the tem-

perature dependence of vibrational relaxation rate coefficients

and identifying the driving mode that induces the vibrational

transition.

Our first example is the relaxation of N2 in a He heat bath.

For this system, there exist accurate quantum calculations of

the rate coefficients within the CC and CS approaches, and

experimental results are available over a wide temperature

range. An estimation of the ratio ttr/trot, which turns out to be
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smaller than unity, indicates that this system falls into the

category covered by the EM model. It thus becomes possible

to compare the temperature dependence predicted by the SC

EM model with that from the quantum calculations and from

experimental data.

Our second example is the relaxation of HF in an Ar heat

bath. For this process, the ratio ttr/trot is larger than unity

which suggests the applicability of the HR model. The HR

calculations of the rate coefficients, performed quite some time

ago, can be compared with recent accurate quantum results.

However, a comparison with experimental data is not unpro-

blematic since these may not represent state-to-state rate

coefficients (see below for details) though the results of the

HR calculations reasonably well agree with the experimental

data for some PES (and disagree for others).

Our third example is the relaxation of HCl in Ar. Here we

compare the vibrational relaxation times calculated for differ-

ent choices of the driving modes but with the same model PES.

This comparison demonstrates big differences between relaxa-

tion rates determined within the infinite-order sudden ap-

proach, effective mass model, and the hindered rotor model.

It also shows the satisfactory performance of the analytical

HR model in describing the temperature dependence of the

relaxation rate.

6.1 Relaxation of N2 in He: weak effect of rotation

The vibrational relaxation of N2 in a He heat bath

N2ðv ¼ 1Þ þHe! N2ðv ¼ 0Þ þHe ð6:1Þ

can serve as a simple illustration of the application of the EM

SC method described in section 3. We have chosen this system

for three reasons:

(i) The low anisotropy of the interaction, the small reduced

mass of the partners and the rather high value of the moment

of inertia of N2 result in an effective mass that deviates only

little from m. This suggests the use of the EM model which is

also expected not to differ too much from the BS model.

(ii) There exist accurate quantum calculations100,101 which

provide the basis for a check of the SC approximation.

(iii) The experimental data, available over a very wide

temperature range, from several thousand degrees 102 down to

70 K,100,101,103 are in agreement with accurate quantum calcula-

tions and can be compared with the SC theoretical results.

The above features suggest that the temperature dependence

of the rate coefficient for the temperatures that are still

noticeably higher than the characteristic temperature of the

potential well, TW = D/kBT E 30 k, are well described by the

BS-CCT approach. Indeed, the experimental values of

k10(T)
102,103 are reproduced by eqn (5.5) in the range

2500–300 K (with a noticeable deviation from the LT plot at

the low-temperature side of this interval)76 with a choice a =

0.263 Å corresponding to the older ab initio potential from ref.

104. In the following, we revisit the CCT approximation and

discuss the SC approximation, using the more recent ab initio

potential and estimating the rotational effect within the EM

metod.77

The key quantity that determines the temperature depen-

dence of the relaxation rate is the encounter time. It has been

calculated for a realistic interaction potential taken from

ref. 100. The interaction potential for high energies, say above

kB 
 500 K, is close to a purely exponential repulsion with the

length parameter ahigh = 0.241 Å for the collinear and

T-shaped geometry of the collision complex, and this value

is close to the independent estimation from the asymptotic

method105,106 that yields aasym = 0.244 Å. For lower energies,

the potential drops more steeply due to the effect of the

potential well. This effect is characterised by the deviation of

t(E) from the high-energy LT encounter time. For the above

two geometries, due to symmetry reasons, the effective mass

coincides with the reduced mass such that the high-energy

encounter time is thigh(E) = pahigh/
ffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
. The ratio

t(E)/thigh(E) is shown in Fig. 3 as a function of the collision

energy for two geometries. The difference between the two

dashed lines is due to the difference of the well depths in these

configurations (25 and 31 K, respectively). For a comparison,

we also show similar ratios for the Morse potential (see eqn

(4.7)) with the same values of ahigh and D. We can see that the

model of a Morse potentials yields quite different encounter

times compared to that for the ab initio potentials. This is

explained by the fact that the attractive part of the Morse

potential, being proportional to �exp(�R/2ahigh), affects the

repulsion much stronger than the more realistic attractive

interaction being proportional to �1/R.6 The mean transition

probabilities for two configurations, g = 0 and g = p/2, have
virtually the same temperature dependence because t(E) are
nearly the same and the effect of rotation does not show up.

However, it does for other configurations and is manifested

through the dependence of the effective mass m* on g*.
According to eqn (5.10), the minimum value of m*, called mw,
corresponds to g* = p/4, and, with DR = 0.59 Å as appro-

priate for the ab initio potential, mw amounts to about 0.9m.
The only small difference between the effective masses allows

one to get useful lower and upper bounds of the EM SC rate

coefficient through its IOS-like SC counterparts by calculating

IOS SC rate coefficients with angle-independent masses �m,

Fig. 3 Relative encounter times for N2 +He collisions for a linear (g*

= 0) and T-shaped (g* = p/2) geometries vs. collision energy. The

dashed curves represent the result for an ab initio potential (full line =

mean), and dotted curves are for the Morse potential with two ab initio

parameters, the high-energy slope and the depth of the potential well.
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using the maximal and minimal of their values (that is �m = m
and �m = 0.9m, respectively). In this way one obtains

kIOS-SC
10 ðTÞ

��
�m¼m� kEM-SC

10 ðTÞ � kIOS-SC
10 ðTÞ

��
�m¼0:9m ð6:2Þ

Fig. 4 shows how the upper and lower bounds of

KEM SC
10 embrace the experimental data points as well as

the results of accurate quantum calculations. The performance

of the SC method can be appreciated more when compared

to CT (original LT treatment), CCT and SC calculations

for a pure repulsive interaction. In particular, it shows that

the main reason for the curvature of the linear CT

(Landau–Teller) plot comes from the quantum effect of the

liberation of large amounts of energy rather than the deviation

of the repulsion from its high-energy exponential form.

This conclusion may seem unexpected in view of the large

deviation of the encounter time from its high-energy

counterpart at, say, 100 K (see Fig. 3) and the rather

small deviation of the accurate and EM SC rate coefficients

from their SC counterpart calculated for a purely repulsive

interaction. However, one notes that the SC transition

probability is determined by the integral over the collision

energies where the portion close to the lower limit does not

play a significant role. We also observe that a similar approach

reproduces well the isotope effect on collisions 14N2 + 4He

and 15N2 + 3He.77 However, along with the dependence of

the SC exponent on the reduced mass of the partners and

the reduced mass of the diatom, one should also take into

account the dependence of the pre-exponential factor on

these quantities.

6.2 Relaxation of HF in Ar: strong effect of rotation

The relaxation of HF in Ar

HFðv ¼ 1Þ þAr! HFðv ¼ 0Þ þAr ð6:3Þ

markedly differs from that in the N2 + He system for the

following reasons:

(i) The high anisotropy of the interaction, the rather large

reduced mass of the partners and the small value of the

moment of inertia of HF result in an effective mass that

strongly depends on the orientation angle. This suggests that

the BS and IOS models can not be applied and either the HR

or the EM model have to be considered.

(ii) There exist quantum CS calculations107,108 which pro-

vide some possibility for comparison with the HR and EM

results.

(iii) Unfortunately the available experimental data do not

allow for an unambiguous interpretation in terms of state-to-

state rate coefficients (see below).108 In this case, we refrain

from comparing the theoretical and experimental values of k10
and concentrate on a comparison of theoretical values of k10
from the numerical CTC HR calculations of 1985 employing

the best available PES at that time, kCTC-HR
10 , with numerical

CS calculations of 2002 with two more recent ab initio PES,

kCS10 . We also verify qualitative predictions of the HR model

about the distribution of the released energy over translational

and rotational degrees of freedom.

6.2.1 Comparison of HR and EM results with accurate CS

calculations. HR rate coefficients for HF relaxation in Ar were

calculated for different potentials in ref. 75. The comparison of

theoretical CCT HR rate coefficients for the PES from ref. 109

with experimental data110–112 demonstrated a fair agreement,

though it was noted that the theoretical results were very

sensitive to the analytical representation of the PES. The LT

plots of kCCT-HR
10 , based on Fig. 3 from ref. 75, are presented in

Fig. 4 LT plot of the vibrational relaxation rate coefficient k10(T) for
14N2 in

4He (normalised to high-temperature experimental data from

ref. 102). Lower and upper full lines correspond to kIOS–SC
10 (T)|�m = m

and kIOS–SC
10 (T)|�m = 0.9 m, the shaded area between them accommodates

the experimental data (symbols: filled triangles from ref. 103 and open

circles from ref. 104) which are essentially in agreement with accurate

quantum calculations. The three dashed curves, from bottom to top,

represent the rate coefficients calculated in the common trajectory (i.e.

Landau–Teller), semiclassical and corrected common trajectory ap-

proximations, after ref. 77.

Fig. 5 Comparison of LT plots of theoretical rate coefficients for

vibrational relaxation of HF in Ar, for different PES calculated within

the HR model and CC approach. The full lines correspond to

kCTC-HR
10 from ref. 75 for two different interpolations between the

points of the same PES from ref. 109. The symbols represent KCC
10 from

ref. 108 for two PES, see text.
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Fig. 5 by two solid lines, each corresponding to different

interpolations between the data points of the same PES from

ref. 109. The difference between the two lines demonstrates the

sensitivity of the rate coefficient to seemingly ‘‘reasonable’’

modifications of the potential resulting from different global

analytical fittings of the PES.

Quantum CS rate coefficients for two more recent ab initio

PES were reported in ref. 108. The differences between the

theoretical rate coefficients and the experimental data were

found to be quite large, the former being a factor of 10 or 30

higher than the latter. It was argued that neither the inaccu-

racy of CS (compared to the accurate CC calculations) nor

reasonable variations of the PES could explain the disagree-

ment with the experimental data. It was then concluded that

the experimental data do not correspond to the rate coefficient

k10 but rather to an effective rate coefficient for a complicated

sequence of events: the collision-induced near resonance trans-

fer of vibrational energy of HF to its rotational energy, followed

in successive collisions by the back transfer of rotation to

vibration and by the collisional rotational relaxation of HF.108

The LT plots of kCS10 , based on Fig. 1 from ref. 108, in Fig. 5 are

presented for two PES by symbols. The difference between the

two sets of symbols demonstrates the sensitivity of the rate

coefficient to seemingly ‘‘reasonable’’ variations of the PES.

On the whole, we can see that CCT HR rates are below the

CC rates, the difference between the two sets of results within

each approach (CCT HR or CC) is of the same order of

magnitude as the difference between the results for different

choices of the PES, and both lead to curvatures at lower

temperatures. A convincing comparison between the HR and

CS approaches should be based on calculations that use the

same PES. This is not available at present. However, the CS

results were compared with the IOS approximation and with a

simplified version of EM model, the so called EM-IOS approx-

imation.108 In the latter, the IOS code was supplemented with

an angle-dependent effective mass suggested by eqn (5.14). The

IOS model fails badly, while the EM-IOS approximation per-

forms better, still yielding cross sections for vibrational relaxa-

tion which are about two orders of magnitude lower than the

CS cross sections (Fig. 8 from ref. 107). Considering this

disagreement, the authors of ref. 108 expressed the optimistic

view that ‘‘by choosing the effective mass in a more appropriate

way, it is possible to obtain even quantitative agreement with

the more accurate CS data’’. We cannot exclude, however, that

for relaxation of hydrogen halide molecules in collisions with

heavy noble gas atoms the EMmodel should be abandoned and

replaced by the HR model.

6.2.2 Distribution of released energy

As discussed in section 5, the HR model predicts that upon

vibrational deactivation, the vibrational energy of BC, at a

certain distance R between A and the center of mass of BC, is

transformed into the energy of hindered rotation of BC. When

A and BC separate, the energy of hindered rotation is parti-

tioned into rotational energy of BC and relative translational

energy of A–BC. This partitioning depends on the extent of

how strongly, at the distance R, the free rotation of BC is

perturbed by the interaction of A with BC. For a given j, this

perturbation becomes larger with increasing translational en-

ergy and, for a given translational energy, this perturbation

diminishes with increasing j. These observations lead to the

following qualitative conclusion about the resonance features

of transformation of vibration of BC into free rotation of BC:

the resonance with respect to the final values of j = j00

broadens with increasing initial translational energy and be-

comes narrower with respect to j00 with increasing j0. The above

predictions of the HR model are in agreement with the results

of the CS quantum study of the relaxation of HF in Ar, as

revealed from Fig. 6 of ref. 107 (distribution over j00 for j0 = 0

and different collision energies E0t = 300, 834, 3000, and 4000

cm�1) and Fig. 3 of ref. 108 (distribution over j00 for E0t = 2106

cm�1 and different initial rotational quantum numbers j0 = 0,

8, 17). We regard this conclusion as yet another indication for

the applicability of the HR model to the vibrational deactiva-

tion of HF in Ar.

6.3 Relaxation of HCl in Ar: comparison of different driving

modes

The relaxation of HCl in Ar

HClðv ¼ 1Þ þAr! HClðv ¼ 0Þ þAr ð6:4Þ

exhibits features which are similar to the relaxation of HF in Ar.

We discuss this system in order to compare the efficiency of

along-the-gradient and rotational driving modes, leaving aside

the BS and IOS models which for a long time were known to be

inadequate for describing the relaxation of this particular system.

The most detailed study of this process within the EM

approach was done in ref. 87. The authors used the so-called

‘‘classical approach quantum encounter’’ method which com-

bined the search for optimal collision configurations from

classical trajectories with quantum expressions for the vibra-

tional transition probability. The latter referred to an expo-

nential repulsive interaction and contained the effective mass.

As remarked by the authors, ‘‘this hybrid classical/quantum

development may prove to be quite useful, except for very

glancing collisions’’. The effective mass calculated for the

presumably best PES (called M5), exhibits a sharp minimum

at about gw =251 with mw E 7 a.m.u. (in comparison to m=19

a.m.u.) which is reflected in a pronounced maximum of the

transition probability as a function of the angle g*. The

calculated values of the averaged vibrational transition prob-

ability (for the M5 PES with a well depth of 160 cm�1) were

found to agree well with the experimental data within the

temperature range 296–1953 K, when the length parameter a

was optimised yielding a value of a= 0.25 Å. When the length

parameter was increased to a value of a = 0.35 Å the

transition probabilities drop by about two orders of magni-

tude (Fig. 10 from ref. 87).

A HR description of the same process was presented earlier

by Ovchinnikova.75 She numerically calculated the transition

probabilities from the Fourier components of the perturbation

by running classical HR trajectories at fixed values of R with

subsequent averaging over the separations of the partners, and

introducing quantum correction to the CT approach. Calcula-

tions were performed for different PES, and reasonable agree-

ment with experimental data was found for some of these (Fig.

2 from ref. 75). The Billing potential with a well depth of 140
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cm�1 and length parameter a = 0.35 Å,90 in particular, led to

reasonable agreement between theoretical experimental data

(Fig. 2 from ref. 75). An analysis of the contribution of

rebound and glancing HR trajectories to the transition prob-

ability showed (Fig. 6 of ref. 75) that the fraction of rebound

encounters for this PES was quite high (0.6–0.75) such that the

hindrance of rotation is an important dynamical feature of the

energy transfer.

It is difficult to discriminate between EM or HR model

calculations by comparing theoretical results with experimen-

tal data, because different PES and dynamical simplifications

were used in the different calculations. Also, like in HF–Ar

relaxation (see above), the data may not have corresponded to

state-to-state rate coefficients. A more secure insight can be

gained by comparing EM and HR theoretical rate coefficients,

calculated for the same PES on the same level of dynamical

approximation. Fig. 6 shows results of such calculations in the

CCT approximation for pair-wise exponentially repulsive

interactions with the length parameter a = 0.35 Å.96 Curves

1 and 2 represent CCT rate coefficients for HR and EM

approaches while curve 3 corresponds to the coefficients for

a PES with an anisotropic term in the form of eqn (5.15).

The inspection of the graphs in Fig. 6 shows that:

(i) the temperature dependences of the rate coefficient for

the initial potential and its analytical approximation are

virtually the same, though the rates differ by a factor of two;

(ii) the values of kEM-CCT
10 are much lower, and their

temperature dependence is much steeper than that of

kHR-CCT
10 . However, a more detailed interpretation of the

difference in the temperature dependences of kEM-CCT
10 and

kHR-CCT
10 would require the comparison not only of the

exponential but also of the pre-exponential factors. This is

outside the scope of this paper.

From (i) we conclude that the temperature dependence of

the HR rate coefficient is not sensitive to variations in the

shape of the rotational barrier (within physically reasonable

limits) and, therefore, the approximation of eqn (5.15) for a

strongly anisotropic interaction can be used to estimate the

order-of magnitude of the HR rate coefficients. This procedure

is similar to the exponential approximation in LT type BS or

IOS rate coefficients in the case of interaction with weak

anisotropy.

From (ii) we can see that the rotational driving mode (HR

model) is by far more effective in inducing the vibrational

transition than the along-the-gradient driving mode (EM

model). In other words, accepting the EM model, one misses

the channel which corresponds to the HR model. This con-

clusion still applies if one changes the value of the length

parameter a. If the latter is forced to reproduce the experi-

mental data within the EM model by decreasing its value from

0.35 down to 0.25, one will still neglect the more efficient

pathway of relaxation via the HR mechanism. One should

have been alerted about this problem of the EM model in

HCl–Ar collisions since the angular dependence of the effec-

tive mass found in ref. 87 showed quite a narrow and

pronounced minimum. The width of this minimum is quite

small and the rapidly rotating molecule HCl can traverse it

during the along-the-gradient encounter time. Under this

circumstance, the effective mass approximation loses its mean-

ing, and the EM model becomes internally inconsistent.

Since the breathing sphere (and infinite-order sudden),

optimal effective mass, and hindered rotor models yield similar

analytical expressions for the main temperature dependence of

the rate coefficients in the case of an exponentially repulsive

interaction, we finally conclude that the efficiency of different

driving modes, at least at high temperatures, can by qualita-

tively judged on the basis of the respective LT temperatures

such as they are defined in eqn (5.5) for BS, eqn (5.14) for EM

and eqn (5.19) for HR models.113

7. Conclusion

Until the end of 1960s, the Landau–Teller model served as the

generally accepted basis for the calculation of vibrational-to-

translational rate coefficients and hence for the modeling of

vibrationally nonequilibrium kinetic processes in gases. With

the advent of new techniques for the experimental determina-

tion of vibrational state-to-state rate coefficients and the

development of numerical codes for solving quantum scatter-

ing equations, the Landau–Teller model started to get out of

view. Nowadays, when collisional rate coefficients can be

calculated numerically with high accuracy, and master equa-

tions for nonequilibrium distribution functions can be solved

rather easily, attempts to revive the Landau–Teller model as a

means of the quantitative interpretation of experimental data

will not be too successful and the model seems to survive only

in tutorial and historical sections of reviews on collisional

energy transfer. However, one should still consider the LT

model as a piece of art which reflects rather than reproduces

reality. Regarded in this way, generalized LT models such as

those described in the present review possess qualitative pre-

dictive power and provide insight into various factors govern-

ing collisional energy transfer. One can consider these models

as semiclassical counterparts of the general quantum coupled

Fig. 6 LT plots of theoretical vibrational relaxation rate coefficients

for HCl in Ar. HR and EMmodel calculations with the same pair-wise

exponentially repulsive interaction potential, solid lines 1 and 2,

respectively. The dotted line 3 corresponds to the analytical HR model

with the potential from eqn (5.15) which approximates the pair-wise

potential in the region of rotational encounter, see text.
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states approach which, in turn, represents a good approxima-

tion to the accurate close-coupling method. If one restricts this

task to the determination of the temperature dependence of

the vibrational relaxation rate coefficients rather than their

absolute values, the semiclassical 3-D LT models in the near-

adiabatic regime can serve as useful guides to the relevant

molecular parameters governing energy transfer. In this sense,

the Landau–Teller model even after 70 years has not lost its

actuality. We finally note that, beside being practically useful,

the Landau–Teller model demonstrates a fundamental

relation between the classical Ehrenfest adiabatic principle,

as expressed by eqn (3.2), and its semiclassical generalization,

eqn (4.2).

Appendix. Glossary of abbreviations used in this

paper

AO Anharmonic oscillator

BS Breathing sphere

BF Body fixed

CC Close coupling

CS Coupled states

CT Common trajectory

CCT Corrected common trajectory

1-D One-dimensional

3-D Three-dimentional

EM Effective mass

HO Harmonic oscillator

HR Hindered motor

IOS Infinite order sudden

FOD First order diabaic

FOA First order adiabatic

LT Landau–Teller

OEM Optimal effective mass

PES Potential energy surface

SC Semiclassical

SD Steepest descent

SOD Second order diabatic

SSH Schwartz–Slawsky–Herzfeld

VT Vibration-translation

VP Vibrational predissociation

WKB Wentzel–Kramers–Brillouin
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