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Cross sections and rate coefficients for capture of low-energy electrons with polar and polarizable

target molecules are calculated in the framework of Fabrikant and Hotop’s extended version of

the Vogt–Wannier model and an extension of this approach is given in the present article.

Analytical approximations are derived in order to facilitate the application to experiments. A

comparison with a selection of experimental electron attachment rate coefficients provides insight

into the competition between anion formation through electron capture and scattering processes

which do not follow this pathway.

1. Introduction

The dynamics of low-energy electron–molecule collisions can

be understood in the framework of a variety of scattering

models. Hotop, Ruf, Allan, and Fabrikant1 have presented a

detailed state-of-the-art review. There is a multichannel

R-matrix theory which focuses on resonance phenomena

caused by the interaction of incoming and outgoing wavepack-

ets. Considering incoming waves only, there is also an electron

–molecule capture theory such as formulated by Vogt and

Wannier2 and extended by Fabrikant and Hotop.3 This ap-

proach appears to be suitable when anions are formed and the

outgoing wavepacket is attenuated by intramolecular vibra-

tional redistribution (IVR) of the nuclear framework. The

electron–molecule capture concept finds its equivalence in

capture theory for atom–molecule (neutral or charged) colli-

sions and it leads over to the analysis of the kinetics of

barrierless processes in reaction kinetics.4 The combination

of capture theory with statistical theories of the dynamics of

adducts then allows one to cope with a variety of more

complex kinetic phenomena that are initiated by the capture

process. One would expect that such phenomena for electron

–molecule capture can then be described in a similar way as in

neutral gas phase kinetics.

The present article aims at simple representations of an

electron–molecule capture, suitable to be combined with

the statistical unimolecular rate theory applied to metastable

anionic states. We intend to cast the Vogt–Wannier, extended

Vogt–Wannier, and related treatments into the simplest

possible analytical form such that electron–molecule ‘‘collision

numbers’’ can be defined and an application to experiments

can be readily made. A simple approximation for polarizable

target molecules and s-wave scattering has already been

proposed by Klots5 and is widely used by experimentalists.

It was shown in ref. 1, however, that the Klots s-wave capture

cross section differs from the accurate numerical

Vogt–Wannier result by up to about 8%. In our present work

we first modify the Klots expression in a very simple way

which allows us to reduce the error by about one order

of magnitude. In addition, we provide analytical approxima-

tions for higher partial-wave capture cross sections with

polarizable target molecules up to l = 4. We then inspect

expressions for electron capture cross sections for polar plus

polarizable target molecules, following and further elaborating

Fabrikant and Hotop’s3 extended Vogt–Wannier model. We

focus our attention on s-wave scattering, elaborate capture

cross sections, and provide analytical approximations to

capture rate coefficients. We finally also consider all-wave

capture and compare quantum with classical trajectory results.

Having in hand simple expressions for electron–molecule

capture cross sections and rate coefficients, one can system-

atically compare the calculations with experimental electron

attachment data. In selected cases one finds close agreement.

In the majority of experiments, however, the capture theory

overestimates attachment rates and cross sections. In this case,

elastic and inelastic (or also direct dissociative) electron scat-

tering effectively competes with IVR-induced anion formation.

In practice, one would certainly like to rationalize the parti-

tioning of electron–molecule collisions between attachment

and (in)elastic scattering channels, but this is a more difficult

task which will be the aim of a later analysis.6 One system,

where attachment at low electron energies is dominated by

capture, is the nondissociative and dissociative electron attach-

ment to SF6. It was shown in ref. 7 and 8 that the combination

of the Vogt–Wannier capture and the statistical unimolecular

rate theory (with some empirical modifications accounting for

the contribution from IVR and direct vibrational excitation)

can enable modelling of many kinetic observables. In other

systems, attachment rates are markedly, sometimes orders of

magnitude, smaller than those given by the capture theory.

For these cases, a simple capture theory such as that presented

in this work at least provides an upper bound and gives an

orientation for the competition between anion formation and

direct scattering processes.
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It should be emphasized that capture theories of the present

type assume complete incorporation of the incoming electron

into the electronic cloud of the target molecule and do not

account for outgoing wavepackets. Neither resonance phe-

nomena caused by interaction of incoming and outgoing

wavepackets, nor inelastic scattering processes without forma-

tion of anionic states, are thus represented by this approach.

Nevertheless, upper bound calculations of cross sections for

capture appear always useful to be made. For further discus-

sions of the relation between resonance and capture theories,

see ref. 1.

2. Electron capture by polarizable target molecules

In the present article we follow the treatment of ref. 4. Capture

cross sections s(E) are calculated by solving a 1-D Schrödinger

equation with standard scattering boundary conditions at

large electron–molecule separations R and with an incoming

wave only at small values of R near the complex boundary.

For a spherically symmetric interaction such as for the polar-

ization potential, s(E) is represented by

sðkÞ ¼ ðp=k2Þ
X1
l¼0
ð2l þ 1ÞPlðkÞ ð2:1Þ

with the wave vector k = p/�h of the relative motion, E =

p2/2m, and the probability Pl(k) for l-wave capture. Using

dimensionless reduced wave vectors k given by

k ¼ kðme2aÞ1=2=�h ¼ með2aEÞ1=2=�h2 ð2:2Þ

with the reduced mass m, the electronic charge e, and the

polarizability a of the molecular target, the capture probabil-

ities are expressed as Pl(k). A simple analytical fit to s-wave

capture probabilities (l = 0) in the form of

PsðkÞ ¼ Pl¼0ðkÞ � 1� expð�4kÞ ð2:3Þ

was proposed by Klots5 some time ago and for convenience

was often used in practical applications. It leads to the correct

low-energy limit Pl=0(k) - 4k for k - 0. Likewise, it goes to

the correct high-energy limit Ps(k)- 1 for k c 1. However, it

was shown in ref. 1 that the Klots expression at values near

k = 1 deviates from the accurate results, obtained by numeri-

cally solving the Schrödinger equation, up to about 8%.

Inspecting numerical solutions again, we found that a simple

modification of Klots’ equation considerably improves the

accuracy. The expression

PsðkÞ ¼ Pl¼0ðkÞ � 1� 0:5 expð�2kÞ � 0:5 expð�6kÞ ð2:4Þ

was found to be about a factor of 5 more precise than the

Klots expression. Modifying this expression slightly more by

putting

PsðkÞ � 1� 0:25 expð�1:387kÞ � 0:75 expð�4:871kÞ ð2:5Þ

improves the accuracy of the Klots expression by about one

order of magnitude. The results of eqns (2.3)–(2.5) in Fig. 1 are

compared with accurate numerical results. Eqn (2.5) nowhere

differs from the accurate results by more than 0.8% and thus

supersedes Klots’ eqn (2.3). (Low amplitude undulations at

very small values of k are due to errors in the numerical

integration of the capture equations. They practically do not

affect the calculations of temperature-dependent rate co-

efficients.)

Capture by molecular targets with low to medium polariz-

abilities is generally assumed to be governed by s-waves.

Higher values of l appear to be relevant only for objects with

large polarizabilities.1 For completeness, we also calculated

Pl(k) for l = 1, 2, 3, and 4 and again represented the results in

approximate analytical form. The Appendix provides the

corresponding equations.

Thermal averaging of the capture cross sections leads to

capture of rate coefficients which is easily done with the

analytical approximation for s-waves given in eqns

(2.3)–(2.5). Following again the treatment of ref. 4, the capture

rate coefficients kcap(T) are expressed in a dimensionless

reduced form through

wðTÞ ¼ kcapðTÞ=kL ð2:6Þ

where kL denotes the Langevin rate constant

kL ¼ 2peða=mÞ1=2 ð2:7Þ

Employing a reduced temperature y

y ¼ ðem=�h2Þ2akT ð2:8Þ

and a thermal distribution F(k, y)

Fðk; yÞ ¼ ð2pyÞ�1=2ð2k2y�1Þ expð�k2=2yÞ ð2:9Þ

partial-wave and all-wave rate coefficients are easily obtained.

For instance, dimensionless s-wave rate coefficients are calcu-

lated from

wsðyÞ ¼
Z1

0

ð2kÞ�1PsðkÞFðk; yÞdk ð2:10Þ

Fig. 1 Comparison of analytical approximations for the s-wave

capture probabilities Papp
s (k) with numerically accurate s-wave cap-

ture probabilities Ps(k) for dipole-less polarizable target molecules

(curve 1: Klots approximation from eqn (2.3), curve 2: double-

exponential approximation from eqn (2.4), curve 3: double-exponen-

tial approximation from eqn (2.5)).
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and all-wave rate coefficients follow as

wallðyÞ ¼
X1
l¼0
ð2l þ 1Þ

Z1

0

ð2kÞ�1PlðkÞFðk; yÞdk ð2:11Þ

The low- and high-temperature limits of ws(y) are easily found

to be

wsðy! 0Þ ¼ 2 ð2:12Þ

which is called the Bethe–Wigner limit, and

wsðy!1Þ ¼ ð2pyÞ�1=2 ð2:13Þ

which is a decreasing function of y in contrast to the tempera-

ture-independent all-wave Langevin limit wall(y - N) = 1.

Employing Ps(k) from eqn (2.3)–(2.5), ws(y) at intermediate

values of y can also be evaluated in analytical form. E.g., with

eqn (2.5) one obtains

wsðyÞ �0:173 expð0:962yÞf1� erf ½ð0:962yÞ1=2�g

þ 1:827 expð11:863yÞf1� erf ½ð11:863yÞ1=2�g
ð2:14Þ

where the error function is given by erf(x) = (2/p1/2)
R
x
0

exp(�t2)dt.
Partial-wave capture rate coefficients in principle could also

be expressed in analytical form with the expressions for cross

sections given in Appendix A1. However, numerical calcula-

tions are more appropriate, which also applies to the all-wave

capture rate coefficient wall(y). For the latter we have done this
calculation and plotted the result in ref. 4, see also section 3.

For convenience, in the present work, we have derived an

analytical approximation to the all-wave rate coefficient

wall(T) which is given by

wallðyÞ � 1:5� 0:5 tanhð0:925xþ 1:08x2 þ 0:04x3Þ ð2:15Þ

with x = 2.075 + log10(y). The low- and high-temperature

limits of wall(y) now are wall(y - 0) = ws(y - 0) = 2 and

wall(y - N) = 1 where the latter corresponds to the classical

limit given by the Langevin rate constant. We do not plot the

derived expressions for cross sections or rate coefficients at this

stage, because they will be illustrated as zero-dipole moment

limits of the treatment of the next section.

3. s-Wave electron capture by polar plus

polarizable target molecules

When the polarizable target molecule also has a permanent

dipole moment mD, the electron–molecule interaction potential

is anisotropic and approximately of cos g-form (with g being

the angle between the dipole axis and the line connecting the

position of the electron with the molecular center of mass). In

the sudden limit of the dynamics, which applies to the electron

capture considered here, the orientation of the molecular

target can be assumed to be fixed in space. The radial

Schrödinger equation, instead of g, will then contain a para-

meter D̃ and have the form1

� �h2

2m
@2

@R2
þ �h2 ~D

2mR2
� e2a
2R4

� �
j ¼ Ej ð3:1Þ

where D̃ represents the eigenvalues of the operator D̂ = lˆ 2 �
2d cos g with the angular momentum operator lˆ 2 and the

parameter d = emmD/�h
2. Interestingly, the eigenvalues of the

matrix D, which are needed for the formulation of the capture

eqn (3.1), in the sudden limit, formally coincide with the

eigenvalues of a rigid dipolar rotor in a uniform electrical

field such as evaluated in Stark spectroscopy, see ref. 9–13 for

analytical approximations. These eigenvalues can be expressed

by Djm where j and m are free rotor quantum numbers.

The solution of eqn (3.1) with D̃ = Djm, by analogy to the

treatment of ref. 4 such as that also employed in section 2,

leads to the capture probabilities Pjm(k) to be used in an

expression similar to eqn (2.1). However, in what follows we

only consider the lowest eigenvalue D00 from the set D̃ which

we call Ds in order to draw attention to the analogy with

s-wave capture. This corresponds to the ‘‘extended

Vogt–Wannier model’’ such as that elaborated by Fabrikant

and Hotop.1,3

As in ref. 4 and section 2, we express eqn (3.1) again in

dimensionless variables with RL = e(ma)1/2/�h, r = R/RL, k =

kRL, and e = k2/2 = (mR2
L)E, such that, for the lowest

eigenvalue Ds, the capture eqn (3.1) writes

� @2

2@r2
þ Ds

2r2
� 1

2r4

� �
jeðr;DsÞ ¼ ejeðr;DsÞ ð3:2Þ

The eigenvalues Ds for small values of the parameter d can be

readily found within second-order perturbation approxima-

tion. One obtains, e.g.,

Ds � �ð2=3Þd2 ð3:3Þ

Beyond second order and with d not exceeding a critical value

of 0.639 (corresponding to mD E 1.625 Debye), an approx-

imation of the form,1

Ds � lð1þ lÞ ð3:4Þ

with

l ¼ �0:5þ 0:5½1� 4d2ð0:666� 0:156d2 þ 0:050d4Þ�1=2

ð3:5Þ

has been recommended in ref. 1 and 3. Higher perturbation

results as well as perturbation results for small values of d�1

and analytical interpolations between the ranges of small d

and small d�1 are also available, see ref. 9–13. Fig. 2 compares

accurate numerical results for Ds(d) with the parabolic ap-

proximation of eqn (3.3) and the approximation of eqns (3.4)

and (3.5).

Employing the described eigenvalues Ds in eqn (3.2), the

radial Schrödinger equation is solved and leads to the capture

probabilities. E.g., on the basis of eqns (3.4) and (3.5), over the

range �1/4 o Ds r 0 and for k { 1, Fabrikant and Hotop3

recommended

Psðk;DsÞ � 4 sin2ðptÞ=½b2 þ b�2 � 2 cosð2ptÞ� ð3:6Þ

with t ¼ ðDs þ 1
4
Þ1=2 and

b ¼ ðk=4ÞtGð1� tÞGð1þ tÞ ð3:7Þ

In order to verify the accuracy of eqns (3.6)–(3.7), we have

numerically solved eqn (3.2) and plotted the results in Fig. 3.
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In these calculations we have extended the range ofDs down to

values below �1/4. Our results are consistent with the predic-

tion that the limit of Ps(k, Ds) for Ds 4 �1/4 and k - 0 is

zero, while for Ds r �1/4 it assumes a non-zero value. For Ds

= 0, i.e. for t = 1/2 in eqn (3.6), the correct low-energy

capture probability for a polarizable target with mD = 0 is

obtained, i.e. Ps(k) - 4k such as that given by eqns

(2.3)–(2.5).We can also see that the numerical results begin

to deviate noticeably from eqn (3.6) at k above about 0.2

which is somewhat lower than suggested in ref. 3. Passing from

Ps(k, Ds) to Ps(k, d), one obtains Fig. 4. Again one can see up

to which values of k the analytical solutions by Fabrikant and

Hotop3 provide good results. One can also notice that Ps(k)
approaches unity when d exceeds unity. Inserting Ps(k) into
eqn (2.10) gives ws, see Fig. 5.

The following properties of ws(y, d) are worth mentioning:

(i) The lower limit of ws(y, d) corresponds to Ps(k, y) for mD =

0 (d = 0), i.e. to ws(y) from section 2. It is described by the

analytical approximation in eqn (2.14) and represented by the

filled circles. (ii) The upper limit of ws(y, d) corresponds to

Ps(k, y) = 1. It is given by the analytical expression wmax
s ðyÞ ¼

1=
ffiffiffiffiffiffiffiffi
2py
p

and represented by the dashed line in Fig. 5. Note that

wmax
s ðyÞ ¼ 1=

ffiffiffiffiffiffiffiffi
2py
p

is not much higher than ws(y, d) for d = 1.

(iii) The low-temperature limit of ws(y, d), i.e. ws(y, d)|y{1,

which is derived from the analytical formulae (3.6) and (3.7),

reads

wsðy; dÞjy�1¼ðy=8Þ
t�1=2 sin

2ðptÞffiffiffi
p
p

� G2ð1� tÞ
Gð1þ tÞ ½1þOððy=8ÞtÞ�

ð3:8Þ

where O(x) means of the order of x. Note that the correction

termO(x) in the bracket of eqn (3.8) for small y is small as long

as t is not too small. This peculiarity of the expansion of

ws(y, d) in powers of y reflects a similar behaviour of Ps(k, d) in
an expansion in powers of k (see the comments in ref. 3 that

follow eqn (20)). (iv) Under general conditions, one may either

use the graphical representation of ws(y, d) in Fig. 5 or employ

the following approximate relationship which expresses

ws(y, d) between ws(y) (introduced in section 2) and the

quantity wmax
s ðyÞ, (defined above)

wsðy; dÞ �wsðyÞ þ ½wmax
s ðyÞ � wsðyÞ�

� f1� exp½�Gðy; dÞ�g
ð3:9Þ

where G(y, d) denotes

Gðy; dÞ ¼ ½1:55þ 0:289 log10ðyÞ�ðd2:2 þ d4:2Þ ð3:10Þ

Eqns (3.9) and (3.10) approximate the accurate numerical

results illustrated in Fig. 5 within better than 5% as long as

ws(y, d) does not exceed a value of 4.

Fig. 2 Dependence of the s-wave eigenvalue Ds on the reduced dipole

moment d = emmD/�h
2 of a polar target (full line: numerical results,

dashed line: parabolic approximation from eqn (3.3), circles: analytical

approximation from eqns (3.4) and (3.5)).

Fig. 3 Capture probabilities Ps(k, Ds) for subcritical (�0.25 o Ds r
0) and supercritical (Ds r �0.25) values of the ‘‘effective s-wave’’

eigenvalue Ds (full lines: numerical results, dots: analytical Fabri-

kant–Hotop approximation from eqns (3.6) and (3.7) truncated at

k = 0.3).

Fig. 4 Capture probabilities Ps(k, d) for different values of the

reduced dipole moments d, full lines: numerical results, dots: analytical

Fabrikant–Hotop approximation from eqns (3.6) and (3.7) truncated

at k = 0.3).
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4. All-wave electron capture by polar plus

polarizable target molecules

The analysis of the second-order perturbation calculation of

Djm for the range 0o do 1 shows that the eigenvalues Djm for

higher partial waves cluster around the respective values for

the dipoleless capture, i.e. around c(c + 1). For values of d

which are of interest for electron–molecule collisions, this

clustering virtually does not show up in the higher partial

wave contributions to the capture rate coefficient. One can

therefore provide an approximation to this contribution by

identifying it with the respective contribution for the capture

by a dipoleless molecule. This argument leads to the following

all-wave analytical expression for the capture rate coefficient

wallðy; dÞ � wallðyÞ þ wmax
s ðyÞ � wsðyÞ

� �
� 1� exp �Gðy; dÞ½ �f g

ð4:1Þ

where ws(y, d), ws(y), wall(y) are given by eqns (3.9), (2.14) and

(2.15), respectively. Plots of wall(y,d) for d = 0 and for d = 0.6

are shown in Fig. 6 together with the partial contributions

ws(y, d). At this point, one should compare the all-wave

quantum rate coefficients with their classical counterparts.

The reason for such a comparison follows from the observa-

tion that the higher partial wave contributions to the capture

rate coefficient are satisfactorily described by classical approx-

imation4 and that quantum effects in the probability for

s-wave capture, which cause it to be smaller than unity, are

not very large, see Fig. 4. In previous classical trajectory

calculations,14,15 extending the work by Su and Chesnavich,16

we have systematically analyzed the full dynamics of capture

between the adiabatic (Massey parameterc 1) and the sudden

(Massey parameter { 1) limits. For the sudden limit, the

results of ref. 14 and 15 can be written in the form

wclall ¼ kclcap=kL ¼ ð2d2=p2yÞ1=4FðyÞ ð4:2Þ

with

ln FðyÞ ¼ a0 þ ða21z= sinh zþ z2=16Þ1=2 ð4:3Þ

where z = a2 + ln(y 2d2), a0 = �0.407, a1 = 0.425, and

a2 = 3.921. The limits for a dominating permanent dipole

(2y/d2 { 1) and dominating polarizability (2y/d2 c 1) are

wclall ) (8py/d2)�1/2 and wclall ) 1, respectively.

The comparison between quantum and classical rate coeffi-

cients is illustrated in Fig. 6. The case d = 0 was discussed in

detail in ref. 4. In short, the low-temperature overshoot of the

quantum rates beyond the classical rates reflects the fact that

the zero-temperature Bethe–Wigner s-wave rate is twice the

Langevin rate. For d = 0.6, the comparison of the quantum

and classical rates reflects the interplay of two types of

interaction, charge–permanent dipole and charge–induced di-

pole. In the limit of very low temperatures when the latter

prevails, the classical rate given by wclallðy; dÞ ¼ ðd=2Þ=
ffiffiffiffiffiffiffiffi
2py
p

is

higher than its s-wave quantum counterpart, wclall(y, d) 4
ws(y, d). This is evident from eqn (3.8) and the plots in Fig. 5

where the slopes of the curves are smaller than the slope of the

curve that corresponds to wmax
s ðyÞ ¼ 1=

ffiffiffiffiffiffiffiffi
2py
p

. However, the

relation wclall(y, d)4 ws(y, d), valid for very low temperatures, is

inverted within the temperature range of Fig. 6, implying that

wclall(y, d) o ws(y, d). One of the reasons for this inequality is

that for the temperatures 10�3 o y o 10�1 and dipole

moments in the range 0 o d o 1, the contribution of the

charge–induced dipole interaction is substantial and cannot be

neglected. Finally, we emphasize that the given results are only

valid when only one of the capture channels is open classically,

that is when all Djm with jma s are positive and not too small.

For instance, the smallest positive eigenvalue Djm of about

unity occurs for d E 3.

Fig. 5 Accurate reduced thermal s-wave capture rate coefficients

ws(y, d) as a function of the reduced temperature y eqn (2.8) and for

different reduced dipole moments d = emmD/�h
2 (full lines: numerical

results, dots: all-wave capture for d = 0 from ref. 4, the temperature

scale on the upper abscissa is for a representative polarizability of a =

1.48 � 10�24 cm3; the long-dashed curve corresponds to the maximum

s-wave capture rate coefficients with Ps(k) = 1).

Fig. 6 Comparison of reduced quantum all-wave (lines with circles)

with quantum s-wave capture rate coefficients (full lines); dashed lines

are classical capture rate coefficients, the upper temperature scale is as

in Fig. 5.
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5. Practical examples for capture rate coefficients

There are numerous experimental determinations of thermal

electron–molecule attachment rate coefficients, see e.g. the

reviews by Smith and Španěl17 and Miller.18 We cannot

possibly compare all of these results with calculations of

capture rate coefficients employing the present relationships.

We can select a few representative examples only, emphasizing

however that the calculation is straightforward when polariz-

abilities19,20 a and dipole moments19,21 mD are known. Table 1

illustrates the results. One can notice that in some cases, like

electron attachment to SF6 and CCl4, the attachment rate

coefficients reach up to the s-wave capture rate coefficients

calculated in the present article which should provide upper

limits of the attachment process (as long as higher partial-

waves do not contribute). In other cases, like electron attach-

ment to CHF3, they fall far below. A quantitative rationaliza-

tion of this phenomenon appears highly desirable but cannot

be the subject of the present article, see ref. 6. One can also

notice that the contributions due to the permanent dipole

moments are rather small. We have also estimated contribu-

tions due to quadrupole moments and found that these can

practically always be neglected. In practice, the present ap-

proach will be helpful when conflicting values of attachment

rate coefficients are derived by different methods, e.g., dis-

charge flow studies of dissociative electron attachment to CCl4
from ref. 22 led to the value given in Table 1 in close agreement

with the Vogt–Wannier attachment rate coefficient. On the

other hand, laser photoelectron attachment23 and Rydberg

electron transfer24 data gave about 4 times larger values, which

was tentatively attributed to the participation of bound anion

states. The present calculations rather suggest that the latter

data require a recalibration of the absolute values of the rate

coefficients.

6. Conclusions

The present article, in the spirit of the Vogt–Wannier model2

and its extension by Fabrikant and Hotop,1,3 has provided

analytical approximations for cross sections and thermal rate

coefficients for capture of electrons by polarizable and dipolar

target molecules. The treatment illustrates the relation be-

tween electron and atom (or molecule, neutral or charged)

capture by dipolar molecules such as treated in ref. 4. In

addition, the relation of the sudden capture dynamics for

electrons and often nearly adiabatic capture dynamics for

heavier particles can be recognized. Comparing experimental

rate coefficients for electron attachment with the capture rate

coefficients calculated here, one notices that the latter provide

an upper bound to the former and may be understood as

electron–molecule ‘‘collision numbers’’. The differences be-

tween calculated capture and measured attachment rate coeffi-

cients call for more systematic investigations, relating the

differences to the individual molecular properties of the target

species and, by this, identifying the competing processes which

follow the initial capture event. Such an investigation is

underway in our group.6

Appendix. Electron capture by polarizable molecules

Analytical representation of the capture probabilities for

c Z 1

PlðkÞ ¼ ð2k=kcÞ2lþ1Glðkc=2Þ for k � kc=2

PlðkÞ ¼ GlðkÞ for k � kc=2

GlðkÞ ¼ 0:5þ 0:5½1þ tanh HlðkÞ�

HlðkÞ ¼ alðk� kcÞ þ blðk� kcÞ2 þ clðk� kcÞ3

Here the parameters kc, al, bl, and cl given by:

c kc al bl cl

1 1.18 1.50 �0.50 0.10

2 3.20 0.90 �0.15 0.02

3 6.15 0.65 �0.06 0.004

4 10.2 0.47 �0.02 0.003

A graphical representation of Pl(k) is given in Fig. 1 of ref. 4

and the present analytical representations are indistinguish-

able from the figure.
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