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Summary

Background: Within the mammalian retina, there exists
a third photoreceptive system based upon a population
of melanopsin (Opn4) expressing photosensitive retinal
ganglion cells (pRGCs; also termed ipRGCs or intrinsi-
cally photosensitive RGCs). Here, we use a micro-
array-based approach, which we term transcriptional
recalibration, coupled with functional genomics to iden-
tify downstream targets of melanopsin signaling.
Results: In a mouse with genetically ablated rods and
cones (rd/rd cl), approximately 30% of the ocular
transcriptome is transiently regulated in response to
nocturnal light exposure (3112 genes). A total of 163 of
these genes were associated with the ‘‘intracellular
signaling’’ gene ontology term. On the basis of their
similarity to invertebrate phototransduction genes, 14
were selected for further study. Laser capture microdis-
section demonstrated that eight of these genes (Gnas,
Gnb2l1, Gnaq, Prkcz, Pik3r1, Inadl, Slc9a3r1, and
Drd1a) colocalized with melanopsin. The impact of
genetic ablation of one of these genes, protein kinase
C zeta (Prkcz), was assessed. Prkcz2/2 animals show
attenuated phase-shifting responses to light, reduced
period lengthening under constant light, and attenuated
pupillary responses at high irradiances, as well as
impaired light-induced gene expression in the supra-
chiasmatic nuclei (SCN). These attenuated responses
are indistinguishable from the deficits observed in mel-
anopsin knockout mice.
Conclusions: Here, we show that (1) Prkcz plays an as
yet unidentified role in melanopsin signaling, (2) the
proteins of seven further light-regulated genes emerge
as strong candidates in melanopsin signaling, and (3)
transcriptional recalibration may provide a powerful
new approach for dissecting unmapped signaling
pathways.

*Correspondence: russell.foster@eye.ox.ac.uk
3 These authors contributed equally to this work.
Introduction

Mice lacking both rod and cone photoreceptors (rd/rd
cl) retain multiple nonvisual responses to light, including
phase shifting of circadian behavior, acute suppression
of pineal melatonin, and pupil constriction [1–3]. The
photoreceptors mediating these responses are a subset
of photosensitive retinal ganglion cells (pRGCs) that
express melanopsin (OPN4) [4–7]. Unlike hyperpolariza-
tion responses of the rods and cones of the outer retina,
light triggers depolarization of pRGCs associated with
marked changes in intracellular Ca2+ [6, 7]. Recent
in vitro studies using cells transfected with melanopsin
provide compelling evidence that this protein is the
photopigment of the pRGCs [8–10]. The pRGC photo-
transduction cascade is pertussis toxin insensitive,
leading to the suggestion that melanopsin may utilize
an invertebrate-like signaling cascade [10, 11]. Further-
more, pharmacological experiments suggest that mela-
nopsin signals via a Gq-type G protein coupled to phos-
pholipase C, resulting in TRP channel activation [9, 10,
12]. These studies, although highly informative, ex-
plored melanopsin phototransduction in different cell
lines and so may not faithfully reflect the native trans-
duction cascade of melanopsin pRGCs [8, 13].

To investigate the phototransduction mechanisms of
pRGCs in vivo, we followed changes in the ocular tran-
scriptome of mice lacking rods and cones (rd/rd cl) in
response to a 15 min light pulse by using microarray
hybridization. Transcriptional regulation is unlikely to
be involved in the primary events of phototransduction,
which are based upon rapid posttranslational phenom-
ena such as protein interaction and modification [14].
However, we predicted that the perturbation of the ge-
netic network encoding the phototransduction cascade
by an acute stimulus would produce a transcriptional
adjustment or ‘‘recalibration’’ of those genes whose pro-
tein products contribute to this primary signaling event
[15, 16]. We successfully applied this method to identify
novel candidate genes involved in melanopsin signaling.
A detailed analysis of one of these genes, the atypical
C-type protein kinase Prkcz, in Prkcz-deficient mice
showed that this kinase plays a critical role in mela-
nopsin signaling.

Results

Light-Induced Transcriptional Responses

Within 60 min after nocturnal light exposure, 3245 probe
sets in the rd/rd cl eye (out of w45,100 probe sets repre-
sented on the MG430v2 array) demonstrated significant
changes in expression levels. These probe sets corre-
sponded to 3,112 out of a total of 10,274 genes reliably
identified as being expressed, corresponding to w30%
of the rd/rd cl ocular transcriptome. Hierarchical cluster-
ing demonstrated similar numbers of upregulated and
downregulated genes (1567 versus 1678, respectively).
Moreover, the effects of light on gene expression were
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Figure 1. Approximately 30% of the Ocular

Transcriptome of the rd/rd cl Eye Is Signifi-

cantly Modulated in Response to Light

(A) Clustergram of genes regulated by light in

the rd/rd cl eye. Note that changes in ocular

transcription were transient, and by 120 min,

most transcripts exhibited similar expression

levels as the dark-housed sham controls

(n = 4, p < 0.05 after multiple test correction).

Red indicates increased expression, and

green indicates decreased expression when

compared to the sham control group (black).

(B and C) Transcriptional recalibration of

genes associated with iris muscle contrac-

tion (B) and neuroprotection (C) after light ex-

posure (all data normalized to the corre-

sponding sham group; n = 4). Highlighted

apoptotic genes are associated with AP-1

complex (green text), oxidative stress (red

text), and Bcl2/caspase/calpain apoptotic

pathways (blue text).

(D) Opn4 expression was transiently induced

in the rd/rd cl eye in response to nocturnal

light exposure, when assayed by qPCR with

primer sets designed to exons 2–3 of the pre-

dicted mouse transcript (mean 6 SEM, n = 4,

p < 0.01).
transient and by 120 min mRNA levels were again
broadly comparable to those of the control group
(Figure 1A). To validate the microarray data, we deter-
mined the profile of expression of several of the regu-
lated genes by qPCR on the same nonamplified RNA
samples. Overall, both the dynamics and the degree of
transcriptional change were similarly described by
both methods (Figure S1A in the Supplemental Data
available online). Among these genes was the immedi-
ate early gene Fos that, as described previously [17],
exhibited a rapid upregulation peaking at w30 min and
returning to baseline levels by 120 min.

Multiple pathways should be modulated by light within
the eye. For example, pRGC-mediated pupil constriction
[3] should lead to a recalibration of transcripts associ-
ated with the contraction of muscle proteins within the
iris. One would also predict that even a transient
bright-light stimulus may trigger neuroprotective path-
ways within the eye [18]. Therefore, the data were mined
for genes associated with the known pathways mediat-
ing muscle contraction and neuroprotection. Nine tran-
scripts linked to muscle contraction were identified
(Figure 1B), including the muscle thin filament proteins
tropomyosin 1-3 (Tpm1-3) and the actin-binding pro-
teins caldesmon 1 (Cald1) and calponin 3 (Cnn3). Addi-
tionally, 81 transcripts associated with neuroprotective
processes were transiently light regulated (Figure 1C),
including a number of proteins that are involved in reac-
tive oxygen species metabolism (Sod2, Gpx3-4, and Cat)
and that have been implicated in lipid peroxidation and
phototoxicity in the retina [19]. Furthermore, transcripts
associated with both the AP-1 (Fos and Jun) and apop-
tosome complexes (Apif and Cycs) were identified. Both
caspases (Casp7, Casp8ap) and calpains (Capn7,
Capns1) were found to be light modulated, as were
genes associated with Bcl-2-mediated cell death
(Bag1, Bag5, and Bad) [18, 20]. We have yet to determine
whether the light modulation of these neuroprotective
pathways is triggered by the direct energetic effects of
light or whether they are mediated via the pRGC system.
Functional genomic approaches, of the sort we describe
below, will be required for determining whether these
genes are strong candidates for further study. These
results are consistent with our prediction that specific
signaling pathways are regulated by light.

Light modulation of the melanopsin signaling pathway
in the rd/rd cl eye was initially addressed by analysis of
the melanopsin gene itself. Interestingly, melanopsin
was qualified as ‘‘not present’’ from the microarray
data. However, the Affymetrix MG430v2 chips used in
this study contain only a single probe set for mela-
nopsin, and this set maps to the 30 terminal sequence
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Table 1. Classification of Molecular Functions of Intracellular-

Signaling-Cascade Genes

Classification Number Transcripts

Small GTPases 34 Arfrp1, Arf4, Arf6, Arl3,

Arl4a, Arl6, Arl10c, Cdc42,

Diras1, Hras1, Mras, Rab1,

Rab2, Rab4b, Rab5a,

Rab6, Rab8b, Rab10,

Rab11b, Rab14, Rab18,

Rab24, Rab27a, Rab28,

Rab33b, Ralb, Ran, Rap1a,

Rap1b, Rheb, Rhoc, Rit2,

Rnd3, and 5430435G22Rik

Heteromeric G protein

subunits

7 Gna13, Gnaq, Gnas, Gnb1,

Gnb2l1, Gng3, and Gng13

Guanyl-nucleotide

exchange factors

5 Rabif, Rapgef2, Rasgrf1,

Sos2, and Vav3

Other proteinsa 13 Ctnnal1, Ddit3, Dnaja1,

Gtpbp4, Hspa5, Kif16b,

Mt1, Mt2, Nenf, Nup62,

Pbp, Pkd2, and Smad1

Protein kinases 20 Araf, Braf, Crk, Lats2,

Mapk8, Mapk10, Mast1,

Mast2, Mast4, Nlk, Pik3r1,

Pik3r3, Pink1, Prkcz, Raf1,

Rock1, Srpk2, Stk3, Tlk1,

and Ulk1

Other enzymesb 21 Akr1b3, Car8, Ddah2,

Edd1, Egln2, Gucy1a3,

Gucy1b3, Magi1, Ndufb2,

Nudt4, Plce4, Ppib,

Ppp2ca, Ptpn11, Thop1,

Timp2, Usp8, Vcp, Wsb1,

Ywhae, and Ywhag

PX adaptor proteins 10 Snx1, Snx2, Snx5, Snx6,

Snx9, Snx13, Snx14,

Snx16, Snx17, and Snx19

PDZ adaptor

proteins

9 Arhgef12, Dvl1, Erbb2ip,

Inadl, Pclo, Pdlim4, Rhpn2,

Sipa1l1, and Slc9a3r1

Other adaptor

proteins

30 Arhgap1, Arhgap5, Arl1,

Cdgap, Cblb, Cnih4, Dab1,

E430034L04Rik,

G431001E03Rik, Gab1,

Gadd45b, Gdi2, Grb7,

Gulp1, Mapk8ip2,

Mapkbp1, Nck1, Ncoa2,

Ptplad1, Rabl4, Rasa1,

Rasa2, Socs5, Sh2bpsm1,

Snag1, Socs7, Spag9,

Statip1, Trim23, and

Ywhaq

Receptor proteins 6 Cd81, Dcbld2, Drd1a,

Fgfr3, Nisch, and Nr3c1

Unknown

classification

8 Asb13, Derl1, Pea15,

Rasl11b, Rsu1, Spsb3,

Wsb2, and 5730407K14Rik

Total 163

Molecular function classifications of light-regulated genes con-

nected to intracellular signal transduction (163 genes; overrepresen-

tation significance p = 0.0047).
a Including channels, cytoskeleton proteins, globins, growth factors,

heat shock proteins, lipid-binding proteins, metallothioneins, and

transcription factors.
b Including carbonate dehydratases, dehydrogenases, guanylate

cyclises, guanylate kinases, hydrolases, isomerases, monooxyge-

nases, oxidoreductases phopholipases, phosphatases, prolyl hy-

droxylases, proteases, protein ligases, and ubiquitin ligases.
of the mouse transcript (nucleotides 1553–2116 of
NM_013887). RT-PCR with primers targeting the 50 re-
gion of the melanopsin transcript on the same RNA sam-
ples used for the microarrays demonstrated that mela-
nopsin was indeed expressed in the rd/rd cl eye.
These results, and additional unpublished findings
(J. Bellingham and S. Halford, personal communication),
provide evidence for the existence of a short melanopsin
isoform in the mouse, an isoform that lacks a significant
portion of the 30 coding region. To determine whether
melanopsin exhibits transcriptional recalibration, we un-
dertook qPCR analysis on cDNA from the rd/rd cl eye by
using primers designed to exons 2–3 of mouse mela-
nopsin. This gene was shown to be present and was sig-
nificantly and transiently upregulated after light expo-
sure (Figure 1D). Collectively, the data presented in
Figures 1B–1D are all consistent with the hypothesis
that microarray measures of transcriptional recalibra-
tion provide a means to identify candidate components
of unmapped signaling pathways.

Light Modulation of Intracellular Signaling Cascades
Among the light-regulated genes, the gene ontology
(GO) class ‘‘intracellular signaling cascade’’ was signifi-
cantly overrepresented (p = 0.0047, based on hypergeo-
metric distribution) and provided the basis for subse-
quent analyses (Tables S1 and S2). The 163 genes of
this biological process category were further classified
for molecular function (Table 1). A total of 14 genes
were chosen for further investigation on the basis of ex-
isting knowledge of G protein-coupled and invertebrate
phototransduction signaling pathways. These included
G protein subunits and related genes (Gnas, Gna13,
Gnb2l1, Gng13, and Gnaq), genes related to phosphoi-
nositide signaling (Plce2, Prkcz, Pik3r1, and Pik3r3),
genes coding for PDZ-domain-containing proteins
(Inadl, Slc9a3r1, and Magi1) as well as a receptor of
the GPCR superfamily and a Trp-like ion channel
(Drd1a and Pkd2). For all candidates, expression in the
rd/rd cl retina was confirmed by qPCR (Figure S1B).
We performed RT-PCR on RNA extracted from laser-
capture-microdissected ganglion cells to determine
which of the candidates were associated with melanop-
sin (Figure 2A). Six out of 14 of the selected genes were
excluded from further analysis because they failed to
colocalize in any preparations (Figure 2A) and thus left
eight remaining candidates (Gnas, Gnb2l1, Gnaq, Prkcz,
Pik3r1, Inadl, Slc9a3r1, and Drd1a).

Protein Kinase C Zeta Is Expressed in pRGCs

Prkcz was chosen as our first candidate for functional
analysis on the basis that it has an unknown function
in the mammalian eye and showed a light-induced ex-
pression profile very similar to melanopsin (Figure 1D
and Figure S1A). Furthermore, in Drosophila, PKCs
have been implicated in the phototransduction cascade
[11, 21], and in the rd/rd cl eye, Prkcz was the only PKC
regulated by light. PKCz was expressed in a subset of
retinal ganglion cells (Figure 2B). A further association
of PKCz and melanopsin was demonstrated with immu-
nocytochemistry. Colabeling of PKCz and Opn4-Gal in
Opn4-Gal heterozygous retinal sections showed ex-
pression of PKCz at the extracellular membrane of all
Gal-positive cells (Figure 2C). Note that although PKCz
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Figure 2. Expression Analysis Implicates

PKCz as a Candidate for Melanopsin Signal-

ing

(A) PCR analysis of retinal ganglion cell layer

sections (upper left) and then agarose gel

electrophoresis of PCR products from four

LMPC cDNA preparations of wild-type retinal

ganglion cells (lower left). Actb (b-Actin)

served as a positive control for viable cDNA,

and Opn1sw (UV-S cone opsin) served as

a negative control for photoreceptor layer

contamination. White arrows indicate those

preparations containing Opn4. The right

panel illustrates those genes expressed in

each of the four (1–4) LMPC preparations.

Presence indicated by plus signs. Shaded

columns indicate those LMPC preparations

in which Opn4 was detected.

(B) PKCz protein is expressed in a subset of

retinal ganglion cells (arrows).

(C) Coexpression of melanopsin (red) and

PKCz (green) proteins in photosensitive reti-

nal ganglion cells. Confocal imaging of dou-

ble-labeled wild-type retina sections shows

that PKCz is expressed in the retinal ganglion

cell layer including all melanopsin-positive

cells (red; yellow indicates colocalization).

Blue coloration corresponds to DAPI staining

of nuclei. The inset shows a single OPN4-

positive cell at higher magnification (abbrevi-

ations are used as follows: GCL, ganglion cell

layer; IPL, inner plexiform layer; and INL inner

nuclear layer; scale bars indicate 20 mm).
was always coexpressed with melanopsin, it is also ex-
pressed in a population of nonmelanopsin retinal gan-
glion cells (Figures 2B and 2C).

Prkcz Is Expressed in the Retinal Pigment Epithelium
Melanopsin expression has been reported previously in
the retinal pigment epithelium (RPE) [22]. To determine
whether Prkcz shows synonomous expression within
this tissue, we undertook a series of RT-PCRs. Our re-
sults show that both melanopsin and Prkcz are both ex-
pressed within the RPE (Figure S2). These data are con-
sistent with the hypothesis that PKCz is involved in
melanopsin signaling and that the RPE may also show
melanopsin-based photodetection.

Nonvisual Photoresponses Are Attenuated

in Prkcz2/2 Mice
As described previously, Prkcz2/2 mice are viable and
show a normal anatomical and behavioral phenotype
[23]. These animals were used for assessing the function
of this kinase in pRGC-regulated light responses. Mela-
nopsin localization and transcript levels were normal in
Prkcz2/2 eyes (Figure 3A), precluding the possibility
that Prkcz deficiency affects nonvisual photoresponses
by regulating melanopsin expression directly. Phase
shifting of circadian-wheel-running activity in response
to nocturnal light exposure, period lengthening in con-
stant light (LL), and pupil constriction in response to
high irradiances are known to be attenuated in the ab-
sence of melanopsin [24–26]. In Prkcz2/2 animals, expo-
sure to a single 15 min light pulse (white light; 400 lux/
250 mW/cm2/s) at CT 14 produced a 43% decrease in
the magnitude of phase delays of locomotor activity
when compared to wild-type littermate controls (Figures
4A and 4B). This finding is mirrored by a w40% reduc-
tion in light-induced Per1 gene expression within the
SCN of Prkcz2/2 animals (Figure S3). Free-running
periods (t) in constant darkness (DD) were not affected
in Prkcz2/2 mice (23.35 6 0.128 hr versus 23.31 6
0.096 hr in wild-type controls; Figure 4C). However,
when animals were kept in constant light conditions
(LL), the lengthening of t that accompanies bright-light
exposure was strongly attenuated in Prkcz2/2 mice
(Figure 4C). In the normal murine brain, there are few
sites that express Prkcz [27]. In this study, we confirmed
that Prkcz is absent from the suprachiasmatic nuclei
(SCN) (Figure S4). This strongly suggests that the ob-
served defects in circadian photosensitivity are not
due to loss of function of PKCz at the level of the SCN.

The effects of light on pupil constriction were also ex-
amined in Prkcz2/2 mice. Both sustained and transient
pupil responses were significantly attenuated in 8- to
10-month-old Prkcz-deficient animals (Figure 5), again
duplicating the phenotype of melanopsin knockout
mice [24]. Prkcz transcripts have not been detected in
any of the midbrain and hindbrain nuclei that regulate
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light-induced pupil constriction, such as the olivary pre-
tectal nuclei (OPN) [28–30] (H.O., unpublished data). This
strongly suggests that the observed defects in pupil

constriction are due to retinal deficits rather than any
loss of PKCz in brain areas that control the pupil.

Finally, the application of 1 M carbachol produced
maximal pupil constriction in both genotypes, indicating
that the decreased sensitivity to high irradiances was
not the result of impairing pathways associated with
iris muscle contraction (Figure 5B). The observed de-
fects in pupil responses were also present in younger
animals (Figure S5). Thus, the circadian phenotype of
Prkcz2/2 mice is indistinguishable from that of mela-
nopsin knockout animals (Table 2).

Discussion

The elucidation of novel signaling pathways by classical
approaches can be a demanding and often extremely
time-consuming task. By contrast, modern genomic
technologies allow for the rapid analysis of whole tran-
scriptomes under various physiological conditions.
The increased sensitivity of contemporary microarray
technology has enabled a greater resolution of changes
in gene expression, as well as allowed the use of biolo-
gical replicates rather than data filtering based upon
arbitrary fold-change criteria [31–33]. This enables the
detection of subtle changes such as those expected in
response to the depletion of messenger proteins after
transient activation of a defined signaling pathway.
Such an approach—which we term transcriptional reca-
libration—was used in this study to identify novel com-
ponents of the melanopsin signaling pathway. By plac-
ing the microarray data within the broad context of
invertebrate GPCR phototransduction, followed by
colocalization experiments, we identified eight intra-
cellular signaling candidates that might be involved in

Figure 3. Melanopsin Is Expressed Normally in the Prkcz2/2 Retina

(A) In situ hybridization. Melanopsin-positive retinal ganglion cells

are indicated by arrows.

(B) qPCR on melanopsin levels in the Prkcz2/2 eye revealed no sig-

nificant difference from those found in wild-type animals (mean 6

SEM, n = 4, Student’s unpaired t test, p > 0.05).

Figure 4. Prkcz2/2 Mice Show Attenuated

Behavioral Responses to Light

(A) Representative actograms of wild-type (+/+)

and Prkcz2/2 mice (2/2) in DD. A single white

light pulse (15 min, 400 lux/250 mW/cm2/s)

was administered at day 9 of the experiment

(marked by the black arrow) and thereby

caused a phase delay of locomotor activity

in both genotypes.

(B) Phase-shifting responses to a 15 min light

pulse as shown in (A). Phase delaying was im-

paired in Prkcz2/2 mice (0.79 6 0.08 hr versus

1.42 6 0.15 hr in wild-type animals; mean 6

SEM; p < 0.001; unpaired Student’s t test;

n = 13).

(C) Whereas the free-running period length in

DD was unaffected in Prkcz2/2 mice, period

lengthening in LL was attenuated at all light

intensities tested (mean 6 SEM; *p < 0.05;

***p < 0.001; unpaired Student’s t test;

n = 4–7).
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Figure 5. Impaired Pupil Responses to Bright Light Exposure in Prkcz2/2 Mice

(A) Wild-type (+/+) and Prkcz2/2 mice (2/2) showed pupil constriction in response to 1 min of bright (100 mW/cm2) monochromatic (w460 nm)

light, but the constriction was less in Prkcz2/2 than in wild-type animals (left panel). There was no difference in dark-adapted pupil size between

the two genotypes.

(B) Summary of results showing the minimum pupil areas (mean 6 SEM, n = 8) attained by the two genotypes during dim (0.5 mW/cm2), medium

(10 mW/cm2), and bright (100 mW/cm2) light exposure and after application of 1 M carbachol. The minimum pupil size attained by Prkcz2/2 mice

was significantly larger than that of wild-type animals only in bright light illumination (p < 0.01; Student’s unpaired t test; n = 8).

(C) Pupillary responses of Prkcz2/2 mice were attenuated under both continuous and transient (25 ms) light exposure. The average pupil area

normalized with respect to the initial dark value is plotted (mean 6 SEM; n = 8).
melanopsin-pRGC signaling (Figure 6). Functional geno-
mic studies on one of these candidates, the novel
C-type protein kinase PKCz (Prkcz), were conducted
by analysis of a range of nonvisual responses to light
in Prkcz-deficient mice. Our experiments demonstrate
that the responses in Prkcz- and melanopsin-deficient
animals are remarkably similar. Collectively, these data
provide strong evidence that PKCz plays an essential
role in melanopsin signaling.

These deficits cannot be attributed to the loss of rod
and cone inputs to the SCN because rd/rd cl mice do
not show attenuated phase-shifting responses to light.
Although Prkcz is also expressed in a subset of nonme-
lanopsin retinal ganglion cells (Figures 2B and 2C), the
pupillary defects cannot be attributed to this additional
cell population. If PKCz were a critical factor in the light
responses of all ganglion cells, then pupil responses to
dim (scotopic) and medium (mesopic) intensity stimuli
would be equally affected. This is not the case. It is
only at high irradiances that the deficit is observed
(Figure 5B). Thus Prkcz2/2 mice mirror the irradiance-
dependent deficit found in melanopsin knockout ani-
mals [3]. A role for PKCz in regulating melanopsin
expression can also be excluded because both the num-
ber and distribution of melanopsin-expressing ganglion
cells are unchanged in Prkcz2/2 animals (Figure 3).
Finally, Prkcz is not expressed within the SCN or mid-
brain and hindbrain nuclei that regulate light-induced
phase-shifts and pupil constriction. This argues that the
attenuated responses observed are not due to the ab-
sence of Prkcz in these brain areas. Thus, the most par-
simonious explanation of our data is that PKCz plays
a critical, yet undefined, role in melanopsin signaling.

As discussed above, several previous studies using
in vivo as well as cell-based expression systems sug-
gest that pRGCs functionally resemble invertebrate
rhabdomeric photoreceptors [9, 34–36]. By analogy to
the Drosophila phototransduction cascade [21], we sug-
gest that PKCz may influence ion-channel activity via
participation in an INAD-like signaling complex (includ-
ing PLC-, PKC-, and PDZ-domain-containing scaffold-
ing proteins; Figure 6). Alternatively, it could act by
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regulating the activity of some other critical component
of the melanopsin signaling cascade. Intriguingly, unlike
eye-PKC (inaC) in Drosophila [37], mammalian PKCz is
an atypical PKC, lacking both Ca2+- and DAG-binding

domains, thereby precluding a direct activation of
PKCz via phospholipase C [38]. Interestingly, two PI3
kinase subunit-encoding genes (Pik3r1/3) have also
emerged from our screen, and PI3 kinase has been
shown to directly and indirectly activate atypical PKCs
in different tissues [39]. Thus, extrapolating between
Drosophila phototransduction and mammalian pRGC
signaling is not entirely straightforward, and the elucida-
tion of PKCz function could provide critical insight into
how the invertebrate and pRGC light-signaling path-
ways differ.

In summary, we have applied a novel microarray-
based approach to identify new elements of melanopsin
signaling. A number of candidate genes were identified,
including an atypical C-type protein kinase Prkcz.
The phenotypic characterization of Prkcz2/2 mice dem-
onstrated a critical role for this gene in melanopsin-
regulated light responses. We suggest, therefore, that
transcriptional recalibration may provide a new method
of investigating unknown signaling pathways and that
the functional analysis of Prkcz and the other light-
regulated genes identified in this study might provide
an improved understanding of the molecular processes
underlying nonvisual photoreception in the mammalian
retina.

Experimental Procedures

Gene-Expression Microarrays and Statistics

C3H/He male mice (age 130 6 16 days) lacking both rods and cones

(rd/rd cl; [1, 40]) were housed under a reversed 12:12 LD cycle for 2

weeks with food and water ad libitum. A light pulse of 1.4 mW/cm/s

Figure 6. Comparison of Drosophila Phototransduction and Putative Mouse Melanopsin Signaling

PKCz may be involved in the modulation of ion-channel activity (possibly via an INAD-like signaling complex) or via modulation of some other

critical component of the melanopsin phototransduction cascade (see text for details). Potential roles of further candidates identified in this

study are indicated in red.

Table 2. Comparison of Circadian Phenotype of Opn42/2 and

Prkcz2/2 Mice

Response Gene +/+ 2/2 D Reference

Tau in DD

Opn4 23.7 hr 23.8 hr - [26]

Opn4 23.7 hr 23.7hr - [25]

Prkcz 23.3 hr 23.3 hr - This study

Phase Shifta

Opn4 22.7 hr 21.7 hr 237% [26]

Opn4 21.4 hr 20.8 hr 243% [25]

Prkcz 21.4 hr 20.8 hr 243% This study

Tau in LLb

Opn4 +1.5 hr +0.9 hr 240% [26]

Opn4 +1.55 hr +1.0 hr 235% [25]

Prkcz +2.59 hr +1.87 hr 228% This study

Pupillary response

Opn4 0.05 0.20 216% [24]

Prkcz 0.10 0.23 214% This study

Comparison of circadian phenotype of Opn4- and Prkcz-deficient

mice.
a Based on 30 min light pulse of 70–280 lux white light (50–

170 mW/cm2/s); [26]), 15 min of 480nm light [25], or 15 min 400 lux

white light (250 mW/cm2/s; this study).
b Based on LL white light levels at approximately 100 lux (60 mW/cm2/s).
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(3000 lux) was administered at zeitgeber time (ZT) 16 for 15 min, with

fluorescent white light. Animals were sacrificed by cervical disloca-

tion at 30, 60, and 120 min after the onset of the light pulse. At each

time point, four light-pulsed and one to two sham controls were used

(two at 30 min, one at 60 min, and one at 120 min), with sham animals

undergoing similar treatment but without light exposure. Paired

eyes were collected in darkness with an infrared viewer and snap

frozen on dry ice. Total RNA was extracted from whole eyes with Tri-

zol (Invitrogen, Carlsbad, CA) according to the manufacturer’s pro-

tocol and cleaned with an RNAeasy kit (QIAGEN, Hilden, Germany).

Total RNA quality was assessed with an Agilent Bioanalyser, and

RNA was amplified and in vitro transcribed with an RNA amplifaction

kit and IVT reagents (Affymetrix, Santa Clara, CA). Labeled RNA

quality was again assessed with an Agilent Bioanalyser. A total of

16 cRNA samples were hybridized to Mouse Genome 430 v2.0 Gen-

echips (Affymetrix, Santa Clara, CA), with four biological replicates

per time point for the light-treated and one to two replicates for

the control group. Hybridization and scanning was carried out at

the MRC microarray center (Hammersmith Hospital, London, UK).

Only probe sets called as present across all 16 arrays were analyzed,

giving a raw dataset of 16,321 probe sets. Raw data were normalized

with a log2 transform with median stabilization. Variance was highly

comparable across all 16 arrays, and as such variance stabilization

transforms were not applied. Differences across the experimental

time course were analyzed by one-way ANOVA with the false discov-

ery rate (FDR) multiple test correction [41]. Subsequent analysis was

conducted with MatLab 7.1 software with bioinformatics toolkit

(Mathworks, Natick, MA), NetAffx (Affymetrix), and Entrez Gene

(NCBI) databases. GO terms for light-regulated probe sets were

compared against GO representation on 430 v2.0 genechips. Over-

representation significance was determined on the basis of a hyper-

geometric distribution (calculations performed with MatLab 7.1 soft-

ware, Mathworks).

Quantitative PCR

RNA samples were prepared as described for microarray hybridiza-

tion. cDNA was synthesized with a RetroScript kit (Ambion, Austin,

TX), and quantitative PCR (qPCR) was conducted with both Sybr

green I and FAM-labeled TaqMan probes and an SDS7700 thermal

cycler (Applied Biosystems, Foster City, CA). Relative quantification

of transcript levels was done as described previously [42]. The geo-

metric mean of six housekeeping genes was used for normalization

(Gapdh, Actb, Rplp1, Hprt1, B2m, and Tbp). Primer sequences are

provided in the Supplemental Data.

Laser Microdissection and Pressure Catapulting

Wild-type eyes (ZT 6–12) were snap frozen and sectioned at 20 mm.

Slides were briefly fixed in 70% ethanol at 220�C, stained with 20%

cresyl violet, dehydrated, and dried at 40�C for 1–2 min. Sections of

the retinal ganglion cell (RGC) layer were laser dissected with

a PALM MicroBeam system (PALM-microlaser, Bernried, Germany),

and each preparation contained approximately 40–50 cells. Total

RNA was subsequently extracted with a PicoPure RNA extraction

kit (Arcturus, Sunnyvale, CA), treated with 1 unit DNase (Sigma-

Aldrich, St. Louis, MO), reverse transcribed with random decamers

with a RETROscript kit (Ambion), and tested for candidate gene ex-

pression with Sybr green I mastermix (Applied Biosystems, Foster

City, CA) with 50 cycles of amplification. PCRs were run in real

time for ensuring that different primer sets did not exhibit differences

in amplification efficiency.

Immunocytochemistry

Immunostaining of PKCz protein on wild-type retinal sections was

performed as described [43]. In brief, 4-month-old animals were

sacrificed by cervical dislocation at ZT 4–6. Eyes were dissected

and fixed in 4% PFA at 4�C ON. After dehydration and paraffin em-

bedding, 8-mm-thick microtome sections were mounted on slides,

dewaxed, blocked with 1% H2O2 and 10% goat serum, and incu-

bated with polyclonal rabbit PRKCZ antibody (1:1000 in Tris/

0.05% Tween) [44] at 4�C overnight. Secondary antibody incubation,

avidin/biotin amplification, and DAB/Nickel visualization were car-

ried out with the Vectastain Elite ABC kit according to the manufac-

turer’s protocol. Opn42/+ (tau-LacZ2/+) mice [5] were enucleated

(ZT 6–12), and the eyes were fixed in 4% paraformaldehyde
overnight at 4�C; this was followed by cryoprotection with 30%

sucrose in PBS. Tissues were rinsed in PBS before being embedded

in OCT, frozen in isopentane cooled in liquid nitrogen, sectioned at

20 mm with a cryostat (Leica CM 3050 S), and stored at 280�C. After

thawing and blocking in 10% normal donkey serum/1% BSA in PBS/

0.1% Na-azide/0.3% Triton X-100 for 1 hr at 4�C, slides were incu-

bated with PKCz antiserum [44] diluted 1:500 in blocking solution

for 2 days at 4�C. After washing four times in PBS/0.3% Triton X-

100 at room temperature, sections were incubated with Alexa Fluor

488 nm conjugated to donkey anti-rabbit IgG (Vector Laboratories,

Burlingame, CA) at a dilution of 1:200 for 2 hr. Slides were, washed

twice in PBS, blocked again for 1 hr at 4�C, and incubated with pri-

mary b-GAL antibody (Biotrend, Koln, Germany, 1:1,000 in blocking

solution) overnight at RT. Slides were then washed four times, incu-

bated with Alexa fluor 568 nm conjugated to donkey anti-goat IgG

(Vector Laboratories, 1:200) for 2 hr, mounted with Vectashield fluo-

rescent mounting medium with DAPI (Vector Laboratories), and

visualized under a confocal microscope (Leica TCS SP, Leica Micro-

systems, Bensheim, Germany).

In Situ Hybridization

Adult male wild-type and Prkcz deficient animals [23] were entrained

to a 12 hr light:12 hr dark cycle (LD 12:12) for at least 2 weeks and

sacrificed 2 hr after ‘‘lights off ’’ (ZT 14) under a 15 W safety red light

by cervical dislocation. Eyes were quickly removed, and brains dis-

sected out and fixed overnight in 4% paraformaldehyde. After dehy-

dration, glass bodies were removed from the eyes, and tissues were

cleared in xylene and embedded in paraffin. Eight-micrometer-thick

sections were prepared on a microtome (Leica Microsystems) and

stored at 4�C until use. In situ hybridization with 35S-UTP-labeled an-

tisense RNA probes was performed as described [45]. The probes

spanned nucleotides 308–1151 of the melanopsin transcript (Gen-

Bank accession NM_013887) and nucleotides 2831–3891 of the

Per1 (GenBank accession AF022992) transcript. After hybridization

and washing, slides were dipped in Kodak NTB-2 emulsion (Kodak,

Stuttgart, Germany) and counterstained with Hoechst dye (Sigma-

Aldrich, Seelze, Germany). Dark-field and blue fluorescence micro-

graphs of the same area were captured on a Leica DMR microscope

(Leica Microsystems) with an Olympus DP50 CCD camera (Olym-

pus, Hamburg, Germany) and overlaid with Photoshop software

(Adobe, San Jose, CA).

Activity Monitoring

Prkcz knockout mice were generated as described previously [23].

General mouse handling and activity monitoring were conducted

in accordance with standard protocols [46, 47]. Adult wild-type

and Prkcz-deficient animals were entrained to LD 12:12 for at least

14 days in custom-made single-cage isolation boxes and subse-

quently released into constant darkness (DD) for another 2 weeks.

Activity onsets and individual period lengths in DD were determined

with the ClockLab software package (Actimetrics, Evanston, IL). For

light pulses, animals received 15 min of bright white light (w400 lux/

250 mW/cm2/s) at CT 14 and were subsequently kept in constant

darkness for at least 10 more days so that phase shifts could be as-

sessed by comparison of regression lines through the onsets before

and after light exposure. For constant light (LL) experiments, ani-

mals were initially entrained to LD 12:12 and released into LL of

increasing intensity (14 days per condition). Free-running period

lengths were determined by c2 periodogram analysis on day 4–13

of each condition.

Pupillometry

Pupillometry on adult wild-type and Prkcz-deficient animals was

performed as described [24]. In brief, animals were entrained to

LD 12:12 and tested at wZT 6–8 after 1 hr of dark adaptation. Pre-

treatment measurements were obtained with an IR-sensitive CCD

video camera equipped with macro optics with infrared (>850 nm)

LED illumination (Sony, Tokyo, Japan). Pupil reflexes were triggered

by 1 min exposure to a 460 nm LED light source or by 25 ms expo-

sure to a bright white halogen lamp covered by a diffusing sphere

constructed from a ping pong ball. For carbachol responses,

a drop of 1 M carbachol in PBS (Sigma-Aldrich, Seelze, Germany)

was applied to the eyes of dark adapted animals with a Pasteur pi-

pette. Constriction was measured 5 min after drug application.
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Video stills were captured with Windows movie maker software

(Microsoft, Redmond, WA), and pupil areas were estimated with

Photoshop (Adobe Software).

Supplemental Data

Additional Experimental Procedures, five figures, and two tables are

available at http://www.current-biology.com/cgi/content/full/17/16/

1363/DC1/.
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