
INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY 7, 319–333, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Schwa-Deletion in Hindi Text-to-Speech Synthesis

BHUVANA NARASIMHAN
Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands

bhuvana@mpi.nl

RICHARD SPROAT
University of Illinois at Urbana-Champaign, USA

GEORGE KIRAZ
AT&T Labs—Research, New Jersey, USA

Abstract. We describe the phenomenon of schwa-deletion in Hindi and how it is handled in the pronunciation
component of a multilingual concatenative text-to-speech system. Each of the consonants in written Hindi is
associated with an “inherent” schwa vowel which is not represented in the orthography. For instance, the Hindi
word pronounced as [namak] (’salt’) is represented in the orthography using the consonantal characters for [n], [m],
and [k]. Two main factors complicate the issue of schwa pronunciation in Hindi. First, not every schwa following
a consonant is pronounced within the word. Second, in multimorphemic words, the presence of a morpheme
boundary can block schwa deletion where it might otherwise occur. We propose a model for schwa-deletion which
combines a general purpose schwa-deletion rule proposed in the linguistics literature (Ohala, 1983), with additional
morphological analysis necessitated by the high frequency of compounds in our database. The system is implemented
in the framework of finite-state transducer technology.

Keywords: text analysis, finite-state methods, text-to-speech, phonology

1. Introduction

1.1. The Bell Labs TTS System

In any language, the orthographic representation is of-
ten ambiguous and indeterminate with respect to its ex-
act pronunciation (Sproat, 1996; Möbius et al., 1997).
For instance, the string $5 is expanded as five dollars
or as five dollar depending on whether it occurs as a
prenominal modifier in English (as in five dollar bill)
(Sproat, 1996). However the written text does not, in
itself, provide any clues as to how the string is to be pro-
nounced; additional information about complex noun
phrases has to be provided so that the correct linguistic
form may be chosen. In Hindi, a similar problem arises
with the pronunciation of words containing the schwa
vowel which, depending on certain morphophonolog-

ical factors, is deleted in some contexts but not others.
In the Bell Labs Hindi TTS system, one set of linguistic
specifications in the text analysis module concerns the
pronunciation of words containing the schwa vowel in
the orthographic input. In order to produce speech that
is intelligible, the written input representation has to be
augmented by additional morphological and phonolog-
ical information so as to accurately predict the contexts
in which the schwa vowel in Hindi is deleted. In this
paper, we describe the phenomenon of schwa-deletion
in Hindi and how it is handled in the pronuncia-
tion component of the multilingual concatenative
text-to-speech (TTS) system developed at Bell Labs.

We begin with a brief summary of the TTS system
as described in Möbius et al. (1996, 1997), Möbius
(1999) and Sproat (1996, 1998), before moving on to a
detailed discussion of the problem of schwa-deletion

320 Narasimhan, Sproat and Kiraz

in Hindi. The TTS system developed at Bell Labs
consists of a set of language-independent modules.
The flow of information between the modules is
unidirectional—linguistic text analysis followed by the
prosodic component which is followed by the syn-
thesis component; a single data structure modulates
communication between the modules. A principal char-
acteristic of the system is its multilinguality. Although
the software modules are language-independent, the
multilingual character of the TTS system derives from
information unique to particular languages, such as
acoustic inventories and morphophonological rules
which are represented in precompiled finite-state trans-
ducers and tables, and retrieved at run-time.

In the text analysis module, the written form (e.g. a
character string from a character set such as ASCII) is
mapped onto linguistic parameter specifications which
are later converted into parameters (e.g., formant pa-
rameters, concatenative unit indices, pitch time/value
pairs) that drive the actual synthesis of speech (Sproat,
1996, 1998). Since the written form of a language does
not correspond perfectly to the corresponding spoken
forms, the text analysis module has to specify a map-
ping from standard orthographic input to an underlying
linguistic representation which provides a rich array of
information about tokenization of the input into sen-
tences and words, word pronunciation, accenting, and
the assignment of prosodic phrases, among others. The
text analysis component thus combines what is tradi-
tionally understood by “text normalization” tasks with
additional linguistic analysis at the lexical, morpholog-
ical, and phonological levels.

In addition to tasks such as expansion of abbrevia-
tions and prosodic phrasing, multilingual text analysis
involves a range of problems which require language-
particular analysis. Some examples include the follow-
ing (see Sproat, 1998 for a fuller discussion of these
issues): (a) word boundaries are indicated using whites-
pace in some languages (German, English, Hindi) but
not in others (Chinese, Japanese) where they have to
be reconstructed; (b) numeral expansion in English and
German differ in the phenomenon of “decade flop”—in
German, there is a reversal of the order of decades and
units in numbers between 13 and 99; (c) the percent-
age sign ‘%’ is always read as percent in English when
denoting a percentage, whereas in Russian, a range of
contextual factors have to be taken into account in or-
der to determine its pronunciation (e.g. number, case
and gender of the noun following the adjectival form
of the word procent, among others). The computational

framework for text analysis is based on weighted finite
state transducers (WFST’s), which are constructed us-
ing a lexical toolkit which allows for the statement of
linguistic generalizations in a readable form. The finite-
state framework used in the Bell Labs TTS system is
more fully described in Section 3 of this paper.

The duration module assigns a duration to each
speech sound of the language. Segmental duration is
highly context-sensitive, depending on a number of
factors which define a relatively large feature space.
These features include phone identity factors (identity
of the current segment, as well as of the previous and
next segment(s)), stress-related factors (including de-
gree of discourse prominence and lexical stress), and
locational factors (the location of (a) the segment in
the syllable, (b) the syllable in the word, (c) the word
in the phrase, and (d) the phrase in the utterance) (van
Santen, 1998: 137). Constructing a quantitative model
for duration involves using a segmented speech cor-
pus for performing inferential-statistical analysis, and
estimating parameters of the model (Möbius and van
Santen, 1996). A class of arithmetical models known
as “sum-of-products” models can be applied to reli-
ably predict the duration of each segment based on its
feature vector (van Santen, 1994).

The intonation component takes a representation
consisting of phoneme, syllabic stress, phrasing, and
accenting information, and computes a fundamental
frequency (F0) contour. The variation in fundamental
frequency is a function of a variety of prosodic features
ranging from word accentuation to phrase intonation,
which has been dealt with by two main classes of in-
tonation models—“superposition models” and “tone
sequence models” (van Santen et al., 1998). Superpo-
sition models “interpret F0 contours as complex pat-
terns resulting from the superposition of several com-
ponents,’ whereas tone sequence models generate F0

contours from “a sequence of phonologically distinct
tones, or categorically different pitch accents, that are
locally determined and do not interact with each other”
(1998: 142). The Bell Labs TTS system uses a super-
position style model for languages such as German,
French, and Italian, among others—this involves com-
puting an F0 contour by adding three types of time-
dependent curves: a phrase curve (e.g. declarative, in-
terrogative), accent curves (accented syllable followed
by zero or more non-accented syllables), and pertur-
bation curves (which take into account the effect of
obstruents on pitch in the post-consonantal vowel). A
tonal target model is used for Mandarin which involves

Schwa-Deletion in Hindi Text-to-Speech Synthesis 321

the derivation of a sequence of tonal targets by apply-
ing tonal coarticulation rules to a basic representation
of Mandarin tones; effects of sentence intonation and
emphasis are then added (Shih and Sproat, 1996).

Acoustic inventory construction involves selecting
an appropriate speaker (based on a number of criteria),
recording a list of unit types, and selecting the best
candidates. The appropriate speech intervals are then
excised for storage in the inventory. Specifically, the
procedure involves recording diphonic units (units con-
taining the transition between two adjacent phonetic
segments) as well as triphones, and selecting optimal
units based on criteria such as spectral discrepancy and
energy measures. Coarticulatory effects can necessitate
the storage of context-sensitive units well. Elements
thus selected are stored as tables after normalization.
At run time, the necessary units are selected from the
inventory, concatenated, and assigned new durations,
F0 contours and amplitude profiles. Parameter vectors
are passed on to the synthesis module which uses lin-
ear predictive coding (LPC) synthesis together with an
explicit voice source model.1

1.2. Hindi Text-to-Speech Synthesis

In this paper, we shall be concerned with aspects of the
first task in the TTS conversion process for the Hindi
language—transforming the input text into a linguis-
tic representation from which synthesis can proceed
(Möbius et al., 1996). As mentioned earlier, construct-
ing the text interpretation module for a multilingual
TTS system offers particular challenges having to do
with the linguistic properties of the language in ques-
tion. The literature on text analysis for Hindi TTS sys-
tems is relatively sparse and we are not aware of any
published work which describes issues in Hindi text in-
terpretation for text-to-speech systems in any great de-
tail. Hence we cannot provide an in-depth comparison
of our approach to text analysis (and the schwa-deletion
problem in particular) to others in the literature. Never-
theless, we will briefly outline several of the main lines
of research in this area reported in the literature.

Verma et al. (1995) propose a Hindi text-to-speech
synthesis based on syllables as units, along with a spe-
cial class of 150 consonant clusters to generate unlim-
ited utterances. The combination of the most frequently
occuring 29 consonants and 10 vowels (5 long and 5
short) in Hindi give rise to 290 CV and 290 VC sylla-
bles. However the possibility of generating short vow-
els out of corresponding long vowels using durational

and frequency rules has reduced the required number
of syllables in the database to 290. Text input is fed to
the “word parser” which identifies the basic syllables
in the word, which are then retrieved from the database
and merged to make a parametric file for the given input
word. Owing to discontinuities at syllable boundaries,
durational and frequency rules are applied to smooth
out the discontinuities. Finally, the parametric files is
sent to a Klatt synthesizer to generate the sound file.

Rao (1993) describes an integrated speech recogni-
tion synthesis system for Hindi (VOICE) which was
planned to accept clearly spoken isolated/connected
words and produce intelligible speech. Although the
study primarily deals with the speech recognition com-
ponent, the synthesis component is described briefly. A
database of 500 Hindi sentences was constructed from
a vocabulary of 207 words related to railway reser-
vation enquiries, and 200 of these sentences were la-
belled into fine acoustic classes. The synthesizer was
built based on Klatt’s formant synthesizer (Klatt, 1980),
using a synthesis-by-rule approach. The synthesis-by-
rule program generates the sequence of appropriate
features from a given input phoneme string, and the
synthesizer accepts the sequence of features (such
as formant frequencies, amplitude, and pitch), and
converts it into speech. The synthesizer accepts the
standard Hindi phonemes, including aspirated and
retroflex consonants, and nasalized vowels, and gen-
erates clearly intelligible synthesized speech.

Sen and Samudravijaya (2002) describe a “web
reader” which reads out the text in web pages in
Hindi or Indian English. The text-to-speech con-
version is performed in three stages: text analysis,
phoneme to acoustic-phonetic parameter conversion,
and parameter-to-speech conversion. The synthesizer
uses formant synthesis, based entirely on software,
and capable of working on virtually any platform.
The text analyzer converts text into a phoneme
string; the phoneme-to-speech conversion involves
mapping specified phonemes into corresponding time-
varying acoustic-phonetic parameters using the rele-
vant context-dependent rules, and converting the gen-
erated parameters into corresponding speech using a
source-filter speech production model (cf. Furtado and
Sen, 1996). Sen and Samudravijaya provide a detailed
description of the TTS system, however we focus here
on their description of the Hindi component of the
text analysis system (which is designed to handle in-
put in Hindi as well as English). The textual input
is segmented by the main parser and classified into

322 Narasimhan, Sproat and Kiraz

dates, time, currency, alphanumerics, acronyms, ab-
breviations, special (arithmetical) characters, numbers,
names, and the words of the language. Dates, time, and
currency are appropriately interpreted; alphanumerics
and acronyms are pronounced character by character.
Abbreviations and special characters are pronounced
on the basis of information provided in an “abbrevia-
tion table” and “character table” respectively. A num-
ber string is divided into fields, and keywords corre-
sponding to billion, million, thousand etc. are inserted;
digits after the decimal point are pronounced charac-
ter by character. A phonetic dictionary consisting of
8000 words can be accessed by indexing and binary
search, and the pronounciation of individual words of
the language can be obtained. In the absence of a match,
further morphological analysis into prefixes, suffixes,
and roots is performed; the pronunciation of the root is
obtained from the dictionary and merged with that of
prefixes and suffixes following contextual modification
as necessary. If this process does not yield a match, the
default option is to select the “best” root alternative and
use a set of “letter-to-phoneme” rules to obtain a pro-
nunciation for the (multimorphemic) word. Context-
dependent rules, including those of schwa-deletion are
applied to the text-character string. The pronunciation
of various morphs of the word are merged, taking into
consideration context-dependent influences of the mor-
phemes, and ultimately phonological rules are applied
to the entire phoneme string.

Bhaskararao et al. (1994) describe a demi-syllable
based concatenative TTS system for synthesizing spo-
ken Hindi sentences. The different parts of the sys-
tem are described as follows (1994: 1239–1240). The
text formatting component takes as input (Romanized
ASCII representations) of the Devanagari script and
performs various “preprocessing” operations including
the expansion of arithmetic symbols (e.g. the minus
symbol {−} is converted to {ghaTA}) and abbrevia-
tions (e.g. {ku.} becomes {kumAri}). In the next step,
the (orthographic) characters are converted into the cor-
responding phonemes, and morphophonemic rules ap-
ply to this representation. These rules include the in-
sertion of /i/ in word-initial consonant clusters such as
{sp}, {sp}, or {sk} (e.g. {stri:} becomes /istrI/), ho-
morganic nasal conversion, and schwa deletion. The
string of phonemes is then converted to segments to
which appropriate durations are applied. Pitch variation
is achieved by pitch synchronous overlap. The synthe-
sis segment library (with a total of 506 units) consists
of demi-syllables as units, along with a selected set

of triphones. The selected segments are processed for
pitch and amplitude normalization.

A more detailed account of a text analysis compo-
nent for Hindi text-to-speech synthesis is provided in
Bhaskararao and Mathew (1992). The system takes
Hindi text input in Devanagari script, and outputs a
phonemic transcription of the standard variety, show-
ing syllable division using a lookup lexicon of root
forms. The various steps involved in the conversion
are text pre-processing, i-epenthesis, schwa deletion,
anusvAra conversion, miscellaneous changes, and syl-
lable division. The rules of i-epenthesis are text pre-
processing are as described in Bhaskararao et al.
(1994), which have been summarized above. The pro-
cess of anusvAra conversion involves converting the
anusvAra “M” into the phonemes /m/ or /N/, depend-
ing on the following homorganic letter, whether it
is a bilabial stop or retroflex stop respectively. Else-
where it is converted to the phoneme /n/. Syllabic divi-
sion involves the implementation of a syllable division
algorithm which groups the output phoneme strings
into corresponding syllables. Various miscellaneous
changes include specifying exceptions to the normal
grapheme-to-phoneme correspondences. Thus, for in-
stance, the sequence “jn” is converted to the phonemic
sequence /gy/, and conversely the regular velar frica-
tive grapheme “h” and the visarga grapheme “H” are
mapped into the phoneme /h/. Finally, the problem of
schwa-deletion is dealt with by specifying a range of
conditions in which the schwa is deleted:

(a) If the input word matches a word in the lexicon
which is followed by the schwa vowel, then the
word-final schwa is deleted.

(b) If the word ends in a consonant cluster, then the
schwa is retained.

(c) When the schwa-vowel does not belong in the first
syllable of the verb and is followed by a range of
suffixes such as “vAnA”, “nA”, “nI”, “ne”, then it
deletes (thus “calavAnA” becomes “calvAnA”).

(d) When a word can be diagnosed as having a pre-
fix such as “dur”, “an”, “nir”, etc., the prefix is
chopped and the residue is subjected to the schwa-
deletion process (thus “durupayoga” becomes “du-
rupyog”).

(e) If the second syllable of a word contains a schwa,
and it is preceded by a consonant (or a cluster con-
sisting of a nasal phoneme and consonant) and fol-
lowed by a consonant, the schwa is deleted (e.g.
“ahamad” becomes/ahmad/).

Schwa-Deletion in Hindi Text-to-Speech Synthesis 323

(f) If the result of a schwa-deletion operation is two
separate words, then the rules of schwa deletion are
applied to each of these words. Thus, the schwa
vowel following the first word in the compound
“ahamadanagara” is deleted to give “ahamad” and
“nagar”, and then schwa deletion applies to each of
these words to give the final output /ahmadnagar/.

From this brief survey, we can conclude that different
approaches to the problem of building TTS systems for
Hindi have been attempted, including formant-based
synthesis, demi-syllable-based concatenative synthe-
sis, and syllable-based synthesis, all of which contrast
in interesting ways from the diphone-based concate-
native synthesis system using LPC that is used in the
Bell Labs Hindi TTS system. Of these, only Sen and
Samudravijaya (2002) and Bhaskararao and Mathew
(1992) discuss the text analysis component in any
detail, and only the latter provide the specifics of deal-
ing with the schwa-deletion problem in Hindi text-to-
speech synthesis. The main characteristic of the ap-
proach advocated in Bhaskararao and Mathew (1992)
is the use of a list of specific environments for schwa-
deletion and the availability of an online lexicon of
words in the language for lookup purposes. As will
become evident from the discussion in the remainder
of the paper, our approach differs in that we capture
the generalization inherent in the different environ-
ments for schwa-deletion with a general rule of schwa-
deletion in word-final contexts as well as a (context-
sensitive) schwa-deletion rule for word-internal con-
texts, which is based on the linguistic analysis provided
in Ohala (1983). The rule applies to any string delimited
by whitespace (corresponding approximately to words)
and does not involve a process of matching the input
word with actual words in the language as specified in
a lexicon. Further, our rule (discussed more extensively
in Section 3.3) differs from condition (e) proposed
above in requiring the presence of both a consonant and
a vowel to the right of the schwa in order for it to delete,
rather than just a single consonant (which wrongly pre-
dicts that a word such as “kalam” ‘pen’ would become
“kalm”). Other than these differences, there are com-
monalities in the two approaches in that our system
also make use of lists of prefixes and compounds which
provide a level of morphological analysis for the word
before it is inputted to the schwa-deletion rule. In the
following sections, we shall proceed to discuss, in con-
siderable detail, the different aspects of our solution to
the problem of schwa-deletion in Hindi TTS.

2. Schwa-Deletion in Hindi Speech Synthesis

We begin by providing some background information
about the Hindi language relevant to understanding
how we address the problem of schwa-deletion. Hindi
is an Indo-European language derived from Sanskrit,
and is spoken by more than 350 million people around
the world. The language has 10 oral vowels, each of
which has a nasal counterpart, and 30 consonants. An
additional 5 consonants and two vowels which occur
mainly in (Persian, Arabic, and English) loan words
can also be considered to be part of the phoneme in-
ventory of Hindi owing to the frequency with which the
loanwords are used in the language (cf. Ohala, 1999).2

Hindi belongs to the Indo-Iranian branch of the Indo-
European family of languages. Two distinctive features
of its phonology include aspiration and retroflexion
in its consonant inventory; stress is not distinctive in
the language, and is tied to syllable weight (Kachru,
1987). Most derivational and inflectional morphology
in Hindi is affixal; forms of nouns undergo changes
to indicate number, gender, and case, and prenominal
adjectives agree with the head noun in number, gen-
der, and case (where case relations are indicated by
postpositions) (1987: 477–479). Verbs express various
aspect and mood distinctions, while tense distinctions
are expressed by forms of an auxiliary copular verb (p.
480–481). Verbs occur in morphologically related sets
(causal verbs) or in compounds, where the second “ex-
plicator” verb adds to or restricts the meaning of the
main verb (p. 483).

The Hindi language is written from left to right using
the Devanagari script, which is a slightly modified ver-
sion of the one commonly used in Sanskrit (McGregor,
1995). Each of the consonants in written Hindi is as-
sociated with an “inherent” schwa vowel which is not
represented in the orthography (see Table 3 for the list
of phonemes in the Hindi language). For instance, the
Hindi word “namak” pronounced as (‘salt’)
is represented in the orthography using the consonan-
tal characters for [n], [m], and [k]. The intervening
schwa vowels are associated with each consonant by
the speaker while pronouncing the written word. Vow-
els other than the schwa (e.g. the vowels and in
the word pronounced as ‘child’) are represented
overtly in the orthography with a variety of diacritic
and non-diacritic markers surrounding the consonant.

In a multilingual TTS system, the absence of an
overt glyph representing the “inherent” schwa vowel
in the orthographic input is handled by a general rule

324 Narasimhan, Sproat and Kiraz

which inserts a schwa in the lexical string between
consonants in the text-analysis component of the sys-
tem. However, a number of facts complicate the issue
of schwa pronunciation in Hindi (Ohala, 1983). First,
as might be noticed in the above example, not every
schwa following a consonant is pronounced. That is,
the schwa associated with the word-final consonant
[k] in the written form of the word pronounced as

is deleted. In fact, every schwa in the final
position of orthographic words is elided in Hindi.
Further, even within the (multimorphemic) word,
the schwa can be deleted when it appears in certain
positions. For instance, the schwa following [m] in the
word “namak[ii]n” (‘salty’) (pronounced)
is usually deleted to produce the word pronounced
as .3 Finally, the presence of a morpheme
boundary can block schwa deletion where it might
otherwise occur. The schwa preceding [g] in “ajagar”
(‘python’) is deleted to produce “ajgar”, but the schwa
preceding [g] in the word “mah[aa][++]nagar” (‘great
city’) cannot delete to produce “∗mah[aa][++]ngar”,
owing to the morpheme boundary (represented as
[++]) following the prefix “mah[aa]”.4

Clearly, a more complex account is required to pre-
dict the contexts in which the Hindi schwa is pro-
nounced in order to produce intelligible speech. While a
number of solutions for the schwa deletion problem has
been proposed in the linguistics literature (Ohala, 1983;
Pandey, 1989), we rely principally on Ohala’s account
of the phenomenon. In the following discussion, we
describe how we deal with the problem of schwa pro-
nunciation in Hindi, using ordered rules supplemented
by morpheme boundary information provided in the
form of lists.

3. Architecture

3.1. Overall Architecture

The schwa-deletion system is based on a finite-
state framework which makes use of weighted finite-
state transducers constructed using Lextools, a lexical
toolkit for the descriptions of lexica, morphological
rules and phonological rules, and morphosyntax, inter
alia (Sproat, 1997; see also Kiraz and Möbius, 1998;
and see http://www.research.att.com/sw.tools/lextools
for a downloadable version of the toolkit). A set of
transducers (FST’s) compute the mappings between
several different levels of linguistic descriptions: be-
tween the surface orthographic level and a lexical

level, and between the lexical level and the level
of phonological representation. In what follows, we
assume some familiarity with finite-state acceptors
(FSA’s), regular languages, and regular expressions
(Hopcroft and Ullman, 1979).

FST’s are similar to FSA’s; they are computational
devices consisting of a finite number of states, a desig-
nated start state, a set of designated final states, and a
finite set of directed labeled arcs between states. Arc la-
bels of FST’s consist of pairs (more generally n-tuples)
of symbols from a finite alphabet. The interpretation of
a label x :y on an arc between states s1 and s2 is as
follows: if the machine is in state s1 and the next token
of input is x , then the machine may consume the x ,
output a y and proceed to state s2. If the machine is in
a state where there is no arc leaving it which is labeled
with an input symbol corresponding to the next token
of input, then the machine cannot proceed any further
from that state. A computation using FST T on input
w is successful just in case one can start in the initial
state of T , at the left edge of w, and consume symbols
of w, arriving in a final state of T , outputting a string
y, where y is determined by the output labels on the
arcs traversed during the computation.

Algebraically, FST’s compute regular relations. Reg-
ular relations are (possibly infinite) sets of pairs (more
generally n-tuples) of strings that can be constructed
using one or more of the following operations: con-
catenation, transitive closure (Kleene star), and union.
Regular relations are said to be closed under these op-
erations: that is if A is a regular relation and B is a
regular relation, then so is AB, where AB consists of
each element of A concatenated with each element of
B (the cross-product); similarly, if A is a regular re-
lation, then so is A∗, where A∗ represents the n-way
concatenation of any member of A with any member
of A, for n from 0 to infinity; finally, if A and B are
regular relations then so is A ∪ B.

Regular relations (and FST’s) also closed under com-
position and inversion. Given two relations R1 and R2,
the composition of R1 and R2, denoted R1◦R2 is a
regular relation that relates strings in the domain of
R1 with strings in the range of R2; see (Mohri, 1997;
Mohri et al., 1998) for a description of algorithms for
computing composition of FST’s. The inversion of a
relation R, R−1, simply swaps the domain and range of
R; to invert an FST, one merely needs to swap the input
and output labels on each arc. These closure properties
are particularly useful in natural language applications
of FST’s. Closure under composition means that one

Schwa-Deletion in Hindi Text-to-Speech Synthesis 325

can develop simple rules, implemented as FST’s, and
compose them together to produce a single FST that im-
plements the entire cascade of rules; this provides for
a straightforward implementation of ordered rewrite
rules (Kaplan and Kay, 1994). Closure under inversion
means that one can create a system that is generative—
e.g. one that maps from Hindi phonological representa-
tions into Devanagari text, and then invert the resulting
transducer to produce a system that computes the rela-
tion in the other direction.

Three other points need to be made. First, either the
input or the output label may be the empty string, de-
noted conventionally as ε. If the input label on an arc
is ε, and the output symbol is a non-empty symbol x ,
denoted ε:x then the machine performs an insertion,
consuming no input, but inserting an x . Similarly, if
the label is x :ε, then the machine performs a deletion,
reading an x and outputting nothing. Secondly, FST’s
may be (and often are) non-deterministic, in that they
may produce more than one output for any given input;
in this case the output can be represented as a lattice,
which is simply an FST. This can be useful if the task is
to produce a set of plausible alternatives, which can be
further disambiguated by other processes. For example,
an input word may be ambiguous between several dif-
ferent morphological analyses; one’s lexical transducer
can produce a set of possible outputs for this word,
which could be disambiguated using further FST’s rep-
resenting syntactic constraints. Finally, one can also
add weights to the arcs, where weights are (usually) real
numbers that might, for example, represent the proba-
bility of a particular transition in the machine, or they
might simply represent some hand-constructed weight.
Selection of alternative analyses given a set of weighted
paths is accomplished using a shortest (cheapest) path
or “best-path” algorithm (Mohri, 1997; Mohri et al.,
1998). There are various interpretations of how the
weights are combined along a path (are they summed
or multiplied?), and what counts as cheapest (higher
or lower value). In what follows we will always as-
sume that weights are summed along a path through
a lattice, and that “cheaper” means having lower
weight.

The rules and entries used as input to the lextools
suite of tools are stated in terms of an extended
regular expression language. Standard symbols are
ε to represent the empty string, and � to represent
the alphabet of symbols; “:” is used to represent
the mapping between an input and output label as
above; finally weights are represented by numbers

within angle brackets: thus, 〈0.5〉. One of the tools
in the lextools suite implements the weighted rewrite
rule algorithm of (Mohri and Sproat, 1996), which
followed on earlier work in Kaplan and Kay (1994).
This allows one to write rewrite rules that look very
much like the rewrite rules familiar to linguists.
Lextools thus has much in common with other
finite-state toolkits, such as the Xerox toolkit (see
http://www.xrce.xerox.com/competencies/content-
analysis/fsCompiler/), though it differs from these in
allowing weights.

Our discussion in Section 2 collapsed two phenom-
ena which are usually distinguished for the purposes of
linguistic analysis. The first is the problem of pronounc-
ing the “inherent” schwa associated with consonants
and its ellipsis at the end of words in the orthography.
The second phenomenon has to do with the deletion
of the schwa in one of the derived phonological rep-
resentations of the word. We treat both aspects in the
following discussion.

3.2. Orthographic Schwa Rule

The first component of the schwa-pronunciation mod-
ule inserts a schwa vowel after consonants and elides it
word-finally. We implement this in the “reverse direc-
tion” by starting with a level of lexical representation
in which the schwa occurs after every consonant. A
general rule then deletes the schwa globally:5

a → ε/$ [Orth]? C + ;

where C+ stands for consonant sequences consisting
of one or more consonants (the ‘+’ symbol is often
called “Kleene plus”, and represents one or more cate-
nations of a set with itself, rather than the zero or more
catenations denoted by Kleene star), and $ for a syl-
lable boundary. The symbol [Orth] stands for ortho-
graphic symbols which might be (optionally) present
before the consonant, and the ‘ ’ represents the locus
for the substitution of the schwa vowel with ε (fol-
lowing standard conventions in linguistics). The oper-
ator ‘?’ is for optionality. Thus this rule deletes an /a/
that occurs after a syllable boundary, an optional ortho-
graphic symbol and one or more consonants. The rule
can be compiled into a transducer (again, using the al-
gorithm of Mohri and Sproat, 1996), and then inverted
to produce a transducer that takes as input the surface
orthographic representation (without postconsonantal

326 Narasimhan, Sproat and Kiraz

schwa vowels), and returns a lattice of possible lexical
outputs.

3.3. Word-Internal Schwa-Deletion

Having implemented a general rule of postconsonantal
schwa insertion with word-final schwa-deletion in the
orthographic input, we now constrain the contexts of
the application of the rule word-internally on the basis
of the rule suggested in Ohala (1983). This is done with
a combination of further rules and filters.

We begin with a (simplified version of the) rule
which we use to replace the schwa with an interme-
diate symbol [NullV] at morpheme boundaries:

Schwa-replacement rule 1:

a → ([NullV]|a〈1.0〉)/[++](� − [++])∗(V)

× (� − [++])∗ [++];

Here V stands for the class of vowels, and the operators
“−” is subtraction, and the string “(� − [++])” stands
for any character which is not a morpheme boundary.
The rule applies right-to-left. The schwa vowel goes
to [NullV] or is retained, but at a cost of 〈1.0〉. The
string “� − [++]” stands for any character which
is not a morpheme boundary. Hence, when the input
consists of a word with internal morpheme bound-
aries, e.g. “saha[++]karmii”, the schwa-replacement
rule (1) (correctly) replaces the schwa following the
prefix-final schwa with a null vowel symbol to produce
“sah[NullV][++]karmii”. Similarly, words such as
“para[++]lok” (‘the next world’) or “para[++]janm”
(‘subsequent birth) become “par[NullV][++]lok” and
“[par[NullV][++]janm” respectively.

A second rule maps the schwa vowel to the inter-
mediate symbol [NullV] within the morpheme. Ohala
(1983: 139–140) suggests a general purpose rule which
would delete postconsonantal schwa vowels in the cor-
rect contexts. A (slightly modified) version of her rule
maps the schwa vowel to the intermediate symbol
[NullV] (which is ultimately deleted):

Schwa-replacement rule 2:

a → ([NullV]|a〈1.0〉)/VC(C) ? [++]? C[++]? V;

Here, V stands for the class of vowels, C stands for the
class of consonants, and the possibility of an optional
consonant following C stands for consonant clusters.
As mentioned before, [++] represents a morpheme

boundary. The rule is marked to apply from right to
left (Kaplan and Kay, 1994). Since schwa-deletion is
optional, the rule allows two alternative outputs; one
which replaces the schwa with the [NullV], the other
which retains the schwa, at a cost. All other things
being equal, the one with the retained schwa will be
disfavored since it will involve a more expensive anal-
ysis. The application of the rule is limited by two con-
straints. Any morpheme boundary to the immediate
left of the context for schwa-deletion blocks the ap-
plication of the rule. The left context specifies that a
consonant (cluster) must precede the schwa for it to
delete. Since a morpheme boundary to the immedi-
ate left of the consonant (cluster) would block schwa
deletion, no optional morpheme boundaries are spec-
ified in the left context of the rule. The right context
of this rule specifies that schwa deletion only occurs
before a consonant followed by a (non-schwa) vowel.
Optional morpheme boundaries are allowed to occur to
the right of the schwa (since these do not interfere with
the application of the rule). The schwa-deletion rule is
further constrained by a filter (to be described further
in Section 3.5) which ensures that any consonant clus-
ter created as a result of schwa deletion must satisfy
the phonotactic constraints on consonant clusters in
Hindi.

This rule works in the following way. Within
monomorphemic words, the schwa (indicated in bold
font in the examples below), is (replaced by the
intermediary symbol [NullV] which is ultimately)
deleted when the conditions specified by the rule
are met:6

m[a a]la t[ii] →m[a a]l t[i i] (female proper name)

V CaC V V CC V

m a za b[uu]t→m a z b[u u] t(‘strong’)

VCaC V → VCC V

u l a[j h]an →u l [jh]a n (‘problem, complicaton’)

VCa C V VC C V

j a n gal[ii] → j a n gl[i i] (‘pertaining to the forest,

VCCaC V VCCCV wild’)(Ohala, 1983:128)

When a suffix (e.g. “-[ii]n” or “-[au]t[aa]”) is added
to a word such that the new word satisfies the in-
put condition to the schwa-deletion rule, the schwa
is duly deleted (note that morpheme boundaries may
freely occur in the right context of the rule). As
mentioned above, we indicate a morpheme boundary

Schwa-Deletion in Hindi Text-to-Speech Synthesis 327

by ‘[++]’:

n a m a k[++][i i]n

V Ca C V

→ n a m k[++][i i]n (‘salty’)

VCC V

s a m a[jh][++][au]t[aa]

V Ca C V

→ s a m [j h][++][a u]t[a a] (‘understanding’)

VC C V

When a prefix is added to a word such that a morpheme
boundary appears to the left of a schwa-deletion context
in a word, the schwa-deletion rule fails to apply, as
expected:

p r a[++]ga t i → p r a[++]g a t i (‘progress’)

V CaCV V C aCV

anu[++]ka ra[n.] → anu[++]ka ra[n.] (‘imitation’)

V CaCV V CaCV

3.4. The Prefix Lexicon

Since the schwa-replacement rule is sensitive to the in-
ternal morphological structure of the word (morpheme
boundaries in the left context of the rule), we begin
by creating a lexical database with prefix information
derived from online corpora and augmented with lists
provided in Singh and Agnihotri (1997). A morpheme
boundary (represented by [++]) was introduced within
any word beginning with character strings correspond-
ing to Hindi prefixes such as “antar-”, “anu-”, “para-”
or “ku-”. We stipulated that morpheme boundary in-
sertion could only occur in words with at least three
characters (each character represented by the symbol
�) following the prefix. This avoided the erroneous in-
sertion of internal morpheme boundaries in monomor-
phemic words beginning with the same characters as
those in our list of prefixes. Each character in the word
is given an arbitrary cost of 〈0.5〉, and the length of
the word determines the cost associated with the word
as a whole (since costs are additive). The final line of
the word list associates a default cost to any character
string. A partial list is given below:

antar (ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘inner, interior’)

anu(ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘after, according to’)

para(ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘other, distant, subsequent’)

pari(ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘around’)

ku(ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘bad, defective’)

saha(ε : [++])(�〈0.5〉)(�〈0.5〉)(�〈0.5〉)
+ (‘together, along with’)

(�〈0.5〉)+

The notation ‘ε:[++]’ implements the insertion
of a morpheme boundary between the prefix and
the stem. The final line “(�〈0.5〉)+” represents the
case where a word is not morphologically analyzed
into a prefix-plus-suffix combination. A list of such
regular expressions can then be compiled into a finite
state transducer that represents a schematic lexicon
for Hindi. An input string such as “sahakarm[ii]”
(‘fellow-worker’, ‘colleague’) can then be composed
with this acceptor. This will yield one or more possible
analyses; for “sahakarm[ii]” (with no morphological
analysis), and “saha[++]karm[ii]”, analyzing the
“saha-” as a prefix. The shortest-path algorithm will
favor the latter since in the former case every symbol
will get a cost of 0.5 (for a total cost of 4.5) whereas
in the latter case, the “saha-” prefix comes for free and
the total cost (2.5) is cheaper. Similarly, input strings
such as “anujanm[aa]” (‘have a following birth’),
“kukarm[ii]” (‘villanous’), “pari[bh][aa][sh][aa]”
yield “anu[++]janm[aa]”, “ku[++]karm[ii]”, and
“pari[++][bh][aa][sh][aa]” respectively.

3.5. Consonant Cluster Filter

The outputs of these rules have to be filtered, to disal-
low words which violate consonant cluster constraints
in Hindi. For instance, in words such as “sargamE”
(’melodies’), the schwa-vowel following the “g” does
not delete, since the resultant consonant cluster “rgm”
is not attested in Hindi. Similarly, schwa-deletion
cannot take place in words such as “adrakE” (‘gin-
ger roots’) or “shalgamE” (‘turnips’) to produce
“adrkE” and “shalgmE” since they produce ille-
gal consonant clusters such as “drk” and “lgm”,
respectively.

We derived a list of consonant clusters illegal in
Hindi from Ohala (1983), but modified it to exclude

328 Narasimhan, Sproat and Kiraz

clusters such as “r[th]n”, “mt”, “[rth]”, “jn”, and “hr”
since words with these clusters are attested in the lan-
guage, albeit rarely, (e.g., “pr[aa]r[th]n[aa]” ‘prayer’,
“imtih[aa]n” ‘examination’, “saar[th]ak” ‘significant’,
“ajnab[ii]” ‘stranger’, and “dohr[aa]n[aa]” ‘repeat’).
The set of strings which are impossible is ex-
pressible by a regular expression, given partially as
follows::

Consonant cluster filter:

!(� ∗ ((rw[N u l lV][t.])|(rk[NullV][t.])| . . . |
(b[NullV]t))�∗)

The “. . . ” represents other illegal clusters that we
omit here for lack of space. The exclamation mark ‘!’
represents complementation (regular languages,
though not in general regular relations, are closed
under complementation), so that the expression
disallows any string containing one of the specified
sequences, such as “rw[NullV][t.]”; more specifically,
“�* rw[NullV][t.] �*”, will match any string that
contains the sequence “ rw[NullV][t.]”, and “ ! (�*
rw[NullV][t.] �*)” will disallow any such string.
Thus, although strings such as “karwa[t.]E” (‘sides’),
“karka[t.][ii]” (‘female crab’), and “kudrat[ii]”
(‘natural’) constitute instances where schwa-deletion
might be expected to takes place, the outputs
of schwa-deletion—“karw [t.]E” (‘sides’), “kark
[t.][ii]” (‘female crab’), and “kudrt[ii]” (‘natural’)
respectively—contain consonant clusters which are
ruled out by the phonotactics of the language. The
consonant cluster filter inserts the [NullV] symbol in
place of the schwa in such strings. Since any word
which undergoes the schwa- replacement rule will
have the intermediary [NullV] symbol in it, any word
containing a string which has a [NullV] intervening
between the illegal consonant clusters will be ruled out
as impossible. The (higher cost) alternative output of
our schwa-replacement rule (2) above, in which schwa
is retained, is then selected as the only alternative.
Finally we delete the intermediary symbol [NullV] by
mapping it to the null symbol via a “schwa-deletion
FST”.

3.6. Ordering the Components of the
Schwa-Deletion System

Since postconsonantal schwa-insertion and word-final
schwa-deletion occur in the initial mapping from the

orthographic string to the lexical level of representa-
tion, the “orthographic schwa FST” is ordered before
the others. The internal morphological structure of
the word has to be represented in the input to the
schwa-replacement rule, hence the prefix FST is
ordered next. The output is a lattice of lexical analyses
of the input string each of which is associated with
a particular cost. The best-path is selected, using
a shortest path algorithm (Mohri et al., 1998). The
schwa-replacement FSTs, the consonant cluster FST,
and the schwa-deletion FST are then composed to-
gether (in that order), and the resulting “phonological
schwa FST” is applied to the best lexical analysis
outputted by the prefix FST.

For example, let us consider the word “namak[ii]n”
(’salty’), which, in the orthographic representation,
would lack the schwa vowels, as in “nmk[ii]n”. The
orthographic schwa FST will output “namak[ii]na”
as well as “namak[ii]n”; and the best-path algorithm
will select the latter, since it requires fewer num-
ber of insertions, and is hence weighted lower. This
output (“namak[ii]n”) passes through the finite-state
lexicon of prefixes, but does not receive any inter-
nal morphological boundaries since none of the pre-
fixes in the list matches the initial characters in the
input string. As a result, when the phonological schwa
FST is applied to “namak[ii]n”, the second schwa-
vowel is replaced by null vowel since it meets the
criteria for deletion as specified in the schwa replace-
ment rule (2) to produce “nam[NullV]k[ii]n”. The
unmodified string “namak[ii]n” is also outputted, how-
ever a higher cost is associated with it. Both out-
puts successfully pass through the consonant clus-
ter filter, since the cluster “m[NullV]k”, created as
a result of the schwa-replacement rule is not an in-
valid string as specified in the consonant cluster list.
The best-path is selected, in this case, the string
which has correctly undergone schwa-deletion, viz.
“namk[ii]n”.

4. Further Elaborations in the System:
Compounds

While the above system works well with individual
words which are separated by whitespace in the writ-
ten text, longer compounds comprising names and
common nouns are problematic, since the morpheme
boundary between the members of the compound is
not represented by whitespace. As a result schwa-
deletion incorrectly fails to take place word-finally

Schwa-Deletion in Hindi Text-to-Speech Synthesis 329

when the word occurs as the non-final member of
a compound (since the boundary between the mem-
bers of the compound is not indicated by white-space).
Further, schwa-deletion incorrectly occurs in some
(compound) word-internal contexts, since morpheme
boundary information is not indicated within the com-
pound.

As an instance of these two types of errors, let us con-
sider the compound “loksa[bh][aa]” which consists of
the nouns “lok” (‘people’) and “sa[bh][aa]” (‘assem-
bly’). The form of the compound prior to the applica-
tion of the schwa-pronunciation rules is “loks[bh][aa]”.
When this string is inputted to the orthographic schwa
transducer, the output is “lokasa[bh][aa]” and not the
correct form, “loksa[bh][aa]”. The absence of a white-
space after the word “lok” causes it to be treated as
part of a word, not a separate word, hence the ortho-
graphic schwa FST does not output the form “lok”.
When the string “lokasa[bh][aa]” next passes to the
phonological transducer, the second type of error oc-
curs. Since the schwa following the letter “s” in the
second member of the compound “sa[bh][aa]” meets
the condition for the schwa-replacement rule, it is (in-
correctly) replaced by the intermediate [NullV] sym-
bol and subsequently deleted. However, if the com-
pound were treated as a simple word with internal
morphological structure (just as prefixed words are),
then both types of errors would be avoided. That is,
if the morpheme boundary were correctly marked as
in “loka[++]sa[bh][aa]”, the schwa-replacement rule
(1) would correctly delete the schwa following the “k”
(owing to the presence of a morpheme boundary to the
right). Also, the schwa-replacement rule (2) would fail
to apply owing to the presence of a morpheme boundary
to its left, and the schwa following the “s” in the second
morpheme of the compound would not be incorrectly
deleted.

In order to implement this, we replicated the method
used for representing prefix information, discussed
above. We created finite-state lexicons which inserted
morphological boundaries between the members of
compounds for both proper names and “common noun”
compounds. An online database of Hindi newspaper
texts consisting of over 5 million words was used to
create these databases. The most frequently occur-
ring words of 8 characters or more were retrieved.
Monomorphemic strings were discarded, and the list
was hand-annotated for morphological boundaries. The
combined databases consisted of 1646 entries. A partial

list is given below for illustrative purposes:

di la (ε : [++]) casp (‘interesting,

attractive’)

catura (ε : [++]) [bh]uj (‘four-armed’)

k[s.]a t i (ε : [++]) grast (‘damaged’)

gat i (ε : [++]) vi[dh]i (‘manner of acting,

procedure’)

candra (ε : [++]) [sh]e[kh]ar (male proper name)

ut tara (ε : [++]) prade[sh] (name of an Indian

state)

jaga (ε : [++]) mohan (male proper name)

As before, the symbol (ε:[++]) represents the inser-
tion of a morpheme boundary [++] between the two
members of a compound (e.g. “dila” and “casp” in the
first line of the list above).7 This lexicon is then com-
piled into an FST and unioned with the prefix FST
given before. The compounding thus applies prior to
the schwa-deletion component.

5. Evaluation

The schwa-deletion module was evaluated using tex-
tual materials derived from the online corpus of news-
paper texts mentioned earlier. We isolated a subset of
13,500 long sentences from the corpus, and ran the
TTS system with the schwa-deletion module on this set.
We then selected the first 15 words occurring in every
block of 500 sentences where schwa-deletion (should
have) applied. These were then uniquely sorted to filter
out exact repetitions, yielding a database of 290 words.
Pronunciation performance was evaluated by manually
checking the correctness of the transcriptions.

A transcription was considered correct if the schwa
was deleted in a context where schwa-deletion was ex-
pected to occur. Multiple (correct) deletions within the
same word were treated as a single correct case. A
transcription was considered incorrect if (a) the schwa
was not deleted in the appropriate context, or if (b) the
schwa was deleted in an inappropriate context (where
it should have been retained). Multiple mistakes within
the same word were considered to be a single error.8

Table 1 summarizes the results.
The schwa-deletion system performs correctly 89%

of the time. An analysis of the errors shows that the
schwa is incorrectly retained in contexts where it should

330 Narasimhan, Sproat and Kiraz

Table 1. Performance the schwa-deletion system.

Total number of words 290

Total correct 258/290 (89%)

Total errors 32/290 (11.3%)

Schwa incorrectly retained 13/32 (40.6%)

Schwa incorrectly deleted 12/32 (37.5%)

Incorrect retention & deletion 6/32 (18.8%)

(in the same word)

Unknown 1/32 (3.1%)

have been deleted for 40.6% of the cases. For instance,
the schwa following the “p” in “nipa[t.][aa]n[aa]” (‘to
complete’) is erroneously retained even though it oc-
curs in a context which meets the conditions of the
schwa-replacement rule number 2 (Section 3.5). The
schwa is incorrectly deleted 37.5% of the time (e.g.,
the schwa preceding “s” in “paraspar” (‘mutual, recip-
rocal’) is inappropriately deleted). Only in a few cases
do both types of errors occur. Thus, given the compound
“ar[th]avyavas[th][aa]” (‘economy management’), the
correct output would be “ar[th]vyavas[th][aa]”. The
schwa following “th” should be deleted since it occurs
at the end of the first morpheme of the compound
(“ar[th]a”), but the schwa following “y” in the second
member of the compound (“vyavas[th][aa]”) is retained
since there is a morpheme boundary to its immediate
left. However, since the schwa-deletion module failed
to insert a morpheme boundary between the members
of the compound, the system returned the equivalent
of “ar[th]avyvas[th][aa]” (where the schwa following
“[th]” is incorrectly retained and the schwa following
“y” is incorrectly deleted). In the single remaining case
in Table 1 where the error type is glossed “unknown”,
there was some ambiguity in judgement as to whether
the schwa should have been deleted or retained. This
case consisted of the word “mah[aa]vidy[aa]lay[ii]n”
(‘pertaining to college’) where it is not clear whether
the schwa preceding the [y] should be deleted or not.

Table 2 shows the error breakdown on the basis of the
source of the error. That is, the schwa-deletion errors

Table 2. Breakdown of error types.

Consonant cluster 3/32 (9.4%)

Compound boundary 9/32 (28.1%)

Prefix boundary 19/32 (59.4%)

Unknown 1/32 (3.1%)

in Table 1 were produced owing to incomplete infor-
mation in the consonant cluster lexicon, the compound
boundary lexicon, or the prefix lexicon. In almost 60%
of the cases, the schwa-deletion module produced an
incorrect analysis because the prefix boundary had
been wrongly inserted in a monomorphemic word
(Section 3.4). Thus, the word “nipa[t.][aa]n[aa]” is mis-
takenly assumed to consist of a prefix “ni” attached to
the word “pat.aanaa” thus incorrectly blocking the dele-
tion of the schwa following the “p” (owing the presence
of a morpheme boundary to its left). In 28.1% of the
cases, a morpheme boundary had not been inserted be-
cause the compound was not listed in the list of com-
pounds (Section 4). The consonant cluster list which
filtered out the outputs of the schwa-deletion rule with
improbable consonant clusters proved to be inadequate
for 9.4% of the cases (Section 3.5). For example, the
deletion of the schwa following the first word “hasta” in
the compound “hastaks.ep” would create the consonant
cluster “stks.” which does not occur in Hindi. However,
the schwa-deletion module incorrectly deletes it since
the consonant cluster filter list does not list this clus-
ter as being ill-formed. The single case listed as “un-
known” is identical to the ambiguous word in Table 1.

6. Areas for Future Work

While the relatively low error rate of the schwa-deletion
system shows that it performs well in a majority of the
cases, the error breakdown suggests a number of areas
of further improvement. The list of consonant clusters
needs to be augmented since it fails to filter out obvi-
ously impossible clusters in Hindi such as “stks.” While
lists of possible and impossible consonant clusters in
Hindi can be obtained from grammars or linguistic
studies, they can be augmented by information derived
from online corpora to derive frequencies of occurrence
of within-word consonant clusters in the language. The
probabilistic information can be represented in the form
of weights associated with each consonant cluster in a
list. Rather than ruling out a consonant cluster alto-
gether (as we did in the list discussed in Section 3.5), a
word containing a particular cluster (formed as a result
of schwa-deletion) would be associated with a partic-
ular weight derived from its frequency of occurrence
in the corpus. A string of consonants associated with a
high weight would be extremely rare or absent in the
corpus, whereas a low weight would indicate relatively
high frequency of occurrence. The output would be a
lattice of words associated with different weights, and

Schwa-Deletion in Hindi Text-to-Speech Synthesis 331

Table 3. Table of phonemes (adapted from Ohala, 1983, 1999).

Consonants

Bilabial dental and alveolar velar retroflex palato-alveolar palatal glottal uvular labio-dental

Plosive voiceless
unaspirated

p t k [t.] q

voiceless
aspirated

[ph] [th] [kh] [t.h] x

voiced b d g [d.] G

breathy-voiced [bh] [dh] [gh] [d.h]

Affricate voiceless
unaspirated

c

voiceless
aspirated

[ch]

voiced j

breathy-voiced [jh]

Fricative voiceless s [s.] [sh] h f

voiced z

Flaps voiced [r.]

breathy-voiced [r.h]

Nasals m n [ng] [n.] [n∼]

Approximant y v

Taps r

Laterals l
Vowels

Front Central Back

oral nasal oral nasal oral nasal

High [ii] [II] [uu] [UU]

i SI u U

Mid [e] E a, H A o O

[ai], %∗ [AI] [au], @∗ [AU]

Low Y

[aa] [AA]

∗% and @ correspond to the vowels in English borrowings such as the vowel [o] in “box” and the vowel [oe] “map” respectively.

the best path algorithm would select the output with
the lowest weight.

Further improvement in the performance of the sys-
tem can be obtained by modifying the prefix list. The
mis-segmentation of ambiguous strings (e.g. the word
“nipa[t.][aa]n[aa]” could be monomorphemic or con-
tain a prefix boundary following “ni”) can be reduced
by stipulating that a prefix boundary can only be in-
serted when followed by at least five characters (in-
stead of three characters in the current version). This
would reduce the number of instances where the pre-
fix boundary is gratuitously inserted in shorter words.
A better solution would be to build an online lexicon

of Hindi (which is currently unavailable) so that we
have more complete information about which words
are monomorphemic.

In order to increase coverage of compounds, a com-
positional model of compounds can be created. The
tool allows one to write a finite-state grammar describ-
ing words of arbitrary morphological complexity and
length (Sproat, 1995). Based on linguistic knowledge
of constraints on which words can be non-final and
which the final members of a compound, arbitrarily
long concatenations of names and common nouns can
be decomposed (see Jannedy and Möbius (1997)) for
a name-pronunciation system using weighted FSTs).

332 Narasimhan, Sproat and Kiraz

The prefix information discussed above could be in-
corporated into such a morphological analysis FST as
well.

One further possibility for future exploration in-
volves alternative models of schwa-deletion in the lin-
guistic literature. For instance, the deletion of schwa
has been predicted to occur in unstressed syllables in
certain contexts (Pandey, 1989). While the role of in-
ternal morphological complexity has not been suffi-
ciently analysed in such models, further investigation
could reveal a more elegant solution using general prin-
ciples rather than item-specific lists which would be
both more economical and more accurate.

Notes

1. Non-source-filter approaches such as pitch-synchronous overlap
and add (PSOLA) which are based on waveform concatenation
(Charpentier and Moulines, 1990), in principle, allow for sys-
tems with higher speech quality, although high sensitivity to the
precise cut-point location of waveform segments and handling
extreme variations in pitch remain problematic for waveform con-
catenation (Shih and Sproat, 1996). One possible solution is to
reduce the number of concatenations (as well as the amount of
signal processing required to correct prosodic properties of the
units) by selecting the longest strings of phonetic segments from
a large speech database (Möbius, 2000). The selection of units
from a large corpus requires determining the optimal weighting
of various acoustic factors (Black and Campbell, 1995). In one
approach to the problem, an utterance is synthesized from the
best set of units in the database, and its distance from the natural
waveform is measured—the process iterates over different weight
settings until the best set of weight values is determined (Black
and Campbell, 1995).

2. Depending on which “non-native” sounds found in loanwords
are included, writers differ on the exact number of vowels and
consonants that comprise the phoneme inventory of Hindi.

3. We represent multicharacter symbols with braces around them;
thus [aa] in “k[aa]n” (‘ear’) corresponds to the phoneme repre-
sented by the IPA symbol /a/.

4. Following linguistic convention, the asterisk in ∗[mahaa[++]
ngar] indicates that the form is unattested

5. The actual rule in our TTS system was slightly more compli-
cated, since we defined our rules over two intermediate levels of
orthographic representations.

6. Long vowels, retroflex and aspirated stops and flaps are repre-
sented with multicharacter symbols enclosed in square brackets,
as in the long vowel ‘[ii]’ and the voiced aspirated afficate ‘[jh]’.

7. Three-member compounds are rare and hence not included.
8. We did not count as correct those instances where schwa-deletion

did not occur in inappropriate contexts.

References

Bhaskararao, P. and Mathew, S. (1992). Phonemic transcription rules
for text-to-speech synthesis of Hindi. In R.M.K. Sinha (Ed.), Com-

puter Processing of Asian Languages. New Delhi: Tata McGraw
Hill.

Bhaskararao, P., Peri V.N., and Udpikar, V. (1994). A text-to-speech
system fo application by visually handicapped and illiterate. Pro-
ceedings of the International Conference on Spoken Language
Processing, pp. 1239–1241.

Black, A. and Campbell, N. (1995). Optimising selection of units
from speech databases for concatenative synthesis. Proceedings
of Eurospeech 95. Madrid, Spain, Vol. 1, pp. 581–584.

Charpentier, F. and Moulines, E. (1990). Pitch-synchronous waver-
form processing techniques for text-to-speech synthesis using di-
phones. Speech Communication, 9(5/6):453–467.

Furtado, X.A. and Sen, A. (1996). Synthesis of unlimited speech
in Indian languages using formant-based rules. Sãdhanã, 21:345–
362.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata
Theory, Languages, and Computation. Reading, MA: Addison
Wesley.

Jannedy, S. and Möbius, B. (1997). Name pronunciation in German
text-to-speech synthesis. Proceedings of the 5th Conference on
Applied Natural Language Processing. Washington, DC, pp. 49–
56.

Kachru, Y. (1987). Hindi-Urdu. In B. Comrie (Ed.), The World’s
Major Languages. London & Sydney: Kroom Helm.

Kaplan, Ronald and Kay, Martin. (1994). Regular models of phono-
logical rule systems. Computational Linguistics, 20:331–378.

Kiraz, G. and Möbius, B. (1998). Multilingual syllabification using
weighted finite-state transducers. Proceedings of the Third Inter-
national Workshop on Speech Synthesis. Jenolan Caves, Australia,
pp.71–76.

Klatt, D.H. (1980). Software for a cascade/parallel formant synthe-
sizer. Journal of the Acoustical Society of America, 67(3):971–
994.

McGregor, R. (1995). Outline of Hindi Grammar. Oxford: Oxford
University Press.

Möbius, B. (1999). The Bell Labs German text-to-speech system.
Computer Speech and Language, 13:319–358.

Möbius, B. (2000). Corpus-based speech synthesis: Methods
and challenges. Arbeitspapiere des Instituts für Maschinelle
Sprachverarbeitung (Univ. Stuttgart), AIMS, 6(4):87–116.

Möbius, B. and van Santen, J. (1996). Modeling segmental duration
in German text-to-speech synthesis. Proceedings of the Fourth In-
ternational Conference on Spoken Language Processing. Philadel-
phia, PA, Vol. 4, pp. 2395–2399.

Möbius, B., Schroeter, J., van Santen, J., Sproat, R., and Olive, J.
(1996). Recent advances in multilingual text-to-speech synthesis.
Fortschritte der Akustik - DAGA 96. DEGA, Oldenburg, pp. 82–
85.

Möbius, B., Sproat, R., van Santen, J., and Olive, J. (1997).
The Bell Labs German text-to-speech system: An overview.
Proceedings of the European Conference on Speech Commu-
nication and Technology. Rhodes, Greece, Vol. 5, pp. 2443–
2446.

Mohri, M. (1997). Finite-state transducers in language and speech
processing. Computational Linguistics. 23:2.

Mohri, M., Pereira, F., and Riley, M. (1998). A rational de-
sign for a weighted finite-state transducer library. In D. Wood
and S. Yu (Eds.), Automata Implementation, Lecture Notes in
Computer Science 1436. Berlin-NY: Springer Verlag, pp. 144–
158.

Schwa-Deletion in Hindi Text-to-Speech Synthesis 333

Mohri, M. and Sproat, R. (1996). An efficient compiler for weighted
rewrite rules. Proceedings of the 34th Annual Meeting of the Asso-
ciation for Computational Linguistics. Santa Cruz, CA, pp. 231–
238.

Ohala, M. (1983). Aspects of Hindi Phonology. Delhi: Motilal Ba-
narsidass.

Ohala, M. (1999). Hindi. Handbook of the International Pho-
netic Association: A guide to the Use of the International Pho-
netic Alphabet. Cambridge: Cambridge University Press, pp.100–
103.

Pandey, P. (1989). Word accentuation in Hindi. Lingua, 77(1):37–
73.

Rao, P.V.S. (1993). VOICE: An integrated speech recognition syn-
thesis system for the Hindi language. Speech Communication,
13:197–205.

Sen, A. and Samudravijaya, K. (2002). Indian accent text-
to-speech system for web browsing. Sãdhanã, 27(1):113–
126.

Shih, C. and Sproat, R. (1996). Issues in Text-to-Speech Conversion
for Mandarin. Computational Linguistics and Chinese Language
Processing.

Singh, R. and Agnihotri, R. (1997). Hindi Morphology: A Word-
Based Description. Delhi: Motilal Banarsidass.

Sproat, R. (1996). Text interpretation for TtS synthesis. In R. Cole
(Ed.), Survey of the State of the Art in Human Language Technol-
ogy (http://cslu.cse.ogi.edu/HLTsurvey/).

Sproat, R. (1997). Multilingual text analysis for text-to-speech syn-
thesis. Natural Language Engineering. 2(4):369–380.

Sproat, R. (Ed.). (1998). Multilingual Text-to-Speech Synthesis. Dor-
drecht: Kluwer Academic Publishers.

Van Santen, J. (1994). Assignment of segmental duration in text-to-
speech synthesis. Computer Speech and Language, 8:95–128.

Van Santen, J. (1998). Timing. In R. Sproat (Ed.), Multilingual Text-
to-Speech Synthesis. Dordrecht: Kluwer Academic Publishers,
pp.115–139.

Van Santen, J., Shih, C., and Möbius, B. (1998). Intonation. In
R.Sproat (Ed.), Multilingual Text-to-Speech Synthesis. Dordrecht:
Kluwer Academic Publishers, pp.115–139.

Verma, R., Sarma, S.S.A., Shrotriya, N., Sharma, A.K., and Agrawal,
S.S. (1995). On the development of text to speech system for Hindi.
Proceedings of the International Congress of Phonetic Sciences.
Stockholm, Sweden, pp. 354–357.

