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Despite its prominent contribution to the free energy of solvated macromolecules such as proteins
or DNA, and although principally contained within molecular dynamics simulations, the entropy of
the solvation shell is inaccessible to straightforward application of established entropy estimation
methods. The complication is twofold. First, the configurational space density of such systems is too
complex for a sufficiently accurate fit. Second, and in contrast to the internal macromolecular
dynamics, the configurational space volume explored by the diffusive motion of the solvent
molecules is too large to be exhaustively sampled by current simulation techniques. Here, we
develop a method to overcome the second problem and to significantly alleviate the first one. We
propose to exploit the permutation symmetry of the solvent by transforming the trajectory in a way
that renders established estimation methods applicable, such as the quasiharmonic approximation or
principal component analysis. Our permutation-reduced approach involves a combinatorial problem,
which is solved through its equivalence with the linear assignment problem, for which O�N3�
methods exist. From test simulations of dense Lennard-Jones gases, enhanced convergence and
improved entropy estimates are obtained. Moreover, our approach renders diffusive systems
accessible to improved fit functions. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2400220�

I. INTRODUCTION

Biomolecular processes are driven by molecular free en-
ergy changes. Many physico-chemical phenomena, such as
the hydrophobic effect, emerge from a fine-tuned competi-
tion of the two free energy components, entropy and en-
thalpy. During protein folding, e.g., molecular interactions
compete with the associated huge decrease of conformational
entropy of the protein.1 Hydrophobic forces, which drive
many biological phenomena such as membrane association
and also protein folding, are also governed by entropy
changes, but mainly of the solvent.2 As a fully atomistic
description, molecular dynamics �MD� simulations should
capture this enthalpy-entropy competition. That this is actu-
ally the case has become particularly evident by the success-
ful first-principle MD folding of peptides and proteins of
increasing size,3,4 where the obtained native structure is par-
ticularly sensitive to the enthalpy-entropy balance. Similarly,
MD has provided in-depth insights of many other complex
biomolecular processes.5–9

Unexpectedly, however, accurate values for both en-
thalpy and entropy are notoriously difficult to extract from
such simulations, although they are correctly treated and
thus, apart from the sampling problem, are fully contained in
the simulation. This at first almost paradoxical gap severely
inhibits a full causal and thermodynamic understanding of
many macromolecular processes.

Free energy differences between two states of a system
are usually obtained from MD simulations by means of free
energy perturbation10 or thermodynamic integration;11 abso-
lute values, however, are more difficult to obtain. In both

cases accuracy is limited by sampling. For differences be-
tween similar systems, reasonable accuracy can be
obtained.12–14 For absolute values, however, the sampling
problem is usually prohibitive due to the large volume of
phase space that needs to be sampled. Even more so, the
separate computation of enthalpy or entropy differences typi-
cally suffers from large statistical uncertainties.15 Accord-
ingly, to estimate these quantities already represents a con-
siderable challenge.

In addition, biological systems usually involve a solute
�e.g., a protein� solvated in a solvent �e.g., water�. Therefore,
an estimation method should include both groups in the
analysis and distinguish their contributions. This is an addi-
tional challenge which is not met satisfactorily by any
method proposed so far.

The quasiharmonic approach16,17 approximates the phase
space density of a system by fitting a multivariate Gaussian
density to a MD simulation trajectory using the covariance
matrix. From this density estimate, the entropy is calculated
analytically. This approach is computationally efficient and
often yields good results for the entropy contribution of the
solute.18,19 As we will discuss further below, however, the
solvent contribution to the entropy is not accessible to this
method. This is particularly problematic since the solvent
degrees of freedom are typically correlated with those of the
solute and, therefore, the associated entropies are usually not
separable.

To compute entropy differences between two states, ther-
modynamic integration �TI� �Refs. 10 and 11� is the method
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of choice. TI is most widely used for the computation of free
energy differences and, in principle, includes both solute and
solvent. More recently, it has been extended to the computa-
tion of entropy differences.15,20 This variant, however, suffers
from severe sampling problems, and is therefore computa-
tionally particularly expensive.

A third method, adiabatic switching,21 is also based on a
gradual change of the system’s Hamiltonian. In contrast to
TI, this change is performed adiabatically, i.e., the pathway is
chosen such that the entropy does not change. This change is
used to transform the system into a simpler one whose en-
tropy can be calculated analytically. This method has been
successfully applied to pure solvent systems; its application
to mixed systems, however, is not straightforward,15 and has
not yet been demonstrated.

In summary, despite its importance, estimation of en-
tropy contributions to the free energy and, in particular, those
of the solvent, still represents a considerable challenge. Here,
we propose a method to fill this gap. By exploiting permu-
tation symmetry we propose to transform the solvent trajec-
tory such that density-based entropy estimation methods like
the quasiharmonic approach become applicable.

II. THEORY

Because our method rests on the quasiharmonic approxi-
mation, and also to clarify notation, we will first sketch this
method. For a comprehensive treatment, the reader is re-
ferred to the literature.16,17 Subsequently, we will describe
how permutation symmetry can be exploited to render the
solvent accessible to the quasiharmonic approximation.

A. Quasiharmonic approximation

Within the quasiharmonic approximation framework,
one assumes that a molecular dynamics trajectory
�x1�t� , . . . ,xN�t��= �x�t�� of a classical N-particle system ap-
proximates a Boltzmann ensemble which is distributed ac-
cording to the configuration phase space density,

��x� =
1

Z
e−�V�x�,

of the system under study. Here, x�t� denotes the configura-
tional vector of the system at time t, � is the reciprocal
thermal energy, V�x� the potential energy �force field�, and Z
the canonical partition function; the contributions of the mo-
menta can be treated analytically and are, therefore, not con-
sidered here. Usually, and also here, the trajectory is one
from which rigid body motions of the solute have been re-
moved.

Accordingly, the trajectory is used to reconstruct an ap-
proximate density

�̃�x� =
1

��2��3Ndet�C�
e−�x − �x	�TC−1�x−�x	�

from the 3N�3N-dimensional covariance matrix

Cij = ��xi − �xi	��xj − �xj	�	 ,

where �. . .	 denotes an average over the trajectory. For har-
monic V�x�, this approximation is exact; hence, the approach
is referred to as quasiharmonic approximation.22

The approximate density �̃ serves to obtain an analytical

estimate S̃ for the �configurational� entropy S,16

S 
 S̃ = 1
2kB�3N + ln��2��3N det�C��� . �1�

More recently, a quantum-mechanical correction has
been proposed17 which additionally is numerically more
stable,

S̃ =
1

2
kB�

i=1

3N

ln�1 +
kBTe2

�2 �i
2
 . �2�

Here, �i
2 are the 3N eigenvalues of the mass-weighted cova-

riance matrix.
For later reference we note that for indistinguishable par-

ticles, a correction kB ln N! �Gibbs factor� has to be applied.
Due to their chemical bonding, the atoms of a protein mol-
ecule are usually considered distinguishable, and no Gibbs
factor is applied.

By construction, the harmonic approximation is accurate
as long as � resembles a Gaussian distribution. Solvated bio-
logical macromolecules often adopt a well-defined average
structure, and the atomic fluctuations around their average
structure are small �though exceptions exist�. Therefore, their
configurational space density is compact, and the Gaussian
density approximation is reasonably good �Fig. 1�a��. The
quasiharmonic approximation is also applicable to an ideal
gas in a finite box.19,23 This is unexpected because the asso-
ciated rectangular phase space density �Fig. 1�b�� is far from
Gaussian-shaped.

However, for noncompact densities the harmonic ap-
proximation breaks down �Fig. 1�c��. In this situation, the
Gaussian density approximation is maximal at the “hole” in
the center of Fig. 1�c�, where the actual density vanishes.

FIG. 1. Sketch of quasiharmonic density estimates for �a� a protein fluctu-
ating around its average structure; �b� an ideal gas in a box; �c� a solvent in
a box. Shown are potential energy �solid lines�, resulting configurational
densities � �dotted�, and derived Gaussian density estimates �̃ �dashed�.
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This sketch captures the situation for solvents. Here, the di-
verging potential for overlapping solvent atoms or molecules
creates, via the Boltzmann factor, holes in the high-
dimensional configurational space density � of the system.
Even larger holes arise from repulsive interactions of the
solvent molecules with a macromolecular solute such as a
protein. This is one of the reasons why the solvent contribu-
tion to the entropy is usually inaccessible to the harmonic
approximation.

B. Permutation symmetry

Motivated by this observation, and aiming at removal of
the holes, we propose to “localize” the solvent degrees of
freedom by exploiting the solvent’s permutation symmetry.
Specifically, we will permute the indices of the solvent mol-
ecules for each individual trajectory frame x�t� such as to
minimize the error introduced by the Gaussian density ap-
proximation. This process will be referred to as “relabeling.”
Due to its permutation symmetry, relabeling of the molecules
leaves the physics of the system invariant, but translates the
3N-dimensional configurational vectors x of the trajectory
and, therefore, enables us to tailor its “shape.”

Assuming that the approximation error decreases with
increasing compactness of the trajectory, we therefore pro-
pose to relabel each frame i of the trajectory such as to
minimize its 3N-dimensional radius of gyration,

��i · x�ti� − �x	�2=! min, �3�

where �i is a permutation operator such that �i ·x�ti� denotes
the relabeled configuration at time ti, and �x	 is the average
configuration. Note that the latter depends on the particular
choice of all optimal permutations �i, which renders the
above equation recursive and precludes straightforward opti-
mization. We circumvent this problem by replacing the
permutation-dependent average configuration with an appro-
priately chosen reference configuration x0. This trick reduces
the coupled optimization problem, Eq. �3�, to the indepen-
dent optimization problems for each trajectory frame i of
finding a permutation �i which minimizes the distance to the
reference configuration, ��i ·x −x0�.

This problem is a special case of the linear assignment
problem �LAP�, for which efficient algorithms have been
developed.24,25 We will refer to this procedure—relabeling
the trajectory according to the optimal permutations—as
“permutation reduction,” and to an entropy estimate derived
from the permutation-reduced trajectory as “PRPCA” esti-
mate.

Figure 2 illustrates this approach for a simulation of 216
water molecules in a cubic box. Shown are superpositions of
the trajectories of all oxygen atoms; the atom numbers are
color coded. Figure 2�a� shows the trajectory as obtained
from the simulation. Clearly visible is the free self-diffusion
of the molecules, such that each color covers the whole vol-
ume. Figure 2�b� displays the permutation-reduced trajectory.
As intended, the diffusive motion is converted into localized
fluctuations of the water molecules around their reference
positions. In this respect, the water molecules collectively

behave similar to a protein fluctuating around its well-
defined average structure; in this sense, the solvent has been
“proteinized.”

By construction, permutation reduction projects the tra-
jectory into one of N! identical subvolumes of the configu-
rational space. Accordingly, the underlying configurational
space density � is projected onto a reduced density �0, which
vanishes everywhere outside the subvolume accessible to the
relabeled trajectory. This reduced density �0 is by construc-
tion much more compact than the original density �. Accord-
ingly, the Gaussian approximation should allow for an im-
proved estimate of the density �0 as well as of its entropy S0.
The original density is easily recovered by applying all N!
permutations

FIG. 2. �Color� Molecular dynamics simulation of 216 water molecules
within a cubic box. Shown are trajectories of the oxygen atoms without �a�
and with �b� permutation reduction applied. In the first case, all molecules
diffuse freely within the box volume. After permutation reduction, each
molecule remains close to its reference position because it is relabeled oth-
erwise. Note that the physics of the system remains unchanged.
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��x� =
1

N!�� �0��−1 · x� ,

where the factor N! accounts for proper normalization. It
follows that S=S0+kB ln�N!�. We note that for indistinguish-
able particles, S=S0.

III. METHODS

We implemented the outlined approach using the LAP
algorithm of Jonker and Volgenant,26 which solves the LAP
with O�N3� efficiency. This implementation is available
electronically.27

To assess the accuracy of our approach, we chose a gas
of Lennard-Jones particles as a first simple test system. Simi-
lar test systems have also been considered previously.18,19

The parameters c12 and c6 of the Lennard-Jones interaction
potential,

V�r� =
c12

r12 −
c6

r6 ,

were scaled by a dimensionless parameter � such that
c12=��9.8493�10−6 nm12 kJ mol−1 K−1 , c6=��6.2644
�10−3 nm6 kJ mol−1 K−1. The case �=1 corresponds to
argon.19,28 We simulated 100 atoms of mass 39.948 amu
within a box of constant volume �2.2 nm�3 with periodic
boundary conditions. The system was kept at T=300 K by
coupling to a temperature bath with a 0.1 ps relaxation
time.29 Lennard-Jones interactions were cut off at r
=1.0 nm. All simulations were started from an energy-
minimized structure, and a 2 fs time step was used for the
numerical integration of the equations of motion.

Two sets of simulations were performed. The first set
comprised eighteen 50 ns trajectories. For each trajectory, a
fixed � between 0 and 1 was chosen. Note that �=0 de-
scribes an ideal gas. For the second set of simulations, the
interaction of the particles was held fixed at �=1, and an
additional particle—mimicking a solute—was inserted at the
center of the box. This particle was restrained by a harmonic
potential with a spring constant of 106 kJ mol−1 nm−2. For its
interaction with the other particles, a Lennard-Jones potential
with the above parameters was chosen, with fixed � ranging
from �=0 to �=100.

For all trajectories, the 100 solvent atoms were permu-
tation reduced. To characterize the influence of the reference
structure x0 on the entropy estimate, three different types of
reference structures were considered, the minimized initial
structure, a simple cubic lattice of argon atoms, lattice con-
stant d=0.55 nm, and the last frame of the respective simu-
lation.

Covariance analyses were carried out for both the origi-
nal and the relabeled trajectories. From the obtained covari-
ance matrices, the entropy was estimated via Eq. �2�. Excess
entropies were computed by subtracting the ideal gas value
obtained with the respective estimation method. For proper
comparison, the N! correction was used for the PRPCA esti-
mate, i.e., the particles were treated as distinguishable.

To obtain accurate entropy reference values, for each of
the considered systems the excess entropy to the ideal gas

was calculated by thermodynamic integration,11,15,20 which
was possible for the simple test system used here. The com-
putations were performed by switching the interaction pa-
rameter in 100 steps from 0 to �. For each step, a 200 ps
simulation was performed. A soft core potential, as imple-
mented in GROMACS, was used with �=1.5 and �=0.3.

To check for convergence, forward and backward ther-
modynamic integration was performed for both simulation
sets. As the worst case, the largest interaction strengths were
considered ��=1 for the first and �=100 for the second set,
respectively�. Only small differences below 0.12 J mol−1 K−1

for the first and 0.04 J mol−1 K−1 for the second series were
observed. Hence, sufficient convergence is assumed.

All simulations were carried out using GROMACS 3.2.1.30

For the thermodynamic integration calculations, the code
was slightly modified to output the derivatives of the Hamil-
tonian required for the entropy thermodynamic integration.15

IV. RESULTS AND DISCUSSION

A. Convergence of the PRPCA entropy estimate

To test for convergence, the ideal gas case ��=0� of the
first simulation set was considered. For this case, analytic
reference values for the entropy as well as the Gaussian en-
tropy estimate, Eq. �2�, are available for comparison,23

shown as horizontal lines in Fig. 3.
Figure 3 shows entropies from the Schlitter method for

trajectory portions of different lengths. As can be seen, the
entropy estimates from the relabeled portions �PR-SC,
circles and PR-EM, diamonds� converge about three times
faster than the estimates from the original trajectory portions
�MD, squares�. This improvement was expected and is be-
cause the relabeled trajectory is restrained to the much
smaller subvolume of the phase space, which, for given tra-
jectory length, is sampled more completely.

The good agreement of this estimate with the analytical
result is unexpected. Although it has been pointed out

FIG. 3. �Color� Convergence of an ideal gas simulation. Shown are entropy
estimates for different portions of the original trajectory �MD� as well as of
the relabeled trajectories with the simple cubic structure �PR-SC� and the
energy-minimized structure �PR-EM� as reference structures. The horizontal
lines show the analytical results for the ideal gas entropy �S� and its Gauss-
ian approximation �Schlitter, Ana method�. Note that The PR-SC and
PR-EM curves match so closely that they can hardly be distinguished in the
figure at the chosen scale.
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recently23 that a Gaussian fit to a constant density distribu-
tion within a hypercube yields good entropy estimates, it is
far from clear that a Gaussian fit function should remain an
appropriate choice for the simplexlike subvolume sampled
by the relabeled trajectory. In any case, this is an encourag-
ing result.

All entropy estimates converge within 10 ns; therefore,
sampling errors are considered negligible for the 50 ns test
simulations described below.

B. Lennard-Jones gas

In real solvents, interactions give rise to correlations be-
tween molecules and thereby reduce the entropy. To analyze
how well this effect is captured by our method, we studied a
system of Lennard-Jones atoms for different interaction
strengths �the first simulation set�. With a density of 9.4/nm3

or 0.623 g/cm3, which approaches that of liquids, this sys-
tem should represent a sufficiently tough test case.

Figure 4 compares two PRPCA estimates �PR-SC,
PR-EM� with estimates obtained from Gaussian fits to the
original trajectory �MD�. As a reference, the thermodynamic
integration result is provided �solid line�. Note that the
excess entropy is shown here. For this difference between
two entropies, the quasiharmonic approximation result is no
strict upper limit. As can be seen from the thermodynamic
integration curve, the entropy of the gas decreases for in-
creasing interaction strength, due to increasing correlations
between the particles. This effect is completely missed by the
entropy estimate derived from the unrelabeled trajectory, and
even shows a slight increase. This failure has also been ob-
served by others.19

Much better estimates are obtained from the relabeled
trajectory. In particular, the entropy decrease with increasing
interaction strength is now fully captured. Furthermore,
quantitative agreement with the thermodynamic integration
reference is obtained for weak to medium interaction
strengths ��	0.1�. However, for strong interactions, devia-
tions remain.

Closer analysis suggests that the effect of the repulsive
core is well described by our method. In contrast, the attrac-
tive part of the interaction—which becomes dominant for
large �—is described less accurately by the Gaussian ap-
proximation. Nevertheless, also for this critical interaction
regime, a significantly improved estimate is achieved by ex-
ploiting the permutation symmetry.

Figure 5 illustrates this situation. The full configurational
space density �Fig. 5�a�� exhibits holes due to repulsive-core
interactions, which undermine the Gaussian fit. As can be
shown, the centers of all these holes are located at the surface
of the permutation-reduced subvolumes �Fig. 5�b��, which
renders Gaussian fits more accurate.

C. Solvation of a particle in a Lennard-Jones gas

The second set of simulations aimed at characterizing
the accuracy of our entropy estimate for a macromolecular
solute, here mimicked by a strongly interacting Lennard-
Jones particle. Figure 6 shows the excess entropies with re-
spect to the pure “solvent” for the four methods discussed
above. Additionally, a relabeled trajectory with the last frame
of the 50 ns simulations as reference frame x0 is considered.

Similar to the previous system, increasing interaction
strengths induce increasing correlations and thereby decrease
the entropy. The PRPCA estimate captures also this effect,
which is missed by the estimate from the original trajectory.

FIG. 4. �Color� Excess entropy of a Lennard-Jones gas, estimated from the
original trajectory �MD� as well as from the relabeled trajectories with the
simple cubic �PR-SC� and the energy-minimized structure �PR-EM� as ref-
erence structures. Values computed by thermodynamic integration �TI� pro-
vide a reference.

FIG. 5. �Color� Sketch of the configurational space density for an unrela-
beled �a� and a relabeled trajectory �b�.

FIG. 6. �Color� Solvation of a Lennard-Jones particle solvated in a Lennard-
Jones system. The interaction strength between the solvated particle and the
solvent is varied from weak to very strong. Entropy estimates are obtained
from the original trajectory �MD� as well as from relabeled trajectories with
the simple cubic �PR-SC� and the energy minimized configuration �PR-EM�,
respectively, as reference structures. In an additional set of relabeled trajec-
tories, the respective last trajectory frame we used as reference structure
�PR-F�. Thermodynamic integration values �TI� are given as reference.
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This similar behavior is nontrivial, because the sketch in Fig.
5 cannot be applied here in a straightforward manner due to
the large radius of the solvated particle.

For large interaction strengths v, self-diffusion of the
first solvation shell is drastically reduced, similar to the
known behavior of a protein hydration shell. As a result, an
accelerated decrease of the TI entropy is seen. An even more
pronounced decrease is seen for the estimate from the origi-
nal trajectory. Because this estimate has been rigorously
shown to provide an upper bound for any configurational
space density,17 and assuming increasing deviation from a
Gaussian of the density at hand for increasing �, the agree-
ment with the TI entropy is likely to be due to insufficient
sampling. In this case, it would be purely accidental. Indeed,
insufficient convergence is seen for different trajectory
lengths �data not shown�. In contrast, much faster conver-
gence is observed for the relabeled trajectory. This effect is
particularly pronounced for large �. Accordingly, the PRPCA
estimates capture the marked decrease seen for the TI entro-
pies, albeit with decreasing accuracy.

Finally, the influence of the choice of the reference struc-
ture x0 remains to be assessed.

To this end, we consider the entropy estimates from the
relabeled trajectory which used the last frame as reference
�PR-F in Fig. 6�. The apparent scatter is due to the fact that
here, in contrast to the other estimates, each entropy estimate
rests on a different reference structure. Accordingly, this scat-
ter of about �=0.05 J mol−1 K−1 half-width measures the un-
certainty introduced by the choice of the reference structure.
Interestingly, the deviation of the PRPCA estimate from the
TI reference falls into this range. Optimization of the refer-
ence structure, therefore, might provide further improved en-
tropy estimates.

V. CONCLUSION

We have presented a entropy estimation method particu-
larly tailored for diffusive systems, such as the solvent con-
tribution to the entropy of solvated macromolecules, e.g.,
proteins. As test cases, we have applied this method to a gas
of 100 Lennard-Jones particles and to the solution of a
strongly interacting Lennard-Jones particle in this gas. This
system was chosen because its entropy is accessible to ther-
modynamic integration, such that a sufficiently accurate ref-
erence value can be provided.

In both test cases, our PRPCA method enhanced conver-
gence and significantly improved the entropy estimate com-
pared to straightforward application of the conventional PCA
approach. There remain deviations from the exact result as
well as from more accurate methods such as thermodynamic
integration or hypothetical scanning Monte Carlo.31 These
deviations, however, have to be attributed to the chosen
quasiharmonic �Gaussian� approximation for an inherently
non-Gaussian configurational space density. Thus, we are
now in the favorable situation that construction of a better fit
function alone will push the accuracy of our method to the
level reached by statistical approaches, which was not pos-
sible before.

The intractable sampling problem, common to all com-
petitive methods, is thus significantly alleviated and trans-
formed into a fitting problem that should be addressable with
drastically reduced computational effort, especially in view
of the fact that the characteristic shape of the permutation-
reduced configurational space density should allow one to
take advantage of specialized fit functions. Our PRPCA
method thus opens the route to further systematic entropy
estimate improvements without the computational burden of
exhaustive sampling, the main obstacle for TI and Monte
Carlo-type methods.

Similar developments will enable us to apply the method
to more complex solvents such as water. While the permuta-
tion reduction will be fully applicable and will provide simi-
larly enhanced sampling, the fit function here will have to be
extended to additionally include the rotational and intramo-
lecular degrees of freedom. Finally, by transforming the sol-
vent entropy calculation into the quasiharmonic framework,
the solvation entropy of solvated macromolecules such as
proteins will become accessible.

An implementation of the PRPCA method is available
electronically.32

ACKNOWLEDGMENT

The authors wish to thank Oliver Lange for help with the
implementation of PRPCA.

1 K. A. Dill, Protein Sci. 8, 1166 �1999�.
2 N. T. Southall, K. A. Dill, and A. D. J. Haymet, J. Phys. Chem. B 106,
521 �2002�.

3 Y. M. Rhee, E. J. Sorin, G. Jayachandran, E. Lindahl, and V. S. Pande,
Proc. Natl. Acad. Sci. U.S.A. 101, 6456 �2004�.

4 C. D. Snow, N. Nguyen, V. S. Pande, and M. Gruebele, Nature 420, 102
�2002�.

5 B. L. de Groot and H. Grubmüller, Science 294, 2353 �2001�.
6 T. Hansson, C. Oostenbrink, and W. F. van Gunsteren, Curr. Opin. Struct.
Biol. 12, 190 �2002�.

7 M. Karplus and J. A. McCammon, Nat. Struct. Biol. 9, 646 �2002�.
8 J. Norberg and L. Nilsson, Q. Rev. Biophys. 36, 257 �2003�.
9 W. F. van Gunsteren, D. Bakowies, R. Baron et al., Angew. Chem., Int.
Ed. 45, 4064 �2006�.

10 Sterling Chemistry Laboratory, J. Chem. Phys. 22, 1420 �1954�.
11 J. G. Kirkwood, J. Chem. Phys. 3, 300 �1935�.
12 T. Rodinger and R. Pomes, Curr. Opin. Struct. Biol. 15, 164 �2005�.
13 T. Simonson, G. Archontis, and M. Karplus, Acc. Chem. Res. 35, 430

�2002�.
14 W. F. van Gunsteren, X. Daura, and A. E. Mark, Helv. Chim. Acta 85,

3113 �2002�.
15 C. Peter, C. Oostenbrink, A. van Dorp, and W. F. van Gunsteren, J.

Chem. Phys. 120, 2652 �2004�.
16 M. Karplus and J. N. Kushick, Macromolecules 14, 325 �1981�.
17 J. Schlitter, Chem. Phys. Lett. 215, 617 �1993�.
18 I. Andricioaei and M. Karplus, J. Chem. Phys. 115, 6289 �2001�.
19 H. Schäfer, A. E. Mark, and W. F. van Gunsteren, J. Chem. Phys. 113,

7809 �2000�.
20 W. F. van Gunsteren, P. K. Weiner, and A. J. Wilkinson, Computer Simu-

lations of Biomolecular Systems �ESCOM Science Publishers, Leiden,
1993�.

21 M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 �1990�.
22 R. M. Levy, A. R. Srinivasan, W. K. Olson, and J. A. McCammon,

Biopolymers 23, 1099 �1984�.
23 R. Böckmann, “Molekulare Dynamik von Proteinen,” Ph.D. thesis �Cu-

villier Verlag, Göttingen, 2002�.
24 R. E. Burkard, Discrete Appl. Math. 123, 257 �2002�.
25 R. E. Burkard and E. Cela, “Linear Assignment Problems and Exten-

sions,” Technical Report, 1998, Bericht No. 127, SFB Optimierung und
Kontrolle.

014102-6 F. Reinhard and H. Grubmüller J. Chem. Phys. 126, 014102 �2007�

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



26 R. Jonker and A. Volgenant, Computing 38, 325 �1987�.
27 MagicLogic, http://www.magiclogic.com/assignment.html.
28 W. F. van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P.

Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi, Biomolecular Simu-
lation: The GROMOS96 Manual and User Guide �Biomos B.V., Zürich,
Groningen, 1996�.

29 H. J. C. Berendsen, J. P. M. Potsma, A. DiNola, and J. R. Haak, J. Chem.
Phys. 81, 3684 �1984�.

30 E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 �2001�.
31 R. P. White, J. Chem. Phys. 119, 12096 �2003�.
32 F. Reinhard, J. Haas, O. Lange, and H. Grubmüller, http://

www.mpibpc.mpg.de/groups/grubmueller/start/software/g_permute/.

014102-7 Estimation of solvation entropies J. Chem. Phys. 126, 014102 �2007�

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


