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The low-energy capture of dipolar diatomic molecules in an open electronic state by ions is

usually considered to be induced by the first-order charge–permanent dipole interaction with

other terms of the long-range potential playing a minor role. If the molecular dipole moment is

anomalously small (as is the case for slightly asymmetrical molecules), however, the situation

changes, and the capture dynamics is strongly affected by higher orders of the charge–permanent

dipole, charge–permanent quadrupole, and charge–induced dipole interactions. The interplay of

different terms in the interaction potential manifests itself in complicated temperature dependence

of the rotationally state-specific capture rate coefficients. These features of the capture are studied

by way of example for NO(X 2P1/2, j) + C+ collisions in the temperature range 10�2–20 K

where the dynamics is adiabatic with respect to rotational and fine-structure transitions and

sudden with respect to transitions between L doubling and hyperfine states. The theoretical rate

coefficient, which depends on the translational and rotational temperature, agrees with the

experimental one measured at Ttr = 0.6 K and Trot = 20 K.

1. Introduction

Capture of diatomic molecules by ions at low temperatures

(energies) occurs adiabatically with respect to rotational tran-

sitions j - j0 and transitions between close-lying electronic

states (e.g. fine-structure transitions O - O0 within a given

electronic manifold 2S+1LO) (for the latest reviews, see, e.g.

ref. 1 and 2). Under these conditions, the capture dynamics in

the adiabatic roronic (rotational + electronic) basis is de-

scribed by a set of coupled wave equations for states that arise

from the free O, j, m states.3 The numerical solution of the

capture equations (scattering equations with absorbing

boundary conditions on the complex surface) does not require

much computational effort for each particular case that is

specified by a set of parameters which characterize the long-

range part of the molecule–ion interaction potential. An

implicit assumption within this approach is that the capture

dynamics corresponds to the sudden limit with respect

to transitions between energy levels which correspond to

L doubling and hyperfine interactions.4 However, the condi-

tion of sudden dynamics with respect to the latter interaction is

too demanding if the initial population of asymptotic close-

lying levels is statistical and if one is interested in the calcula-

tion of the capture rate coefficient from all these states rather

than from individual ones: in this case, deviations from sudden

dynamics will not show up, even for values of the Massey

parameter which are not small. Thus the two conditions, a

large value of the Massey parameter for rotational transitions

and a small value of the energy spacing between the

L doubling and hyperfine energy levels compared to kT, leave

a wide temperature range within which the capture can be

treated adiabatically with respect to different rotational states,

while the existence of L doubling and hyperfine states can be

ignored altogether. For the capture of NO(X 2P1/2, j) by C+

ions, with a rotational constant of NO of about 1.7 cm�1 and

with L doubling and hyperfine splitting of about 0.01 cm�1

and 0.001 cm�1,5 respectively, the temperature range in ques-

tion extends roughly from 10�2 to 20 K. We emphasize again

that the major difference between the capture dynamics of

molecules in a degenerate vs. closed electronic state is the first-

order Stark interaction with an ion for the former case in the

region important for the capture. With a decrease in tempera-

ture, this region moves to larger interfragment separation

where the first-order Stark effect becomes the second-order

one. The detailed study of this transition, discussed qualita-

tively in ref. 4, is beyond the scope of this work and is the

subject of a future publication.6

The aim of the present paper is to study capture dynamics

and calculate the state-specific rate coefficients for the capture

of NO(X 2P1/2, j) in different rotational states by a C+ ion

within the above given temperature range. Our interest in this

process arose from the following observations:

(i) The small dipole moment of NO results in the interesting

manifestation of different types of long-range interaction

terms in the capture dynamics even at low temperatures. This

was noted earlier for the ground rotational state j = 1/2 7 and

is expected to be more pronounced for excited rotations due to

the progressively decreasing first-order contribution of the

charge–permanent dipole interaction for increasing j.

(ii) The temperature range indicated, i.e. say, 0.02–20 K,

includes the characteristic rotational temperature of NO,

yrot = B/k = 2 K, with B being the rotational constant of
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NO molecule in energy units; this provides the opportunity to

study the applicability of the perturbed rotor (PR) approx-

imation, believed to be valid at T { yrot. The latter, in turn,

can be written in different approximations, neglecting or

including the second-order correction stemming from the

charge–permanent dipole interaction. One can expect that

with a small value of the rotational constant of NO, the

second-order correction may be quite significant. In this case,

this effect will be similar to that for molecules in the S state.8

(iii) There exist experimental data for the capture of

NO(X 2P1/2, j) by C+ ions.7 We feel that the earlier inter-

pretation of these from ref. 7 requires some revision which is

based on a more accurate interaction potential and which

includes contributions from excited rotational states of NO.

The long-range interaction between an ion and a dipolar,

quadrupolar and polarizable molecule in a degenerate electro-

nic state includes too many parameters to allow for a mean-

ingful general formulation of the capture rate. Indeed, if the

potential is written as an expansion in powers of 1/R up to the

1/R4 term, the number of parameters is five (one for the

charge–permanent dipole term, two for the charge–permanent

quadrupole term, and two for the anisotropic charge–induced

dipole term). The adiabatic potentials for an isolated O state

will include one more parameter, the rotational constant of the

diatom. The total number of six parameters then appears to be

too large for use in the construction of a general picture of the

dependence of the capture rate coefficient on the potential on

the basis of a numerical solution of the capture problem.

Because of this complicated situation, we restrict ourselves

to a case study only, i.e. to the capture of NO by C+.

In the attempt to draw a general picture, one usually

introduces approximations of dynamic (equations of motion)

and static (interaction) character. The former frequently con-

sists of replacing the quantum equations for the relative

motion by their classical counterparts and adopting the adia-

batic channel (AC) approximation, while the latter introduces

certain simplifications in the interaction potential (e.g. the

neglect of the anisotropy of the charge–induced dipole term

and the use of one, instead of two, quadrupole moments). In

this paper, we discuss these approximations with reference to

the NO(X 2P1/2, j) + C+ system.

The plan of our presentation is as follows. Section 2 outlines

the general expressions for the interaction energy, the adia-

batic-channel potentials, and the rate coefficients. Section 3

describes calculations of the rate coefficients for NO(X 2P1/2,

j= 1/2) + C+ capture for PR and accurate AC potentials and

presents simple estimations of quantum corrections to the

classical treatment. In Section 4 state-specific rate coefficients

for j 4 1/2 are discussed and the two-temperature (different

translational and rotational temperatures) rate coefficients are

calculated. Section 5 compares the theoretical rate coefficient

with an experimental value.

2. Interaction energy, adiabatic-channel potentials

and rate coefficients

If one ignores the hyperfine interaction, the wave function of a

low-lying roronic state of NO is represented by a main term

that corresponds to the electronic nomenclature 2P1/2 of the

Hund coupling case a, the correction term 2P3/2 and a very

small correction term 2S.10 The interaction responsible for the

correction term slightly modifies the pattern of roronic energy

levels for the pure Hund coupling case a, provided that

B(j + 1/2) { A where A is the spacing between the levels of

the non-rotating molecule in its ground state, 2P1/2, and its

low-lying excited state, 2P3/2. For this pattern, each roronic

level is doubly degenerate. This degeneracy is lifted by the very

small interaction with the 2S state resulting in the L doubling.

Dynamically, the splitting of the L doublet can be neglected

provided that the associated Massey parameter is small. This

condition imposes a lower limit for the temperature at which

the L doublet phenomenon can be disregarded.

In this paper, the energy levels of a free NO molecule and

the AC potentials were calculated assuming that the states of

the free molecule belong to the pure coupling case a. There-

fore, the rotating NO molecule in its ground electronic state

X 2P1/2 is modelled by a symmetric rotor with fixed values ~O
of the projection of the intrinsic angular momentum j onto the

molecular axis, ~O = �1/2. The long-range part of the

ion–molecule interaction potential V is written in the form

which accounts for the fact that the quadrupole tensor for a

state O | ~O| = 1/2 is axially symmetric and which neglects the

small anisotropy in the charge–induced dipole term. As a

result, the charge–permanent quadrupole term contains only

one parameter and the charge–induced dipole term becomes

spherically symmetric. In this way we have:

VðR; gÞ ¼ qlD

R2
P1ðcosgÞ þ

qQ

R3
P2ðcosgÞ �

q2a

2R4
ð1Þ

where R is the distance between the ion and the centre-of-mass

the diatom and g is the angle between the collision axis R

(directed from the centre-of-mass of the diatom toward the

ion) and the molecular axis r (directed along the dipole

moment vector), P1 and P2 are the Legendre polynomials,

lD, Q, a are the dipole moment, quadrupole moment, and the

mean polarizability of the diatom, respectively, and q is the

charge of the ion.

The interaction potential V(R, g) in eqn (1) gives rise to AC

potentials. The latter are defined as the eigenvalues of the AC

matrix generated from the potential in eqn (1) and the rota-

tional energy of the diatom Ej, ~O = Bj(j+ 1) in the basis of free

rotor functions of the diatom with the collision axis taken as

the quantization axis for the intrinsic angular momentum.11

Within this approach, the AC matrix is diagonal in ~O (the

projection of j onto molecular axis) and ~o (the projection of j

onto the collision axis). The eigenvalues of this matrix are

labelled, beside ~O and ~o, by a quantum number j.̃ Since j˜ can

unambiguously be related to j by adiabatic correlation, the

eigenvalues can also be labelled by j, ~O,~o, and written as
ACVj, ~O~o(R) (in the following text, we will not use superscript

AC in all cases where it does not lead to ambiguities). If the

basis of the free rotor functions is large enough to ensure the

convergence at those interfragment separations which are

important for the capture, we consider the eigenvalues of the

AC matrix to be accurate and denote them as Vacc
j, ~O,~o(R). In this

work, we have calculated accurate AC potentials for the

system NO+ with interaction parameters such as those used

in ref. 7 and listed in Table 1.
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As an approximation to Vacc
j, ~O,~o(R) in the low-energy regime,

one can take the expansion of Vacc
j, ~O,~o(R) in powers of 1/R up to

the term 1/R4. This expansion, called the perturbed rotor (PR)

or weak-field approximation, reads12

VPR
j;~O;~oðRÞ ¼ Ej;~O �

~oqlD
~O

jðj þ 1Þ
1

R2
þ qQðjðj þ 1Þ � 3~o2Þ
ð2j þ 3Þð2j � 1Þ

� ðjðj þ 1Þ � 3~O2Þ
jðj þ 1Þ

1

R3
þ� aq2

2

1

R4
þ l2

Dq
2

2B

� ðj2 � ~O2Þðj2 � ~o2Þ
j3ð2j � 1Þð2j þ 1Þ �

ððj þ 1Þ2 � ~O2Þððj þ 1Þ2 � ~o2Þ
ðj þ 1Þ3ð2j þ 1Þð2j þ 3Þ

 !
1

R4

ð2Þ

Approximations to eqn (2), to be referred to later in this paper,

are a truncated version of PR (TPR) (neglecting the second-

order charge–dipole correction in brackets) and a version

taking into account only the first-order charge–permanent

dipole (CD) interaction.

To avoid unnecessary complications arising from different

combinations of the two quantities ~O,~o, we introduce new

quantum numbers, the absolute value of the projection O =

| ~O| = 1/2 and m = �|~o|, with the signs + and � correspond-

ing to the lower and upper states of the same value of |~o|,
respectively. Then VPR

j, ~O,~o(R) will be rewritten as VPR
j,m(R) and

eqn (2), with O = 1/2, assumes the form

VPR
j;m ðRÞ ¼ Ej;O �

mqlD

2jðj þ 1Þ
1

R2
þ qQðjðj þ 1Þ � 3m2Þ
ð2j þ 3Þð2j � 1Þ

ðjðj þ 1Þ � 3=4Þ
jðj þ 1Þ

1

R3
� aq2

2

1

R4
þ l2

Dq
2

2B

ðj2 � 1=4Þðj2 �m2Þ
j3ð2j � 1Þð2j þ 1Þ

��

�ððj þ 1Þ2 � 1=4Þððj þ 1Þ2 �m2Þ
ðj þ 1Þ3ð2j þ 1Þð2j þ 3Þ

!#
1

R4

ð3Þ

The AC potentials VPR
j,m(R) and Vacc

j,m(R) generate effective

radial potentials UPR
J,j,m(R) and Uacc

J,j,m(R) that drive the motion

of colliding partners towards the complex boundary in a state

with a fixed value of the total angular momentum quantum

number J. There are different ways to define the effective

potentials.11 The most consistent way is to supplement Vacc
j,m(R)

with the expectation value of the centrifugal energy in the J, j,

m state:

Uacc
J;j;mðRÞ ¼ Jjm

ðĴ -̂jÞ2

2mR2

�����
�����Jjm

* +
þ Vacc

j;m ðRÞ ð4Þ

Note that in eqn (4) ĵ is the operator of the intrinsic angular

momentum, but j is not the quantum number that is associated

with ĵ since it has only asymptotic significance. In the PR

approximation, j is the quantum number that is associated

with ĵ. The first term on the r.h.s. of eqn (4) can then be written

explicitly, and we get

UPR
J;j;mðRÞ ¼

�h2

2mR2
ðJðJ þ 1Þ � 2m2

þ jðj þ 1ÞÞ þ VPR
j;m ðRÞ

ð5Þ

In the classical approximation, when J is regarded as large

(J c j) and continuous, the relative rotational energies in the

acc and PR approximation become the same, and the effective

potentials are written as

Uj;mðR; JÞ ¼
�h2J2

2mR2
þ Vj;mðRÞ ð6Þ

where the superscript PR can be added to indicate the PR

approximation.

The general expression for the partial AC rate coefficient

finally is given by

kj;mðTÞ ¼

ffiffiffiffiffiffiffiffiffi
8kT

pm

s X1
J� mj j

p�h2

ð2j þ 1Þ2mkT

�
Z1
0

ð2J þ 1Þ � PJ;j;mðEÞ exp ð�E=kTÞ
dE

kT

ð7Þ

where PJ,j,m(E) is the AC capture probability for the channel J,

j,m. The additional superscript PR, when needed, can be

added. The classical rate coefficient is derived from eqn (7)

when the summation over J is replaced by integration, and the

probability PJ,j,m(E) is replaced by the step function Y(E �
Umax

j,m (J)). Here Umax
j,m (J) is the maximal value of Umax

j,m (R;J) with

respect to R, if a maximum exists; otherwise, one should put

Umax
j,m (J) equal to zero. In this way, the classical version of

eqn (7) reads

kj;mðTÞ ¼

ffiffiffiffiffiffiffiffiffi
8kT

pm

s Z1
0

p�h2JdJ

ð2j þ 1ÞmkT exp ð�Umax
j;m ðJÞ=kTÞ ð8Þ

The total rate coefficient is represented as the sum of partial

rate coefficients:

kjðTÞ ¼
Xj
m¼�j

kj;mðTÞ ð9Þ

3. Capture of NO(X 2P1/2, j = 1/2) by C+:

perturbed rotor and accurate AC potentials

Perturbed rotor potentials

The PR potentials as derived from eqn (3) read:

VPR
1=2;mðRÞ ¼ �

2mlDq

3R2
� q2aPR

2R4
ð10Þ

with the effective PR polarizability aPR = a + (4/27)l2D/B.

Along with the PR potential from eqn (3), we will also

consider the truncated PR (TPR) potential

VTPR
1=2;mðRÞ ¼ �

2mlDq

3R2
� q2a

2R4
ð11Þ

Table 1 Interaction parameters for the NO (X 2P) molecule

Aso 124.2 cm�1 = 5.66 � 10�4 a.u.
Brot 1.7046 cm�1 = 7.77 � 10�6 a.u.
lD 0.160 D = 0.06295 a.u.
Q �2.421 � 10�26 esu cm2 = �1.80 a.u.
a 1.680 � 10�24 cm3 = 11.337 a.u.

This journal is �c the Owner Societies 2007 Phys. Chem. Chem. Phys., 2007, 9, 1559–1567 | 1561



in which the second-order correction to the 1/R4

term is neglected. The potential VPR
1/2,1/2 is purely attractive

while VPR
1/2,�1/2 passes through a maximum VPR,max

1/2,�1/2 � E*PR
1/2,�1/2

= l2D/18a
PR. The AC potentials VPR

1/2, m(R) in eqn (10) define

the effective ACCl potentialsUPR
1/2, m(R, J) according to eqn (4).

The potentials VPR
1/2,1/2(R,J) are purely attractive for Jo J̃c and

possess maxima for J o J̃c where J̃
2
c = 2 mlD q/3�h2, while the

potentials UPR
1/2,�1/2(R) possess maxima for all J. The maximal

values of the effective AC potentials are

Umax
1=2;1=2ðJÞ ¼

�h4ðJ2 � ~J2
c Þ

2

8m2q2aPR
; J � ~Jc;

Umax
1=2;�1=2ðJÞ ¼

�h4ðJ2 þ ~J2
c Þ

2

8m2q2aPR
; J � 0

ð12Þ

Thus the general expression for the rate coefficient kPR1/2 can be

written as

kPR1=2ðTÞ ¼ kPR1=2;1=2ðTÞ þ kPR1=2;�1=2ðTÞ ð13Þ

Here, the partial rate coefficients are

kPR1=2;1=2ðTÞ ¼
1

6
lDq

ffiffiffiffiffiffiffiffiffi
8p
mkT

s
þ pq

ffiffiffiffiffiffiffiffi
aPR

m

s
ð14Þ

kPR1=2;�1=2ðTÞ ¼ pq

ffiffiffiffiffiffiffiffi
aPR

m

s
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�PR1=2;�1=2

.
kT

r� �
ð15Þ

where erfc(x) is the complementary error function,

erfcðxÞ ¼ ð2=pÞ
R1
x

expð�y2Þdy.

If eqn (13)–(15) are rewritten for the reduced rate coefficient

wPRPRL = kPR/kPRL with kPRL ¼ 2pq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aPR=m

p
being the Lange-

vin capture rate coefficient for the PR potential �q2aPR/2R4,

then wPRPRL is found to depend on a single variable, i.e. on the

reduced temperature yPR = kT/E*PR
1/2,�1/2. It then is given by

wPRPRLðyPRÞ ¼ kPR
�
kPRL ¼ 1

. ffiffiffiffiffiffiffiffiffiffi
pyPR

p
þ 1=2

þ ð1=2Þ erfcð1
. ffiffiffiffiffiffiffiffi

yPR
p

Þ ð16Þ

The plot of wPRPRL and its partial contributions vs. yPR is shown

in Fig. 1. The low-temperature limit of wPRPRL corresponds to

the capture for the first-order charge–permanent dipole

potential, and the high-temperature limit to the capture for

the charge–induced dipole + second-order charge–permanent

dipole potential. The value of the ACCl-PR capture rate

constant at this limit, kPR1=2 ! kPRL ¼ 2pq
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aPR=m

p
, is higher

than expected for the general potential of eqn (1) which

predicts that the high-temperature limit corresponds to the

capture for the charge–induced dipole potential,

k1=2 ! kL ¼ 2pq
ffiffiffiffiffiffiffiffi
a=m

p
. This discrepancy is explained by the

inadequacy of the second-order charge–permanent dipole

correction at very high temperatures. The extent of this

discrepancy beyond the second-order treatment cannot be

accomplished in general form. Therefore, in the following we

use the specific case of the capture of NO by C+.

The condition for the applicability of the PR approximation

can be formulated as a requirement that the height of the lowest

potential barrier in the set of effective potentials UPR
1/2,1/2

(R, J), UPR, max
1/2,�1/2;lowest(J) should be substantially smaller than the

thermal energy, i.e. UPR, max
1/2,�1/2;lowest(J) { kT. The upper value of

Umax
1/2,�1/2;lowest(J) is found from eqn (12) with J exceeding J̃c by 1.

Putting J = J̃c + 1 and assuming that J̃c c 1 we write the

condition for the classical approximation to apply as

�h4 ~J2
c

2m2q2aPR
	 kT ð17Þ

Note that the inequality in eqn (17) with J̃c = 1 corresponds to

the condition of applicability of the classical approximation in

the calculation of the capture rate coefficient for a potential

�q2aPR/2R4.13 We thus see that, with J̃cc 1 which is the case for

NO(X 2P1/2, j = 1/2) by C+ collisions, J̃c = 25.62, the classical

approximation for the capture in the field of the potential of eqn

(10) is expected to be invalid at substantially higher temperatures

than for a pure potential �q2aPR/2R4. However, the temperature

at which the inequality in eqn (17) becomes marginal (about

10�4 K for NO+C+ collisions), is substantially lower than that

at which the L-doubling effects may manifest themselves. There-

fore, within the temperature range under discussion, the classical

approximation for the relative motion is adequate.

However, there exists a quantum correction that survives up

to relatively high temperatures. It comes from the deviation of

the number of quantum capture states from its classical

counterpart for purely attractive effective potentials. The

correction factor to the first term on the r.h.s. of eqn (14)

f(Jc, J̃c) will read

f ðJc; ~JcÞ ¼

PJc
J¼1=2

ð2J þ 1Þ

R~Jc
0

2JdJ

¼ ðJc þ 1=2ÞðJc þ 3=2Þ
~J2
c

ð18Þ

where Jc, is the highest quantum number for which UPR
j, m(R,J)

is attractive. As follows from eqn (5) with VPR
j,m(R) correspond-

ing to the first-order charge–permanent dipole interaction,

VPR
j,m(R) = VCD

j,m (R), Jc is defined as Jc = int(J̃c) � 1/2. For

values of J̃c = 25.62, Jc = 24.5 as appropriate for the case

under study, we see that this effect decreases the classical rate

only by 1%.

Fig. 1 Reduced total (full line, wPRPRL,1/2) and partial (dashed lines,

wPRPRL,1/2,+1/2, w
PR
PRL,1/2,�1/2) PR rate coefficients for capture in the j =

1/2 state vs. reduced temperature yPR, see text. The dotted horizontal

line is drawn for orientation.
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Accurate potentials

The accurate and PR AC potentials for the NO(X 2P1/2, j =

1/2) + ion system, are shown in Fig. 2. In order to illustrate

the spacing between the ground and first excited state, the AC

potentials for the pure first-order charge–permanent dipole

interaction are also shown here, and the accurate potentials

that originate from the state j = 3/2. We see that the coupling

between the ground and excited states hardly affects the PR

potential for m = 1/2, while it noticeably modifies the

potential barrier in the PR potential for m = �1/2 (see also

Table 2). Once the potentials V1/2,m(R) are known, the calcula-

tion of the rate coefficient is straightforward.

Fig. 3 shows the reduced rate coefficients wL = k/kL for AC

potentials determined in different approximations. The dashed

curves for wPRL,1/2, w
PR
L,1/2,1/2 are basically identical to wPRPRL,1/2,

wPRPRL,1/2,1/2 as in Fig. 1 if one takes into account that the

normalization of the reduced rate coefficients in the two figures

is different. Deviations of wPRL,1/2, w
PR
L,1/2,1/2 from their accurate

counterparts wL,1/2, wL,1/2,1/2 come from the difference between

accurate and PR potentials: the relation wL,1/2 4 wPRL,1/2 in the

range 1 o T o 10 K is due to the difference in the activation

energies E*
1/2,�1/2 o E*PR

1/2,�1/2, while the reverse relation, wL,1/2
4 wPRL,1/2 above T = 30 K is ascribed to the overestimation of

the charge–permanent dipole attraction in second-order ap-

proximation. At higher temperatures, wL,1/2 for the adopted

interaction potential will converge to unity. Also shown in Fig.

3 are two plots wTPRL,1/2, w
TPR
L,1/2, 1/2 for the TPR potential. We see

that both wL,1/2 and wPRL,1/2 are noticeably higher than wTPRL,1/2. The

implication of this observation will be discussed in section 5.

4. Capture of NO(X
2P1/2,, j 4 1/2) by C

+
:

accurate AC potentials

State-specific capture rate coefficients

For j 4 1/2, the perturbed rotor potential in eqn (4) includes

the contribution from the first-order charge–quadrupole inter-

action which affects the pattern of the AC curves and makes

an easy analytical treatment impossible. Moreover, the PR

approximation may turn out to be inadequate due to the early

breakdown of the weak-field expansion.

The PR and accurate AC potentials for j= 3/2 are shown in

Fig. 4 and the potential barriers are listed in Table 2. We see

that the PR approximation predicts that AC potentials with

m = 1/2 and m = �1/2 are closed for the capture, while the

accurate results are quite different from this. The deficiency of

the PR approximation is already seen from the fact that the

term in the AC potential proportional to R�4 is positive which

signals an inadequacy of the second-order approximation for

the charge–permanent dipole interaction. If one simply ignores

the behaviour of the PR potentials at smaller distances (say

Ro 30 a.u.), then the state with m=+1/2 should be counted

as open for capture while that with m = �1/2 cannot be

unambiguously qualified as open or closed. This indicates the

caveat in using PR potentials even at low collision energies.

We therefore calculated the capture rate coefficients with the

help of accurate AC potentials. The plots of the reduced

partial rate coefficients wL,3/2,m and the total reduced rate

coefficient wL,3/2 are presented in Fig. 5.

For j 4 3/2, the shapes of AC potentials and state-specific

rate coefficients become quite complicated and are not pre-

sented here, but the key features are given in Table 2. The plots

for the total reduced rate coefficients wL,j(T) up to j = 9/2 are

shown in Fig. 6. The highest value of j was chosen from the

condition that the Hund coupling case a should still provide a

good approximation to the rovibronic states.

We see that the wL,j(T), with j 4 3/2, do not differ much

among themselves, say for T 4 0.2 K, but deviate notably

from wL,1/2(T). In order to understand the tendency of wL,j(T)
with increasing j, it is instructive to rewrite the PR potentials

from eqn (4) as a function of the orientation angle b of the

vector of the intrinsic angular momentum j with respect to the

collision axis. Assuming j c 1 and using the quasiclassical

Fig. 2 AC potentials for NO(2P1/2, j = 1/2) + positive ion in

different AC approximations: first-order charge–dipole potentials

(CD, dashed lines), perturbed rotor potentials (PR, dash-dotted lines)

and accurate potentials (Acc, full lines). The dotted curves correspond

to the AC potentials that converge to the limit j = 3/2; they are drawn

for orientation.

Fig. 3 Reduced total and partial (for purely attractive AC potentials)

capture rate coefficients for NO(2P1/2, j = 1/2) + C+ for accurate

(full lines, wL,1/2, wL,1/2,+1/2), PR (dashed lines, wPRL, 1/2, w
PR
L,+1/2) and

TPR (dotted lines,wPRL,1/2, w
TPR
L,+1/2) potentials. The curve wL,1/2,+1/2 (see

eqn (23)) is equal to wWSC such as that calculated in ref. 5, see text.
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relation cos b ¼ m
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j þ 1=2
p

, we get

VPR
j;m ðRÞ

���
j
1
� VPR

j ðR; cosbÞ

¼ � jqjlD

2ðj þ 1=2ÞR2
P1ðcos bÞ �

qQ

2R3
P2ðcos bÞ

� q2

2R4
aþ l2

D

2Bðj þ 1=2Þ2
P2ðcos bÞ

" # ð19Þ

Now, with a fixed value of b and increasing j, the first term

decreases due to the diminishing projection of the dipole

moment vector onto the j vector, and the last term decreases

due to the lowering of the rotational polarization with increas-

ing rotational energy. If we neglect the effect of the first and

last term in eqn (19), we get the AC PR potentials that govern

the capture of a classical quadrupole molecule by an ion. We

therefore conclude that with increasing j, wL,j(T) will converge
to the classical capture rate coefficient for quadrupolar mole-

cules. The convergence will be faster for higher temperatures

since in these conditions the first term in eqn (19) plays a

progressively minor role. Interestingly, wL,j(T) for high j passes

through a shallow minimum which is a typical feature of the

capture rate coefficients of quadrupolar molecules.14

Two-temperature capture rate coefficients

Consider now a situation when the diatoms are taken from an

ensemble with two canonical distributions, one with the

translational temperature Ttr and the other with the rotational

temperature Trot. The reduced two-temperature average rate

coefficient �wL(Ttr, Trot) is written as

�wLðTtr;TrotÞ ¼
1

ZrotðTrotÞ
X
j�1=2

wLjðTtrÞð2j þ 1Þ

� exp � B

kTrot
½jðj þ 1Þ � 3=4�

� � ð20Þ

where Zrot(Trot) is the rotational partition function

ZrotðTrotÞ ¼
X
j�1=2
ð2j þ 1Þ exp � B

kTrot
½jðj þ 1Þ � 3=4�

� �

ð21Þ

Fig. 7 shows the plots of �wL(Ttr,Trot) for NO(X 2P1/2, thermal

j) + C+ capture as a function of the translational temperature

Ttr and for different values of Trot.

Expression (20), for NO + C+ collisions, can be put into a

simplified form by using the fact that all wL,j(Ttr) with j 4 3/2

are approximately the same for Ttr 4 0.2 K. If we replace

wL,j(Ttr) with j 4 3/2 in eqn (20) by wL,3/2(Ttr), we obtain a

Table 2 Key features of the AC potentials for NO(X 2P1/2, j) + C+ capture in different approximations (barrier heights E*
j,m are given as E*

j,m/k in
Kelvin). The last column characterizes the accurate AC channels as open or closed for capture at T = 0.5 K. Italics refers to cases where the
accurate behaviour differs from predictions for the charge–dipole interaction

j m Charge–dipole Perturbed rotor Accurate Accurate, T = 0.2 K

1/2 +1/2 Open Open Open Open
–1/2 Closed Barrier (0.800 K) Barrier (0.657 K) Closed

3/2 +3/2 Open Open Open Open
+1/2 Open Closed Open Open
–1/2 Closed Closed Barrier (3.00 K) Closed
–3/2 Closed Barrier (1.55 K) Barrier (1.12 K) Closed

5/2 +5/2 Open Open Open Open
+3/2 Open Open Open Open
+1/2 Open Closed Open Open
–1/2 Closed Closed Barrier (0.00164 K) Open
–3/2 Closed Barrier (0.224 K) Barrier (2.57 K) Closed
–5/2 Closed Barrier (3.51 K) Barrier (2.08 K) Closed

7/2 +7/2 Open Barrier (0.239 K) Barrier (0.0517 K) Open
+5/2 Open Open Open Open
+3/2 Open Open Open Open
+1/2 Open Open Open Open
–1/2 Closed Barrier (0.00025 K) Barrier (0.00025 K) Open
–3/2 Closed Barrier (0.0160 K) Barrier (0.0160 K) Open
–5/2 Closed Barrier (0.602 K) Barrier (2.63 K) Closed
–7/2 Closed Barrier (7.16 K) Barrier (3.62 K) Closed

9/2 +9/2 Open Barrier (2.85 K) Barrier (1.30 K) Closed
+7/2 Open Open Open Open
+5/2 Open Open Open Open
+3/2 Open Open Open Open
+1/2 Open Open Open Open
–1/2 Closed Barrier (0.000062 K) Barrie (0.000062 K) Open
–3/2 Closed Barrier (0.0028 K) Barrier (0.0028 K) Open
–5/2 Closed Barrier (0.0526 K) Barrier (0.0526 K) Open
–7/2 Closed Barrier (1.40 K) Barrier (3.18 K) Closed
–9/2 Closed Barrier (410 K) Barrier (5.72 K) Closed
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useful interpolation formula which is valid within the tem-

perature range 0.2 r Ttr, Trot r 20 K

�wLðTtr;TrotÞ � ~wLðTtr;TrotÞ ¼
2

ZrotðTrotÞ
wL;1=2ðTtrÞ

þ 1� 2

ZrotðTrotÞ

� �
wL;3=2ðTtrÞ

ð22Þ

The performance of the simple expression (22) is demonstrated

in Fig. 7.

5. Capture of NO(X
2P1/2) by C

+
: comparison

with experiment

Mazely and Smith9 reported an experimental rate coefficient

1.99(�25%) � 10�9 cm3 molecule�1 s�1 for the charge-trans-

fer reaction C+ + NO - C + NO+ at the translational

temperature 0.6 K. Since this reaction is strongly exothermic,

it is reasonable to assume that this rate coefficient corresponds

to that of complex formation, i.e. to capture. The authors

interpreted their findings in terms of the first-order char-

ge–permanent dipole model that yielded the value of 1.7 �
10�9 cm3 molecule�1 s�1. This seemingly satisfactory corre-

spondence was questioned by Wickham, Stoecklin and Clary

(WSC),7 who indicated the importance of the charge–induced

dipole interaction (with the Langevin rate coefficient being

equal to 1.046 � 10�9 cm3 molecule�1 s�1). The theoretical

rate coefficient kWSC(Ttr) which they suggested is identical to

kTPR1/2,+1/2(Ttr), viz.,

kWSCðTtrÞ ¼
1

6
lDq

ffiffiffiffiffiffiffiffiffiffiffiffi
8p

mkTtr

s
þ pq

ffiffiffi
a

m

r
ð23Þ

which yields kWSC(Ttr)|Ttr=0.6 K = 2.38 � 10�9 cm3 mole-

cule �1 s�1. We see, however, from Fig. 3 that the value of

kTPR1/2,+1/2(Ttr) is noticeably lower than its PR or the accurate

counterparts. Thus, the accurate theoretical value of the rate

coefficient for complex formation at Ttr = 0.6 K and j = 1/2

Fig. 4 Perturbed-rotor (dashed lines) and accurate (full lines) AC

potentials for NO(X 2P1/2, j = 3/2) + positive ion.

Fig. 5 Reduced partial (multplied by 2j + 1 = 4) and total rate

coefficients, wL,j,m(T) and wL,j(T) for NO(X 2P1/2, j = 3/2) + C+

capture.

Fig. 6 Reduced total capture rate coefficients wL,j(T) for NO(X 2P1/2,

j) + C+ capture for j = 1/2, 3/2, . . . 9/2.

Fig. 7 Reduced two-temperature rate coefficients �wL(Ttr,Trot) (full

lines) and their approximate counterparts ~wL(Ttr,Trot) (dashed lines)

for NO(X 2P1/2, all j) + C+ capture vs. translational temperature Ttr

for different values of the rotational temperature Trot. The symbol

with error bars gives the experimental data from ref. 7.
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turns out to be substantially higher than the experimental

value (3.58 10�9 cm3 molecule�1 s�1 vs. 1.99 � 10�9 cm3

molecule�1 s�1). One of the reasons for this difference is the

participation of rotationally excited molecules in the capture

event. Indeed, Mazely and Smith9 estimated the rotational

temperature to be around 20 K. The value of the two-

temperature rate coefficient k(Ttr,Trot) as recovered from Fig.

7 for these two temperatures is 1.88 � 10�9 cm3 molecule�1 s�1

which agrees with the experimental value within the stated

experimental errors. Yet, there is still a caveat in the comparison

of the theoretical capture rate coefficient with the experimental

value coefficient because not all electronic states of the complex

that arise from electronic states of the reagents need to partici-

pate in the charge exchange. Since both reagents are in doublet

states, C+(2P)+NO(2P), there arise triplet and singlet states of

the complex. On the other hand, the electronic states of the

products that correlate with C(3P) + NO+(1S) fragments are

triplets. If we assume that singlet states do not lead to reaction,

the theoretical rate constant should be multiplied by an electro-

nic statistical factor g = el3/4. Decrease of our theoretical value

by a factor of 3/4 brings it down to the lowest possible

experimental value which raises the interesting question whether

intersystem crossing in the complex also allows the singlet states

to participate fully in the energy redistribution in the complex.

Conclusion

The capture of NO(X 2P1/2, j) in a specific rotational state by a

C+ ion within the temperature range 0.02–20 K occurs in the

regime where the collisions are adiabatic with respect to

rotational and fine-structure transitions and sudden with

respect to transitions between L doubling and hyperfine

structure states. Therefore, the latter can be ignored in the

capture dynamics, and the rate coefficients can be calculated

within the adiabatic channel approach. The characteristic

features of the AC potentials for this system are a small dipole

moment and a small rotational constant of NO. The former

suggests a strong contribution of charge–quadrupole and

charge–induced dipole terms beyond the leading first-order

charge–dipole term, while the latter implies an earlier break-

down of the weak-field (i.e. perturbed rotor) approximation.

Both features manifest themselves in the temperature depen-

dence of the state-specific rate coefficients. Purely attractive

adiabatic channels lead to partial rate coefficients that show

negative temperature dependence and bridge the T�1/2 depen-

dence (from the first-order charge–dipole dependence at lower

temperatures) with a nearly constant high-temperature asymp-

tote determined by the charge–induced dipole and second-

order charge–dipole interaction. The adiabatic channels with

activation barriers lead to positive temperature dependences of

the rate coefficient. The height of the potential barriers is

determined by an interplay of different terms in the interaction

potential, and their reliable estimate cannot be achieved within

the perturbed rotor approximation. The passage from capture

in the ground state (j = 1/2) to that in excited states (j 4 1/2)

marks a noticeable drop in the rate coefficients due to the

progressively stronger averaging of the charge–dipole inter-

action by molecular rotation. As a result, the two-temperature

capture rate coefficient k(Ttr,Trot), that depends on transla-

tional, Ttr, and rotational, Trot, temperatures of two

Boltzmann sub-ensembles, is characterized by a negative

dependence both on Ttr, and on Trot. The theoretical value

of k(Ttr,Trot) agrees reasonably well with an experimental

value for the conditions of the experiment at Ttr = 0.6 K,

Trot = 20 K. Thus, our treatment suggests a revision of earlier

interpretations that persisted for more than a decade.3,5

In parallel to the numerical calculations of the rate coefficient

with accurate adiabatic channel potentials, we have presented

the results based on perturbed rotor approximation for the

rotational state j=1/2. This was done for the following reasons:

(i) In the PR approximation, the capture rate coefficient for

j = 1/2 can be calculated analytically. Since the j = 1/2 rate

coefficient, for the system studied, is in reasonable agreement

with the accurate rate coefficient, and since the reasons for this

are clear, the analytical expressions for the rate coefficient can be

recommended for application to other systems (see section 3).

(ii) PR approximation allows one to foresee the incipient

quantum effects that are associated with relative motion of the

collision partners. It was shown that such quantum effects will

manifest at much lower temperatures compared to those where

another quantum effect, the L doubling phenomenon, becomes

important. The specificity of the capture in different components

of the L doublet is now under investigation in our group.6

(iii) PR approximation allows one to qualitatively under-

stand the tendency of the temperature dependence of the rate

coefficients for large j with increasing j (see section 4).

The bottleneck for numerical calculations (in terms of

computational power) of the rate coefficients for our and other

systems is determination of the accurate adiabatic channel

potentials. Once the analytical expression for the interaction

potential in eqn (1) is accepted, the construction of the AC

potential matrix in the basis of free rotor functions is techni-

cally trivial since the matrix elements are expressed through

the vector addition coefficients which can be supplied by

variety of standard codes (e.g. Mathematica). A person who

is quite inexperienced in numerical calculations can get results

for other systems, since the subsequent calculation of the

capture rate coefficients, given in the integral representation,

presents no difficulty. Computational power needed for clas-

sical calculations is negligible compared to quantum solution

of coupled channel capture equations. Of course, the latter

approach is necessary at much lower temperature when one

has to take into account quantum effects in the capture as

well as nonadiabatic Coriolis coupling.3 However, this also

requires accounting for the L doubling phenomenon and

hyperfine structure effects.
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