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1 INTRODUCTION 
The nervous system is a network that contains billions of individual nerve cells 

interconnected in systems that construct our perceptions of the external world, 

fix our attention, and control the machinery of our actions. A first step toward 

understanding how it works, therefore, is to learn how neurons are organized 

into signaling pathways and how they communicate. 

 

Neurons communicate through specialized zones of contact called the synapse, 

a term that was introduced more than 100 years ago by Charles Sherrington 

(1906). This term was later adopted by Ramón y Cajal (1911), who was the first 

to describe this site morphologically, at the level of light microscopy. Once the 

fine structure of synapses was made visible with the electron microscope, it was 

possible to distinguish that, in chemical synapses, neurons are separated 

completely by a small space, the synaptic cleft (Pappas et al., 1972). There is 

no continuity between the cytoplasm of one cell and the next. As a result, 

chemical synaptic transmission depends on the release of a neurotransmitter 

from the presynaptic neuron. A neurotransmitter is a chemical substance that 

will bind to specific receptors in the postsynaptic cell membrane. 

Neurotransmitters are stored in membranous structures called synaptic 

vesicles, which in turn are contained in specialized swellings of the axon, the 

presynaptic terminals. Synaptic vesicles cluster at regions of the membrane 

specialized for transmitter release called active zones, where synaptic vesicle 

proteins undergo several structural modifications before actual fusion may occur 

(Sudhof, 2004).  
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Several questions have aroused from the visualization of these distinct 

structures. For example, how is an electrical signal transformed into a chemical 

one, and then back again to electrical transmission in the postsynaptic cell? 

Which synaptic elements play part in this process? And more important, what 

are the detailed steps of synaptic transmission? These few questions will be 

answered in the next section. 

 

1.1 Synaptic transmission at chemical synapses 

Commonly, processing and modulation of information takes place at the 

synapse, where electrically propagated signals across a neuron arrive often, in 

form of an action potential (AP). An AP is converted into a chemical signal at 

the presynaptic terminal, through several steps lasting around 0.8 ms (Sudhof, 

2004), Fig. 1). 

During discharge of a presynaptic AP, voltage-gated Ca2+ channels at active 

zones open at elevated membrane potentials (Fig. 1, step 1), causing the flux of 

Ca2+ into the presynaptic terminal due to a gradient between a low intracellular 

and a high extracellular Ca2+ concentration. The rise in intracellular Ca2+ 

concentration is sensed by a Ca2+ sensor attached to synaptic vesicles. The 

binding of Ca2+ to this sensor decreases, through complex steps, the energy 

barrier for vesicle fusion. Thereby, the probability of transmitter release is 

dramatically increased and vesicles fuse with the membrane (Fig. 1, step 2).  

Neurotransmitter molecules released into the extracellular space diffuse across 

the synaptic cleft and bind to their receptors on the postsynaptic cell membrane 

(Fig.1, step 3). This in turn activates the receptors, leading to the opening of ion 

channels. In the case of excitatory ionotropic neurotransmitters, activated 
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receptor molecules will open pores which allow for cation flux into the cell, 

increasing transiently the membrane potential of the postsynaptic cell. 

 

 

 
Figure 1. Steps sequence and timing of chemical synaptic transmission 
The principal steps with the associated time constants are shown on the left, and traces from 

the corresponding steps in the calyx of Held synapses are illustrated on the right (Meinrenken et 

al., 2003). An action potential arriving at the presynaptic terminal of an axon causes voltage-

gated Ca2+ channels at the active zone to open (1). The influx of Ca2+ produces a high 

concentration of Ca2+ near the active zone, which in turn causes vesicles containing 

neurotransmitter to fuse with the presynaptic cell membrane and release their contents into the 

synaptic cleft (2) (Exocytosis). The released neurotransmitter molecules then diffuse across the 

synaptic cleft and bind to specific receptors on the postsynaptic membrane (3). These receptors 

cause ion channels to open (or close), thereby changing the membrane conductance and 

membrane potential of the postsynaptic cell (4). Right panel, the complex process of chemical 

transmission is responsible for the delay between action potentials in the pre- (APpre) and 

postsynaptic (APpost) cells. Modified from Südhof (2004). 

 

In this way, the chemical signal is reconverted into an electrical signal as an 

excitatory postsynaptic potential (EPSP). If threshold is reached by temporal 

and/or spatial summation, a new postsynaptic action potential is elicited (Fig. 1, 

step 4). This newly generated AP may propagate through the neuron to finally 
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arrive at the next synaptic connection. The most abundant excitatory 

neurotransmitter in the central nervous system (CNS) of mammals is (L)-

glutamate which binds to postsynaptic ionotropic glutamate receptors of AMPA-, 

kainate and/or NMDA-type. 

After summarizing the steps of synaptic transmission, obvious questions 

emerge. For example, how synaptic properties change during development? 

Moreover, which are the forces that drive developmental plasticity, and which 

processes of synaptic communication are more incline to undergo these 

changes? For the last 30 years, our knowledge in the mechanisms of synaptic 

transmission has steadily increased, but the role of afferent activity during the 

development of synapses remains unclear. The next section briefly introduces 

recent studies on how nerve activity influences synaptic properties in CNS 

neurons, and discusses shortly the limitations presented by the chosen models. 

 

1.2 Developmental plasticity in the central nervous system 

The morphological and functional refinement of synapses in the mammalian 

CNS during early postnatal development is controlled by a collection of genetic 

and epigenetic factors. Nerve activity and neurotransmitter release may serve 

epigenetic functions by promoting or inhibiting synaptogenesis (Kirov and 

Harris, 1999; Marty et al., 2000; 2004), regulating the pattern of innervation 

(Chattopadhyaya et al., 2004) and decreasing or increasing the strength of 

synaptic connections (Turrigiano et al., 1998; Murthy et al., 2001; Thiagarajan et 

al., 2005). This regulation is achieved by modulating expression, trafficking, 

degradation and function of a variety of synaptic proteins (Rao and Craig, 1997; 

O'Brien et al., 1998; Ehlers, 2000; Mu et al., 2003; Townsend et al., 2004; 

Wilson et al., 2005). 
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One homeostatic mechanism that modulates synaptic strength is referred as 

synaptic scaling. The term has emerged from recent studies in mammalian 

cortical synapses. If the average firing rate of a neuron decreases, then the 

system will scale up the excitatory and scale down the inhibitory inputs to that 

neuron, so it can reach previous levels of excitation (Burrone and Murthy, 2003; 

Turrigiano and Nelson, 2004; Thiagarajan et al., 2005). This change in synaptic 

strength may occur as a change in the number of synaptic contacts (within 

neural networks), a change in presynaptic release and/or in postsynaptic 

responses to transmitter release.  

Depending on the type of synapse and experimental conditions under study, 

manipulation of neuronal activity resulted in a variety of effects in the properties 

and locus where these changes occur. Some examples of the remodeling of 

neuronal excitability are quantal size modification attributed to changes in 

postsynaptic receptors (Turrigiano et al., 1998) or the amount of 

neurotransmitter packed into synaptic vesicles (presynaptic changes) (Wilson et 

al., 2005). Other studies showed changes in quantal content without variation in 

quantal size (Bacci et al., 2001) or alterations in synaptic dimensions (Murthy et 

al., 2001). Desai et al. (1999) showed that a reduction of activity in response to 

TTX application in visual cortex neurons, leads to a down-regulation of 

potassium currents and an up-regulation of sodium currents with a concomitant 

increase in cell excitability. Synaptic scaling may occur preferentially in neuronal 

networks, where hundreds of excitatory and inhibitory synapses act together to 

achieve stable activity patterns (Turrigiano and Nelson, 2004). However, one 

restraint using neuronal networks is the open question if a similar phenomenon 

occurs at single synaptic connections. 

Moreover, in contrast to the wealth of data describing multiple effects of 
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pharmacologically silencing activity on synaptic transmission in vitro, little is 

known about the consequences of chronically changing the levels of 

physiological activity on synapses developing in-vivo (Vale and Sanes, 2000; 

Tian and Copenhagen, 2001; Oleskevich and Walmsley, 2002; Clem and Barth, 

2006). On the other hand, only few studies focused on afferent nerve activity 

driven development, at the level of isolated individual synapses (Oleskevich and 

Walmsley, 2002; Oleskevich et al., 2004; Youssoufian et al., 2005). 

Furthermore, because of the small size of the majority of presynaptic endings in 

the mammalian CNS, it is very difficult or impossible to directly assess 

presynaptic properties. To overcome these limitations, we address the above 

mentioned question, in a giant glutamatergic synapse of the auditory brainstem, 

the calyx of Held.  

 

1.3 The calyx of Held synapse 

As mention before, the size of a synapse is a significant technical constraint for 

electrophysiological recording. Substantial insight into synaptic function has 

been provided by exploiting the large dimensions of several model synapses. 

For instance, Katz (1969) used the frog neuromuscular junction to first 

demonstrate that neurotransmitter release occurs in discrete quanta, indicating 

that transmitter is stored in packages of specific size, later known as synaptic 

vesicles. In another large model, the giant squid stellate ganglion, a direct 

relation between presynaptic Ca2+ currents and postsynaptic membrane 

potentials was directly quantified (Llinas et al., 1981). However, the progress of 

studies in the CNS was long restricted by the technical difficulty of presynaptic 

recording from small nerve terminals.  

Since most the synapses in the mammalian CNS with a pivotal role in 
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information processing are fast glutamatergic connections, the setup of a new 

preparation at which direct presynaptic patch-clamp recordings were possible 

and at which glutamate was the neurotransmitter was desirable 

(Schneggenburger and Forsythe, 2006). Moreover, it was of great advantage to 

find a synapse where it was possible to alter experimentally the composition of 

the pre- and postsynaptic cytoplasm, allowing testing of the effects of 

pharmacological compounds on neurotransmission (von Gersdorff and Borst, 

2002). 

More than ten years ago, an important step toward unraveling synaptic function 

and plasticity in great detail was the simultaneous patch-clamp recording from a 

glutamatergic giant presynaptic terminal, the so-called calyx of Held, and its 

principal neuron in the medial nucleus of the trapezoid body (MNTB; (Forsythe, 

1994; Borst et al., 1995).  

The calyx of Held terminal is thought to arise from globular bushy cells in the 

anterior ventral cochlear nucleus (aVCN, Fig.2; (Friauf and Ostwald, 1988; 

Spirou et al., 1990; Kuwabara et al., 1991; Smith et al., 1991). It therefore forms 

a tertiary synapse in the auditory pathway. The MNTB principal cells provide 

inhibitory projections to neighboring nuclei in the superior olivary complex 

(SOC), including the lateral superior olive (LSO, Fig. 2; (Tollin, 2003) and the 

medial superior olive (MSO; (Banks and Smith, 1992; Joris et al., 1998; Brand 

et al., 2002). The LSO and MSO are the first nuclei in which binaural 

information converges. Therefore, the calyx of Held-MNTB synapse forms a fast 

inverting relay, at which excitation originating from the contralateral cochlea is 

converted into inhibition to the ipsilateral auditory brainstem. This circuitry 

presumably leads to intensity comparison of sound arriving at either ear. The 

differences in sound intensity from each cochlea can be used to locate the 



Introduction  14

sound source in space (Oertel, 1999; Trussell, 1999). For this task, the calyx of 

Held has developed to a highly reliable synapse, assuring that every AP arriving 

at the presynaptic terminal will lead to a postsynaptic AP with a high probability 

(Taschenberger and von Gersdorff, 2000), thus phase-locking the acoustic 

signal. 
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One striking feature of this synapse is that most presynaptic terminals contact 

only one postsynaptic cell. Moreover, it receives no other substantial synaptic 

input (Fig. 2B) (Forsythe, 1994); therefore synaptic integration at this synapse 

does not play a significant role.  

 

Using presynaptic patch-clamp recordings at the calyx of Held, it was possible, 

for the first time, to measure transmitter release under defined intracellular ionic 

and membrane potential conditions. This technical achievement was then 

combined with optical, pharmacological and molecular techniques that have 

been easily applied at this synapse, to unveil the properties of synaptic 

transmission. For instance, measurements of the amplitude and time course of 

AP-evoked Ca2+ influx (Borst and Sakmann, 1996, 1998a), the sensitivity of the 

putative Ca2+ sensor (Bollmann et al., 2000; Schneggenburger and Neher, 

2000), and the endogenous Ca2+ buffer equilibration and extrusion rates of 

intracellular Ca2+ (Helmchen et al., 1997) were accurately made. 

 
◄ Figure 2. The calyx of Held synapse in the auditory brainstem circuit 
A, Representation in the coronal plane of the brainstem auditory pathway and the calyx of Held 

synapse, which forms part of the auditory circuit at the level of the superior olivary complex 

(SOC). Bushy cells in the anterior ventral cochlear nucleus (aVCN) receive excitatory input from 

the auditory nerve fibers. The calyx of Held arises from globular bushy cells in the aVCN onto a 

principal cell in the medial nucleus of the trapezoid body (MNTB). The principal cells provide an 

inhibitory projection to other nuclei of the SOC such as the lateral superior olive (LSO). The 

calyx of Held is thus a tertiary auditory synapse that rapidly relays afferent activity, providing the 

LSO and other nuclei with (inhibitory) information with regard to sound arriving at the 

contralateral ear. Taken from Schneggenburger and Forsythe (2006) B, Electron micrograph of 

the calyx of Held from a P9 rat (yellow presynaptic calyx, blue postsynaptic MNTB principal 

neuron, red its nucleus, boxed area active zone). Bar 5 µm. Taken from Sätzler et al. (2002). C, 
Electron micrograph images of active zones within calyces of Held (green vesicles identified as 

morphologically docked). Left, two neighboring active zones from a P5 rat. Right, single active 

zone in a P14 rat. Bars 200 nm. P5 PSDs tend to be larger than a P14 (limits marked by arrow 

heads). Taken from Taschenberger et al. (2002). 
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Furthermore, the latency, size and kinetics of the spontaneous and evoked 

excitatory postsynaptic currents (EPSCs; (Borst and Sakmann, 1996; Sahara 

and Takahashi, 2001)) were precisely studied. And recently, Wimmer et al. 

(2004) opened a new line of molecular structure-function studies in mammalian 

central synapses by using stereotaxic delivery of viral gene vectors into 

presynaptic terminals of the calyx of Held synapse. 

 

While most of these studies focused on the detailed mechanisms involved in 

exocytosis and modulation of transmitter release, other publications 

investigated how synaptic transmission is refined during the maturation of rat 

and mouse synapses. Here, synaptic properties were compared before and 

after the onset of hearing (P12-13). These studies reported that, during 

postnatal development, morphological and functional synaptic changes 

eventually transform this synapse into a fast and reliable relay (Taschenberger 

and von Gersdorff, 2000; Futai et al., 2001; Iwasaki and Takahashi, 2001; Joshi 

and Wang, 2002; Taschenberger et al., 2002). The next section introduces 

these developmental modifications at the calyx of Held synapse. 

 

1.4 Developmental maturation at the calyx of Held synapse 

1.4.1 Presynaptic changes 

During early postnatal development, the calyceal terminal undergoes striking 

morphological changes (Kandler and Friauf, 1993). Before P12, it resembles a 

cup-shaped structure covering about 40% of the postsynaptic cell surface (Fig. 

2B) (Kandler and Friauf, 1993; Sätzler et al., 2002; Hoffpauir et al., 2006), but 

already at P14 it changes to a finger-like fenestrated structure (Morest, 1968; 



Introduction  17

Rowland et al., 2000; Wimmer et al., 2006). Moreover, larger postsynaptic 

densities (PSDs) breakup into smaller PSDs during development (Fig. 2C), 

leading to a decrease in the size but an increase in the number of active zones 

(AZs) in adults. These morphological changes support the idea that glutamate is 

cleared more efficiently from the synaptic cleft (fenestrated structure) 

(Taschenberger et al., 2002) and a rapid local endocytosis can occur (more 

space for the endocytotic machinery in the periphery of small AZs) (Roos and 

Kelly, 1999; Teng and Wilkinson, 2000).  

In addition, by selectively manipulating protein composition in the calyx terminal 

in vivo, Wimmer et al. (2006) have recently described so-called donut-like 

assemblies composed of clusters of up to 800 synaptic vesicles, six to nine 

mitochondria, and five to nine AZs. Interestingly, donut-like assemblies only 

appear during the maturation of the calyx of Held after the opening of the 

auditory canal (P11-12). This arrangement of the release machinery (vesicle 

clusters and AZs) together with mitochondria may be optimal for a fast re-supply 

of ATP and for local sequestration of Ca2+ into mitochondria (Billups and 

Forsythe, 2002).  

 

Functional presynaptic changes include a shortening of the AP waveform and a 

decrease of synaptic delays during development (Taschenberger and von 

Gersdorff, 2000). A shortening in AP waveform, could lower release probability, 

as Ca2+ channels close more rapidly; this would avoid early depletion of 

vesicles leading to a reduction in the level of short-term depression in mature 

synapses. Shorter delays and a more synchronous release of glutamate may 

lead to a better preservation of the timing of auditory signals. A developmental 

increase in the amplitude of presynaptic Ca2+ currents was also observed 
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(Chuhma and Ohmori, 1998; Taschenberger et al., 2002), together with a switch 

in the Ca2+ channel subtypes expressed by the calyx. At P8-10, they are a 

mixture of R, N and P/Q Ca2+ channels (Wu et al., 1999), whereas from P12 

they are mostly of the P/Q subtype (Iwasaki and Takahashi, 1998). 

 

1.4.2 Postsynaptic changes 

The kinetics of AMPA receptor-mediated EPSCs become significantly faster at 

P14 MNTB principal cells. The fast decay time constant of AMPA EPSCs is 

caused by the fast rates of AMPA-receptor deactivation and desensitization 

(Schneggenburger and Forsythe, 2006). These fast rates are probably 

determined by the high expression levels of the AMPA-receptor flop splice 

variant in these neurons, as revealed by single-cell polymerase chain reaction 

(Geiger et al., 1995; Koike-Tani et al., 2005). Fast AMPA-receptor signalling is 

seen as an adaptation for the preservation of timing information in auditory 

circuits (Trussell, 1999). 

AMPA EPSCs from rats exhibit little change in their mean peak amplitudes 

during development (Taschenberger and von Gersdorff, 2000; Iwasaki and 

Takahashi, 2001). However, studies in mice, suggest a 3-fold increase in AMPA 

EPSCs amplitude at P14 compared to P8 (Futai et al., 2001; Joshi and Wang, 

2002). The increase of AMPA EPSCs amplitude in mice could be attributed to 

an increase in the number and/or clustering of AMPA receptors, elevated 

vesicle release probability and/or a higher vesicle pool size in mature animals. 

Since release probability decreases during development, a bigger pool size is 

probably the underlying cause of larger AMPA EPSCs, although a small 
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increase in quantal size is also observed in older mice (as measured from 

spontaneous miniature EPSCs) (Yamashita et al., 2003). 

Furthermore, a strong developmental decrease in NMDA receptor-mediated 

EPSCs has been observed both for mice and rat (Taschenberger and von 

Gersdorff, 2000; Futai et al., 2001; Iwasaki and Takahashi, 2001; Joshi and 

Wang, 2002), with only a small NMDA EPSC remaining after P20. After the 

onset of hearing (P12-13), NMDA amplitudes decrease 5 to 6-fold the 

amplitudes at P8. Interestingly, ablation of the cochlea in P7 mice prevents 

downregulation of NMDA receptor expression in adults, suggesting that these 

changes are driven by auditory activity-dependent processes (Futai et al., 

2001).  

The decay time constants for NMDA EPSCs decrease during development from 

about 80 ms to 50 ms (Joshi and Wang, 2002), consistent with a switch from 

the slower gating NR2B subunit to the faster gating NR2A NMDA subunit (Futai 

et al., 2001).  However, experiments using the drug ifenprodil, a specific blocker 

of the NR2B subunit (Williams, 1993), showed only subtle developmental 

changes in subunit composition (Joshi and Wang, 2002).  

 

1.4.3 Short-term plasticity 

During development, synaptic depression in response to high-frequency 

stimulation is reduced (Taschenberger and von Gersdorff, 2000; Iwasaki and 

Takahashi, 2001; Joshi and Wang, 2002; Taschenberger et al., 2005). This 

change might be due to the fenestrated finger-like structure of the adult calyx 

terminal, which allows a faster diffusion of glutamate out from the synaptic cleft, 

thus reducing desensitization of AMPA receptors (Taschenberger et al., 2002; 
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Taschenberger et al., 2005). Moreover, evidence of a larger readily releasable 

pool (RRP) (Taschenberger and von Gersdorff, 2000; Iwasaki and Takahashi, 

2001) and a lower transmitter release probability in the mature terminal 

(Taschenberger et al., 2002; Taschenberger et al., 2005), would prevent a rapid 

depletion of synaptic vesicles when stimulated at high frequencies. Finally, the 

recovery rate from synaptic depression seems to be stable during development 

(Iwasaki and Takahashi, 2001; Joshi and Wang, 2002), suggesting constant 

kinetics of synaptic vesicle replenishment. This finding further supports the idea 

that the main underlying mechanisms for a reduction in depression are a lower 

release probability and a larger vesicle pool. 

 

In summary, the calyx of Held-MNTB synapse develops into a robust and highly 

reliable relay, through profound morphological and functional changes. These 

modifications take place at the same developmental period for both the 

presynaptic terminal and the postsynaptic cell. How is this precise refinement in 

synaptic structures and release machinery achieved? What is the role of 

sensory activity in shaping this fast glutamatergic auditory synapse after the 

onset of hearing? Although it is generally assumed that sensory input shapes 

the strength of synaptic properties in neurons, there is very little in vivo 

evidence on the effects of activity during development. The calyx of Held 

synapse offers a valuable model to attempt answering these questions. 

 

1.5 Aim of this study 

Relatively little is known about the role of presynaptic afferent activity during the 

above mentioned maturation process (Futai et al., 2001). Synaptic activity in 

auditory brainstem circuitries is driven before hearing onset by spontaneous 
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(Beutner and Moser, 2001) and after the onset of hearing primarily by sound-

evoked glutamate release from cochlear hair cells. Transmitter release from 

cochlear inner hair cells (IHCs) is governed by voltage-gated L-type Ca2+ 

channels of the CaV1.3 subtype (Brandt et al., 2003) whereas N and P/Q and 

not L-type (Iwasaki and Takahashi, 1998) Ca channels control release in higher 

synapses along the auditory pathways (Iwasaki et al., 2000; Oleskevich and 

Walmsley, 2002). By comparing functional properties of P14-17 calyx of Held 

synapses developing in the absence of spontaneous as well as sound-evoked 

cochlea-driven afferent activity in CaV1.3 subunit-deficient (CaV1.3-/-) mice 

(Platzer et al., 2000) with those developing in wildtype (wt) mice we are able to 

determine if previously described developmental changes in the functional 

properties of this synapse arise from intrinsic maturation processes or whether 

they are driven by afferent nerve activity. 
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2 MATERIALS AND METHODS 

2.1 Slice preparation 

The experimental approach to record from acute brain slices is based on a 

procedure described before by Borst et al. (1995). CaV1.3-/- (Platzer et al., 2000) 

or wt mice (C57BL/6) were killed by decapitation and brainstem slices were 

obtained from postnatal day (P) 8-17 animals. Having removed the cranial 

calotte, a transversal cut with the scalpel separated the caudal part of the 

cerebrum from its rostral part including the optic lobes. For an advantageous 

orientation of the tissue during slicing, the remaining cerebrum was cut at an 

angle of about 20° to the midsagittal plane (Fig. 3, thick grey line). After cutting 

the lateral ventral nerves with the scalpel, the caudal part of the brain was 

detached from the rest of the head. The isolated tissue thus included the caudal 

cerebrum, the cerebellum, and the brainstem. For smoother cutting of slices, 

the pia mater and arachnoidea were removed from the ventral surface of the 

brainstem with forceps without damaging the tissue below.  

Then, the brainstem was quickly immersed in ice-cold low Ca2+ artificial cerebral 

spinal fluid (aCSF) containing (in mM): NaCl (125), KCl (2.5), MgCl2 (3), CaCl2 

(0.1), glucose (25), NaHCO3 (25), NaH2PO4 (1.25), ascorbic acid (0.4), myo-

inositol (3), Na-pyruvate (2), pH = 7.3 when bubbled with carbogen (95% O2, 

5% CO2). The low temperature and a low extracellular Ca2+ concentration 

[Ca2+]e (0.1 mM) was chosen to decrease metabolic processes, and to avoid 

hypoxic damage of the nerve cells.  

The brainstem was glued (UHU Sekundenkleber, UHU, Germany or similar) 

onto the stage of a VT1000S vibratome (Leica, Germany). On the ventral 

surface of the brainstem, the brighter area of the trapezoid body served as a 
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landmark for the first transversal cut through the brainstem. The MNTB was 

included in the next 3-4 slices of 180-200 μm thickness (Fig. 3, thin grey lines). 

 

 

 
Figure 3. MNTB slice preparation in the mouse brainstem 

Lateral view of the adult rat (similar to mouse) brain (rostral to caudal from left to right), at 0.90 

mm from ipsilateral (taken from Paxinos and Watson, 1986). Positions for transverse sections 

are indicated: first, a scalpel cut dissects the brainstem from the cerebrum (thick grey line), and 

then slices are obtained with vibratome cuts (parallel thin grey lines) in the MNTB region (“Tz”, 

marked with arrow). Figure modified with permission from Wölfel, (2004). 

 

 

Slices were immediately transferred to an incubation chamber containing 

normal aCSF and maintained at 35°C for 30-40 min, and thereafter kept at room 

temperature (22-24°C) for a maximum of 5 hours. The composition of normal 

aCSF was identical to low Ca2+ aCSF except that 1.0 mM MgCl2 and 2.0 mM 

CaCl2 were used. 

For electrophysiological recordings, a slice-chamber was custom-build, and the 

slice was fixed with a harp, made of stretched nylon strings glued onto a U 
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shaped platinum wire. The slice was continuously perfused with a flow rate of 

about 1 ml/min, and the extracellular aCSF solution could be changed 

according to the experimental design. A complete exchange of the extracellular 

solution was accomplished within one to two minutes. 

 

2.2 Electrophysiology 

Whole-cell patch-clamp recordings were made from calyx of Held terminals and 

MNTB principal neurons using an EPC-10 amplifier (HEKA, Germany). Analog 

signals were digitized and stored on disk using ‘Pulse 8.77’ software (Heka, 

Germany) running on a Dell Optiplex GX260 PC (1.8 GHz, 256 MB RAM; Dell). 

Sampling intervals and filter settings were ≤20 µs and 4.5 kHz, respectively.  

The two headstages containing the preamplifiers were mounted on motorized 

micromanipulators MP-285 (Sutter Instrument Company, Novato, CA, USA), 

and the coupled pipette holders were airtight connected to air pressure sensors, 

and a mouthpiece for oral pressure adjustment. Ag/AgCl electrodes connected 

the preamplifiers with the intracellular solution in the patch pipette, and via a 

bath electrode with the extracellular solution. 

MNTB cells and calyces of Held were visualized by infrared illumination IR-DIC 

microscopy through a 40x water-immersion objective (NA = 0.8) using an 

upright BX51WI microscope (Olympus, Germany) equipped with a 1.5-2x pre-

magnification and a VX45 CCD camera (PCO, Germany).  

Slight pressure was applied to the pipette when approaching the cell, being 

softer for presynaptic recordings. After contact with the plasma membrane, 

releasing the pressure together with an abrupt change to slightly negative 

values, led to a tight and stable seal reaching a resistance of several GΩ. 

Having obtained a GΩ seal, short suction pulses ruptured an opening into the 
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cell membrane underneath the tip of the patch pipette. The achieved series 

resistance was about two times larger than the pipette resistance alone 

(Sakmann and Neher, 1995). All experiments were carried out at room 

temperature. 

Patch pipettes were pulled from soft glass (1.65 mm diameter, 0.55 mm wall 

thickness; WPI, Sarasota, FL, USA) on a vertical two-step PIP-5 pipette puller 

(Heka, Germany). To reduce stray capacitance and to slow down capacitive 

transients for easier software capacitance compensation, pipettes were coated 

with dental wax. Open tip resistance was 1.5-3 MΩ for postsynaptic and 3.5-5 

MΩ for presynaptic recordings. Access resistance (Rs) was ≤20 MΩ for 

presynaptic and ≤10 MΩ for postsynaptic recordings.  

To compensate for charging transients of the pipette wall, and of the cell 

membrane, both were corrected for by using the internal, software controlled 

compensation circuits of the EPC-10 amplifier. In the cell-attached 

configuration, the pipette capacitance and series resistance could nicely be 

compensated, and in the whole-cell mode the cell membrane capacitance and 

membrane resistance were compensated, too. To correct for membrane voltage 

errors due to high access resistances to the cell, the automatic EPC-10 Rs 

compensation has been used (time constant of 2-10 μs). Rs was routinely 

compensated 50% during presynaptic and 75-95% during postsynaptic voltage-

clamp experiments.  

For measuring presynaptic Ca2+ currents (ICa(V)) and membrane capacitance 

(ΔCm), pipettes were filled with a solution containing (in mM): Cs-gluconate 

(130), TEA-Cl (30), HEPES (10), BAPTA (0.05), Na2-phosphocreatine (5), ATP-

Mg (4), GTP (0.3), pH=7.3 with CsOH. The bath solution was supplemented 

with 1 µM TTX, 40 mM TEA-Cl and 100 µM 4-AP to suppress voltage activated 
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sodium and potassium currents. ΔCm was measured using a software lock-in 

amplifier (HEKA Pulse 8.77) by adding a 1 kHz sine wave voltage command 

(amplitude ±35 mV) to the holding potential (Vh) of -80 mV. ΔCm was obtained 

from the averaged Cm value during a 50 ms time window ≥190 ms after the end 

of the depolarizations. Terminals with a leak current >120 pA or slowly decaying 

tail currents following ICa(V) were discarded from the analysis. 

Presynaptic calyceal action potentials (APs) were elicited by afferent fiber 

stimulation via a bipolar stimulation electrode placed half way between the 

brainstem midline and the MNTB (for reference see Fig. 2). Stimulation pulses 

(100 µs duration) were applied using a stimulus isolator unit (AMPI, Israel), with 

the output voltage set to 1-2 V above threshold (≤35 V). APs were measured in 

the current-clamp mode of the EPC-10 after adjusting the fast-capacitance 

cancellation while in cell-attached mode. For measuring calyceal APs, pipette 

were filled with a solution consisting of (in mM): K-gluconate (85), KCl (85), 

HEPES (10), EGTA (5), Na2-phosphocreatine (10), ATP-Mg (4), GTP (0.3), 

pH=7.3 with KOH. 

Excitatory postsynaptic currents (EPSCs) were measured using pipette solution 

consisting of (in mM): CsCl (150), TEA-Cl (10), HEPES (10), EGTA (5), ATP-Mg 

(4), GTP (0.3), pH=7.3 with CsOH. For each AP-evoked EPSC (eEPSC) the 

series resistance (RS) value was updated and stored with the data using the 

automated RS compensation routine implemented in ‘Pulse’. Residual Rs errors 

were compensated off-line for postsynaptic recordings. NMDA eEPSCs were 

recorded at Vh = +40 mV. In P14-17 mice, the peak amplitudes of AMPA 

eEPSCs frequently exceeded 20 nA at Vh more negative than -40 mV. Except 

for analysis of their kinetic properties and determining the release time course, 

AMPA eEPSCs were therefore routinely recorded at Vh = -40 mV to reduce 
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driving force and completely inactivate voltage-gated Na currents in 

postsynaptic MNTB neurons. Miniature EPSCs (mEPSCs) were recorded at Vh 

= -70 mV. Bicuculline methiodide (25 µM), strychnine (2 µM) were routinely 

included in the bath solution to block inhibitory synaptic currents. TTX was 

obtained from Alomone Laboratories (Jerusalem, Israel). Bicuculline, 

strychnine, NBQX and ifenprodil were from Tocris Cookson. All other salts and 

chemicals were from Sigma. 

 

2.3 Data analysis 

All offline analysis was performed with ‘IgorPro 5.0’ software (Wavemetrics, 

USA). Presynaptic AP-evoked Ca2+ influx was simulated using a Hodgkin-

Huxley (HH) type model essentially as described by Borst and Sakmann 

(1998a) except that the reversal potential of ICa(V) was set to +45 mV. 

Presynaptic AP waveforms measured at P14-17 were used to drive the model. 

The time course of the average activation parameter m² was solved numerically 

using a fifth-order Runge-Kutta-Fehlberg algorithm implemented in IgorPro.  

For analysis of eEPSCs, traces were corrected for remaining series-resistance 

errors (Neher and Sakaba, 2001b) using the RS values stored in the data files 

(assuming a linear IV-relationship with a reversal potential of 0 mV).  

Miniature EPSCs (mEPSCs) were detected using a sliding template algorithm 

(Jonas et al., 1993; Clements and Bekkers, 1997). The mEPSC template length 

of 4 ms allowed detection of non-overlapping mEPSCs up to a maximum rate of 

250 events/s.  
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The release time course (r(t)) was determined by deconvolving eEPSCs with 

idealized mEPSC waveforms obtained from the same synapses. Deconvolution 

was carried out in the frequency domain using Discrete Fourier transforms 

implemented in IgorPro. The Fourier transform of eEPSC (F{eEPSC}) was 

divided by that of the quantal response (F{mEPSC}) and the release rate was 

obtained from the inverse Fourier transform of this quotient r(t)=F-

1{F{eEPSC}/F{mEPSC}} (Van der Kloot, 1988; Diamond and Jahr, 1995; Hefft 

and Jonas, 2005). Analysis of kinetic properties and deconvolution analysis 

were restricted to AMPA eEPSC having peak amplitudes ≤15 nA at Vh = -70 mV 

to avoid non-linear summation of quanta due to AMPAR saturation. All average 

data are reported as mean ± SEM. For statistical tests we assumed that the 

measured quantities were normally distributed and used an unpaired two-tailed 

Student’s t test. Statistical significance was set at p < 0.05. 

 

 



 



Results 31

3 RESULTS 

Mice begin to detect sound during the second postnatal week (Mikaelian and 

Ruben, 1964; Kikuchi and Hilding, 1965). At P10, only a small fraction of mice 

pups show auditory brainstem responses after click stimulation. This number 

reaches 100% at around P13 (Futai et al., 2001). Because we wanted to study 

how spontaneous and sound-evoked afferent nerve activity shapes the 

maturation process at the calyx of Held, most of our analysis was carried out 

after the onset of hearing on synapses of P14-17 wt mice in comparison to 

CaV1.3-/- mice of the same age. In some cases we compared the functional 

properties of P14-17 synapses to those obtained before hearing onset (P8-11) 

(For values, see Table 1 and Table 2 at the end of section 3, Results). 

 

3.1 Synaptic transmission in CaV1.3-/- synapses 

During afferent fiber stimulation, postsynaptic cells of the MNTB typically 

respond with fast and large action potential (AP) waveforms (Forsythe and 

Barnes-Davies, 1993a) which are mainly determined by voltage-gated Na+ 

(Ming and Wang, 2003; Leao et al., 2005) and K+ conductances (Forsythe and 

Barnes-Davies, 1993b; Brew and Forsythe, 1995).  

 

We observed characteristic AP firing at CaV1.3-/- MNTB neurons stimulated at 

20 Hz trains in current-clamp whole cell recordings (Fig. 4A). At higher time 

resolution, it is seen that late APs in the train activate slower and exhibit more 

jitter (Fig. 4A right), suggesting that excitatory postsynaptic potentials (EPSPs) 

need more time to reach threshold. These typical depressed EPSPs are 

probably due to depression in later EPSCs during the train (Chuhma and 
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Ohmori, 1998; Taschenberger and von Gersdorff, 2000; Brenowitz and Trussell, 

2001).  

In whole cell voltage-clamp recordings, during single stimulus application, 

principal cells of the MNTB exhibit fast and slowly activated excitatory 

postsynaptic currents (EPSCs). These fast and slow EPSCs are mediated by 

two types of ligand-gated ion channels, AMPA and NMDA receptors, 

respectively (Forsythe and Barnes-Davies, 1993a). 
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Fig. 4B shows characteristic EPSCs elicited after a single stimulus (100 µs) 

using afferent fiber stimulation. In a few recordings, after calyceal EPSCs, we 

observed smaller EPSCs or inhibitory PSCs (IPSCs) with a delayed onset of 

activation (Fig. 4B, arrow and 4C). Small EPSCs with fast kinetics (Fig. 4C, left 

panel) probably correspond to small EPSPs recorded in current-clamp whole 

cell configuration also around 4 ms after stimulation (Fig. 4A, arrow). 

Presumably, these small EPSPs may trigger the observed slower and smaller 

APs in postsynaptic cells (Hamann et al., 2003). 

A subset of recordings exhibit slower activated and decaying currents (Fig. 4C, 

right panel). They present typical kinetics of activation and deactivation 

previously reported for IPSCs, which are much slower in comparison to EPSCs 

kinetics (Forsythe and Barnes-Davies, 1993a). Altogether, these results 

demonstrate that the basic mechanism of synaptic transmission is intact in 

CaV1.3-/- synapses. 

 
◄ Figure 4. Synaptic transmission in mature CaV1.3-/- mice 
A, Postsynaptic APs recorded in current-clamp whole cell configuration from a P14 MNTB 

neuron in a CaV1.3-/- mouse (Resting membrane potential (Vr) ~ -70 mV). Left panel, 10 

responses to a train of afferent stimuli (20 Hz) are superimposed. In some recordings, we 

observed a small delayed EPSP (~ 4 ms) (arrow), which ocasionally was suprathreshold and 

triggered another AP. Right panel, expanded view of the same 10 APs as in left panel. Note that 

late responses during the train exhibit jitter. B, Left panel shows voltage-clamp whole cell 

recordings of 3 sample EPSCs from the same neuron as in A (Vh = -40 mV). Note the small 

delayed PSC (arrow). Right panel, expanded time scale of one EPSC as in the left panel. Both 

current-clamp (A) and voltage clamp (B) recordings were aligned at stimulus artifacts (*) to 

compare the timing of APs and synaptic delays of EPSCs as well as small EPSPs and small 

input currents. Time scales are the same for A and B. Current and voltage scales are the same 

for left and right in A and B, respectively. C, Sample traces illustrating delayed non-calyceal 

EPSCs and inhibitory PSCs (IPSCs) (left and right panel, respectively) ( Vh = -40 mV). Note the 

slower kinetics of IPSCs compared to EPSCs. Equilibrium potential of Cl-, VCl = -11.37 mV. 

Stimulus artifacts were blanked for clarity. All experiments illustrated in this and subsequent 

figures were carried out at room temperature. 
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3.2 Presynaptic action potentials of CaV1.3-/- mice during trains 

After the onset of hearing (P12-13), as a result of diverse pre- and postsynaptic 

changes, the fidelity of high-frequency synaptic transmission at the calyx of 

Held-MNTB synapse is developed. (Taschenberger and von Gersdorff, 2000; 

Joshi and Wang, 2002; Taschenberger et al., 2002).  

To examine the behaviour of the calyx of Held presynaptic terminal under 

physiological conditions, we recorded presynaptic APs in response to trains of 

high frequency stimuli (100 Hz and 300 Hz, 15 stimuli). We found that both wt 

and CaV1.3-/- calyces were capable of responding to 100 Hz stimulation, but 

multiple failures were observed in both synapses at the higher frequency tested 

(300 Hz) (Fig. 5, middle panel).  
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For P14-17 synapses, spike probability was slightly lower in wt than in CaV1.3-/- 

mice (Fig 5A and 5B), but the difference was not significant, apparently because 

of the small number of train repetitions (3) and of neurons analyzed (5 and 3 for 

wt and CaV1.3-/-, respectively).  

Previous studies in the rat calyx of Held (P8-10) indicated AP broadening during 

prolonged trains (Borst and Sakmann, 1999). We therefore asked if a distinct 

broadening (if any) of presynaptic APs occurs when calyces of P14-17 wt and 

CaV1.3-/- mice are stimulated using trains of 15 stimuli at frequencies of 100 Hz 

and 300 Hz .  

Fig. 5A and 5B, right panel, show first (1st) and last (14th or 15th) AP waveforms 

superimposed at an expanded time scale. As previously reported 

(Taschenberger et al., 2002), during short trains only a minor broadening of APs 

was detected with no apparent differences between wt and CaV1.3-/- mice. 

 

 
 

 
◄ Figure 5. Presynaptic AP failure occurrence is similar between wt and CaV1.3-/- mice 
A, Middle, trains of 15 stimuli evoked by afferent fiber stimulation and delivered at 100 Hz 

(upper panel) and 300 Hz (lower panel) to a P17 wt (black) synapse. Right, first and last APs in 

the train are superimposed at higher time resolution. Left, in P14-17 wt (black) synapses, 

probabilities of action potential firing during stimulus trains at 100 Hz (open circles, n = 6) and 

300 Hz (black squares, n = 5) were measured as the fraction of APs fired for each stimulus 

during 3 repetitions delivered at 15 sec intervals. B, Same as in A for P14-17 CaV1.3-/- (red) 

presynaptic terminals. Sample traces in the middle panel were recorded from a P14 CaV1.3-/- 

calyx of Held. Spike probability was calculated from 4 and 3 cells of CaV1.3-/- mice at 100 Hz 

and 300 Hz, respectively. In both wt (black) and CaV1.3-/- (red) mice, AP halfwidths were stable 

throughout the train (right panel); however, amplitudes of APs were slightly diminished at 100 

Hz stimulation and even more at 300 Hz. At the highest frequency tested (300 Hz), action 

potential failures occurrence was higher than at 100 Hz (middle panel), thus diminishing the 

probability of AP firing similarly in wt (black) and CaV1.3-/- (red) calyces (left panel). Vr was 

typically around -80 mV in this and subsequent figures for presynaptic AP current-clamp 

recordings. 
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Nevertheless, when AP waveforms where further analyzed, we did observe a 

small decrease of the 15th compare to the 1st AP amplitude, and this reduction 

was accentuated when axons were stimulated using 300 Hz trains. However, no 

differences between wt and CaV1.3-/- calyces were noticed. Thus, we suggest 

that the capability to follow high frequency inputs is similar in CaV1.3-/- 

presynaptic terminals compared to wt calyces. 

 

3.3 Presynaptic Ca2+ currents and exocytosis in calyceal 

terminals from CaV1.3-/- mice 

Immature calyces of Held express a mixture of agatoxin-IVA-sensitive P/Q type 

and conotoxin-GVIA-sensitive N-type Ca2+ currents (ICa(V)). The latter 

component is developmentally down regulated such that after P13, ICa(V) is 

completely blocked by agatoxin-IVA (Iwasaki et al., 2000). 

 
 
► Figure 6. Similar amplitudes and dynamic properties of voltage-gated Ca2+ currents in 
calyceal terminals of wt and Cav1.3-/- mice 
A, Presynaptic ICa(V) recorded in calyx of Held terminals of wt (black) and CaV1.3-/- (red) mice. 

Calyx terminals were identified by a change in membrane capacitance in response to short 

depolarizations indicating intact vesicle exocytosis. Terminals were voltage-clamped (Vh = -80 

mV) and depolarized to 0 mV for 10 ms. Capacitive transients were subtracted on-line using a 

P/5 protocol. Small transients remaining after online subtraction were blanked for clarity. 

Pipettes were filled with Cs-gluconate-based solution (50 μM BAPTA). Voltage-gated Na+ and 

K+ conductances were blocked by including 1 µM TTX, 40 mM TEA and 100 µM 4-AP in the 

bath solution. B, Current-voltage relationship of presynaptic ICa(V) in calyx of Held terminals of wt 

(black, n = 8) and CaV1.3-/- (red, n = 7) mice. Peak ICa(V) was measured during depolarizations 

(10 ms) from Vh to -40 ... +40 mV. Average amplitudes of ICa(V) and its voltage-dependence were 

virtually indistinguishable suggesting that the CaV1.3 subunit is absent from calyces of wt mice. 

C, Facilitation of ICa(V) during trains of AP-like depolarizations. C1, ICa(V) trains of 15 step 

depolarizations (1 ms, 0 mV, 200 Hz) recorded in terminals of wt (black) and CaV1.3-/- (red) mice 

(left panel). For comparison, first and last ICa(V) are shown superimposed (right panel). C2, 
Average time course and amplitude of facilitation were similar in wt (black, n = 8) and CaV1.3-/- 

(red, n = 9) mice. Error bars represent SEM in this and subsequent figures. 



Results 37

 

 

 



Results 38

As expected from this pharmacological profile, we found that neither amplitudes 

nor kinetic properties were different between ICa(V) recorded in P14-17 terminals 

of CaV1.3-/- mice and that of wt mice (Fig. 6A). When measured during 10 ms 

depolarizations, peak amplitudes of ICa(V) varied between 0.81 nA and 2.05 nA 

among different terminals (for average amplitudes see Table 1). ICa(V) started to 

activate at a membrane potential of around -30 mV. Its current-voltage 

relationship was indistinguishable between CaV1.3-/- and wt mice (Fig. 6B) and 

similar to that described for P8-10 rat calyces (Borst and Sakmann, 1998a).  

A characteristic signature of calyceal ICa(V) is its frequency-dependent facilitation 

when elicited repetitively using short AP-like depolarizations (Borst and 

Sakmann, 1998b; Cuttle et al., 1998). This facilitation is mainly supported by 

calcium channels of the P/Q type as it is absent from CaV2.1-subunit deficient 

mice (Inchauspe et al., 2004; Ishikawa et al., 2005). We measured activity-

dependent facilitation of ICa(V) using 200 Hz trains of 1 ms step depolarizations 

(0 mV).  

 

 

► Figure 7. Similar kinetics and Ca2+ dependence of glutamate release in calyceal 

terminals of wt and CaV1.3-/- mice 
A, Presynaptic ICa(V) recorded during depolarizations of 5, 17 and 33 ms duration from Vh = -80 

mV to 0 mV (left) and corresponding changes in membrane capacitance (Cm, top traces), 

membrane resistance (Rm, middle traces) and series resistance (Rs, bottom traces) (right). ΔCm 

was estimated from averaged Cm values measured during a 50 ms time window ≥190 ms after 

the end of depolarizations. B, Average ICa(V) (B2) and corresponding average ΔCm values (B1) 

plotted against Vm for step depolarizations of 10 ms duration obtained from 6 wt (black) and 6 

CaV1.3-/- (red) mice. Note the similar voltage-dependence of ICa(V) and ΔCm. C, Average ΔCm 

values plotted against measured Ca2+ charge (QCa) during presynaptic depolarizations of 

variable duration (1, 2, 3, 5, 9, 17 and 33 ms). Pooled data from 9 wt calyces and 10 terminals 

from CaV1.3-/- mice (P14-17). Dotted lines represent extrapolations using the first ΔCm/QCa ratio 

obtained with an AP-like depolarization (1ms, 0mV). For longer stimuli, ΔCm/QCa decreases 

presumably because of vesicle depletion. 
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As illustrated in Fig. 6C, amplitudes of ICa(V) facilitated during the first 5 to 7 

depolarizations and remained stable thereafter. Neither time course nor 

magnitude of ICa(V) facilitation were significantly different between CaV1.3-/- and 

wt mice. Average values of ICa(V) facilitation during 200 Hz trains are given in 

Table 1. 

 

Having established similar properties of ICa(V), we next compared amplitudes of 

exocytotic responses and their Ca2+ dependence between calyces of CaV1.3-/- 

mice and those of wt mice using presynaptic membrane capacitance 

measurements. To convert ΔCm values into vesicle numbers we assumed a 

single vesicle capacitance of 80 aF (Taschenberger et al., 2002; Sakaba, 2006). 

Figure 7A illustrates changes in Cm, membrane resistance (ΔRm) and series 

resistance (ΔRs) evoked by short depolarizations (0 mV) of 5 to 33 ms duration 

in two representative terminals. We restricted our analysis to step 

depolarizations of ≤33 ms duration to prevent slowly decaying tail currents upon 

repolarization which were frequently associated with longer lasting 

depolarizations and complicated ΔCm estimates (Yamashita et al., 2005). To 

ascertain that the measured ΔCm reflects vesicle exocytosis following 

presynaptic Ca2+ influx, we measured ICa(V) and the corresponding ΔCm as a 

function of membrane potential (Vm) in a subset of calyces. Figure 7B shows 

that ICa(V) and ΔCm exhibited similar voltage dependence. Both peaked at Vm -10 

to 0 mV. ΔCm declined at Vm > 0 mV due to smaller ICa(V) because of the 

reduced driving force irrespective of a fully activated Ca2+ conductance. 

Figure 7C shows the relationship between ΔCm and presynaptic Ca2+ influx 

(QCa) obtained by pooling data from P14-17 terminals of CaV1.3-/- (n=10) and wt 
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(n=9) mice. In both groups, ΔCm increased similarly with larger QCa. For short 

AP-like depolarizations (1 ms, 0 mV), we obtained ΔCm values of 23.3 ± 5.6 fF 

(291 ± 70 vesicles) and 25.5 ± 4.9 fF (319 ± 61 vesicles) for wt and CaV1.3-/- 

mice, respectively. The corresponding ΔCm/QCa ratios were 37 fF/pC and 31 

fF/pC  for wt and CaV1.3-/- mice, respectively (Fig. 7C broken lines), which is 

close to values reported before for P12-14 rats (46 fF/pC, Taschenberger et al., 

2002). For longer depolarizations, ΔCm values started to saturate presumably 

due to vesicle depletion. For the longest step depolarizations we measured 

similar ΔCm values of 261 ± 56 fF (3269 ± 706 vesicles) and 199 ± 47 fF (2488 ± 

589 vesicles) in terminals of wt and CaV1.3-/- mice, respectively. 

 

3.4 Presynaptic AP waveform in CaV1.3-/- mice 

Taken together, the experiments described above suggest that a given 

presynaptic AP waveform elicits a similar presynaptic Ca2+ influx and releases a 

similar number of vesicles in terminals from wt and CaV1.3-/- mice. However, the 

time course of calyceal APs is not invariable (Taschenberger and von Gersdorff, 

2000). Since the AP waveform is a powerful regulator of presynaptic Ca2+ influx 

and thereby of release probability (Borst and Sakmann, 1999), we tested 

whether calyceal APs of CaV1.3-/- mice would differ from those recorded in wt 

terminals. When measured between P14 to P17, the half-width of presynaptic 

APs ranged from ~140 to ~260 µs. In terminals of CaV1.3-/- mice, AP waveforms 

tended to be slower and broader (Fig. 8A, Table 1). 

The Ca2+ influx evoked by a single P14-17 calyceal AP is difficult to quantify 

using single electrode voltage-clamp (Borst and Sakmann, 1998a). To elucidate 

the impact of variable AP duration on AP-evoked release we adopted a HH-type 
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model of ICa(V) derived by Borst and Sakmann (1998a). The model was driven 

by the wt AP waveform shown in Fig. 8A with its time course slightly 

compressed or expanded such that the AP half-width ranged from 120 to 280 

µs (Fig. 8B1). The time course of the activation parameter m² was then solved 

numerically (Fig. 8B2) which allowed us to predict presynaptic ICa(V) (Fig. 8B3) 

associated with the various AP waveforms.  

Figure 8C illustrates that QCa depended roughly linearly on AP half-width. To 

obtain a relationship between AP half-width and relative eEPSC size, we 

normalized QCa to the value obtained with an AP having about average half-

width (200 µs) and raised this quantity to the third power. This takes into 

account a presumably less steep Ca2+-dependence of release in more mature 

terminals (Fedchyshyn and Wang, 2005) compared to immature ones (Borst 

and Sakmann, 1996; Bollmann et al., 2000; Schneggenburger and Neher, 

2000). 

 
► Figure 8. Wider action potentials in calyceal terminals of Cav1.3-/- mice 
A, Whole-cell current-clamp recordings of APs evoked by afferent fiber-stimulation in calyces of 

wt (black) and CaV1.3-/- (red) mice. Both recordings were obtained after hearing onset. K-

gluconate-filled electrodes were used. Resting membrane potential (Vr) was typically around -80 

mV. Stimulus artifacts were blanked for clarity. Note the similar amplitude but slower kinetics 

and longer duration of the calyceal AP in the CaV1.3-/- mouse. Calyceal APs recorded in CaV1.3-

/- mice were on average 15% wider than those recorded in wt mice (Table 1). B, The wt AP 

shown in (A) was used to drive a HH-type model (Borst and Sakmann, 1998a) to estimate 

presynaptic Ca2+ influx. To simulate variable duration, APs were expanded or compressed in 

time (B1). The time course of the activation parameter m² was solved numerically (B2) and the 

corresponding ICa(V) was calculated (B3). Peak m² values ranged from 0.36 to 0.81 yielding QCa 

of 0.13 to 0.50 pC. C, Dependence of QCa and AP half-width and relative EPSC size on AP half-

width. Over the range from 120 to 280 µs, Ca2+ influx depended nearly linearly on AP half-width 

(C, left axis). Relative EPSC size was estimated by normalizing the QCa to the value obtained 

with a wt AP of average half-with (200 µs) and raising this quantity to the third power. Measured 

values of AP half-width were plotted along this function to illustrate the highly nonlinear 

dependence of EPSC size on AP width and predicting a 1.67 fold larger average eEPSC size 

for CaV1.3-/- mice (C, right axis).  
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When the measured AP half-width values were plotted along this function (Fig. 

8C), they predicted relative eEPSC amplitudes which were on average about 

67% larger in CaV1.3-/- compared with wt mice (p < 0.05). 
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3.5 Enhanced synaptic strength in CaV1.3-/- mice 

Our modeling-based estimates for AP-induced presynaptic Ca2+ influx lead us 

to predict an enhanced release from calyces of CaV1.3-/- compared to wt mice. 

We therefore tested synaptic strength by measuring AMPA eEPSCs 

(EPSCAMPA).  

Figure 9A shows recordings from synapses of wt and CaV1.3-/- mice before and 

after hearing onset. From P8-11 to P14-17, the average weighted decay time 

constants τm decreased similarly in wt mice (from 1.50 ± 0.21 to 0.46 ± 0.03 ms) 

and in CaV1.3-/- mice (from 1.33 ± 0.30 to 0.57 ± 0.06 ms) (Fig. 9C) and 

amplitudes of EPSCAMPA increased (Futai et al., 2001; Joshi and Wang, 2002) 

(Fig. 9B). The observed increase in EPSCAMPA was, however, much stronger in 

synapses developing in the absence of cochlea-driven afferent nerve activity 

(Fig. 9B) such that at P14-17, their average amplitudes were ~1.5 times larger 

in CaV1.3-/- compared with wt mice (p < 0.001; Table 1).  

To discriminate between a pre- or postsynaptic locus of the enhanced 

transmission, we analyzed the variability of AMPA eEPSC amplitudes. 

 

 
 
► Figure 9. Larger AMPA eEPSC peak amplitudes in synapses of CaV1.3-/- mice 
A, Representative AMPA receptor-mediated eEPSCs evoked by afferent fiber stimulation in 

synapses of wt (A1, left) and CaV1.3-/- (A2, left) mice (Vh = -40 mV). The right panel shows the 

same traces after normalizing their amplitudes. eEPSCs were aligned at their onsets to facilitate 

comparison of rise and decay kinetics (Tables 1 and 2). Kinetic properties of eEPSC in 

synapses of wt and those of CaV1.3-/- mice were similar. B, Scatter plot of AMPA EPSC peak 

amplitudes vs. age. EPSC peak amplitudes varied over a widespread range at any 

developmental stage. However, the largest EPSCs were consistently recorded in synapses from 

CaV1.3-/- mice. At P14-17, AMPA EPSCs from CaV1.3-/- mice (red) were on average 54% larger 

than those recorded in wt mice (black). C, Scatter plot of the weighted decay time constants of 

AMPA EPSCs. Developmental acceleration of AMPA EPSC kinetics proceeded similarly in wt 

and CaV1.3-/- mice. 
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For a binomial model of release, the coefficient of variation (CV) depends 

exclusively on the presynaptic parameters p and N: 

2 (1 ) 1Nq p p pCV
Nqp Np

− −
= =  

Raising quantal content (M=N⋅p) by increasing N, p or both is thus expected to 

lower CV.  
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► Figure 10. Quantal size and mEPSCs kinetics are similar in synapses of wt and Cav1.3-

/- mice 
A, Representative spontaneous mEPSCs recorded at P11-16 from synapses of wt (grey, 

black,A1) and CaV1.3-/- (light red, red,A2) mice (Vh = -70 mV). A3, Average mEPSC waveforms 

for the synapses illustrated in A1, A2. B, Representative amplitude distributions of mEPSCs in 

the same P15-16 cells as in A. Number of events are 858 and 849 for wt (black) and CaV1.3-/- 

(red) mice, respectively. Arrows indicate mean amplitudes of mEPSCs. CV, coefficient of 

variation (SD/mean) for the mEPSC amplitude. On average, the mEPSC peak amplitudes were 

similar for synapses of P14-17 CaV1.3-/- (40 ± 2.9 pA) and wt (43.3 ± 3.5 pA) mice. Average 

values of rise times and decay time constants were 88.8 µs vs 96.8 µs and 389 ms vs 412 ms 

for synapses of CaV1.3-/- vs. wt, respectively. C, Average cumulative amplitude distributions of 

P14-17 wt (black) (n = 17) and CaV1.3-/- (red) (n = 29) mice, showing comparable distributions. 

For each synapse, at least 500 individual mEPSCs were analyzed. 

 

In contrast, if enhanced AMPA transmission in CaV1.3-/- mice were due purely to 

an increased quantal size (q), CV would remain constant (Clements, 1990; 

Faber and Korn, 1991). The significantly smaller (p < 0.05) CV in synapses of 

CaV1.3-/- mice (Table 1) suggests that higher quantal content contributed to the 

enhanced AMPA transmission.  

 

To calculate M, we estimated q from average amplitudes of spontaneously 

occurring mEPSCs at the respective age (Fig. 10) (Tables 1 and 2). We 

observed similar developmental changes in mEPSC amplitudes in wt and 

CaV1.3-/- mice. Figure 10A shows representative traces of mEPSCs recorded 

from P11 and P15-16 MNTB neurons in wt and CaV1.3-/- cells, exhibiting a 

similar amplitude augmentation during development. Amplitudes of mEPSCs 

increased from P8 to P17 from 32 ± 1 pA (n=8) to 43 ± 4 pA (n=13) and from 36 

± 2 pA (n=8) to 40 ± 3 pA (n=24) in wt and CaV1.3-/- mice, respectively.  

Sample amplitude histograms of mEPSCs are shown in Fig. 10B for a P16 wt 

and a P15 CaV1.3-/- synapse. 
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These histograms have a single peak and display a similar distribution skewed 

towards larger amplitudes as shown in previous studies in rat MNTB neurons 

(Chuhma and Ohmori, 1998; Taschenberger and von Gersdorff, 2000; 

Yamashita et al., 2003). They present similar mean amplitudes of mEPSCs in 

both wt and CaV1.3-/- cells after the onset of hearing. Figure 10C summarizes 
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these results showing average cumulative amplitude distributions for P14-17 wt 

(black) and CaV1.3-/- (red) cells. The two distributions were similar, although 

CaV1.3-/- neurons seem to exhibit a slightly higher number of events with smaller 

amplitudes. Since the average mEPSC amplitudes were thus comparable for 

both groups, we estimated a 1.66 times larger average quantal content for 

eEPSCs in synapses of CaV1.3-/- P14-17 mice. 

We also observed a similar development in mEPSC decay kinetics.  Weighted 

decay time constants τm of mEPSCs decreased from 437 ± 49 µs to 412 ± 39 

µs and from 497 ± 51 µs to 389 ± 19 µs for wt and CaV1.3-/- mice, respectively 

(see also Koike-Tani et al., 2005). This result suggests that AMPA-receptor 

subunit composition may be unchanged in CaV1.3-/- principal cells. 

From P5 to P14, the time course of AP-evoked release speeds-up about 2-fold 

at the rat calyx of Held synapse (Taschenberger et al., 2005). For comparison, 

we next analyzed the time course of phasic AP-evoked release in P14-17 

mouse synapses (Fig. 11A).  

 
► Figure 11. Time course of phasic and asynchronous release 
A, Release time course (A2) during EPSCs evoked by afferent-fiber stimulation was estimated 

by deconvolving AMPA eEPSCs (A1) with mEPSC waveforms obtained from the same 

synapse. Illustrated are two representative recordings in a wt (P16, black) and a CaV1.3-/- (P16, 

red) mouse. A3, Average release functions obtained from 10 wt (black) and 9 CaV1.3-/- (red) 

mice plotted on a semi-log scale. Peak amplitudes of the release function were normalized and 

aligned at t = 0 ms before averaging. Only synapses with peak amplitudes ≤15 nA were 

included in this dataset to avoid complications due to non-linear summation of quantal currents 

because of receptor saturation. Except for a small deviation during the late phase (indicated by 

the arrow heads in A2 and A3), the kinetics of AP-evoked release in CaV1.3-/- mice were similar 

to that in P14-17 wt mice. Dotted line was fitted by eye and represents a single exponential 

decay with τ = 140 µs. B1, Asynchronous release after conditioning trains of 10 EPSCs (100 

Hz) in a P15 wt (black) and a P14 CaV1.3-/- (red) mouse. B2, Pooled data from 4 wt (black) and 

5 CaV1.3-/- (red) mice. Immediately after the conditioning trains, asynchronous release was 

transiently elevated. Peak release rates were on average nearly two times higher in CaV1.3-/- 

mice (61.1 ± 4.6 s-1 vs 32.7 ± 4.8 s-1) (p<0.05). 
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Deconvolution of AMPA eEPSCs with average single vesicle responses 

(mEPSCs) obtained from the same synapses was carried out in the frequency 

domain using FFT routines (Diamond and Jahr, 1995; Hefft and Jonas, 2005). 
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Such analysis implies that for single eEPSCs any current component activated 

by glutamate spillover is negligible at this age (but see Neher and Sakaba, 

2001a).  

With an average half-width of 263 ± 18 µs (n=10) and 253 ± 21 µs (n=9) for wt 

and CaV1.3-/- synapses, respectively, the kinetics of the release transient was 

considerably faster for P14-17 mouse calyx of Held synapses compared to 

values reported before for rat calyces at different developmental stages (Fig. 

11A3) (Bollmann et al., 2000; Schneggenburger and Neher, 2000; 

Taschenberger et al., 2005). 

Whereas rise and initial decay of the release transient were virtually 

indistinguishable between wt and CaV1.3-/- mice, we notice the presence of a 

late and more slowly decaying component in the latter. This additional slow 

release component is consistent with the slightly slower decay of EPSCAMPA in 

CaV1.3-/- mice (Table 1) and may reflect late release due to the broader calyceal 

APs (Fig. 8A). Alternatively, it may represent glutamate spillover caused by the 

higher average quantal content of eEPSCs in synapses of CaV1.3-/- mice (see 

below). 

As described above, we estimated the Ca2+ influx during single calyceal APs of 

CaV1.3-/- mice to be slightly larger compared with wt mice. During AP trains 

such elevated QCa may accumulate and, assuming similar Ca2+ buffering and 

extrusion kinetics in wt and CaV1.3-/- mice, result in higher residual Ca2+ levels 

in the latter. Asynchronous release driven by such temporarily elevated Ca2+ 

after high frequency stimulation may therefore differ between wt and CaV1.3-/- 

synapses. To evaluate this possibility we quantified the rates of asynchronously 

released quanta after 100 Hz trains consisting of 10 EPSCs (Fig. 11B). 
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Asynchronous release events following such stimulus trains were superimposed 

on a slowly decaying postsynaptic current component (Fig. 11B1). The latter 

could be fitted by a double-exponential function having a fast time constant of a 

few ms (wt: 5 ± 0.8 ms, CaV1.3-/-: 4 ± 0.4 ms) probably reflecting the slow 

component of AMPA EPSC decay and a slow time constant of several tens of 

ms (wt: 46 ± 5 ms, CaV1.3-/-: 30 ± 3 ms ) presumably reflecting the clearance of 

residual glutamate (Taschenberger et al., 2005) and/or deactivation of a small 

NMDA EPSC component. 

The frequencies of spontaneously occurring mEPSCs were comparable 

between synapses of wt and those of CaV1.3-/- mice (Table 1), but slightly 

higher than previously reported for P12-14 rats (Taschenberger et al., 2005). 

Consistent with the latter study, we found that asynchronous release after trains 

increased only little over the rate of spontaneous release in wt mice. In contrast, 

in synapses of CaV1.3-/- mice, asynchronous release increase transiently to a 

two fold higher average rate (Fig. 11B2) before quickly decaying back to the 

resting rate (decay time constant τdecay = 15 ± 3 ms and 22 ± 4 ms for wt [n = 4] 

and CaV1.3-/- [n = 5], respectively). This behavior is reminiscent of increased 

asynchronous release reported for endbulb synapses in the anteroventral 

cochlear nucleus of congenitally deaf mice (Oleskevich and Walmsley, 2002). 

 

3.6 Elevated release probability in calyx of Held synapses of 

CaV1.3-/- mice 

Higher quantal content observed for AP-evoked EPSCs in CaV1.3-/- synapses 

may be caused by an increased fraction (F) of readily releasable quanta 

consumed by a single AP and/or a larger total number of vesicles available for 

release (RRP). Presynaptic capacitance recordings yielded no evidence in favor 
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of the latter whereas the slightly broader AP waveform in CaV1.3-/- mice is 

consistent with an increased F (Fig. 8). We therefore sought to compare F 

between P14-17 synapses of wt and CaV1.3-/- mice. 

 

 

 
Figure 12. PPR estimates higher probability of release in CaV1.3-/- mice 
A, Paired pulse ratios for various inter-stimulus intervals (ISIs) of P14-17 synapses of wt (black) 

and CaV1.3-/- (red) mice. Representative recordings from a P16 wt (A1) and P16 CaV1.3-/- (A2) 

mouse are shown. B1, Scatter plot of PPRs vs. EPSC1 amplitude (ISI = 10 ms) for wt (red) and 

CaV1.3-/- mice, illustrating strong correlation between initial EPSC size and measured paired-

pulse depression (wt: n = 29, r = 0.649, p < 0.001, CaV1.3-/-: n = 22, r = 0.624, p = 0.002). B2, 
PPRs were generally smaller in CaV1.3-/- mice indicative of a higher release probability. With 

increasing ISIs, PPRs decreased in wt (n = 8, r = -0.771, p = 0.05) but increased in CaV1.3-/- 

(n=8, r = 0.924, p = 0.002) mice. Linear regressions in (B1) and (B2) are represented by the 

solid lines. 
 

Changes in F often correlate with changes in paired pulse ratio (PPR = 

EPSC2/EPSC1) (Debanne et al., 1996; Dobrunz and Stevens, 1997; Oleskevich 
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et al., 2000). For inter-stimulus intervals (ISIs) of 10 ms, we found a strong 

correlation between the size of EPSC1 and PPR among synapses from wt and 

CaV1.3-/- mice (Fig. 12B1). When measured for various ISIs (100 ms - 3.3 ms), 

PPRs were consistently lower in CaV1.3-/- synapses, indicative of higher F. In wt 

synapses, PPRs increased slightly from 0.75 to 0.92 with decreasing ISI 

presumably due to a facilitation of EPSC2. In contrast, PPRs declined with 

decreasing ISI in CaV1.3-/- synapses (from 0.64 to 0.49) perhaps because of 

AMPAR desensitization starting to contribute to the reduction of EPSC2 (Fig. 

12B2). 

Assuming that the measured paired-pulse depression resulted purely from 

vesicle depletion and neglecting other contributions that may affect PPR such 

as presynaptic facilitation and postsynaptic receptor desensitization, we can 

approximate F according to 

(1 )
t

F PPR e τ
Δ

= −  

where Δt represents the inter-stimulus interval and τ the time constant of 

recovery from vesicle depletion. Analyzing the PPRs obtained using ISIs of 100 

to 50 ms for which the contribution of postsynaptic receptor desensitization is 

expected to be small at this age (Taschenberger et al., 2005) and synaptic 

facilitation has decayed to a minimum, we obtained F = 0.24-0.19 and F = 0.33-

0.39 for wt (n = 9) and CaV1.3-/- (n = 9) synapses, respectively. A similar 

analysis carried out in P8-11 synapses yielded larger F estimates (0.44-0.46 

and 0.47-0.55 for wt [n = 12] and CaV1.3-/- [n = 7] synapses, respectively) 

consistent with a developmental decrease in release probability as reported for 

the rat (Iwasaki and Takahashi, 2001; Taschenberger et al., 2002). 
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We emphasize that these F values may represent upper limits if AMPAR 

desensitization contributed to the relative reduction of EPSC2 especially in 

CaV1.3-/- mice were M was high. Vesicle recruitment during the 33 - 50 ms ISI is 

negligible because after synaptic depression induced by conditioning 100 Hz 

trains we measured slow recovery time constants of 3-6 s (P8-11: 3.9 ± 0.3 s 

and 3.5 ± 0.4 s, P14-17: 5.9 ± 0.8 s and 3.4 ± 0.5 s for wt and CaV1.3-/- mice, 

respectively) throughout development (but see Joshi and Wang, 2002). 

Figure 13 show recovery from synaptic depression in P14-17 synapses of wt 

and CaV1.3-/- mice. A conditioning train of 15 stimuli at 100 Hz was followed by 

a single test pulse given at a variable time interval after the end of the stimulus 

train (Fig. 13A). A waiting period of 20 s plus the time interval was used 

between the single test pulse and a subsequent conditioning train. Notice the 

higher extent of synaptic depression (Fig. 13A), but faster vesicle replenishment 

(Fig. 13B) in CaV1.3-/- MNTB neurons. 

 

Vesicle release probability can also be calculated as the fraction of released 

vesicles by a single action potential from a total pool of available vesicles. In 

P14-17 synapses, where desensitization and AMPA-receptor saturation are 

negligible (Taschenberger et al., 2002; Yamashita et al., 2003; Taschenberger 

et al., 2005), the number of readily releasable vesicles, N, may be estimated  by 

summing up peak EPSC amplitudes during trains at high stimulation 

frequencies (Schneggenburger et al., 1999; Bollmann et al., 2000; 

Taschenberger and von Gersdorff, 2000; Iwasaki and Takahashi, 2001; 

Taschenberger et al., 2002). 
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Figure 13. Recovery from synaptic depression after 100 Hz trains is slightly faster in 
CaV1.3-/- mice 
A, Left, superimposed representative trains consisting of 10 EPSCs evoked by afferent fiber 

stimulation (100 Hz) in a P16 wt (black,A1) and a P14 CaV1.3-/- (red,A2) postsynaptic cells. 

Right, test EPSCs were evoked at different intervals (ranging from 1 s to 20 s) following a 

conditioning train (left). Representative traces of test EPSCs are shown in intervals of 1, 2, 4, 5, 

6 and 17 s for the same cells as in left panel. An inter-sweep interval of 20 s plus the test 

interval was sufficient to allow full recovery from synaptic depression. B, Recovery is expressed 

as (Itest) / (I1st)*100, where Itest is the peak amplitude of the test EPSCs and I1st is the peak 

amplitude of the first EPSC of the conditioning train. Recovery time course was fitted by single 

exponentials. Time constant of the fitted exponentials were faster in CaV1.3-/- than in wt 

synapses (see graph legend). Vh = -40 mV. 
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Figure 14A shows average cumulative plots of peak EPSC amplitudes for P8-11 

and P14-17 wt and CaV1.3-/- neurons, after afferent fiber stimulation at 100 Hz 

(15 stimuli). Cumulative plots were fitted with a line for the last three points 

(dotted lines) and back-extrapolated to 0 to estimate pool sizes. We obtained 

values of vesicle pool sizes proportional to -25.4 nA (1026 vesicles) and -30.2 

nA (1321 vesicles) for P14-17 wt and CaV1.3-/- mice, respectively. First EPSC 

amplitudes from the same trains used to build cumulative plots averaged -10.4 

nA and -15.8 nA for P14-17 wt and CaV1.3-/- cells. Therefore vesicle release 

probabilities resulted in values of 0.41 and 0.52 in P14-17 wt and CaV1.3-/- 

synapses, respectively.  

This analysis is similar to the one first applied in the neuromuscular junction by 

(Elmqvist and Quastel, 1965) (Fig. 14B). When EPSCs are plotted vs. 

cumulative release, an extrapolation of a line fitted to the first EPSC amplitudes 

in a train provides an estimate for the total amount of releasable quanta. For 

P14-17 wt and CaV1.3-/- cells, the estimates of N using the latter method were 

proportional to -32.6 nA (1317 vesicles) and -30.6 nA (1338 vesicles), 

respectively. This yielded values of Pves of 0.32 and 0.52 for wt and CaV1.3-/- 

neurons, respectively. Altogether, these results suggest an elevated vesicle 

release probability in calyces of CaV1.3-/- compared to wt mice. 

 

Increased release probability may also be associated with a faster progressive 

block of EPSCNMDA by the use-dependent NMDAR antagonist MK-801(Hessler 

et al., 1993; Rosenmund et al., 1993; Iwasaki and Takahashi, 2001; de Lange 

et al., 2003). 
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Figure 14. Estimates for pool size show comparable number of available vesicles 
A, Cumulative EPSC amplitudes of 100 Hz trains in P8-11 (open circles) and P14-17 (filled 

circles) wt (black) and CaV1.3-/- (red) mice were obtained by adding EPSC amplitudes to 

estimate change in vesicle pool sizes. Dotted lines represent linear fits to the last three EPSC 

amplitudes during the train, back-extrapolated to 0 to estimate the cumulative EPSC amplitudes 

before steady-state depression. B, Elmquist-Quastel plot for the same data as in A to estimate 

probability of release of a single quantum (Pves, see text). Line fit to the first three points; 

extrapolation to 0 nA of EPSC amplitude shows the initial vesicle pool size. Recordings were 

made at Vh = -40 mV. 

 

 

To corroborate a hypothesized higher release probability in CaV1.3-/- mice, we 

measured the blocking rate of NMDA EPSCs at Vh = 40mV and in the presence 

of 2 µM NBQX to completely abolish AMPA currents (Fig. 15). After acquiring 

control NMDA EPSCs, stimulation was stopped and 20 µM MK-801 were added 

to the bath. Stimulation was resumed about 2 min later. 
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During 0.1 Hz stimulation, EPSCNMDA declined exponentially in the presence of 

MK-801 with an average time constant of 139 ± 8 s in wt synapses and 98 ± 15 

s in CaV1.3-/- synapses (p < 0.05, Fig. 15A). Representative examples of NMDA 

EPSCs recorded in control ringer and after eliciting 12 presynaptic APs in MK-

801 containing bath solution are shown in Fig. 15B. Together with the 

decreased PPRs and estimates of pool size, these results support an elevated 

release probability in CaV1.3-/- synapses. 
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Mature calyx of Held synapses can reliably operate at frequencies of several 

hundreds of Hz (Wu and Kelly, 1993). A developmental reduction of F (Iwasaki 

and Takahashi, 2001; Taschenberger et al., 2002) seems to be beneficial in 

order to achieve such high transmission rates. 

When measuring eEPSC trains elicited by high-frequency stimulation (Fig. 16) 

we notice significantly stronger synaptic depression in CaV1.3-/- synapses. In 

contrast, synaptic depression was frequently converted to facilitation of the 

initial eEPSCs when stimulating wt synapses with frequencies of 100 Hz and 

above (compare Figs. 16A2 and B2). Average results for 7-10 wt and 8-12 

CaV1.3-/- synapses are illustrated in Fig. 16C. Both stimulation frequencies (30 

and 300 Hz) resulted in significantly stronger synaptic depression in synapses 

which developed in the absence of cochlea-driven afferent nerve activity. 

Steady state amplitudes (EPSCSS) obtained from the average of the last three 

EPSCs during the trains are plotted vs. stimulation frequency in Fig. 16D. 

EPSCSS declined much steeper with increasing stimulation frequency in CaV1.3-

/- compared with wt synapses. 

 

 
 

 
◄ Figure 15. Faster blocking time course of NMDA EPSCs by MK-801 suggests a higher 
probability of release in CaV1.3-/- mice 

A, NMDA EPSCs recorded at Vh = +40 mV (stimulation frequency 0.1 s-1) in the presence of 2 

µM NBQX to completely block AMPA currents. After a period of recording control EPSCs for 3 

min, stimulation was stopped and perfusion was switched to MK-801 (20 µM) containing bath 

solution. MK-801 was allowed to equilibrate in the recording chamber for 2 minutes before 

resuming fiber stimulation. The blocking time course was then recorded for another 15 min. 

Blocking was faster in the P16 CaV1.3-/- (red) compared with the P16 wt (black) mouse. Average 

values of the weighted time constants are compared in the inset bar graph. B, First and 12th 

NMDA EPSCs recorded during MK-801 application superimposed for comparison. Note the 

more complete block in the synapse from a CaV1.3-/- (red) compared with the wt (red) mouse.  
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◄ Figure 16. Stronger synaptic depression in CaV1.3-/- mice 

A,B, Trains of 15 EPSCs evoked by afferent-fiber stimulation in a wt (A) and a CaV1.3-/-. (B) 

mouse using stimulus frequencies of 30 Hz (A1,B1) and 300 Hz (A2,B2). Dotted lines in (A2) 

and (B2) represent baseline current (0 pA) and are shown to indicate a sustained eEPSC 

component which slowly developed during high-frequency trains and presumably reflects 

AMPAR and/or NMDAR activation by residual glutamate. C, Pooled data for wt (black, n= 7-10) 

and CaV1.3-/- (red, n= 8-12) mice. EPSC amplitudes were normalized to the peak amplitude of 

the initial eEPSCs. Note the stronger depression in CaV1.3-/- mice for both stimulus frequencies. 

D, Steady state EPSC amplitudes vs. stimulus frequency. In CaV1.3-/- mice, EPSCss was almost 

two-fold larger for low-frequency stimulation but declined more steeply with increasing 

frequency. EPSCss was estimated from the average amplitude of the last three EPSCs during 

the trains. 

 

 

3.7 Delayed down-regulation of synaptic NMDA receptors in 

CaV1.3-/- mice 

During early postnatal development of the rat and mouse calyx of Held 

synapse, NMDA EPSC (EPSCNMDA) amplitudes decrease steeply 

(Taschenberger and von Gersdorff, 2000; Futai et al., 2001; Joshi and Wang, 

2002). Since cochlear ablation retards this down-regulation (Futai et al., 2001), 

the latter process is likely to be, at least in part, controlled by cochlea-driven 

nerve activity. We therefore compared the properties of EPSCNMDA recorded 

before and after the onset of hearing in synapses of wt mice with those 

recorded in CaV1.3-/- mice (Fig. 17,18). 

Amplitudes of wt NMDA EPSCs decreased during development similarly as 

described before (from 6.34 ± 0.44 nA [n = 52] to 1.72 ± 0.23 nA [n = 50], Fig. 

17A,C) (Futai et al., 2001; Joshi and Wang, 2002) whereas in CaV1.3-/- mice 

their average amplitudes slightly increased (from 5.52 ± 0.46 nA [n = 17] to 6.10 

± 0.79 nA [n = 27]).  
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To test whether enhanced release can fully account for the larger EPSCNMDA 

size in CaV1.3-/- mice we measured EPSCNMDA/EPSCAMPA ratios in a subset of 

P14-17 synapses. This ratio was significantly higher (p < 0.001) in CaV1.3-/- 

mice suggesting differences in postsynaptic receptor expression (Fig. 17B).  

A small acceleration of the decay kinetics of NMDA EPSCs was seen in both 

groups during postnatal development from P8 to P17 (Fig. 17D). The decay of 

EPSCNMDA was ~25% faster at P14-17 (Table 1) compared with P8-11 (Table 2) 

(wt: 72 ± 4 ms, n = 52, CaV1.3-/-: 85 ± 5 ms, n = 17). 

In many central glutamatergic synapses, the relative loss of synaptic NMDARs 

correlates with changes in subunit expression (Williams et al., 1993; Monyer et 

al., 1994; Sheng et al., 1994; Shi et al., 1997; Liu et al., 2004). To test for such 

developmental regulation we made use of the NR2B subtype-specific NMDA 

antagonist ifenprodil (Williams, 1993; Tovar and Westbrook, 1999).  

 

 
 

 
◄ Figure 17. Delayed developmental decrease of NMDA EPSCs in CaV1.3-/- mice 
A, EPSCs recorded at Vh = +40 mV in MNTB synapses of wt (A1, black) and CaV1.3-/- (A2, red) 

mice before (broken lines) and after (solid lines) hearing onset. At P14, NMDA EPSCs were 

strongly reduced in synapses of wt but not in those of CaV1.3-/- mice. Pipettes were filled with 

CsCl-based solution containing 5 mM EGTA. A3, same traces after normalizing their AMPA 

EPSC peak amplitudes to compare NMDA/AMPA EPSC ratios. B, Average values of 

NMDA/AMPA EPSC ratios for P14-17 synapses were significantly larger in CaV1.3-/- mice (red). 

EPSC amplitudes were measured at Vh = -40 mV (EPSCAMPA) and Vh = +40 mV(EPSCNMDA). C, 
Scatter plot of EPSCNMDA vs. age. During development, NMDA EPSC peak amplitudes 

decreased strongly in synapses of wt (black) but not in those of CaV1.3-/- mice (red). EPSCNMDA 

was measured >10 ms after the AMPA EPSC peak when the fast EPSC component had 

decayed to <1% of its peak. At P14-17, average peak amplitudes of EPSCNMDA were more than 

three times larger in CaV1.3-/- (6.1 ± 0.79 nA, n = 27) compared with wt synapses (1.7 ± 0.23 nA, 

n = 50). D, Decay time constants of EPSCNMDA decreased slightly less in CaV1.3-/- than in wt 

mice during development. 
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As shown in Fig. 18A, the sensitivity of EPSCNMDA to ifenprodil (10 µM) 

decreased during development in wt synapses (from 30.6 ± 2.2% [n = 18] to 

17.2 ± 3.5% [n = 14] block, p < 0.01). In CaV1.3-/- mice, the average block by 

ifenprodil was slightly larger at P14-17 (38.2 ± 3.7%, n=7) compared with P8-11 

(29.5 ± 9.0%, n=4), although this increase was statistically not significant 

(p=0.32) (Fig. 18B).  
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Taken together these data suggest that afferent nerve activity promotes a 

preferential pruning of NR2B subunit-containing NMDARs from subsynaptic 

sites (Lindlbauer et al., 1998). This pruning process seems delayed in the 

absence of cochlea-driven afferent nerve activity. NR2A and NR2B subunits 

confer different kinetic properties to the NMDAR channel (Monyer et al., 1994; 

Takahashi et al., 1996). However, because of the almost similar developmental 

acceleration of the NMDA EPSC decay kinetics seen in both wt as well as 

CaV1.3-/- mice (Fig. 17D), it is more likely that the faster decay time constants 

measured in P14-17 synapses relate to the speed-up of transmitter clearances 

at the calyx of Held synapse (Taschenberger et al., 2005) rather than to 

changes in NMDAR subunit composition. 

 

 
 
 

 
 

 
 

 
◄ Figure 18. Persistent sensitivity of EPSCNMDA to the NR2B specific antagonist 
ifenprodil in synapses of CaV1.3-/- mice 
A, Inhibition by ifenprodil (10 µM) of NMDA EPSCs in wt synapses before (P8, open circles) and 

after (P15, filled circles) hearing onset. Individual traces recorded before and after drug 

application are shown superimposed in the right panel. Bath application of ifenprodil resulted in 

a robust decrease of NMDA EPSCs in P8-11 synapses of wt mice (inset, open bar, n = 18). The 

fractional block was largely reduced at P14-17 (inset, filled bar, n = 14). B, Similar experiments 

as illustrated in (A) in CaV1.3-/- mice (P9, open circles, P14, filled circles). In synapses from 

CaV1.3-/- mice, the sensitivity to ifenprodil persisted throughout development, suggesting 

expression of a larger fraction of NR2B subunit-containing NMDARs even at P14-17. Average 

block was 30% (inset, open bar, n = 4) and 38% (inset, filled bar, n = 7) for P8-11 and P14-17 

CaV1.3-/- mice, respectively. In all experiments illustrated in (A,B), the bath solution contained 2 

µM NBQX to completely block EPSCAMPA and Vh was +40 mV. 
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Table 1. Functional properties of synaptic transmission in P14-17 calyx of Held synapses of 

CaV1.3-/- compared to those of wt mice. Number of synapses tested is given in parenthesis. (n.s. 

= not significant; values are given as mean ± SEM) 

 

Parameter wt CaV1.3-/-  
calyceal ICa(V)    
amplitude (@ 0 mV) (nA) 1.20 ± 0.14 (9) 1.23 ± 0.08 (11) n.s. 
facilitation (@ 200Hz)    
   amplitude (%) 42.0 ± 6.2 (8) 33.0 ± 5.7 (9) n.s. 
   τfacilitation (ms) 9.7 ± 1.1 (8) 9.8 ± 2.0 (9) n.s. 

calyceal AP    
half-width (µs) 193.4 ± 8.9 (14) 222.1 ± 8.4 (16) p<0.05 
amplitude (mV) 139.4 ± 1.9 (14) 139.3 ± 3.0 (16) n.s. 

EPSCAMPA    
amplitude (nA) a 11.20 ± 0.79 (55) 17.20 ± 1.02 (50) p<0.001 
CV 0.080 ± 0.007 0.052 ± 0.006 p<0.05 
rise time (20-80%) (ms) b 0.14 ± 0.01 (17) 0.15 ± 0.01 (14) n.s. 
decay b    
   τfast (ms) 0.34 ± 0.02 (16) 0.37 ± 0.02 (14) n.s. 
   τslow (ms) 2.93 ± 0.27 (16) 2.63 ± 0.27 (14) n.s. 
   afast (%) c 95.8 ± 0.5 (16) 89.9 ± 1.4(14) p<0.01 
   weighted τm (ms) d 0.46 ± 0.03 (16) 0.57 ± 0.06 (14) p<0.05 
recovery time constant (s) e 5.9 ± 0.8 (8) 3.4 ± 0.5 (10) p<0.05 

mEPSC    
frequency (s-1) 11 ± 2 (17) 14 ± 1 (29) n.s. 
amplitude (pA) 43.3 ± 0.4 (13) 40.1 ± 0.3 (24) n.s. 
rise time (20-80%) (µs) 96.8 ± 4.9 (13) 88.8 ± 2.3 (24) n.s. 
decay time constant (ms)    

τfast 0.29 ± 0.02 (13) 0.25 ± 0.01 (24) n.s. 
τslow 1.53 ± 0.19 (13) 1.21 ± 0.09 (24) n.s. 
afast (%) c 88.1 ± 2.1 (13) 84.7 ± 0.9 (24) n.s. 
weighted τm (ms) d 0.41 ± 0.04 (13) 0.39 ± 0.02 (24) n.s. 

Quantal parameters    
F f 0.31 ± 0.04 (28) 0.50 ± 0.04 (24) p<0.01 
RRP f 1623 ± 147 (28) 1829 ± 423 (24) n.s. 

EPSCNMDA    
amplitude (nA) g 1.72 ± 0.23 (50) 6.10 ± 0.79 (27) p<0.001 
decay time constant (ms) g 51.8 ± 2.2 (49) 61.8 ± 3.8 (25) p<0.05 
EPSCNMDA/EPSCAMPA 

h 0.13 ± 0.02 (35) 0.33 ± 0.03 (24) p<0.001 
ifenprodil block (%) 17.2 ± 3.5 (14) 38.2 ± 3.7 (7) p<0.01 

 
a Measured at Vh = -40 mV; b measured at Vh = -70 mV; c Relative amplitude of the fast decay component; d weighted 

mean decay time constant τm = afast * τfast + aslow * τslow, where afast and aslow are the relative amplitudes of the fast and 

slow decay components, respectively; e time course of recovery from depression was estimated using conditioning 100 

Hz trains; f estimated from synaptic depression during 100 Hz trains (Taschenberger et al., 2002); g measured at Vh = 

+40 mV; h EPSCNMDA and EPSCAMPA were measured at Vh = +40 mV and Vh = -40 mV, respectively.
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Table 2. Although most synaptic properties were indistinguishable in P8-11 calyx of Held 

synapses of CaV1.3-/- compared to those of wt mice, AMPA EPSC amplitudes and probability of 

release were significantly different. Number of synapses tested is given in parenthesis. (n.s. = 

not significant; values are given as mean ± SEM) 

 

Parameter wt CaV1.3-/-   
calyceal AP    
half-width (µs) 331.3 ± 13.6 (5) 338.4 ± 26.9 (8) n.s. 
amplitude (mV) 132.7 ± 1.3 (5) 133.9 ± 3.1 (8) n.s. 

EPSCAMPA    
amplitude (nA) a 5.02 ± 0.40 (53) 6.84 ± 0.64 (27) p<0.05 
CV 0.060 ± 0.008 0.077 ± 0.019 n.s. 
rise time (20-80%) (ms) b 0.23 ± 0.01 (14) 0.20 ± 0.01 (9) n.s. 
decay b    
   τfast (ms) 0.82 ± 0.10 (13) 0.74 ± 0.10 (9) n.s. 
   τslow (ms) 4.50 ± 0.64 (13) 4.28 ± 0.89 (9) n.s. 
   afast (%) c 78.7 ± 1.3 (13) 80.8 ± 2.1(9) n.s. 
   weighted τm (ms) d 1.50 ± 0.21 (13) 1.33 ± 0.30 (9) n.s. 
recovery time constant (s) e 3.9 ± 0.3 (8) 3.46 ± 0.4 (6) n.s. 

mEPSC    
frequency (s-1) 11 ± 3 (8) 14 ± 3 (8) n.s. 
amplitude (pA) 32.1 ± 0.1 (8) 35.9 ± 0.2 (8) n.s. 
rise time (20-80%) (µs) 92.2 ± 4.6 (8) 96.1 ± 5.6 (8) n.s. 
decay time constant (ms)    

τfast 0.26 ± 0.02 (8) 0.32 ± 0.02 (8) n.s. 
τslow 1.44 ± 0.19 (8) 2.03 ± 0.50 (8) n.s. 
afast (%) c 84.9 ± 1.5 (8) 88.3 ± 1.8 (8) n.s. 
weighted τm (ms) d 0.44 ± 0.05 (8) 0.50 ± 0.05 (8) n.s. 

Quantal parameters    
F f 0.56 ± 0.03 (35) 0.72 ± 0.04 (13) p<0.05 
RRP f 628 ± 66 (35) 577 ± 55 (13) n.s. 

EPSCNMDA    
amplitude (nA) g 6.34 ± 0.44 (52) 5.52 ± 0.46 (17) n.s. 
decay time constant (ms) g 72.0 ± 3.6 (52) 84.9 ± 4.8 (17) n.s. 
EPSCNMDA/EPSCAMPA 

h 1.29 ± 0.08 (41) 0.75 ± 0.06 (17) p<0.001 
ifenprodil block (%) 30.6 ± 2.2 (18) 29.5 ± 9.0 (4) n.s. 

 
a Measured at Vh = -40 mV; b measured at Vh = -70 mV; c Relative amplitude of the fast decay component; d weighted 

mean decay time constant τm = afast * τfast + aslow * τslow, where afast and aslow are the relative amplitudes of the fast and 

slow decay components, respectively; e time course of recovery from depression was estimated using conditioning 100 

Hz trains; f estimated from synaptic depression during 100 Hz trains (Taschenberger et al., 2002); g measured at Vh = 

+40 mV; h EPSCNMDA and EPSCAMPA were measured at Vh = +40 mV and Vh = -40 mV, respectively.
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4 DISCUSSION 
 

The principle aim of this study was to compare the in-vivo maturation of a large 

glutamatergic CNS synapse, the calyx of Held, developing in the presence of 

normal (wt mice) or greatly reduced (CaV1.3-/- mice) levels of physiological 

afferent nerve activity. Such comparison allowed us to identify if previously 

described developmental changes in the functional properties of this synapse 

arise from intrinsic maturation processes or whether they are driven by afferent 

nerve activity.  

We choose the CaV1.3-/- mouse model to address this question because: (1) 

CaV1.3-/- mice are deaf due to a complete absence of L-type Ca2+ currents in 

cochlear IHCs (Platzer et al., 2000; Brandt et al., 2003). (2) On the level of light 

microscopy, the morphology of IHCs and spiral ganglion cells seems to be 

preserved at least up to P14 and no gross disturbances in vestibular function 

and structure were found up to P35 (Platzer et al., 2000; Dou et al., 2004). (3) 

Glutamate release at later synapses along the auditory pathways is triggered by 

N-, P/Q-, and R-type Ca2+ channels (Iwasaki and Takahashi, 1998; Wu et al., 

1998; Oleskevich and Walmsley, 2002) and does not rely on the expression of 

the L-type CaV1.3 subunit (Fig.6).  

 

Our main findings of the analysis of presynaptic properties and synaptic 

transmission in CaV1.3-/- mice indicate similar properties of the exocytotic 

machinery but enhanced synaptic strength due to an elevated release 

probability and a delayed down regulation of synaptic NMDARs. 
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A straightforward approach to gain insight into the role of physiological nerve 

activity in regulating transmission at the calyx of Held synapses is to silence all 

auditory nerve input by cochlear ablation (Futai et al., 2001). However this 

approach suffers from the limitations that cochlear removal in young animals 

induces extensive axonal rewiring and a variety of trans-neuronal degenerative 

effects within the auditory brainstem (Hashisaki and Rubel, 1989; Russell and 

Moore, 1995). We therefore choose a different approach by making use of the 

fact that Ca2+ channels governing transmitter release in IHCs are distinct from 

those found at higher synapses along the auditory pathways. 

 

We compared transmission at calyx of Held synapses in wt and CaV1.3-/- mice 

assuming that the latter develop in the presence of greatly reduced levels of 

afferent nerve activity. Is this assumption justified? 

Sound-evoked auditory brainstem responses are missing in CaV1.3-/- mice 

(Platzer et al., 2000). However, some neurons of the ventral cochlear nucleus 

exhibit high spontaneous discharge rates even in the absence of sound. 

Average spontaneous discharge frequencies correlate with the characteristic 

frequency of the respective cells (Pfeiffer and Kiang, 1965; Friauf and Ostwald, 

1988; Smith et al., 1991; Kopp-Scheinpflug et al., 2003).  

It is not certain whether intact transmission at the IHC-spiral neuron synapse is 

absolutely required for spontaneous activity at the level of the VCN. However, 

most of it appears to be cochlea-driven because almost all activity in the VCN 

disappears immediately after cochlear destruction (Koerber et al., 1966). Very 

little is known about spontaneous activity in the rodent auditory pathway before 

hearing onset. At this age, cochlear IHCs spontaneously generate Ca2+ APs 

(Kros et al., 1998; Glowatzki and Fuchs, 2000) which trigger glutamate release 
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(Beutner and Moser, 2001) and possibly AP firing in the auditory nerve. Since 

sound-evoked activity as well as spontaneous activity before hearing onset and 

possibly also thereafter rely on intact glutamate release from cochlear IHCs, it is 

highly likely that the levels of afferent nerve activity as well as their temporal 

pattern differ greatly between calyx of Held synapses of wt and CaV1.3-/- mice. 

 

4.1 Synaptic transmission is intact in mature CaV1.3-/- calyx of 

Held-MNTB synapses 

The large size of the calyx of Held allows it to harbor hundreds of active zones 

and thus a single presynaptic AP releases hundreds of quanta, generating a 

large EPSC that rapidly depolarizes the MNTB neuron to firing threshold (Fig. 

4A,B). In addition to the calyceal input, principal cells receive also conventional 

excitatory and inhibitory synapses (Forsythe and Barnes-Davies, 1993a; 

Hamann et al., 2003), which may generate small EPSPs and IPSPs in MNTB 

neurons (Fig. 4C). In some recordings we observed that small EPSPs can 

depolarize the MNTB principal neuron close to firing threshold and occasionally 

even trigger postsynaptic APs (Fig. 4A, arrows), in addition to the one evoked 

by the calyx of Held. During trains of afferent fiber stimulation, EPSC 

depression (due to vesicle pool depletion or desensitization of postsynaptic 

AMPA receptors) translates into depression of EPSPs. The latter effect causes 

variability in the time at which AP threshold is reached, producing jitter in the 

timing of action potential firing (Chuhma and Ohmori, 1998; Taschenberger and 

von Gersdorff, 2000; Brenowitz and Trussell, 2001). At 20 Hz stimulation, we 

observed a mild effect of these phenomena in CaV1.3-/- mice (Fig. 4A, right 

panel). 
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We then asked how reliably CaV1.3-/- calyces would respond to high-frequency 

stimulation, i.e. if they would fire an AP per each stimulus given. No significant 

differences in presynaptic AP failures were found in CaV1.3-/- compared to wt 

terminals (Fig. 5). These results suggest that the mechanisms of basal synaptic 

transmission are unchanged in CaV1.3-/- mice and that CaV1.3-/- calyces are as 

reliable as wt presynaptic terminals. 

 

4.2 Developmental refinement of presynaptic properties in the 

absence of afferent nerve activity 

Our data indicate that some developmental refinement of presynaptic properties 

occurs irrespective of the presence or absence of cochlea-driven nerve activity. 

In P14-17 terminals for example, calyceal APs in both wt and CaV1.3-/- mice 

were significantly faster than those recorded in younger mice (Fedchyshyn and 

Wang, 2005) and rats (Taschenberger and von Gersdorff, 2000).  

In developing rat calyces, the amplitude of ICa(V) increases and Ca2+ channels 

differ between immature and mature calyces not only regarding their subtypes 

(Iwasaki and Takahashi, 1998) but probably also in their spatial distribution 

relative to the release sites. The removal of distant Ca2+ channels (Fedchyshyn 

and Wang, 2005) probably results in a more efficient exocytosis (ΔCm/QCa) by a 

factor of ~1.6 from P5 to P14 (Taschenberger et al., 2002). Evidence obtained 

from EM analysis as well as presynaptic Cm recordings and analysis of synaptic 

depression during high-frequency trains at various stages of development 

further suggest that the RRP increases in the rat calyx of Held (Iwasaki and 

Takahashi, 2001; Meyer et al., 2001; Satzler et al., 2002; Taschenberger et al., 

2002).  
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In the present study, presynaptic Ca2+ currents were indistinguishable between 

wt and CaV1.3-/- mice at P14-17 (Fig. 6). Moreover, neither ΔCm/QCa ratios nor 

RRP size estimates based on amplitudes of capacitance jumps (Fig. 7) or 

eEPSC recordings (Fig. 14 and Table 1) were different between wt and CaV1.3-/- 

mice at this age.  

Considering its extensive developmental refinement it seems surprising that the 

presynaptic release machinery of the calyx terminal is rather robust and many 

functional properties are little affected by chronic changes of activity levels. 

 

4.3 The level of afferent nerve activity regulates release 

probability 

Using a similar approach as applied before to the neuromuscular junction 

(Elmqvist and Quastel, 1965; Christensen and Martin, 1970) we estimate that F 

drops from 0.56 to 0.31 in wt and from 0.72 to 0.50 in CaV1.3-/- mice (Fig. 14). 

These values are comparable to estimates based on measured PPRs (Fig. 12) 

which also indicated a decreasing F. A relatively low release fraction in P14-17 

calyx synapses is further suggested by presynaptic ΔCm recordings which 

showed that single AP-like depolarizations released only a small fraction of the 

available vesicles (Fig. 7).  

These results are similar to those previously published at the rat calyx of Held 

(Iwasaki and Takahashi, 2001; Taschenberger et al., 2002) and other central 

glutamatergic synapses (Muller et al., 1989; Bolshakov and Siegelbaum, 1995; 

Reyes and Sakmann, 1999; Brenowitz and Trussell, 2001). These studies also 

showed a decreasing release probability during postnatal development. In 

contrast, relatively high release probability was recently reported for P12 
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calyces of mice (Oleskevich et al., 2004; Youssoufian et al., 2005). However, 

the experimentally measured average eEPSC amplitudes in those studies are 

difficult to reconcile with the product Npq using their estimates for the respective 

quantities.  

A key conclusion in this study is that, regardless of the method applied to 

determine F, we always estimated its value to be higher in CaV1.3-/- compared 

with wt mice. Interestingly, this also holds for P8-11 synapses (Table 2) 

suggesting a possible role of cochlea-driven spontaneous nerve activity in 

regulating F. Another alternative explanation is that differences may arise at this 

age because some P11 pups already could experience evoked auditory activity. 

The latter would accentuate a difference in F due to a decrease of release 

probability driven by afferent activity in P11 wt synapses. 

We then asked for the underlying mechanism of a higher release probability in 

CaV1.3-/- synapses. Presynaptically, modulation of the release probability during 

development may be mediated by changes in AP waveform, Ca2+ channel 

conductance and/or Ca2+ channel number, Ca2+ ions sensitivity of the Ca2+ 

sensor coupled to vesicle fusion, and extrusion and/or equilibrium of Ca2+ by 

presynaptic Ca2+ buffers. Here, we report no differences in presynaptic Ca2+ 

currents amplitude and facilitation, or in the efficiency of Ca2+-mediated vesicle 

exocytosis. Thus, our results suggest that Ca2+ channel population and the 

machinery of release coupled to Ca2+ influx are unchanged in CaV1.3-/- 

compared to wt terminals. 

An unexpected finding of this study was the slower presynaptic AP waveform in 

CaV1.3-/- compared with wt mice (Fig. 8). During normal development, calyceal 

APs exhibit a shortening in their half widths from around 400 µs to 200 µs 

before and after the onset of hearing (P12-13), respectively (Taschenberger 
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and von Gersdorff, 2000; Taschenberger et al., 2002; Dodson et al., 2003). Our 

observations suggest that in presynaptic terminals developing in the absence of 

evoked afferent activity, this acceleration in the AP time-course is not complete 

as compared to wt mice.  

This difference may be linked to changes in the expression or modulation of 

voltage-gated K+ channels of the Kv3 type. These channels  are generally 

associated with high frequency AP firing and mediate rapid spike repolarization 

in many areas of the CNS (Rudy and McBain, 2001). Furthermore, it has been 

shown that blocking Kv3 currents with low concentrations (1-3 mM) of 

tetraethylammonium (TEA) increases AP duration (Wang and Kaczmarek, 

1998).  

Previous studies showed that activity-dependent changes in Kv3 channel 

activity are mediated by channel phosphorylation by casein kinase II (Macica 

and Kaczmarek, 2001) and protein kinase C (Macica et al., 2003). In MNTB 

neurons, there is a high basal phosphorylation at ser503 of Kv3.1b decreasing 

the postsynaptic K+-current amplitude. Interestingly, high-frequency acoustic 

stimulation can rapidly modulate the firing pattern of these postsynaptic cells by 

dephosphorylating voltage-gated K+ channels (Song et al., 2005). And given the 

broad distribution of phosphorylated- Kv3.1b in both postsynaptic and 

presynaptic compartments of the calyx of Held-MNTB synapse (Song et al., 

2005), Kv3.1b modulation may also occur in the presynaptic terminal. Moreover, 

another study reported that the tonotopic organization of MNTB principal 

neurons with respect to their expression of voltage-gated K+ channels is 

disrupted in congenitally deaf mice (Leao et al., 2006). This observation further 

supports the idea that voltage-gated K+ channel expression could be regulated 

by afferent nerve activity. 
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In conclusion, our results suggest that the presynaptic AP time-course is 

regulated, at least in part, by afferent activity during development. Thus, based 

on previous evidence obtained in rat calyces (Borst and Sakmann, 1998a, 

1999; Taschenberger and von Gersdorff, 2000), our own modeling (Fig. 8) and 

because of the similar Ca2+ influx (Fig.6) and ΔCm/QCa ratios (Fig. 7), we 

consider it likely that the difference in presynaptic AP waveform between wt and 

CaV1.3-/- mice represents the main mechanism underlying the higher release 

probability in the latter.  

 

A wider AP waveform will increase the amount of Ca2+ ions that will flow into the 

presynaptic terminal. In the present study, an augmented presynaptic Ca2+ 

influx is further suggested by an increased asynchronous release rate after train 

stimulation in CaV1.3-/- mice (Fig. 11B). Previous studies have shown that 

asynchronous release is primarily related to the build up of intracellular Ca2+ 

during repetitive stimulation. For instance, asynchronous release rates in 

response to trains of action potentials are reduced by the application of calcium 

buffers at the calyx synapse (Chuhma et al., 2001; Oleskevich and Walmsley, 

2002) and in hippocampal cultures (Hagler and Goda, 2001; Otsu et al., 2004). 

The latter supports the idea that elevated presynaptic Ca2+ transients would 

lead to a higher number of delayed miniature events.   

Likewise, the replenishment of synaptic vesicles after high frequency stimulation 

is accelerated in the presence of high intracellular Ca2+ concentration. Our 

results showed an accelerated recovery from depression in CaV1.3-/- mice (Fig. 

13, Table 1), consistent with wider presynaptic APs leading to an elevated intra-

terminal Ca2+ concentration. Interestingly, Wang and Kaczmarek (1998) 

reported that vesicle turnover was faster after application of the K+ channel 
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blocker TEA, which widens presynaptic action potential waveform and thus 

increases Ca2+ influx. The authors concluded that elevated Ca2+ entry during 

repetitive firing of action potentials is the key element that enhances the 

replenishment. 

In conclusion, our results showing a higher asynchronous release rate (Fig. 11) 

and a faster vesicle replenishment (Fig. 13), further support the finding of wider 

presynaptic APs leading to an increased Ca2+ influx in CaV1.3-/- synapses  

 

Presynaptic mechanisms responsible for an up-regulation of synaptic strength 

in response to synaptic disuse have been described for other auditory synapses 

before. At endbulb synapses of the mouse VCN, release probability and a 

higher asynchronous release rate are increased after chronic reduction in 

activity levels (Oleskevich and Walmsley, 2002). Our study is in close 

agreement with the latter work, which also suggests a higher intracellular Ca2+ 

concentration in endbulb calyces of deaf mice. Oleskevich et al. (2002) 

proposed that endogenous calcium buffering may be impaired or 

underdeveloped in presynaptic terminals of deaf mice, as the difference in 

release probability can be reversed by the addition of EGTA-AM (a membrane 

permeable intracellular calcium buffer) (Oleskevich and Walmsley, 2002). 

However, since presynaptic properties were not directly measured at endbulb 

calyces, the underlying mechanism for a higher release probability remains 

unclear in the VCN of deaf mouse. It is possible that a similar effect of wider 

APs leading to higher Ca2+ influx may occur at the endbulb presynaptic 

terminals, accounting at least in part, for the increased vesicle release 

probability. 

On the other hand, previous studies using congenitally deaf mice demonstrated 
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that the development of synaptic strength is not affected by auditory nerve 

activity at the calyx of Held-MNTB synapse (Oleskevich et al., 2004; 

Youssoufian et al., 2005). One explanation for the conflicting results with the 

present study is the age window when the measurements were made (until P14 

or even earlier). In contrast, we recorded properties of pre- and postsynaptic 

transmission until 17 days after birth, considerably after the onset of hearing 

period (P12-13). 

 

4.4 Postsynaptic AMPA and NMDA receptors show different 

sensitivity to chronic changes in afferent nerve activity 

4.4.1 AMPA receptors are not affected by reduced levels of activity 

The strengthening of AMPA transmission at calyx synapses developing in the 

absence of cochlea-driven nerve activity was mainly due to increased glutamate 

release. In CaV1.3-/- mice, AMPA-receptor mediated EPSCs were on average 

54% larger than in wt animals (Fig. 9). This result is in close agreement to the 

relative increase in eEPSC amplitudes predicted from measured presynaptic 

APs (see results, Fig. 8). This similarity further supports the idea that EPSCAMPA 

is larger in CaV1.3-/- mice due to a presynaptic change in AP waveform. 

Amplitudes of mEPSCs were unaffected by the lack of afferent nerve activity 

during development (Fig 10). Moreover, we observed a similar developmental 

acceleration of mEPSC and eEPSC decay kinetics in wt and CaV1.3-/- mice. 

Assuming that these changes reflect differences in AMPAR subunit composition 

(Joshi et al., 2004) we may conclude that at the calyx of Held, the 

developmental regulation of postsynaptic AMPAR expression is largely 

unaffected by the level of afferent nerve activity. 
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4.4.2 NMDA receptors are regulated by afferent nerve activity 

A common feature of many forms of synaptic plasticity is an alteration in the 

number or complement of NMDA-type glutamate receptors (Rao and Craig, 

1997; Quinlan et al., 1999b; Watt et al., 2000). The present study shows that, in 

contrast to the developmental profile of AMPARs in deaf animals, the down 

regulation and the developmental switch in subunit expression for synaptic 

NMDARs seems to be at least partly activity-dependent because it is delayed in 

the absence of cochlea-driven nerve activity (Fig. 17).  

Recent studies at central glutamatergic synapses have shown that, activity-

dependent alterations in NMDA receptor trafficking, may account for changes in 

number and subunit composition of NMDA-receptors (Perez-Otano and Ehlers, 

2005). For example, it has been suggested that visual experience, olfactory 

learning and auditory activity increase the proportion of NR2A-containing 

receptors at central synapses (Quinlan et al., 1999a; Quinlan et al., 1999b; 

Futai et al., 2001) and thus shortens the duration of NMDAR currents (Flint et 

al., 1997; Stocca and Vicini, 1998). Conversely, visual deprivation and deafness 

slow or reverse the switch from NR2B to NR2A (Futai et al., 2001; Philpot et al., 

2001). One explanation for the latter findings may be that, although synaptic 

insertion of NR2B-containing receptors is constitutive and does not require 

synaptic activity, their replacement by NR2A-containing receptors is use 

dependent (Barria and Malinow, 2002).  

Interestingly, activity also alters the expression of scaffolding proteins that 

provide anchors for these receptors. For instance, the levels of PSD-95, which 

preferentially binds NR2A subunits, are regulated during development (Sans et 

al., 2000), and experience rapidly increases dendritic PSD-95 expression in 

visual pathways (Townsend et al., 2003).  
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Our results compare well to those obtained in the above mentioned studies 

using different model synapses, suggesting that NMDA receptor expression and 

composition are generally regulated by nerve activity. However, the 

mechanisms by which these modifications occur at the calyx of Held synapse 

remain to be clarified. On the other hand, the beginning  decrease of NMDAR 

subunit proteins before onset of hearing suggest the involvement of additional 

regulatory mechanisms, distinct to afferent nerve activity (Futai et al., 2001). 

 

4.5 Comparison to in vitro studies 

Our observations from mice developing in the absence of auditory activity, 

suggested changes in presynaptic AP waveform as well as postsynaptic 

delayed down regulation and subunit switching of NMDA receptors. During 

maturation of MNTB neurons, we did not detect modifications in the number or 

composition of AMPAR, suggesting that presynaptic and postsynaptic 

properties are not homogeneously affected by the lack of cochlea-driven 

activity. In this section we compare our results with several proposed 

mechanisms underlying homeostatic plasticity in cultured cortical neurons 

(Turrigiano and Nelson, 2004). 

Upon pharmacological silencing using TTX, cultured glutamatergic hippocampal 

synapses responded with an upregulation of the RRP size  together with an 

increase in synapse dimensions (Murthy et al., 2001). The latter study indicates 

that changes in presynaptic properties contribute to homeostatic synaptic 

plasticity in central neurons. The authors showed that active zone size and the 

number of docked vesicles per active zone are increased after 2-5 days of 

activity blockade. In addition, the size of the recycling vesicle pool is also 

increased during chronic TTX application. In contrast, our results provided no 
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evidence for an increased RRP but suggested an elevated release probability. 

On the other hand, silencing synaptic activity in cultured cortical networks with 

TTX or glutamate receptor antagonists resulted in larger quantal amplitudes 

(Turrigiano et al., 1998; Leslie et al., 2001). For the calyx of Held such rule does 

not seem to apply because AMPA mEPSCs increased similarly in amplitude 

during development in both wt and CaV1.3-/- mice (Fig. 10). 

Discrepancies with our study may be further accentuated because our model is 

at the single synapse level; each postsynaptic cell receives only one large 

presynaptic input. Thus, fluctuations in the level of afferent activity will only 

affect a unitary synaptic connection. For cultured hippocampal neurons or 

cortical neuronal networks in vivo, the problem is much more complex. These 

neurons integrate connections from hundreds or thousands of presynaptic 

inputs and form an intricate system that may be regulated differently depending 

on how activity is modulated (blocked or enhanced). 

For instance, AMPAR blockade in hippocampal cultures during postnatal 

development increases both the frequency and amplitude of mEPSCs 

(Thiagarajan et al., 2002). In contrast, lowering activity in individual 

hippocampal neurons by expression of an inward rectifier (Kir) potassium 

channel produced a small increase in mEPSC frequency but no change in 

amplitude (Burrone et al., 2002). These examples further suggest that the 

compensatory mechanisms activated by lowering activity in individual neurons 

are distinct from those engaged by lowering network activity (Turrigiano and 

Nelson, 2004). 

 

In addition, the locus of expression (whether it is presynaptic or postsynaptic) of 

homeostatic plasticity seems to depend on different developmental stages 
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(Wierenga et al., 2006). Moreover, many forms of cortical plasticity have critical 

periods during which sensory experience can alter circuit properties, but outside 

of which sensory experience has little or no effect (Turrigiano and Nelson, 

2004). For example, synaptic scaling in the visual cortex is developmentally 

regulated. Two days of monocular deprivation beginning at P14 (immediately 

before eye opening) scales up mEPSC amplitudes onto principle neurons (star 

pyramids) in layer 4, but the same treatment has no effect when begun at P21. 

By contrast, mEPSC onto layer 2/3 pyramidal neurons were unaffected by 

monocular deprivation beginning at P14, but were scaled up by monocular 

deprivation beginning at P21 (Guire et al., 1999). These data indicate that the 

sites of homeostatic plasticity could migrate to different cortical layers in an age-

dependent manner. These critical periods may also apply to changes in 

synaptic strength at the individual synapse level. The opposing results between 

our study (CaV1.3-/-, P8-P17) and using congenitally deaf mutant mice (dn/dn) 

as a model (Oleskevich et al., 2004; Youssoufian et al., 2005), suggest that the 

site for homeostatic plasticity in the auditory pathway may also shift in an age-

dependent manner. 

We conclude that different rules may apply for homeostatic regulation of 

synaptic strength at different glutamatergic synapses. These rules seem to 

depend on the type of experimental preparation, the observed developmental 

stage and the means by which afferent nerve activity is suppressed. 

 

This and other studies leave several open questions. For instance, how 

changes in activity are read out by the molecular machinery; and what 

intracellular signal transduction cascades generate global changes in synaptic 

strength. Even when the mechanisms that determine plasticity are more 
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sophisticated and diverse than previously thought, it would be of great insight to 

correlate these physiological findings to the cell biological and molecular level. 
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5 SUMMARY 

We studied how afferent nerve activity affects the in-vivo maturation of a fast 

glutamatergic CNS synapse, the calyx of Held. To address this question we 

exploited the distinct presynaptic Ca2+ channel subtypes governing transmitter 

release at the cochlear inner hair cell (IHC)-spinal neuron synaptic junction 

compared to those at higher synapses along the auditory pathways. We 

characterized functional properties of calyx synapses in wildtype (wt) compared 

to those developing in CaV1.3 subunit-deficient (CaV1.3-/-) mice. The latter are 

deaf because of absence of glutamate release from IHC and degeneration of 

primary afferents and thus completely lack cochlea-driven nerve activity. Ca2+-

channel properties, Ca2+ dependence of exocytosis, number of readily 

releasable quanta and AMPA mEPSCs were unchanged in P14-17 calyx 

synapses of CaV1.3-/- mice. However, synaptic strength was augmented 

because presynaptic action potentials were broader leading to increased 

quantal release, consistent with lower paired-pulse ratios and stronger 

depression during repetitive synaptic stimulation. Furthermore, asynchronous 

release following trains was elevated presumably because of higher residual 

Ca2+ accumulating in the presynaptic terminals. Finally, we measured larger 

NMDA EPSCs with higher sensitivity to the NR2B subunit-specific antagonist 

ifenprodil in P14-17 synapses of CaV1.3-/- compared to wt mice. These results 

suggest that auditory activity is required for the adjustment of synaptic strength 

as well as for the down regulation of synaptic NMDARs during postnatal 

development of the calyx of Held. In contrast, properties of the presynaptic 

release machinery and postsynaptic AMPARs are unaffected by chronic 

changes in the level of afferent activity at this synapse. 
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