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Abstract

We present ab initio transition density cube (TDC) calculations of the coulombic couplings between chlorophyll and carotenoid pig-
ments in the major light-harvesting complex of photosystem II (LHC II) based on the 2.72 A structure [Liu et al., Nature 428(2004) 287—
292]. A comparison with couplings calculated by the ideal dipole approximation (IDA) demonstrate that for inter-pigment distances of
less than ~25 A the IDA-values can deviate by up to one order of magnitude from the exact values calculated by the TDC-method. The
largest deviations are observed for interactions involving Q, states because of a significant multipole character of the corresponding Q.

transitions.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The most abundant pigment-protein complex in the
photosynthetic apparatus of plants and green algae is the
major light-harvesting protein LHC II of photosystem II.
This pigment—protein complex probably collects more than
the half of the light which is used for photosynthesis [1,2].
In 1994, Kiihlbrandt and co-workers presented the first
crystal structure of LHC II with a resolution of 3.4 A [3].
In this crystal structure 12 chlorophylls and 2 carotenoids
were fully resolved. However, at this level of resolution it
was not possible to determine which site was occupied by
Chl a or Chl b. In addition, no determination of the posi-
tion of the phytyl-chains and thus of the direction of the
transition dipole moments of Q, and Q, was possible.
Without this information calculations of the energy trans-
fer rates and potential, excitonic couplings between the pig-
ments remained somewhat speculative [4-7].
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However, in 2004, Liu et al. published a new crystal
structure of the LHC II trimer of spinach at a resolution
of 2.72 A [8]. In this structure 14 chlorophylls per monomer
could be resolved of which 8 are clearly assigned as Chl a
and 6 as Chl b. A year later, Kiihlbrandt and co-workers
obtained a crystal structure of LHC II from pea at a reso-
lution of 2.5 A [9]. Because of the better resolution in both
structure models the orientation of all pigments could
clearly be assigned.

Consequently, several groups have started to use the new
structures for a much better theoretical description of the
energy pathways in LHC II and to compare them with
experimental results [10-20]. Novoderezhkin et al. simu-
lated the spectroscopic properties of LHC II by using exci-
ton theory [21]. To match the theoretical results with
experimental data the diagonal elements of the Hamilto-
nian (site energies of the Q, states) were varied while the
off-diagonal elements (pigment—pigment couplings) were
calculated using the ideal dipole approximation (IDA). This
study [21], unravelled important details about the excitonic
structure and important energy pathways in LHC II. How-
ever, the IDA usually breaks down for small distances
between pigments because local interactions of the wave
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functions become important. An approach to overcome
this problem has been reported by Linnanto et al. [22]. In
this report [22], the site energies of the chlorophylls and
the pigment-pigment couplings of those pairs with a dis-
tance of less than 15 A have been calculated using the
semi-empirical ZINDO CIS method. Nevertheless, a corre-
sponding calculation on the ab inito level would exceed the
capacity of modern computational facilities. In this context
the transition density cube (TDC) method has been devel-
oped by Krueger et al. which calculates coulombic interac-
tions based on three-dimensional transition densities
obtained from ab initio methods [23-25]. This approach
yielded excellent agreement with experimental results for
the bacterial light-harvesting complex LH 2 of Rps. acido-
phila [23,26,27].

Here, we present a refined calculation of the inter-pig-
ment couplings in LHC II based on the TDC method.
For the calculation the high resolution crystal structure
reported by Liu et al. was used [8]. A comparison of
the couplings calculated by the TDC method with cou-
plings calculated using the IDA demonstrate that this
approximation cannot be used for pigment-pigment cen-
ter to center distances of less than about 25 A. In addi-
tion, we also calculated couplings involving the allowed
second excited S, state of the carotenoids from the new
structure of LHC II and considered explicitly the Q.
band of the Chl molecules. These calculated couplings
provide an improved basis for a future calculation of
the energy path ways and exciton states including Cars
and Q,.

2. Theory and calculation

Calculation of couplings by means of the IDA and TDC
method have previously been described in detail [23-25].
Briefly, in the IDA the couplings, V'P%, are calculated
according to the following equation
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Here, ¢,, is the relative dielectric constant, R,,, the distance
between the pigments n and m and, k, an orientation factor
calculated from the angles, ¢, between the transition dipole
moments fi,, i, and the connection vector R
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In the IDA the orientation of the transition dipole moment
vectors of chlorophyll molecules are often approximated by
the axes along the nitrogens of the porphyrin structure,
lin~ (see e.g., [21] and Fig. 1). In the present Letter, we de-
note IDA couplings calculated in this way VIDA(N—N).

The exact coulombic coupling, V<°U°™® can be
described by the interaction of the transition densities of
both molecules:

yColomb _ 1 / / Mir)Ma() g, g, (3)
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Here, M(r) is the transition density M(r) = [‘¥;W.ds =
(¥, | Pe) between the ground state and the excited state.
Eq. (4) can be approximated by a summation over a grid
of transition density cubes:
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This is the TDC-method developed by Krueger et al. [23—
25]. Here, V' = dx - 0y - 0z is the volume of one cube and r
is the distance between two cubes. In the present Letter,
the transitions were calculated with the HF—CIS method
implemented in Gaussian03® and mapped into cubes with
the ‘cube’-keyword. For each pigment about 300 000 cubes
with dimensions of (0.3 A)® were calculated. The resulting
transition densities are scaled to match the magnitude of
calculated transition dipole moments, | fitpc |, with exper-
imentally determined dipole moments, pexp

Hexp.
M(x7y7z)scaled = M(x7y7z) - L
|IuTDC| (6)
firpe = V- Z
M7

The vector calculated from the ab initio transition density
cubes, firpc, can also be used for a calculation of the cou-
plings using the IDA (Eq. (1)). In the present Letter, we de-

C Car So— Car S,

Fig. 1. Transition densities M(x,y,z) and transition dipole moment vectors jix_n and firpc, calculated for (a) the chlorophyll Q, transition and (b) the
chlorophyll Q, transition of Chl a 602 and (c) the Car Sp— Car S, transition of Lut 620.
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note IDA couplings calculated in this way as V'PA(TDC).
Especially for the Chl Q, transition the direction of the vec-
tor of jitpc deviates significantly from pin N (Fig. 1).

For the final calculation of the exact couplings, V'P€,
the following expression is used
VTDC - 1 /”'l,exp. : #lexp. M],i . M2,j (7)

Cdme | oM F M T 4y
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For the scaling of the transition densities of the Chl a Q,,
transitions we used the same dipole moments, ey, as
Novoderezkin’s et al. [21]. For the ratio between the dipole
moments of Chl b and Chl a Sauer et al. reported a value of
~0.82 [28]. For the ratio between the dipole moments of
the Q, and the Q, transitions Damjanovic et al. reported
a value of ~0.67 [29]. For the dipole moment for the carot-

Table 1

experimental transition dipole moment p.y,, used for scalling

Chla Q, 374D
Chla Q, 3.07D
Chl b Q, 3.19D
Chl b Q, 2.61 D
Car S, 13.5D

‘ ’j’ﬁr
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N
ab6l14

Fig. 2. Arrangement of the chlorophylls (a: light green, b: dark green) and
carotenoids (red) at the lumenal side of LHC II. (a) Chlorophyll-
chlorophyll couplings. Only the biggest couplings between the Chl-pairs
are shown. The width of the connecting lines scales linearly with its
magnitude. (——) Q,—Q,, coupling between two Chl’s a or Chl’s b; (—)
Chl b Q,-Chl a Q, coupling; (—) Chl a/b Q,-Chl a/b Q, coupling. (b)
Carotenoid S,-Chlorophyll couplings. (—) Car S,~Chl coupling; (—)
Car S,—Car S; coupling.

enoid’s Sy < S, transition we estimated a similar value as
Gradinaru et al. [30] based on experimental absorption
spectra of the LHC II carotenoids in solution. The experi-
mental transition dipole moments, pexp, used for the pres-
ent calculations are summarized in Table 1. The coupling
constants presented in Section 3 can simply be scaled line-
arly with any other experimentally observed transition di-
pole moment, piexp, (Eq. (7)) [31].

3. Results

The pigments in LHC II can be divided into a stromal
and lumenal part. In the following tables and figures
assignments of the pigments where used as suggested by
Liu et al. [8].

The strongest and most important couplings in the
lumenal and stromal side of LHC II are visualized in
Figs. 2 and 3, respectively. The corresponding numeric
values are presented in Tables 2-5 including those cou-
plings which are not visualized in Figs. 2 and 3. In Figs
2a and 3a black lines without arrows indicate strong
Q,—Q, couplings between pairs of Chl a or Chl b mole-
cules (Table 2), which could result in strong exciton cou-
plings when the lowest Q,-states have similar site energies
in the monomeric site energy presentation. In general, the
thickness of the lines represents the magnitude of the cal-
culated couplings. Black arrows represent strong cou-

a

(b 601)!
;

|ut 620

E@’ ) 2610
a611

a612

Fig. 3. Arrangement of the chlorophylls at the stromal side of LHC II.
Lines and arrows have the same meaning as in Fig. 2.
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Table 2
Couplings, V'TP€, between Q, and Q.-transitions between pairs of chlorophylls at the stromal side and lumenal side of LHC II
a 602 a 610 a 611 a 612 b 601 b 608
¥y X y X y X y X ¥y X y X
Stromal chlorophyll-chlorophyll couplings (cm™")
a 610 y 5,4 9,7
X 10,4 10,7
a 611 y 0,7 4.8 26,4 25,6
X 1,8 10,6 9,6 6,2
a 612 y 10,1 43 124 19,5 105 17,1
X 5,7 8,8 18,2 14,4 19,6 423
b 601 y 47.1 44 4,5 2,5 245 344 2,3 37
X 7.8 1,6 3,0 3,3 19,7 15,3 8,9 34
b 608 y 5,8 5,1 57.0 4,1 4.8 2,3 1,3 1,3 33 0,9
X 0,8 1,7 17,0 8,2 0,5 0,0 3,3 2,7 0,5 0,3
b 609 y 21,9 245 1,1 5,0 33 2,3 0,2 0,5 44 0,4 26,1 8,7
X 44 2,8 3,2 7,4 1,6 1,5 3,4 2,6 1,5 0,2 7,6 6,6
a 603 a 604 a 613 a 614 b 605 b 606
y x y X y X ¥ X y X y X
Lumenal chlorophyll-chlorophyll couplings (cm™)
a 604 y 0,5 19,9
X 1,1 255
a 613 y 2,4 1,0 2,2 2,2
X 11,0 15,3 0,1 42
a 614 y 5,7 53 2,8 1,9 28,0 15,9
X 2,9 1,2 0,9 1,8 9,8 18,9
b 605 y 0,2 0,9 5.4 2,5 1,2 1,0 0,0 0,5
X 1,1 2.9 3,9 6,2 0,2 0,1 0,7 0,7
b 606 y 2,1 20,8 80.8 53.0 1,2 0,4 1,8 1,3 11,5 40.1
X 3,7 21,4 62.6 16,9 2,4 0,9 0,9 0,4 43 9,0
b 607 y 8,2 382 26,0 16,6 2,7 1,2 2.4 1,7 52 0,5 23,7 51.5
X 16,9 34.5 1,0 2.9 1,1 3,3 2,7 1,9 1,3 10,1 17,6 1,6

Values >10 cm™! are marked bold. The strongest couplings (>30 cm™') are underlined and marked bold and italic.

plings between Chl » and Chl a pigments. The arrows
point towards the Chl ¢ pigment to indicate the direction
of a potential energy path way. Similarly, grey arrows
represent strong Q, and Q, couplings between any Chl
pigment. In Figs. 2b and 3b the strongest inter-pigment
couplings of the carotenoid states, Car S,, and chloro-
phylls in the lumenal side and stromal side are visualized,
respectively. Black arrows indicate strong carotenoid to
chlorophyll couplings, potentially resulting in effective
Car S; — Chl energy transfer. Grey lines indicate strong
Car S,—Car S, couplings, potentially resulting in excitonic
Car S, states.

Fig. 4 shows the ratio between couplings calculated by
the TDC method, V™P€, and the IDA, VPATDC), of
Chl-Chl couplings (black dots) and Car—Chl couplings
(red dots) as a function of the inter-pigment distance. It
is obvious that the IDA is drastically deviating for dis-
tances smaller than about 25 A. Large couplings are often
observed for small inter-pigment distances. Therefore, it is
not surprising that for large couplings quite large differ-
ences can sometimes be obtained. In Table 6 the values
for the 10 biggest couplings as calculated by the IDA are
shown, as examples, in comparison with the corresponding
values calculated from the TDC-method.

4. Discussion

The most important result of the present Letter is a dra-
matically increasing deviation of the couplings calculated
by the IDA from the TDC-couplings for smaller inter-pig-
ment distances (Fig. 4). In general, for distances smaller
than 25 A the IDA yields results differing by up to one
order of magnitude from the TDC calculation. While the
strongest Chl Q,—~Chl Q,, couplings are often described still
reasonable well by the IDA, strong couplings involving Chl
Q, transitions show, in many cases, large deviations from
the exact TDC-values (Fig. 4 and examples in Table 6).
For example, TDC calculations find a significantly weaker
coupling between the Chl a 612 Q, transition and the Chl a
610 Q, transition (V™€ =18cm™') than the IDA
(VIPANN-N) = 52 cm™ L, V'PA(TDC) = 35 cm ™ !). The main
reason for this is that the Q, transition has a considerable
multipole character, which explains the large deviations
often observed between V*PA(TDC) and ¥'P€ for interac-
tions in which these states are involved (Fig. 1). In addi-
tion, the orientation of dipole-moment vector of the Q.-
transitions calculated by the ab initio transition densities,
Utpc, derivates by about 40° from a dipole moment iy N
along the nitrogen-nitrogen axis in the porphyrin ring
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Table 3
Inter-stromal-lumenal (top) and inter-monomeric (bottom) chlorophyll couplings, ¥'TP¢
a 602 a 610 a 611 a 612 b 601 b 608 b 609
y x v X ¥ X y X y x y x y x
Inter-stromal-lumenal chlorophyll—chlorophyll couplings (cm™")
a 603 y 174 25,5 8,4 38 0,7 42 0,6 2.4 6,1 1.4 42 2,3 71.6 7,2
X 19,7 16,9 3,3 10,9 1,4 2,7 4,5 6,4 49 1,9 3,8 1,7 2,6 275
a 604 y 5,5 3,9 0,2 18,1 3,3 1,9 3,7 3,3 2,7 0,2 5,7 5,1 1,5 24,0
x 6,7 6,8 8,6 19,3 0,9 0,1 20,2 24,6 1,4 0,6 5,7 4.8 2,2 28,3
a 613 y 1,9 12,8 6,0 43 0,8 26,5 1,0 20,5 8,4 34 2,2 0,1 2,5 1,0
X 6,7 5,6 6,6 6,1 0,1 383 0,4 27,0 5,9 6,4 1,1 0,1 0,1 0,0
a 614 ¥ 0,1 7,0 1,2 0,0 0,6 15,0 0,2 3,6 2,9 4,0 1.4 0,2 2,0 1,0
X 0,8 2,9 3,0 1,3 3,6 13,0 4,6 12,3 3,5 0,2 1,1 0,4 1,2 1.4
b 605 y 0,2 0,0 0,8 2,2 1,1 0,4 2,2 2,4 0,5 0,4 3,7 4,5 0,1 1,2
x 1,3 0,9 0,8 2,2 0,8 0,6 1,2 1,1 0,7 0,1 1,6 2,6 3,5 2,3
b 606 y 4,9 3,9 0,6 8,9 2,0 1,6 2,1 1,5 2,0 0,1 6,7 2,5 11,8 53.1
X 4,0 3,9 23 9,5 2,1 0,9 1,9 1,9 1,6 0,4 0,6 6,7 12,3 46.2
b 607 y 6,2 4,7 0,4 4,6 2,1 2,0 22 1,3 2,6 0,1 3,5 0,6 1,7 18,8
x 4,0 1,8 2,9 0,2 0,7 1,8 0,9 0,5 1,7 0,4 5.3 3,7 16,0 7,5
a 602 a 603 a 611 a 613 a6l4 b 601
v X y X ¥ X y X y x v X
Significant inter-monomer couplings (cm ™)
b 606 y 5,0
X 5,3
b 607 y 9,8
X 5,1
b 608 y 6,0
x
b 609 y 6,8 6,1 35.7 275
x 9,4 5,1 6,6 22,0 227
Lut 620 5,7 6.8
Lut 621 9,4 134 8,8 6,5 7,5 9,2 104
Xat 622
Nex 623 7,0 8,8 10,3 9,0 8,7 5,9 19.3
Stronger couplings are marked in the same way as in Table 2. Only inter-monomeric couplings which are larger than 5 cm™ " are shown.
Table 4
Couplings, VTP, between the S, state of carotenoids and Q, and Q,-transitions of chlorophylls in the stromal and lumenal side
a 602 a 610 a 611 a 612 b 601 b 608 b 609
y x y X y X y x y x y x y X
Stromal carotenoid S,~chlorophyll couplings (cm ™)
Lut 620 4,6 39,9 34,1 208.3 8,7 439 5,0 190.5 14,7 0,3 14,4 13,1 44 2,4
Lut 621 17,0 221.2 3,7 46,2 6,2 10,2 324 34,7 458 8,8 6,9 13,1 8,9 60,0
Xat 622 33,6 20,0 7.4 9,3 49,4 18,1 23,1 13,7 95,6 36,9 3,5 2,0 3,7 1,3
Nex 623 6,9 1,2 12,0 40,7 7,5 5,6 21,6 19,4 48 0,9 33,2 20,9 9,0 65,8
a 603 a 604 a 613 a 614 b 605 b 606 b 607
y X v x y X y X y X y X y x
Lumenal carotenoid S,—chlorophyll couplings (cm™?)
Lut 620 28,2 27,8 18,5 31,0 136.2 140.1 31,7 60,0 10,7 3,0 2,5 13,6 1,6 15,0
Lut 621 44,2 296.9 133.6 149.9 9,9 28,1 16,2 1,5 5.4 11,6 71,5 59.5 72,5 56,1
Xat 622 39 2.4 1,7 1,3 127.7 49,3 52,4 38,9 1,7 0,3 0,0 3,6 1,5 53
Nex 623 7,0 23,1 105.5 101.1 48 29 2,6 6,0 22,9 15,2 64,2 79,1 17,7 13,5

Values >50 cm ™! are marked bold. The strongest couplings (>100 cm™!) are underlined and marked bold and italic.

structure. This explains that for Q,-transitions even larger
deviations are observed between VPA(N-N) and
Consequently, a detailed TDC-calculation is at least neces-
sary for an exact description of energy-transfer path ways
in which the Q, states are often strongly involved.

VTDC.

The calculated couplings in the present Letter confirm
that the strongest potential exciton interactions between
the lowest Q, states occur between the pigments around
Chl @ 611 and Chl a 612 in the stromal side [21]. Interest-
ingly, there is also a significant Q,—Q, coupling between
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Table 5
Couplings, V'TPC, between the carotenoids within a monomer (upper part)
and with carotenoids of the neighbouring monomer (lower part)

Carotenoid S,—carotenoid S, couplings (cm™")

Lut 620 Lut 621 Xat 622 Nex 623
Lut 621 81,5
Xat 622 22 50.4
Nex 623 573 129.0 2.9
Lut 620 18 6.4 229 0.4
Lut 621 16,2 9.3 29,1 3.9
Xat 622 45 7.0 18.5 48
Nex 623 32 6.3 66.7 12
100
| |
[ ]
10 —2o—n

ratioV'"°A(TDC)/v'®°

o
-
q

0,01 T T T
5 15 25 35 45

Distance [A]

Fig. 4. Ratio of couplings calculated by the IDA (V'P* (TDC), Egs. (1)
and (6)) and the TDC-method (VTP c, Eq. (7)) as a function of the inter-
pigment distance. Black dots represent Chl-Chl couplings and red dots
Car—Chl couplings. The inter-pigment distance was calculated from the

centers of weight of the transition densities which were close the Mg-atoms

in the case of chlorophyll molecules. Only couplings larger than 2 cm ™' are

shown.

Chl a 602 and Chl @ 612 even though they are located quite
far apart from each other (Fig. 3a and Table 2, top). This
coupling is caused by a close-to-parallel alignment of the
corresponding dipole-vectors resulting in a comparatively
large value of the orientational factor k. In the lumenal side

Table 6

the strongest Q,—Q, coupling occurs between Chl 614 and
Chl a 613 (Fig. 2a and Table 2, bottom). There are also sig-
nificant inter-monomeric Q,—Q, couplings present, for
example between Chl » 601 and Chl b 609 on the stromal
side (Table 3, bottom).

The strongest Chl 6—Chl a and Q,—Q, couplings give
some hint with regard to preferred general energy path-
ways. An accumulation of potential energy pathways is
present for Chl a 604 in the lumenal side as acceptor
(Fig. 2, three strong Chl 5 or Chl Q, to Chl a 604 couplings
and two strong Car S, to Chl a 604 couplings). This result
is in agreement with a large primary population of Chl a
604 as predicted by Novoderezhkin et al. [21]. It is interest-
ing that the largest potential energy transfer couplings are
with the Chl a 604 (Fig. 2) molecules as acceptors, which
have been assigned by Novoderezhkin et al. to be rather
high in energy. Chl a 604 in the lumenal side is remote from
Chl a 612 and its surrounding Chl molecules in the stromal
side (Fig. 3) which has been predicted [21] to form the deep-
est trap in LHC II. This might indicate that it is advanta-
geous for the major light-harvesting pigment pool to
distribute the energy over the antenna first, rather then
directing it directly to an energetic trap. As expected,
carotenoids have the largest couplings with neighbouring
Chl molecules (Figs. 2b and 3b; Table 5), even though there
are exceptions (e.g., Nex—Chl b 608 (Fig. 3b), Lut 620-Chl
a 604 (Fig. 2b), Nex—Chl b 606 (Fig. 2b)).

In summary, the present Letter demonstrates that great
care has to be taken when using the IDA for the calculation
of inter-pigment interactions in densely packed pigment—
protein complexes. The IDA often fails for small inter-pig-
ment distances especially when chlorophyll Q.-transition
are involved. In this context, the TDC-couplings presented
in this Letter will provide a solid basis for future calculation
of excitonic interactions and energy pathways in LHC II.
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