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Synaptic vesicle fusion is catalyzed by assembly of synap-

tic SNARE complexes, and is regulated by the synaptic

vesicle GTP-binding protein Rab3 that binds to RIM and

to rabphilin. RIM is a known physiological regulator of

fusion, but the role of rabphilin remains obscure. We now

show that rabphilin regulates recovery of synaptic vesicles

from use-dependent depression, probably by a direct inter-

action with the SNARE protein SNAP-25. Deletion of

rabphilin dramatically accelerates recovery of depressed

synaptic responses; this phenotype is rescued by viral

expression of wild-type rabphilin, but not of mutant

rabphilin lacking the second rabphilin C2 domain that

binds to SNAP-25. Moreover, deletion of rabphilin also

increases the size of synaptic responses in synapses lack-

ing the vesicular SNARE protein synaptobrevin in which

synaptic responses are severely depressed. Our data

suggest that binding of rabphilin to SNAP-25 regulates

exocytosis of synaptic vesicles after the readily releasable

pool has either been physiologically exhausted by use-

dependent depression, or has been artificially depleted

by deletion of synaptobrevin.
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Introduction

Presynaptic terminals release neurotransmitters by synaptic

vesicle exocytosis. Membrane fusion during exocytosis is

catalyzed by the SNARE proteins synaptobrevin/VAMP,

SNAP-25, and syntaxin 1, and by the SM-protein Munc18-1

(reviewed in Lin and Scheller, 2000; Jahn et al, 2003).

However, only Munc18-1 but not synaptobrevin and SNAP-

25 are absolutely required for synaptic membrane fusion. In

synapses lacking synaptobrevin or SNAP-25, synaptic vesicle

fusion still occurs spontaneously, and can still be evoked by

action potentials or hypertonic sucrose, although at a reduced

level (Schoch et al, 2001; Washbourne et al, 2002). In con-

trast, synapses lacking Munc18-1 exhibit no spontaneous or

evoked release (Verhage et al, 2000). These findings suggest

that other SNARE proteins are redundant with synaptobrevin

and SNAP-25, and/or that fusion can occur without SNARE

proteins.

Synaptic vesicles contain a family of GTP-binding proteins

called Rab3A, B, C, and D that perform redundant functions

in neurotransmitter release (Schlüter et al, 2004; reviewed in

Darchen and Goud, 2000). Rab3 proteins are thought to act

via two conserved GTP-dependent effector proteins: a cyto-

solic protein called rabphilin (Shirataki et al, 1993; Li et al,

1994), and active zone proteins called a-RIMs (Wang et al,

1997, 2000). Rabphilin belongs to a large protein family that

includes granulophilin/exophilin 2/Slp4, Slp3/exophilin 6,

and Slp5/exophilin 9 (reviewed in Izumi et al, 2003;

Fukuda, 2005). These proteins are characterized by an

N-terminal zinc-finger sequence that interacts with Rab3

and/or Rab27 (another exocytotic Rab protein), and two

C-terminal C2 domains that at least in rabphilin bind Ca2þ .

Nerve terminals contain two a-RIMs (RIM1a and 2a; Wang

and Südhof, 2003) that contain an N-terminal Rab3-binding

zinc-finger sequence and two C-terminal C2 domains similar

to rabphilin. However, the C2 domains of rabphilin bind Ca2þ

(Ubach et al, 1999), whereas those of RIMs do not (Dai et al,

2005).

Genetic analyses in mice and Caenorhabditis elegans have

provided insights into the functions of rab3 and a-RIMs, but

were relatively uninformative for rabphilin. In mice, deletion

of Rab3A alone caused a significant synaptic phenotype

(Geppert et al, 1994, 1997; Castillo et al, 1997), while deletion

of all four Rab3 isoforms is lethal (Schlüter et al, 2004).

Consistent with a role in release, deletion of Rab3 in

C. elegans (where there is only a single isoform) produced

a synaptic phenotype (Nonet et al, 1997). In both mice and

C. elegans, deletion of RIM1a severely impaired synaptic

vesicle exocytosis due to a postdocking defect (Koushika

et al, 2001; Schoch et al, 2002). In addition, the RIM1a dele-

tion caused large changes in synaptic plasticity in mice

(Castillo et al, 2002; Schoch et al, 2002). In contrast to dele-

tions of rab3 and RIM1a, deletions of rabphilin produced

no detectable effect in mice (Schlüter et al, 1999), and only a

mild phenotype in C. elegans that was, however, dramatically
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enhanced by concurrent mutations in a synaptic SNARE

protein (Staunton et al, 2001). The C. elegans data indicated

that rabphilin, although not essential by itself, may contri-

bute to SNARE function. However, the significance of this

observation for neurotransmitter release remained unclear.

In the present study, we have examined the possibility

that rabphilin may perform a function in exocytosis that

is related to SNARE proteins, but would not become apparent

in standard screens for a phenotype in rabphilin knockout

(KO) mice. Our data demonstrate that in wild-type synapses,

deletion of rabphilin dramatically increases release after the

readily releasable pool (RRP) of vesicles has been exhausted,

whereas in synaptobrevin-deficient synapses, deletion of

rabphilin enhances all Ca2þ -triggered release, presumably

because the synaptobrevin deletion creates a continuous state

of depletion of the RRP. We find that the ‘bottom’, Ca2þ -

independent surface of the C2B domain of rabphilin directly

binds to the SNARE protein SNAP-25, thus providing a

mechanistic explanation for the action of rabphilin observed

in our physiological experiments. These data indicate that

rabphilin is a regulator of neurotransmitter release that func-

tions in conjunction with plasma membrane SNARE proteins

when the RRP has been depleted.

Results

Interaction of the SNARE complex with Rab3A via

rabphilin

Using GST-pulldowns, we first tested whether rat brain

rabphilin binds to SNARE proteins. We found that GST-

SNAP-25 efficiently captured rabphilin, whereas GST-synap-

tobrevin and GST-syntaxin did not (Figure 1A). In contrast,

GST-syntaxin bound to Munc18-1, its major brain binding

partner (Hata et al, 1993), whereas GST-synaptobrevin and

GST-SNAP-25 did not. The binding of rabphilin to SNAP-25,

and of Munc18-1 to syntaxin, was specific as synaptophysin 1

did not bind to any SNARE protein. All three GST-SNARE

proteins similarly captured complexins (Figure 1A), suggest-

ing that all three GST-SNARE proteins nucleated the assembly

of SNARE complexes because complexins only bind to assem-

bled SNARE complexes (McMahon et al, 1995). Although

rabphilin thus does not appear to bind to fully assembled

SNARE complexes, it does bind to SNAP-25/syntaxin hetero-

dimers (Supplementary Figure 1).

Does SNAP-25 bind to rabphilin directly or indirectly? To

investigate this, we compared the binding of native brain

SNAP-25 and of recombinant SNAP-25 to immobilized GST-

fusion proteins of full-length rabphilin and of fragments of

rabphilin, thereby reversing the orientation of the initial GST-

pulldown experiments. We found that brain and recombinant

SNAP-25 were equally efficiently retained by GST-rabphilins

(Figure 1B), indicating a direct interaction. Both the

N-terminal half of rabphilin that includes its Zn2þ -finger

domain and phosphorylation sites (Fykse et al, 1995; Stahl

et al, 1996), and its C-terminal C2B domain captured SNAP-25

(Figure 1B). The SNAP-25 binding of the N-terminal half

of rabphilin was not investigated further because this region

in our hands is often subject to nonspecific interactions,

possibly because part of it is natively unfolded. The binding

of the rabphilin C2B domain was specific because the synap-

totagmin 1 C2B domain, which is structurally similar to the

rabphilin C2B domain, was unable to pull down SNAP-25

(data not shown).

Since the rabphilin C2B domain is a Ca2þ -binding domain

(Ubach et al, 1999), we next tested the effects of various

divalent cations on the rabphilin/SNAP-25 interaction

(Figure 1C). Divalent cations had no effect on the ability of

GST-SNAP-25 to pull down rabphilin from wild-type mouse
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Figure 1 Binding of rabphilin to SNAP-25. (A) Pulldowns of rat
brain proteins with immobilized GST, GST-syntaxin, GST-SNAP-25,
and GST-synaptobrevin (in 50 mM HEPES pH 7.2, 0.1 M NaCl, 4 mM
EGTA, 2 mM MgCl2, 1 mM DTT, protease inhibitor cocktail (Roche),
and 0.5% Triton X-100). Bound proteins were analyzed by immuno-
blotting (top panels) for rabphilin (Rph), synaptophysin 1 (Syp 1),
Munc18-1 (M18-1) and complexin 1 and 2 (Cpx 1 & 2). Bottom
panel shows a Coomassie-blue stained gel of the GST-proteins
to illustrate that similar amounts of protein were employed.
(B) Pulldowns of rat brain proteins (upper panel) or recombinant
SNAP-25 (lower panel) with immobilized GST-fusion proteins con-
taining full-length rabphilin (GST-FL Rph) or rabphilin fragments
(GST-Rph1-181 or -Rph1-361¼ residues 1–181 or 1–361 of rabphilin;
GST-Rph C2A, C2B, or C2AB¼C2A-, C2B-, or double C2A/B-domain
fragment of rabphilin; GST¼GST only control). Bound proteins
were analyzed by immunoblotting for SNAP-25 and for synapto-
physin 1 (Syp 1; used as a negative control). (C) Effects of divalent
cations on the interaction of rabphilin with SNAP-25. Solubilized
synaptic vesicle proteins from wild type (WT) and rabphilin KO
mice (KO) were bound to GST-SNAP-25 in the presence of 1 mM
of the indicated divalent cations; bound proteins were analyzed
by immunoblotting. (D) Immunoprecipitations of rabphilin from
detergent-solubilized synaptosomes with a polyclonal antibody to
the N-terminus of rabphilin (I734) in the presence or absence of
1 mM Ca2þ . Bound proteins were analyzed by immunoblotting with
monoclonal antibodies to SNAP-25, syntaxin 1, Rab3A, synapto-
physin 1 (Syp 1), GDI, or rabphilin (Rph). (E, F) Analysis of SNAP-
25 co-immunoprecipitations with rabphilin as a function of GDP
versus GTPgS (E; antibody¼ ‘antibody only’ control, extract¼
control with the detergent-solubilized synaptosome extract and
protein G-Sepharose only), or as a function of independent rabphilin
antibodies (I734 and I374¼ antibodies to the rabphilin N-terminal
half; I731¼ antibody to the rabphilin C-terminal half) in the pre-
sence or absence of Ca2þ (F). In (E) and (F), the smear below the
rabphilin band is caused by the IgG from the immunoprecipitations.
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brain homogenates (Figure 1C). As a negative control, we

tested brain homogenates from rabphilin KO mice (Schlüter

et al, 1999), but found no binding (Figure 1C). Moreover,

we observed no significant retention of Rab3A, also used as

a negative control because these experiments were carried

out in the absence of GTP.

We next examined whether endogenous brain rabphilin

and SNAP-25 interact with each other. We immunoprecipi-

tated rabphilin from rat brain homogenates under conditions

that favor SNARE complex assembly, and probed for co-

immunoprecipitated proteins by immunoblotting. We found

that SNAP-25 and syntaxin 1 were co-immunoprecipitated

with rabphilin, whereas synaptophysin and GDI were not

(Figure 1D). The co-immunoprecipitation of SNAP-25 with

rabphilin was independent of GTP (Figure 1E). Since the

GST-pulldowns indicated that the C2B domain of rabphilin

is, at least in part, responsible for the binding of SNAP-25,

we examined the relative ability of antibodies directed to

the N-terminal half of rabphilin (I734 and I374) or to its

C-terminal C2 domains (I731) to co-immunoprecipitate

SNAP-25 with rabphilin. We found that although the three

antibodies used immunoprecipitated similar amounts of

rabphilin, the C-terminal antibody was less potent than the

N-terminal antibodies in co-immunoprecipitating SNAP-25

(Figure 1F), consistent with a binding of SNAP-25 to the

C-terminal C2B domain of rabphilin. A modest increase of

SNAP-25 binding in the presence of Ca2þ was observed,

possibly because Ca2þ stabilizes the C2 domains of rabphilin.

Most C2 domains form Ca2þ -dependent phospholipid

complexes (reviewed in Nalefski and Falke, 1996; Rizo and

Südhof, 1998). Previous studies showed that the rabphilin

C2B domain is an effective Ca2þ -binding domain (Ubach

et al, 1999), but no general Ca2þ -dependent phospholipid

binding was detected (Li et al, 1994; Chung et al, 1998).

To determine whether the rabphilin C2B domain forms

Ca2þ -dependent phospholipid complexes, we employed a

solution binding assay (Fernandez et al, 2001). This assay

was required because the standard GST-pulldown assay for

phospholipid binding does not reliably detect phospholipid

binding to all C2 domains (Fernandez et al, 2001). We

observed no apparent Ca2þ -dependent binding of the C2A

domain to phospholipids. The isolated C2B domain, however,

bound to the liposomes with a high apparent Ca2þ affinity

(1–2 mM); the same Ca2þ -dependent binding was observed

for the double C2A/B domain fragment (Supplementary

Figure 2). The high apparent Ca2þ affinity of the rabphilin

C2B domain/phospholipid complex corresponds well to the

high intrinsic Ca2þ affinity of the C2B domain (Ubach et al,

1999), suggesting that the C2B domain of rabphilin, similar to

the C2A domain of synaptotagmin 1, can form both Ca2þ -

dependent phospholipid complexes and Ca2þ -independent

complexes with a SNARE protein.

The bottom surface of the rabphilin C2B domain with

the a-helix binds to SNAP-25

To investigate the nature and stoichiometry of the rabphilin/

SNAP-25 complex, we used NMR spectroscopy as previously

employed in determining the structure of the rabphilin C2B

domain (Ubach et al, 1999). Using recombinant, 15N-labeled

protein, we recorded 1H–15N heteronuclear single quan-

tum coherence (HSQC) spectra from the C2B domain in

the presence and absence of unlabeled SNAP-25, with or

without a saturating concentration of Ca2þ (Figure 2). In
1H–15N HSQC spectra of 15N-labeled proteins, each non-

proline residue is represented by a single cross-peak, whose

position reflects the microenvironment of the corresponding

amide group. Thus, changes in 1H–15N spectra of an 15N-

labeled protein provide a sensitive method to monitor bind-

ing of an unlabeled protein and to map binding sites.
1H–15N HSQC spectra of the 15N-labeled rabphilin C2B

domain (75 mM) were acquired in the absence (Figure 2A)

and presence (Figure 2B) of Ca2þ , without (black contours)

or with (red contours) an equimolar concentration of

SNAP-25 (75 mM). SNAP-25 caused general line broadening

of cross-peaks in the HSQC spectra of the C2B domain, arising

from the larger size of the SNAP-25/C2B-domain complex.

In addition, SNAP-25 caused shifts in a small subset of the
1H–15N HSQC cross-peaks, induced by binding of SNAP-25

to the corresponding residues. Line broadening of C2B-

domain cross-peaks occurred independently of the presence

or absence of Ca2þ . The broadening was less severe than

would be expected for a 25 kDa protein, probably because

free SNAP-25 is largely unfolded, and SNAP-25 bound to

the rabphilin C2B domain is only partially folded at the site

of interaction.

The shifts in a subset of 1H–15N HSQC cross-peaks of

the rabphilin C2B domain upon SNAP-25 binding can be

better observed in the expansions shown in Figures 2C and

D (acquired at a higher concentration of SNAP-25 (150mM) to

ensure saturation of the interaction). The assignment of the
1H–15N HSQC cross-peaks of the rabphilin C2B domain

(Ubach et al, 1999) made it possible to identify the residues

corresponding to the shifted cross-peaks; their positions in

the structure of the C2B domain are shown in Figure 3.

C2 domains are composed of stable b-sandwiches with flex-

ible loops emerging at the ‘top’ (the side that binds Ca2þ )

and the ‘bottom’ (the side that does not bind Ca2þ ; Rizo and

Südhof, 1998). Strikingly, SNAP-25 binding exclusively

shifted cross-peaks corresponding to residues from the ‘bot-

tom’ surface of the rabphilin C2B domain, which does not

bind Ca2þ . The cross-peak shifts induced by SNAP-25 were

concentrated in the long bottom a-helix that is unique to

C2B domains of rabphilins and synaptotagmins (Ubach

et al, 1999; Fernandez et al, 2001), and were identical in

the presence and absence of Ca2þ (Figures 2A and B).

Several conclusions can be drawn from the NMR results.

First, SNAP-25 appears to bind to the rabphilin C2B domain in

a stoichiometric 1:1 complex. This conclusion is based on the

significant cross-peak shifts observed when the two proteins

were mixed in a 1:1 ratio, and on the fact that the magnitude

of these shifts increased only slightly when SNAP-25 was

doubled (Figure 2 and data not shown). Second, analogous

cross-peak shifts were observed in the presence and absence

of Ca2þ , confirming that the interaction of the C2B domain

with SNAP-25 does not require Ca2þ . Third, all of the shifted

cross-peaks are from residues residing on the bottom surface

of the rabphilin C2B domain, mostly in the unique a-helix

that is characteristic of C2B domains (Figure 3).

Deletion of rabphilin increases recovery from

use-dependent depression

The binding of rabphilin to SNAP-25 suggests a function for

rabphilin in exocytosis, but extensive previous analyses of

rabphilin KO mice failed to detect a phenotype (Schlüter et al,

Rabphilin binding to SNAP-25 inhibits evoked release
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1999). These analyses, however, might have missed a pheno-

type that manifests only when synaptic transmission

becomes dependent on SNARE complex assembly. One

model of docking and priming of vesicles at the synapse

suggests that vesicles dock in a SNARE-independent manner,

and are subsequently primed to become Ca2þ -responsive by

a SNARE-dependent mechanism, allowing Ca2þ to trigger

fusion pore opening by binding to synaptotagmin (Südhof,

1995). According to this concept, SNARE-complex assembly

becomes rate limiting for the recovery of the RRP of primed

vesicles at a synapse after this pool has been depleted by a

high-frequency stimulus train. Therefore, we tested whether

deletion of rabphilin alters the rate of recovery of the EPSC

after use-dependent depression.

We cultured embryonic hippocampal neurons from litter-

mate wild type and rabphilin KO mice at a high density at

which these cultures form extensive synaptic networks

(Supplementary Figure 3), and monitored postsynaptic res-

ponses to field stimulation by whole-cell recordings. We first

measured steady-state EPSCs during low-frequency stimula-

tion (60 stimuli at 0.4 Hz), then applied a high-frequency

stimulus train that induced massive synaptic depression

(1200 stimuli at 20 Hz), and finally determined the rate

of recovery of the EPSCs during low-frequency stimulation

(60 stimuli at 0.4 Hz; Figure 4A). As described before

(Schlüter et al, 1999), we observed no difference between

rabphilin-deficient and control neurons in the size of the

initial EPSCs (Figure 4B) or the extent of use-dependent

depression (Figure 4D). However, deletion of rabphilin

dramatically accelerated the recovery of EPSCs after termi-

nation of the high-frequency stimulus train (Figure 4E).

The recovery time course was fitted with a two-exponen-

tial function y ¼ 1 � ðA1e�ðt=t1Þ þ A2e�ðt=t2Þ þ m; where A1

and A2 and t1 and t2 are the amplitudes and time constants

Figure 2 Characterization of the rabphilin C2B domain binding to SNAP-25 by NMR spectroscopy. (A, B) 1H-15N HSQC spectra of the
15N-labeled C2B domain from rabphilin (75mM) in the absence (black) or presence (red) of unlabeled SNAP-25 (75mM). Spectra were acquired
in 0.2 mM EDTA (A) or 10 mM Ca2þ (B). To facilitate comparison, a few cross-peaks that do not change with SNAP-25 are identified
(underlined if the peaks are not altered by Ca2þ , and not underlined if they shift with Ca2þ ). The subset of peaks that move after addition of
SNAP-25 are marked by arrowheads; these peaks exhibit analogous changes in the presence and absence of Ca2þ . (C, D) Expansions of the
1H-15N HSQC spectra from the rabphilin C2B domain (75mM) recorded in 10 mM Ca2þ without SNAP-25 (black) or with 150mM SNAP-25 (red).
Note that some peaks shift substantially with SNAP-25 while others do not. Residue assignments are indicated for some of the cross-peaks.

Figure 3 Ribbon diagram of the C2B domain of rabphilin: identifi-
cation of the SNAP-25 binding site defined by chemical shift
changes. The figure displays views of the rabphilin C2B domain
with a 901 rotation around the vertical axis. The Ca2þ -binding loops
are shown on top with two Ca2þ ions bound (orange; Ubach et al,
1999). b-Strands are displayed in yellow. Residues that changed
upon SNAP-25 binding are shown in red. Note that these changes
are restricted to the bottom a-helix and the adjacent bottom loop.
N- and C-termini are indicated by white ‘N’ and ‘C’.

Rabphilin binding to SNAP-25 inhibits evoked release
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of the first and second component, respectively, and m is

an offset value to correct for incomplete recovery of the

EPSC at the end of the monitoring period). Deletion of

rabphilin produced a 42-fold increase in the amplitude of

the first component, and a corresponding decrease in the

second component of recovery (WT: A1, 0.21970.038; A2,

0.54770.066 (n¼ 14 cells/3 cultures); KO: A1, 0.58770.068;

A2, 0.33170.059 (n¼ 11 cells/3 cultures); Po0.0001; also

resulting in different offset values; WT: m¼ 0.24170.051;

KO: m¼ 0.13570.041). The time constants of the two

recovery components, however, were not significantly altered

(WT: t1, 4.570.6 s; t2, 57.074.1 s; KO: t1, 3.570.6 s; t2,

55.475.3 s (n’s as above); P40.25). Thus, deletion of rab-

philin shifts vesicles from a slowly recovering into a swiftly

recovering mode, suggesting that rabphilin normally func-

tions to control re-priming of vesicles after extensive synaptic

activity.

Is the effect of the rabphilin deletion on recovery due to

its interaction with SNAP-25? As a first test of this question,

we examined whether the rabphilin KO phenotype can be

W
T

B

D E

F G

C

P<0.05

P<0.05

A

WT 
KO+iRph
KO+iRph∆C2B

WT 
KO+iRph
KO+iRph∆C2B

20 Hz
1200 pulses

150 s

0.4 Hz
60 pulses

150 s60 s

0.4 Hz
60 pulses

WT 
Rph KO

WT 
Rph KO

KO+iR
ph
KO+

iR
ph

∆C 2
B

Rph
 K

O

A
m

pl
itu

de
 (

nA
)

0.0

0.2

0.4

WT Rph KO

0.2  s 0.
1 

nA

Time (s)
0 10 20 30 40 50

N
or

m
al

iz
ed

 p
ea

k 
cu

rr
en

t

 0.0 

0.2 

0.4 

0.6 

0.8 

 1.0 

N
or

m
al

iz
ed

 p
ea

k 
cu

rr
en

t

 0.0 

0.2 

0.4 

0.6 

0.8 

 1.0 

Time (s)
0 10 20 30 40 50 60

N
or

m
al

iz
ed

 p
ea

k 
cu

rr
en

t

 0.0 

0.2 

0.4 

0.6 

0.8 

 1.0 

Time (s)
0 50 100 150

N
or

m
al

iz
ed

 p
ea

k 
cu

rr
en

t

 0.0 

0.2 

0.4 

0.6 

0.8 

 1.0 

Time (s)
0 50 100 150

KO + iRph KO+iRph∆C2B

C

Figure 4 Effect of the deletion of rabphilin on the recovery of synaptic responses from use-dependent depression. (A) Experimental design.
Cultured neurons from wild type or rabphilin KO mice were either analyzed without further manipulations (WT and Rph KO), or rabphilin-
deficient neurons were infected with lentivirus expressing full-length rabphilin (iRph) or rabphilin lacking the C2B domain (iRDC2B). Neurons
were stimulated at 0.4 Hz for 150 s to determine the initial EPSC amplitude, then at 20 Hz for 60 s to cause use-dependent depression, and
finally again at 0.4 Hz for 150 s to monitor recovery of synaptic responses. (B) Bar graph of initial EPSC amplitudes. (C) Representative traces
during synaptic recovery (only the first 100 ms of the first 12 pulses are shown for clarity). (D, E) Depression of synaptic responses in WT and
rabphilin KO neurons during 20 Hz stimulation (D; peak currents were normalized to the first response), and recovery of synaptic responses
from synaptic depression during 0.4 Hz stimulation (E; normalized to the average amplitude of each cell during the initial 0.4 Hz stimulation).
Rabphilin-deficient synapses recovered significantly faster up to the 21st pulse (Po0.05). (F, G) Depression of synaptic responses during 20 Hz
stimulation in WT neurons and in rabphilin KO neurons expressing full-length iRph or C-terminally truncated iRph (iRDC2B) (F), and
subsequent recovery of synaptic responses in these neurons (G). For (B) and (D–G), data shown are means7s.e.m. (number of neurons
analyzed in four independent cultures: WT, n¼ 14; Rph KO, n¼ 11; iRph, n¼ 12; iRphDC2B, n¼ 13).

Rabphilin binding to SNAP-25 inhibits evoked release
Ferenc Deák et al

The EMBO Journal VOL 25 | NO 12 | 2006 &2006 European Molecular Biology Organization2860



rescued by expression of wild-type rabphilin, or of truncated

rabphilin that lacks the C2B domain and thus does not bind to

SNAP-25 via its C2B domain. Both proteins were efficiently

expressed in the cultured neurons with recombinant lenti-

viruses (Supplementary Figure 4). We found that wild-type

rabphilin, expressed with a lentivirus, reversed the rabphilin

KO phenotype (Figures 4B, C, F and G; numerical values:

KO with WT lentivirus, t1, 3.870.6 s; t2, 65.775.8 s; A1,

0.29470.035; A2, 0.46670.059; m¼ 0.24170.051 (n¼ 12

cells/3 cultures)). Among others, this result shows that the

increase in recovery kinetics in the rabphilin KO is not

a developmental abnormality since it can be rescued by

expression of rabphilin in postmitotic neurons. In contrast

to full-length rabphilin, truncated rabphilin was unable to

rescue the rabphilin KO phenotype (Figure 4G; KO with

lentivirus expressing truncated rabphilin, t1, 4.070.5 s; t2,

62.574.6 s; A1, 0.49570.046; A2, 0.44170.037 (n¼ 13 cells/

3 cultures); P¼ 0.002; m¼ 0.09170.025; P¼ 0.011 (P-values

are for the comparison of KO cultures infected with wild type

and C-terminally truncated rabphilin expressing lentivirus)).

Effect of rabphilin on spontaneous and sucrose-induced

synaptic activity in synaptobrevin-deficient synapses

To test by a different approach whether rabphilin functionally

interacts with SNARE proteins, we made use of previously

generated synaptobrevin KO mice (Schoch et al, 2001; Deák

et al, 2004). We performed electrophysiological analyses of

embryonic hippocampal neurons cultured from littermate

mice that were generated in two breeding schemes: wild

type and synaptobrevin KO mice obtained in crosses of

heterozygous synaptobrevin 2 KO mice, and rabphilin KO

mice that either lack or contain synaptobrevin 2 obtained in

crosses of mice that were homozygous for the rabphilin KO

and heterozygous for the synaptobrevin KO. The overall idea

behind these experiments was that deletion of synaptobrevin

should create a state analogous to that of use-dependent

depression. In both cases, the RRP is depleted and assembled

SNARE complexes are largely absent; thus, if rabphilin nor-

mally inhibits Ca2þ -dependent exocytosis arising from such a

state, its deletion may also amplify the remaining exocytosis

present in synaptobrevin-deficient neurons.

We first examined the properties of spontaneous synaptic

events (‘minis’; Figure 5A). As reported previously, synapto-

brevin-deficient neurons exhibited a B10 fold decrease in

the frequency of spontaneous events (Schoch et al, 2001),

whereas rabphilin-deficient neurons displayed no significant

change (Schlüter et al, 1999). In the rabphilin/synaptobrevin

double KO neurons, mini frequency was decreased even

further than in synaptobrevin KO neurons (Figure 5B). The

amplitude of minis was slightly larger in synaptobrevin-

deficient neurons than in wild-type neurons (Figure 5C),

consistent with the increase in vesicle size in synaptobre-

vin-deficient neurons (Deák et al, 2004). Rise times tended

to be longer for synaptobrevin-deficient synapses, although

the difference only reached significance for the comparison

between synaptobrevin/rabphilin double KO mice versus

rabphilin single KO mice (Figure 5D).

We next assessed the size of the RRP by measuring

synaptic responses to hypertonic sucrose (Rosenmund and

Stevens, 1996; Figure 5E). KO of synaptobrevin caused a

B10-fold decrease in sucrose responses. Additional deletion

of rabphilin did not change the average size of sucrose-

induced responses; similarly, the single KO of rabphilin also

did not alter sucrose responses (Figure 5F). The same result

was obtained when the entire time period of the sucrose

response was analyzed instead of the acute phase (data not

shown). Thus, based on spontaneous and on sucrose-induced

release, additional deletion of rabphilin on top of the synap-

tobrevin KO does not generally increase the releasability of

synaptic vesicles.

Evoked synaptic responses in rabphilin/synaptobrevin

double KO neurons

We next examined synaptic responses to action potentials

induced by 1 Hz field stimulation (Figure 6A). Synaptobrevin-

deficient neurons responded only to 34.277.8% of action

potentials (n¼ 11), whereas wild type and rabphilin KO

neurons responded to 100% of action potentials (Figures 6B

and C). Upon deletion of rabphilin, response rates increased

42-fold in synaptobrevin-deficient neurons (to 78.577.8%;

n¼ 12), making synaptic events almost completely reliable.

In addition, the rabphilin deletion enhanced the average

amplitude of synaptic responses B2-fold in synaptobrevin-

deficient but not wild-type neurons (synaptobrevin KO¼
32.777.9 pA (n¼ 11); double KO¼ 76.9722.6 pA (n¼ 12);

wild type¼ 757.87145.0 pA (n¼ 4); rabphilin KO¼ 709.87
140.9 pA (n¼ 7); Figure 6D). In these experiments, neurons

likely receive hundreds of synaptic inputs, with each stimulus

eliciting release at a subset of inputs depending on their

release probability. Thus, the observed low response rate in

synaptobrevin-deficient neurons combined with the small

amplitude of responses means that in these synapses, the

actual release probability is very low, and that the additional

deletion of rabphilin in synaptobrevin-deficient neurons

boosts this release probability much more than the B2-fold

increase observed for total responses.

Finally, we investigated the responses of mutant synapses

to 10 Hz stimulation. At this stimulation frequency, synapto-

brevin-deficient synapses exhibit strong facilitation (Deák

et al, 2004; see Figures 7A and B). Deletion of both rabphilin

and synaptobrevin converted this facilitation into depres-

sion (Figures 7A–C), while deletion of rabphilin alone had

no effect on the synaptic depression (Figure 4). These results

provide independent confirmation of the conclusion

(Figure 6) that deletion of rabphilin on the background of

the synaptobrevin KO significantly increases the release

probability. In parallel, we also measured the size of the

recycling pool of synaptic vesicles in mutant synapses using

fluorescent FM-dye staining and destaining (Deák et al,

2004). As described before, the pool size labeled by a single

depolarization with 90 mM Kþ was significantly decreased in

synaptobrevin KO neurons compared to wild-type controls

(B3-fold; Schoch et al, 2001; Deák et al, 2004). Additional

deletion of rabphilin significantly increased the pool size

in synaptobrevin-deficient neurons (B2 fold; Figure 7E),

consistent with the increase in Ca2þ -triggered release.

Discussion

Rabphilin is an abundant, evolutionarily conserved protein

that interacts with Rab3 as a function of GTP (Shirataki et al,

1993; Li et al, 1994), binds Ca2þ directly via its C2 domains

(Ubach et al, 1999), and together with Rab3 cycles on and off

synaptic vesicles during exocytosis (Geppert et al, 1994; Stahl
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et al, 1996). Deletions of rabphilin in mice (Schlüter et al,

1999) or C. elegans (Staunton et al, 2001) failed to produce a

major phenotype, although a genetic interaction with SNARE

proteins was observed in C. elegans (Staunton et al, 2001). In

the present study, we describe a physiological function for

rabphilin in regulating neurotransmitter release, and offer a

possible mechanistic explanation for this function. Our study

reports three principal findings: (1) In vitro, the C2B domain of

rabphilin binds to the SNARE protein SNAP-25 in a Ca2þ -

independent interaction that is mediated by the ‘bottom’,

Ca2þ -independent surface of the C2B domain. (2) Deletion

of rabphilin causes a dramatic increase in the rate at which

synapses recover from use-dependent synaptic depression. (3)

Deletion of rabphilin also enhances release in synapses lack-

ing the SNARE protein synaptobrevin; in these synapses, a

small amount of residual Ca2þ -triggered release remains that

is increased 42-fold upon the additional deletion of rabphilin.

Besides providing physiological evidence for a function of

rabphilin in regulating neurotransmitter release, these find-

ings have—as described below—implications for our thinking

about the mechanism of action of C2 domains and the control

of catalysis of membrane fusion by SNARE proteins.

Interaction of rabphilin with SNAP-25

We observed a stoichiometric interaction of the rabphilin C2B

domain with the SNARE protein SNAP-25 (Figures 1–3). Our
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data expand a GST-pulldown study that was published while

this paper was under submission (Tsuboi and Fukuda, 2005)

by demonstrating with immunoprecipitations that endo-

genous rabphilin and SNAP-25 interact with each other, and

by using NMR spectroscopy to identify the ‘bottom’ surface

of the rabphilin C2B domain as the binding site. The validity

of the rabphilin/SNAP-25 complex is supported by three lines

of evidence: (1) Pulldowns of rat brain proteins with immo-

bilized GST-fusion proteins showed that SNAP-25 captures

rabphilin, and rabphilin captures SNAP-25 (Figure 1). No

other SNARE protein bound rabphilin. (2) A rabphilin/SNAP-

25 complex was immunoprecipitated from rat brain homo-

genates with multiple antibodies, demonstrating that the

endogenous proteins interact with each other (Figure 1). (3)

The NMR experiments revealed that the complex of the

C2B domain of rabphilin with SNAP-25 is stoichiometric
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(Figure 2), and involves a defined sequence in rabphilin

(Figure 3).

The selective interaction of SNAP-25 with the conserved

a-helix at the bottom of the rabphilin C2B domain represents

the first known protein interaction mediated by the Ca2þ -

independent surface of a C2 domain, and provides a first

binding activity for the unique a-helix found at the bottom of

C2B domains. This finding suggests a general mechanism by

which C2 domains could simultaneously perform multiple,

Ca2þ -dependent and Ca2þ -independent binding reactions

via binding sites at the top and bottom loops of the domain.

The interaction of SNAP-25 with rabphilin suggests an ex-

planation for the changes in exocytosis induced by introduc-

tion of high concentrations of rabphilin or rabphilin

fragments into bovine chromaffin cells, PC12 cells, or squid

synapses (Chung et al, 1995, 1998; Burns et al, 1998; Tsuboi

and Fukuda, 2005). It seems likely that the large excess of

rabphilin in these experiments interferes with normal SNARE

function beyond the physiological role of rabphilin, as is

often observed in dominant-negative interference experi-

ments, providing an explanation for why these experiments

lead to phenotypes that bear no resemblance to the physio-

logical KO phenotype.

Phenotype of rabphilin-deficient synapses

We reanalyzed the rabphilin KO phenotype in cultured neu-

rons, and confirmed previous results obtained by slice phy-

siology that standard synaptic parameters were not impaired

by deletion of rabphilin (Schlüter et al, 1999). Guided by

the observed rabphilin/SNAP-25 interaction, we then tested

whether deletion of rabphilin alters recovery of synaptic

responses after the RRP has been depleted by high-frequency

stimulation. We found that synaptic responses recovered

much faster in the absence than in the presence of rabphilin.

Curve fitting uncovered two recovery phases of synaptic

responses in these experiments; deletion of rabphilin

did not alter the kinetics of these phases, but produced

a large shift (B3-fold) from the slower to the faster phase.

The effect of the rabphilin deletion was rescued by acute

viral expression of full-length rabphilin, demonstrating that

the phenotype was not due to a developmental abnormality

or a homeostatic compensatory reaction. Rescue was not

achieved with a C-terminally truncated rabphilin lacking

the C2B domain, consistent with the notion that the action

of rabphilin may depend, at least in part, on the interaction of

the C2B domain with SNAP-25.

One interpretation of these experiments is that vesicles

recover into the RRP by two separate reactions, and that

rabphilin normally channels vesicles from the faster into the

slower reaction. This premise is consistent with our finding

that rabphilin binds to SNAP-25/syntaxin heterodimers,

but not fully assembled SNARE complexes and may thus, at

least transiently, interfere with cognate SNARE interactions

(Figure 1 and Supplementary Figure 1). The efficacy and

frequency dependence of neurotransmission during natural

spike trains depends on the kinetics of depression as well

as recovery (Zucker and Regehr, 2002). A possible network

role for an inhibitory function of rabphilin could be to prevent

rebound hyperexcitability after bursts of activity; that is,

rabphilin may allow regulation of the kinetics of recovery

without altering the frequency dependence of depression. For

instance, when synapses are in a depressed state, a single

action potential that follows a silent period may result in

full excitability, thus causing network imbalance. Naturally,

a role for rabphilin in controlling such excitability would be

most powerful if this function itself could be regulated.

Future experiments will have to test whether such regulation

of rabphilin occurs, for example by Ca2þ -binding to its

C2 domains or by phosphorylation.

Mechanism of fusion in synaptobrevin-deficient

synapses

At the synapse, the SNARE proteins synaptobrevin/VAMP,

syntaxin 1, and SNAP-25 form the core fusion machinery that

mediates neurotransmitter release (Jahn et al, 2003). It was

thus surprising that deletions of synaptobrevin (Schoch et al,

2001) or SNAP-25 (Washbourne et al, 2002) did not abolish

release. Specifically, in synaptobrevin-deficient neurons,

hypertonic sucrose and action potentials still elicit B10 and

B2–3% of wild-type release, respectively (Schoch et al,

2001), and high-frequency stimulation facilitates release

(Deák et al, 2004). Moreover, although the size of the

recycling vesicle pool labeled with FM-dyes by a single

round of Kþ-depolarization is smaller in synaptobrevin-defi-

cient than in wild-type synapses, the total size of the pool that

is labeled with FM-dyes by repeated rounds of Kþ-depolar-

ization is identical in synaptobrevin-deficient and wild-type

synapses (Deák et al, 2004). Thus, synaptobrevin-deficient

synapses contain the same total number of fusion-competent

vesicles as wild-type synapses, but the fraction of fusion-

competent vesicles that are primed is decreased B10-fold,

and a smaller subset of the primed vesicles in mutant

synapses than in wild-type synapses undergoes exocytosis

in response to Ca2þ .

We now find that deleting rabphilin strongly potentiates

the residual Ca2þ -triggered release in synaptobrevin-

deficient synapses, but does not increase sucrose-induced

release. The observed effect is not small: release is increased

42-fold (Figure 6), and synaptic facilitation during high-

frequency stimulus trains is converted into depression

(Figure 7). Our findings thus suggest that in synaptobrevin-

deficient synapses, rabphilin normally suppresses the Ca2þ -

triggering of vesicles; reversal of this suppression by accu-

mulating residual Ca2þ during repetitive stimulation may

explain, at least in part, the facilitation of release observed in

synaptobrevin-deficient synapses during repetitive stimula-

tion (Deák et al, 2004). The overall effect agrees well with the

acceleration of recovery from use-dependent depression by

the deletion of rabphilin (Figure 4), because synapses after

use-dependent depression or after deletion of synaptobrevin

both lack an RRP produced by assembled SNARE complexes.

This also explains why deletion of rabphilin produces no

increase in release in standard rabphilin KO mice. Finally, an

important implication of our observations is that the residual

release in synaptobrevin-deficient synapses likely involves

SNAP-25, in agreement with the promiscuous nature of

SNARE protein interactions.

In contrast to the above observations on evoked neuro-

transmission, deleting rabphilin further decreased the rate of

spontaneous fusion in the synaptobrevin-deficient synapses.

The recent finding that spontaneous fusion events in part

originate from a distinct set of vesicles (Sara et al, 2005) may

help reconcile these contradictory results. For instance, if

these two sets of vesicles normally compete for fusion due to
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a limited set of release sites, relieving inhibition imposed by

rabphilin on evoked fusion may bring a competitive advan-

tage and reduce the propensity of spontaneous fusion. This

scenario is consistent with the normal rate of spontaneous

fusion seen in rabphilin KOs where in the presence of

synaptobrevin evoked fusion already possesses a significant

advantage.

In summary, we suggest that rabphilin physiologically

interacts with SNAP-25 in docked and primed vesicles, and

that this interaction may inhibit the remaining Ca2þ -triggered

release in synaptobrevin-deficient synapses. These findings

are consistent with the genetic interaction of rabphilin

with SNARE proteins in C. elegans (Staunton et al, 2001),

and the functional interaction of SNARE proteins with

Rab3 in Aplysia (Johannes et al, 1996). An implication is

that consistent with the rab3 KO phenotype (Schlüter et al,

2004), the rab3/rabphilin complex normally fine-tunes the

transition of primed vesicles containing partially or fully

assembled SNARE complexes to Ca2þ -responsive vesicles.

Regulation of this transition step likely is a set-point resulting

in short-term synaptic plasticity, and rabphilin may contri-

bute to this regulation during increased synaptic activity.

Our data suggest a mechanism that may explain these

observations, and provide molecular evidence for a physio-

logical function of rabphilin as a regulator of the SNARE

complex.

Materials and methods

Mouse breeding and hippocampal cultures
Synaptobrevin 2/rabphilin double KO mice were obtained from
timed matings of mice that were heterozygous for the synapto-
brevin KO (Schoch et al, 2001) and homozygous for the rabphilin
KO (Schlüter et al, 1999), while synaptobrevin 2 and rabphilin
single KO mice were generated from standard heterozygous
matings. High-density cultures of hippocampal neurons were
prepared on Matrigel coated 12 mm coverslips (B3 coverslips/
hippocampus) as described (Schoch et al, 2001), and used at 12–24
days in vitro.

Electrophysiology
Synaptic responses were monitored in pyramidal cells by whole-cell
patch-clamp recordings using an Axopatch 200B amplifier and
Clampex 8.0 software (Axon Instruments). Recordings were filtered
at 2 kHz and sampled at 200ms. The pipette internal solution
included (in mM): 115 Cs-MeSO3, 10 CsCl, 5 NaCl, 0.1 CaCl2, 10
HEPES, 4 Cs-BAPTA, 20 TEA-Cl, 4 Mg-ATP, 0.3 mM Na2-guanosine-
triphosphate, and 10 lidocaine N-ethyl-bromide, pH 7.35
(300 mOsm). A hypertonic solution, prepared by addition of
500 mM sucrose to the Tyrode solution, was applied to proximal
dendrites. Field stimulation was achieved through parallel platinum
electrodes immersed into the perfusion chamber delivering 24 mA
pulses of 1 ms.

Plasmid constructions and protein expression
Recombinant GST-fusion proteins were purified on glutathione
agarose as unlabeled or uniformly 15N-labeled (the recombinant
C2B domain of rabphilin; residues 524–684; Ubach et al, 1999).
Proteins were used as affinity matrices immobilized on glutathione
agarose, or cleaved from the GST-moiety with thrombin and
purified by size exclusion chromatography. See the Supplementary
Materials for a complete list of plasmids used.

NMR spectroscopy was performed with 15N-labeled proteins as
described (Ubach et al, 1999).

Miscellaneous procedures
All antibodies used were described previously (see Supplementary
Data). Phospholipid binding assays using liposomes, immunofluor-
escence labeling experiments, and FM fluorescent dye imaging were
carried out as described (Schoch et al, 2001; Shin et al, 2002; Deák
et al, 2004). SDS–PAGE and immunoblotting were performed using
standard procedures. Immunoprecipitations and GST-pulldown
experiments were performed essentially as described (Li et al,
1994; McMahon et al, 1995; see Supplementary Materials). Paired
Student’s t-test or variance analysis was used to determine
statistical significance (Po0.05).

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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RIM1a is required for presynaptic long-term potentiation. Nature
415: 327–330

Chung SH, Song WJ, Kim K, Bednarski JJ, Chen J, Prestwich GD,
Holz RW (1998) The C2 domains of Rabphilin3A specifically bind
phosphatidylinositol 4,5-bisphosphate containing vesicles in a
Ca2+-dependent manner. In vitro characteristics and possible
significance. J Biol Chem 273: 10240–10248

Chung SH, Takai Y, Holz RW (1995) Evidence that the Rab3a-
binding protein, rabphilin3a, enhances regulated secretion.
Studies in adrenal chromaffin cells. J Biol Chem 270: 16714–16718
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Fykse EM, Li C, Südhof TC (1995) Phosphorylation of rabphilin-3A
by Ca2+/Calmodulin- and cAMP-dependent protein kinases
in vitro. J Neurosci 15: 2385–2395

Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P,
Hammer RE, Südhof TC (1994) The role of Rab3A in neurotrans-
mitter release. Nature 369: 493–497

Geppert M, Goda Y, Stevens C, Südhof TC (1997) Rab3A regulates
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