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Major structural changes occur in the spliceosome during

its catalytic activation, which immediately precedes the

splicing of pre-mRNA. Whereas changes in snRNA con-

formation are well documented at the level of secondary

RNA–RNA interactions, little is known about the tertiary

structure of this RNA–RNA network, which comprises

the spliceosome’s catalytic core. Here, we have used the

hydroxyl-radical probe Fe-BABE, tethered to the tenth

nucleotide (Uþ 10) of the 50 end of a pre-mRNA intron, to

map RNA–RNA proximities in spliceosomes. These studies

revealed that several conserved snRNA regions are close to

Uþ 10 in activated spliceosomes, namely (i) the U6 snRNA

ACAGAG-box region, (ii) portions of the U6 intramolecular

stem-loop (U6-ISL) including a nucleotide implicated in

the first catalytic step (U74), and (iii) the region of U2 that

interacts with the branch point. These data constrain

the relative orientation of these structural elements with

respect to Uþ 10 in the activated spliceosome. Upon

conversion of the activated spliceosome to complex C,

the accessibility of U6-ISL to hydroxyl-radical cleavage

is altered, suggesting rearrangements after the first

catalytic step.
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Introduction

Nuclear pre-mRNA splicing proceeds by two transesterifica-

tion reactions. In the first step, the 20 hydroxyl group of the

branch-point adenosine attacks the 50 splice site (50ss),

resulting in a cleaved 50 exon and an intron-30-exon lariat.

During the second step, the 30 end of the 50 exon attacks the

30 splice site (30ss), resulting in mature mRNA and excised

intron lariat. The human spliceosome forms by association of

small nuclear ribonucleoprotein particles (U1, U2, U4/U6.U5

snRNPs) and non-snRNP proteins with pre-mRNA, and at-

tains its catalytic conformation by undergoing a series of

protein and RNA rearrangements that are highly conserved

between yeast and human (Burge et al, 1999; Brow, 2002).

First, a pre-spliceosome (complex A) is formed, in which the

U2 snRNA interacts with the branch point region and the U1

snRNA with the 50ss of the pre-mRNA. Then the U4/U6.U5

tri-snRNP binds to this, producing the precatalytic spliceo-

some (complex B). In this complex, the U4 and U6 snRNAs

are base-paired, forming two intermolecular stems. In the

next step, this interaction is disrupted and U6 enters into new

base-pairing interactions with the 50ss of the intron and with

U2 snRNA. During this rearrangement, U6 is re-folded such

that the region previously forming the U4 base-paired stem II

now forms an intramolecular stem-loop (U6-ISL). At the same

time, the U1 and U4 snRNPs are released, resulting in

activated, catalytically competent spliceosomes (complex

B*) in which the intron’s branch point and 50ss are juxta-

posed for the first transesterification reaction (Burge et al,

1999; Brow, 2002). After the first step, the 50 and 30 exon are

aligned with the help of U5 snRNA (Sontheimer and Steitz,

1993), leading to complex C and subsequently to the second

step of splicing (Umen and Guthrie, 1995).

The nature of the U2/U6 interaction has been a matter of

debate in recent years. In mammals, U6 is believed to form

helices I and II with U2, while U2 maintains parts of the U2-

ISL (Sun and Manley, 1995; Figure 1A). Evidence for this

is provided by NMR studies of yeast U2 and U6 snRNAs

(Sashital et al, 2004) and by mutational studies in yeast

(McPheeters and Abelson, 1992). In an alternative model,

U6 is predicted to form more extensive base pairs with U2,

leading to helices Ia and Ib (Madhani and Guthrie, 1992;

Hilliker and Staley, 2004; Figure 1B). However, these two

possibilities could reflect different states of spliceosome

activation, as discussed elsewhere (Sun and Manley, 1995;

Sashital et al, 2004) and need therefore not be mutually

contradictory.

Although activation of the spliceosome is well documented

at the level of changes in these base-pairing interactions,

much less is known about higher-order interactions and their

dynamics. Knowledge of these interactions is essential for

mapping the tertiary structure of the catalytic core—in which

the two steps of splicing occur—and for understanding the

overall mechanism of splicing.

Much evidence supports the idea that splicing catalysis is

mediated by the RNA components of the spliceosome (dis-

cussed by Nilsen, 1998; Villa et al, 2002). First of all, a

reaction similar to the first step of splicing can be catalysed

by protein-free U2 and U6 snRNA in vitro (Valadkhan and

Manley, 2001). Secondly, spliceosomes are metalloenzymes;

that is, the phosphates at each splice site (50ss or 30ss) bind

essential catalytic divalent ion at both active sites of the
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spliceosome (Moore and Sharp, 1993; Sontheimer et al,

1997). Additional catalytic factors in spliceosomes have yet

to be identified. An interesting candidate for direct involve-

ment in catalysis is the U6-ISL. In yeast, replacement of

a nonbridging phosphate oxygen by sulphur at nucleotide

U80, which is equivalent to human U74, revealed the ex-

istence of essential Mg2þ–phosphate interactions (Fabrizio

and Abelson, 1992; Yean et al, 2000). Furthermore, for U80,

a possible contribution of the magnesium ion to catalysis of

the first step has been suggested (Yean et al, 2000). However,

no such information is at present available for the human

spliceosome.

To investigate the RNA neighbourhood of the 50ss, we

chose hydroxyl-radical probing, using the EDTA derivative

Fe-BABE (Joseph and Noller, 2000; Figure 2A). Hydroxyl

radicals generated from Fe-BABE upon addition of H2O2

are useful for probing local RNA structure, as they induce

cleavage of nearby ribose moieties, predominantly within

a distance of 10 Å (Wang and Cech, 1992; Han and Dervan,

1994), regardless of how they are integrated into the

overall structure. This method has been used to investigate

tertiary interactions in ribosomes, by tethering Fe-BABE

to RNA or protein (Culver and Noller, 2000; Joseph and

Noller, 2000, and references therein), and more recently,

the pre-spliceosome, where a close proximity of the branch

point and 30ss to the 50ss was revealed (Kent and MacMillan,

2002).

The results presented here demonstrate that in activated

B* spliceosomes, Uþ 10 is close to regions of U6-ISL (includ-

ing U74) and also to the nucleotides of U2 that base-pair

with the branch point region. The proximity relationships

are only partially maintained after the first step of splicing

(i.e. in complex C). These studies provide important

information regarding the higher-order structure of the

RNA network in the B* (activated) and C spliceosomal

complexes.

Results

Experimental strategy for determining RNA–RNA

proximities

To investigate RNA neighbourhoods in the spliceosome by

site-directed hydroxyl-radical probing, we devised a strategy

in which a pre-mRNA containing an amide or a primary

amine is first synthesised by RNA-ligation of a synthetic

oligonucleotide with flanking pieces of RNA (Rhode et al,

2003). Subsequently, Fe-BABE is introduced by modification

of the amide or primary amine in a two-step conjugation

reaction. This general strategy allows attachment of the Fe-

BABE to the base through a 5-acrylamido group on a uridine

(Figure 2A) or to the ribose through a 20-amino group (not

shown).

For our analysis, we targeted Fe-BABE to the uridine base

at position þ 10 of the intron. This position is probably

constrained in the spliceosome, for two reasons: first, it is

adjacent to nucleotides þ 4 to þ 6, which bind the conserved

ACAGAG-box (nucleotides 41–46) of human U6 snRNA, and

second, it is on the 30 side of a psoralen crosslink observed

between C37 of U6 and the pre-mRNA, suggesting that base-

pairing between U6 and the pre-mRNA can be extended to

nucleotide þ 9 of the pre-mRNA (Wassarman and Steitz,

1992; Kandels-Lewis and Séraphin, 1993; Chan et al, 2003).

A modification at intron position þ 10 should therefore not

interfere with pre-mRNA binding to U6 snRNA or with

spliceosome function.

The conjugation procedure yielded Fe-BABE modification

of Uþ 10 in excess of 90%, as was assayed with the amide-

containing oligomer (Figure 2B, lane 8) used in the ligation.

We therefore prepared unmodified and Fe-BABE-modified

pre-mRNAs and compared their properties in splicing.

Analysis of the kinetics of spliceosomal complex formation

revealed that the two pre-mRNAs behave almost identically,

as shown by the equal amounts of individual spliceosomal

Figure 1 Secondary-structure models of the RNA–RNA network of the spliceosome. (A) Secondary structure of the human U2/U6/pre-mRNA
complex in the activated spliceosome just before the first catalytic step of splicing (according to Sun and Manley, 1995). (B) Secondary
structure of the alternative human U2/U6 interaction mode, drawn according to the yeast structure (Madhani and Guthrie, 1992). In both
panels, the conserved ACAGAG box (green), the AGC triad (pink) and the bulged U (orange) are highlighted. Mg2þ -binding sites at the 50 and
30ss and at the analogous yeast nts U80, A53, G54 (Fabrizio and Abelson, 1992; Yu et al, 1995; Sontheimer et al, 1997; Gordon et al, 2000; Yean
et al, 2000) are indicated by dots. C denotes the modified nucleotide pseudouridine. The red arrow schematically shows the attack of the
bulged-out A (branch point) on the 50ss during the first catalytic step of splicing.

Structural studies of human spliceosomes
BM Rhode et al

The EMBO Journal VOL 25 | NO 11 | 2006 &2006 European Molecular Biology Organization2476



complexes formed on each pre-mRNA in a given time

(Figure 2C, compare left and right panels). In addition,

splicing efficiency was similar, as can be seen from the

amounts of mRNA produced from each pre-mRNA

(Figure 2D, compare left and right panels). These analyses

revealed that introduction of Fe-BABE at position Uþ 10 had

no effect on the efficiency or kinetics of spliceosomal com-

plex formation or splicing. However, when Fe-BABE was

attached through the 5-acrylamido derivatives at position

�2 or þ 2 relative to the 50ss, complete or partial inhibition

of splicing, respectively, was observed (Supplementary

Figure S1). For the þ 2 position, this inhibition could only

partly be overcome by attaching Fe-BABE to the ribose

(Supplementary Figure S1). Therefore, we used the Fe-

BABE attached to Uþ 10 in subsequent experiments.

Site-directed hydroxyl-radical probing of spliceosomes

separated by glycerol-gradient centrifugation

To investigate RNA in the proximity of intron position þ 10

before the first step of splicing, a splicing reaction was

performed under conditions in which spliceosomes were

fully assembled but had not yet catalysed splicing. This was

achieved by kinetic control of the splicing reaction and by

increasing the pre-mRNA concentration (for details, see

legend to Figure 3). Fully assembled spliceosomes (migrating

as 50S particles) were separated from pre-spliceosomes (25S)

by glycerol-gradient centrifugation (Frendewey and Keller,

1985; Lamond et al, 1988). Native gel analysis confirmed

that the 25S peak contains pre-spliceosomes and unspecific

complex H, whereas the 50S peak contains a complex with

mobility lower than that of the pre-spliceosome and lacks

contaminating complexes from the 25S peak (not shown).

RNA analysis across the gradient showed that the 50S peaks

obtained from incubations with both the unmodified and

Fe-BABE-modified pre-mRNAs contained predominantly

(490%) unspliced pre-mRNA (Figure 3A).

The 25S (fraction 6 or 7) and 50S (fraction 11) peaks were

subjected to hydroxyl radicals from the Fe-BABE label and

consequent cleavage of pre-mRNA, and the U6, U2 and U5

snRNAs were investigated by primer extension. The existence

of a cleavage site implies proximity of the cleaved nucleotide

to the Fe-BABE label. RNA proximities to Uþ 10 of the intron

could thus be identified and compared between the two

spliceosomal complexes. Sites of cleavage induced by hydro-

xyl radicals are detected as bands that appear in the ‘þBABE

þH2O2’ lanes but are missing, or less intense, in the

Figure 2 Generation and characterisation of pre-mRNA with Fe-BABE introduced at intron position þ 10. (A) Site-directed chemical
modification of pre-mRNA containing a single reactive amido group. The amido group was first modified with the disulphide-containing
reagent SPDP and then reduced with DTT, leading to an SH group that could readily be modified with Fe-BABE. The maximum length of the
linker is B18 Å. (B) Unmodified and amide-modified 50-[32P] synthetic oligomers used in the ligation (see Materials and methods) were treated
as in (A) and the resulting products at each step were analysed by denaturing PAGE. The arrow (right) shows the product Fe-BABE–RNA.
(C) Time course of splicing complex formation. Spliceosomal complex formation was analysed on a native agarose gel. The identity of the
complexes is indicated on the right. (D) Time course of splicing of unmodified and Fe-BABE-modified pre-mRNA. Pre-mRNA was radiolabelled
in the 50 exon (asterisk), and RNAs were analysed by denaturing PAGE. The substrate and products are shown schematically on the right
(arrowhead, RNA degradation product). The concentrations of pre-mRNA and nuclear extract were 4 nM and 30%, respectively. Splicing
efficiencies were B40% for both pre-mRNAs, as assessed by comparing the levels of mRNA and pre-mRNA after 120 min.
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corresponding control lanes (þBABE –H2O2 and –BABE

þH2O2). Analysis of cleavage of the pre-mRNA revealed

that the hydroxyl radicals attack the RNA in the vicinity of

the Fe-BABE-modified nucleotide Uþ 10 (Figure 3B). The pre-

mRNA cleavage pattern observed with the 25S complexes

(pre-spliceosomes) and 50S complexes (fully assembled spli-

ceosomes) was essentially similar: cleavage sites were

observed between nucleotides þ 8 and þ 22, with strongest

cleavage between nucleotides þ 8 and þ 13 of the intron

(black line in Figure 3B; compare lane 6 with lanes 5 and 2,

and lane 8 with lanes 7 and 4). While this confirms that the

method itself is working, it also shows that the overall

accessibility of the pre-mRNA for hydroxyl radicals produced

from Uþ 10 does not differ between the two different spliceo-

somal complexes.

Analysis of cleavage sites on U6 snRNA was performed

with a primer that anneals to its 30 end (Figure 3C). Distinct

cleavage was observed in the 50S fraction only (compare

–H2O2 with þH2O2 in Figure 3C, lanes 8–7 and 6–5). This

was only observed in the presence of Fe-BABE on the

pre-mRNA, and not in fractions containing unmodified

pre-mRNA (lanes 2 and 3). It is therefore clear that portions

of U6 snRNA are close to Uþ 10 of the pre-mRNA in the

spliceosomes that migrate at 50S in the gradient.

One region of cleavages was found at nucleotides G34–C42

of the U6 snRNA, with the strongest cleavages at U40–C42

Figure 3 Site-directed hydroxyl-radical probing of gradient-purified spliceosomes. (A) A 30-min splicing reaction containing 20 nM unmodified
(left panel) or Fe-BABE modified (right panel) pre-mRNA was fractionated by glycerol-gradient centrifugation, and the RNA in each fraction
was analysed by denaturing PAGE. The pre-mRNA was radioactively labelled at intron position þ 12 (asterisk); RNA species are identified on
the right. A higher pre-mRNA concentration than in Figures 2C and D was used, and therefore almost no splicing intermediates are observed
after 30 min. (B) Analysis of hydroxyl-radical cleavage of the pre-mRNA close to the site of Fe-BABE modification. Cleavage sites on the pre-
mRNA are indicated by a grey bar on the right. 0: input RNA; C, U, A, G: dideoxy sequencing reactions on input RNA. Lanes 1–4: background
cleavage of pre-mRNA not modified with Fe-BABE; lanes 5–8: cleavage of spliceosomal complexes containing Fe-BABE pre-mRNA. (C) Analysis
of hydroxyl-radical cleavage of the U6 snRNA. Cleavage sites in U6 snRNA are indicated by grey bars on the right. Cleavages at U6 nucleotides
G72 and U52 (open arrowheads) were observed in only two out of five experiments. In addition, these positions are prone to erratic and
spontaneous reverse transcriptase pauses (compare the dideoxy sequences and ‘0’ controls). They were therefore considered as background
unrelated to hydroxyl-radical cleavage.
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(Figure 3C, lane 8). Since nucleotides A41 and C42 are part of

the conserved ACAGAG box, we infer that this element is in

close proximity to Uþ 10 in the 50S spliceosomes. Considering

that this element indeed approaches the 50 end of the intron

only upon formation of the 50ss/U6 snRNA helix (Figure 1),

that is upon spliceosome activation, the data imply that the

preparation analysed contains activated spliceosomes.

An additional set of cleavage sites was observed at nucleo-

tides C62, C63 and U74–C77 of the U6 snRNA (Figure 3C,

lane 8). In the activated spliceosomes, these two regions

of cleavages map to a row of base pairs around U74 on the

highly conserved U6-ISL (Figure 5A). Since the cleavage

pattern is consistent with a helical structure (see below),

the data are thus consistent with the existence of the U6-ISL

and further corroborate the above finding that the 50S

fractions contain activated spliceosomes.

To allow a classification of the genuine cleavages in

Figure 3C, according to Joseph et al (2000), cleavage inten-

sities were quantified by a densitometric analysis of the

bands observed in the absence versus the presence of H2O2

(Figure 5B). This quantification revealed ‘very strong’ clea-

vage between U40 and C42 of U6 snRNA, while the remaining

cleavages were found to be ‘strong’ (intensities about 50%

of the ‘very strong’ ones). While we have not attempted

to calibrate distances in our system, we can nevertheless

conclude that, relatively speaking, the nucleotides U40–C42

are closer to Uþ 10 than the nucleotides cleaved on U6-ISL.

An analysis of cleavages on U2 snRNA revealed distinct

hydroxyl-radical-induced cleavage at nucleotides C34, A35

and C37 of the branch-point-binding region (Figure 4A,

compare lane 4 with lanes 1–3). The cleavage sites detected

in U2 are indicated in the secondary structure model of the

spliceosome (Figure 5A). No cleavage was found 50 of C28

of U2 snRNA, indicating that these regions either are not near

Uþ 10 or are shielded by protein.

As the U2 snRNA cleavages mapped to the branch-point-

binding region, we also scanned the 30 portion of the pre-

mRNA for cleavages. This analysis revealed no additional

specific cleavages in the branch-point region, the polypyri-

midine tract, the 30ss, or the 30 exon (data not shown).

Therefore, either these regions of the pre-mRNA are not

close to nucleotide Uþ 10 or, alternatively, they are protected.

These protections may be by direct contact or by indirect

shielding through intervening protein or RNA. In addition,

the analysis was extended to the U5 snRNA, which is known

to undergo numerous interactions with the 50ss and the 30ss

(Wyatt et al, 1992; Sontheimer and Steitz, 1993; McConnell

and Steitz, 2001). This revealed no specific hydroxyl-radical-

induced cleavages of the U5 snRNA in the region examined

(Figure 4B, lanes 3 and 4).

Figure 4 Site-directed hydroxyl-radical probing of gradient-purified spliceosomes. (A) Analysis of hydroxyl-radical cleavage of the U2 snRNA.
Cleavage sites on the U2 snRNA are indicated by a bar on the right. Lanes 1 and 2: background cleavage of U2 snRNA not modified with
Fe-BABE; lanes 3 and 4, cleavages in spliceosomal complexes containing Fe-BABE pre-mRNA. (B) Analysis of hydroxyl-radical cleavage of
the U5 snRNA. The position of the U5 loop (nt 36–46) is indicated on the left. Lanes are as in (A). Further labelling is as in Figure 3B.
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Site-directed hydroxyl-radical probing of

affinity-purified activated spliceosomes

The gradient-purified spliceosomes analysed so far could

potentially contain a mixture of different spliceosomal com-

plexes, and the cleavages observed could belong to different

assembly states. Consequently, a direct correlation of all the

observed cleavages with the activated state cannot be

inferred from these experiments. To prove that the cleavages

indeed occurred in activated spliceosomes, we isolated

homogenous activated spliceosome according to the method

of Makarov et al (2002) using the Fe-BABE-modified pre-

mRNA. In this procedure, activated spliceosomes (B* com-

plexes) are immunoaffinity purified by using an antibody

against the SKIP protein, which associates stably with spli-

ceosomes at the time of their catalytic activation (Makarov

et al, 2002; Makarova et al, 2004). Previous characterisation

of such spliceosomes by psoralen crosslinking confirmed the

existence of the U6/pre-mRNA interaction and the U2/U6

interaction in the activated spliceosome, while the U4/U6

interaction was largely disrupted (Makarova et al, 2004).

The affinity-purified B* complexes, which were confirmed

to contain stoichiometric amounts of pre-mRNA along with

U2, U5 and U6 snRNAs (data not shown), were subjected to

hydroxyl-radical probing as above. The pre-mRNA and the U6

and U2 snRNAs were analysed for cleavage (Figure 6). The

cleavage pattern of the pre-mRNA was comparable to that

observed with the 50S gradient fractions, in that it extended

from nts þ 9 to þ 20 of the intron (compare lane 2 of

Figure 6A with lane 8 of Figure 3B). Strikingly, the cleavage

pattern of U6 snRNA was identical to that observed with the

50S gradient fractions (compare lane 2 of Figure 6B with lane

8 of Figure 3C). As with the 50S spliceosome, cleavage sites

were detected at nucleotides G34–C42 and at nucleotides

C62, C63 and U74–C77 of U6 snRNA, corroborating the

results obtained above. Likewise, an analysis of U2 snRNA

revealed cleavages at nucleotides C34, A35 and C37

(Figure 6C, lane 2), identical to those observed in the

gradient-purified 50S spliceosomes (Figure 4B).

Taken together, our data demonstrate that all the specific

cleavages described so far can be assigned to the activated

spliceosomes. Thus, the cleavage patterns can indeed be

interpreted in the context of the 50ss/U6 snRNA interactions

and the U6-ISL, as was suggested above. Moreover, since

Uþ 10 is an integral part of the 50ss/U6 snRNA interaction

helix, this structural element as a whole must be close to the

U6-ISL, such that Uþ 10 is oriented towards the U6-ISL. A third

element that is likewise close to Uþ 10 at this stage of the

spliceosomal cycle is the U2 snRNA/branch point helix.

Mapping the cleavages onto known RNA structural

elements

To investigate the relative orientation of the U6-ISL and the

U2/branch point helix to Uþ 10, we initially mapped the

cleavage sites onto the known homologous 3D structures

from yeast. The yeast U6-ISL (Sashital et al, 2004) and U2/bp-

helix (Newby and Greenbaum, 2002) should both fold in

a manner very similar, if not identical, to that in which their

human counterparts fold.

Figure 5 Summary of hydroxyl-radical induced cleavage sites in the secondary-structure model of the activated spliceosome. (A) Secondary-
structure model of U2/U6/pre-mRNA before the first step of splicing according to Sun and Manley (1995). The attack of the branch point A at
the 50ss is indicated by an arrow. Hydroxyl-cleavage sites in U6 and the pre-mRNA are indicated by circles. The double-headed arrows indicate
proximity relationships found between Uþ 10 of the pre-mRNA and U2 snRNA as well as U6-ISL. (B) Densitometric analysis of cleavage of U6
snRNA from Figure 3C, lanes 7 and 8. The background lane is shown in grey; hydroxyl-induced cleavages are shown in black. Nucleotides on
U6 snRNA specifically cleaved by hydroxyl radicals show higher peak values and are labelled with the corresponding nucleotides. Arrowheads
indicate enhanced cleavage sites that are not reproducibly observed (compare with Figure 3C).
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When the U6 cleavage sites at C62, C63, and U74–C77 are

mapped to their homologous residues of the structure of the

isolated yeast U6-ISL as determined by NMR, it becomes

apparent that they form a continuous stretch of nucleotides

around U74 (yeast U80; Figure 7A). This is consistent with

the presence of the U6-ISL in our activated spliceosomes (see

above). Moreover, the only way to explain this cleavage

pattern with hydroxyl radicals arising from Uþ 10 is to assert

that the U6-ISL is oriented in the spliceosome in such a way

that these nucleotides face Uþ 10. The data thus constrain the

possibilities for orientation of U6-ISL with respect to Uþ 10

in the activated spliceosome.

With the NMR structure of the yeast U2/branch-point helix

as a basis for mapping our observed U2 cleavage sites,

it becomes readily apparent that the pre-mRNA strand has

to be oriented away from Uþ 10 to account for the positions of

cleavage observed (Figure 7B). Only then can hydroxyl

radicals produced at Uþ 10 cleave the nucleotides C34, A35

and C37. Our data thus provide a second constraint for

localising the catalytic centre in the activated spliceosome,

in that the U2 snRNA strand of the U2/branch-point helix is

most probably located between Uþ 10 and the branch-point

adenosine. Consistently with such a configuration, we do not

find cleavage at the branch point.

The third structural element that is attacked by hydroxyl

radicals in the activated spliceosome is the 50ss/U6 snRNA

helix. In an ideal double-stranded RNA helix, cleavage sites

three base pairs apart on opposite strands would be posi-

tioned on the same side and within the major groove of the

helix. This is indeed what we observe, since the strongest

cleavages of U6 (C40–C42) and the strongest cleavages

around the Fe-BABE at Uþ 10 (þ 8 to þ 13) are separated by

three intervening bases (Figure 3B and C; see also Figure 5A).

These observations are therefore consistent with the exis-

tence of an extended 50ss/U6 snRNA helix, as outlined above.

Site-directed hydroxyl-radical probing in spliceosomal

complex C

Spliceosomes have been suggested to undergo rearrange-

ments between the first and the second step of splicing

(Moore and Sharp, 1993). We therefore finally investigated

whether the RNA cleavage pattern observed with the acti-

vated spliceosome is maintained after the first step of spli-

cing. As C complexes are difficult to isolate, we made use of a

well-described mutation, that is a GG mutation introduced at

the 30ss, to stall splicing before the second step (Gozani et al,

1994). After 150 min of splicing, accumulated C complexes

were fractionated by glycerol-gradient centrifugation. An

RNA analysis of the gradient fractions showed that in the

50S gradient peak more than 80% of the complexes contained

intron-lariat joined to the 30 exon, consistent with the pre-

sence of C complexes (Figure 8A). These fractions were

Figure 6 Site-directed hydroxyl-radical probing in the affinity-purified B* complex. (A) Analysis of hydroxyl-radical cleavage of pre-mRNA.
Cleavage sites in the pre-mRNA are indicated by a grey bar on the right. (B) Analysis of hydroxyl-radical cleavage of U6 snRNA. Cleavage sites
in U6 snRNA are indicated by grey bars on the right. Arrowheads indicate sites of increased background cleavage not observed in every
experiment. (C) Analysis of hydroxyl-radical cleavage of U2 snRNA. Cleavage sites in U2 snRNA are indicated by the grey bars on the right.
Further labelling is as in Figure 3B. See also densitometric analysis in Supplementary Figure S2.
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subjected to hydroxyl-radical probing. The pre-mRNA clea-

vage pattern was essentially identical to that in the activated

spliceosome, in that nucleotides þ 7 to þ 18 were cleaved

(compare Figures 8B and 3C). In contrast, the cleavage

pattern of U6 in complex C differed from that obtained with

activated spliceosomes, in two respects. First, fewer nucleo-

tides were cleaved around the ACAGAG-box region (i.e. only

G38 to C42; Figure 8C, lane 2), but A41 and C42 of the box

were still cleaved. These results show that the Fe-BABE

reagent is still close to the ACAGAG box and is consistent

with the persistence of the 50ss/U6 snRNA base-pairing

interaction in complex C (Sontheimer and Steitz, 1993).

Second, cleavage at U74, G75 and A76 disappeared, whereas

cleavage at C62, C63 and C77 (which was observed in the

activated spliceosome) was still detected. Therefore, several

nucleotides of U6-ISL (including U74) are no longer accessi-

ble to site-directed hydroxyl-radical cleavage in complex C.

An analysis of U2 snRNA cleavage was not attempted,

because of the small amounts of splicing complexes routinely

obtained per fraction (less than 1/4 when compared with the

120 fmol of activated spliceosomes in Figures 3 and 4) and

the inherently lower efficiency of primer extension on U2

snRNA (not shown). An overview of the U6 snRNA cleavage

pattern is shown in Figure 8D. In summary, these data

suggest that upon transition to C complex either (i) protection

of nucleotides U74 to A76, or (ii) a relative repositioning of

the U6-ISL with respect to Uþ 10 has occurred. The latter may

reflect the requirement to remodel the spliceosome before

the second step (Moore and Sharp, 1993). In contrast, the

50ss/U6 snRNA binding region was still largely helical at

this stage in the C complexes analysed.

Discussion

In this work, we performed site-directed hydroxyl-radical

footprinting with the aim of gaining insight into the structur-

ing of RNA neighbourhoods in the spliceosome. We provide

evidence that in activated spliceosomes, a number of highly

conserved RNA structural elements are in the direct vicinity

of nucleotide Uþ 10 of the intron. These elements include (i)

the U6-ISL, which forms as a result of activation of the

spliceosome and which positions the important nucleotide

U74 of U6 snRNA; (ii) the U2/branch point helix, which holds

the branch point in position for the first step of splicing; and

(iii) the highly conserved ACAGAG box, which tethers the

50ss region to the spliceosome, thereby positioning the 50ss.

In addition to providing simple proximity data, our results

constrain the possibilities for the relative orientations of these

RNA structural elements with respect to Uþ 10, thus providing

higher-order constraints for reconstructing the architecture of

the spliceosome. By tracking these proximity relationships

into a C complex, stalled just before the second step of

splicing, we find the 50ss/U6 snRNA helix unchanged, but

changes in the accessibility of nucleotides on U6-ISL. These

issues, and their implications for organisation of the catalytic

centre of the spliceosome, are discussed in turn.

The Fe-BABE reagent was tethered to nucleotide Uþ 10 for

a number of reasons. First of all, Uþ 10 is next to a highly

conserved RNA structural element, the 50ss/U6 snRNA helix

(Figure 1), which only forms upon spliceosome activation. In

addition, crosslinking experiments in human (Wassarman

and Steitz, 1992) and yeast spliceosomes (Chan et al, 2003)

suggested that the helix can be extended at least to nucleotide

þ 9 of the intron. Therefore, the Uþ 10 position is likely

constrained in the spliceosome. Second, of all positions tested

(Supplementary Figure S1), modifications at position Uþ 10

were least detrimental to spliceosome assembly and splicing.

For this reason, we used it as an entry point for a site-directed

hydroxyl-radical investigation of spliceosomes at defined

assembly stages.

The affinity-purified activated spliceosome used in our

studies contained the snRNPs U2, U5 and U6, and the pre-

mRNA, while it lacked U1 and U4 (Makarov et al, 2002). In

this complex, the major structural rearrangements leading

to spliceosome activation have occurred, as shown by the

presence of U2/U6 helix II and the 50ss/U6 interaction

(Makarova et al, 2004). Consistent with the latter interaction,

we now find close proximity of Uþ 10 with the ACAGAG-box

in this complex (Figure 5A). The cleavage pattern that we

observe is in agreement with a helical structure as outlined

above.

We provide strong evidence that before the first step of

splicing, C62, C63 and U74–C77 of U6-ISL are accessible to

hydroxyl radicals generated at Uþ 10. Since these cleavages

are fully compatible with the helical structure proposed for

the U6-ISL, our site-directed hydroxyl-radical probing from

position Uþ 10 of the intron of the pre-mRNA therefore

provides a first direct and straightforward experimental ap-

proach for investigation of this important structural element

in a native activated spliceosome.

Our data imply that the stretch of nucleotides cleaved on

the U6-ISL must be positioned in such a way that they face

Uþ 10, the source of the hydroxyl radicals. In addition, these

nucleotides are not protected by proteins. Thus, whatever the

Figure 7 Mapping the cleavages onto RNA structural elements.
(A) Model showing the position of cleavage sites of U6 snRNA
observed in the activated spliceosome in the NMR structure of the
yeast U6-ISL (Sashital et al, 2004; PDB code 1XHP). Corresponding
human nucleotides at hydroxyl-radical cleavage sites are shown by
white balls. (B) Model showing the position of cleavage sites of U2
snRNA observed in the activated spliceosome in the NMR structure
of the yeast U2/bp-helix (Newby and Greenbaum, 2002; PDB code
1LPW). Corresponding human nucleotides at positions of hydroxyl-
radical cleavage sites are shown by white balls. The branch site is
shown by a blue ball. The structural views were prepared with the
program Drawna 2.1 (Westhof et al, 1985).

Structural studies of human spliceosomes
BM Rhode et al

The EMBO Journal VOL 25 | NO 11 | 2006 &2006 European Molecular Biology Organization2482



exact positioning of the U6-ISL relative to Uþ 10 of the 50ss/U6

snRNA helix, the space between Uþ 10 and the cleaved

nucleotides is not occluded by RNA or protein.

Of particular interest is U74. Its homologue in yeast, U80,

was shown to bind a magnesium ion at the pro-Sp nonbrid-

ging phosphoryl oxygen, which was found to be critically

required for the first step of splicing (Yean et al, 2000).

Whether the essential magnesium identified by Yean et al

(2000) has a structural or catalytic role is at present an

unsettled issue (discussed by Nilsen, 2000; DeRose, 2003).

For a magnesium ion to perform a catalytic task at U74, the

50ss or the branch-point adenosine would have to be brought

into close proximity (at least 4 Å; Steitz and Steitz, 1993) of

the magnesium bound to U80 (or U74 in our case). As far as

Figure 8 Additional U6-ISL nucleotides are protected from hydroxyl radicals after the first step of splicing. (A) Gradient centrifugation of a 150-
min splicing incubation containing 50% nuclear extract and Fe-BABE-pre-mRNA-30GG (9 nM), analysed as in Figure 2. The pre-mRNA was
radioactively labelled at intron position þ 12 (asterisk); RNA species are identified on the right. Hydroxyl-radical probing of pre-mRNA (B) and
U6 snRNA (C) in complex C. Cleavage sites are indicated by grey bars on the right. The further labelling of the figure is as in Figure 6A and B.
See also densitometric analysis in Supplementary Figure S2. (D) Secondary-structure model of U2/U6/pre-mRNA after the first step of splicing.
The attack of the 50 exon at the 30ss is indicated by an arrow. Hydroxyl-radical cleavage sites in U6 and the pre-mRNA are indicated by circles.
The double-headed arrow indicates the proximity found between U6-ISL and Uþ 10 of the pre-mRNA. Further labelling is as in Figure 3B.
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the 50ss (i.e. nt þ 1 of the intron) is concerned, the close

proximity of nucleotide þ 10 to U74 probably precludes the

simultaneous proximity of nt þ 1 to U74. In fact, cleavage

of nucleotide þ 1 or neighbouring nucleotides was never

observed in any of the spliceosomal complexes investigated

(complexes A, B* and C). Therefore, the 50ss region of the

pre-mRNA is probably not in the vicinity of Uþ 10, which in

turn implies that a folding-back of the 50ss towards the intron

nucleotide Uþ 10 is not very likely. In further corroboration of

this, nt þ 2 of the pre-mRNA and U40 of the U6 snRNA were

found to be in close proximity before the first step of splicing

in yeast (Kim and Abelson, 1996). However, we cannot

exclude the possibility that the 50ss is shielded by protein,

or is otherwise unfavourably oriented for attack by hydroxyl

radicals from Uþ 10. A proximal position of the branch-point

adenosine to U74 is even less likely. The clear hydroxyl-

radical-induced cleavage of U2 snRNA implied that the

branch-point is oriented away from Uþ 10 (Figure 7B). To

allow cleavage of U2 snRNA, and at the same time to

maintain proximity of the branch-point to U74, would require

the complete U2/branch-point helix to lie between Uþ 10 and

U74. This possibility, however, can be excluded by the data,

which show that U74 is in the direct ‘line of sight’ of Uþ 10.

Our data therefore suggest that a structural, rather than

catalytic, role should be considered for this nucleotide. For

example, a magnesium ion bound to U74 could help

tether the intron part of the 50ss helix to U6 snRNA.

This could be important for maintaining the overall fold of

the spliceosome’s catalytic core. Consistent with a structural

role, yeast U80 was found crosslinked in spliceosomes to

an intron position 209 nucleotides away from the 50ss

(Ryan et al, 2004).

It is interesting to compare the situation at U74 with recent

data from self-splicing group II introns, which are mechan-

istically related to spliceosomes (Villa et al, 2002). U6-ISL is

functionally equivalent to domain V of these introns (Shukla

and Padgett, 2002), with C839 being the homologue of the

magnesium-binding U80 of yeast. Crosslinking studies re-

vealed a close contact between C839 and intron nucleotides

4–6 (de Lencastre et al, 2005). This makes a proximity of

C839 to the 50ss improbable and, thus, a catalytic role for

C839 unlikely. More recently, an NMR study of the closely

related domain V RNA from Pylaiella littoralis, combined

with detailed magnesium titration experiments, revealed two

additional magnesium-binding regions (Seetharaman et al,

2006). By comparison of electrostatic surface potentials be-

tween domain V and the U6-ISL structure, the homologous

magnesium-binding sites of yeast U6-ISL were identified as

the penta-loop closing the stem, the internal bulge with

the U80 nucleotide, and the AGC triad of the lower

stem (see Figure 1). Thus, at least two further candidate

regions, in addition to U80, may potentially be involved in

coordinating essential magnesium ions. Further, the distance

between neighbouring sites of about 20 Å would preclude

a simultaneous involvement of any two of them in a catalytic

scheme.

Taken together, our data suggest that U74 is placed in

a structurally, rather than catalytically, important position

in the activated spliceosomes that we investigated. However,

we cannot exclude the possibility that rearrangements

placing U74 in a position favourable for participation in

catalysis occur.

In our stalled C complexes, we find the situation at the

50ss/U6 snRNA helix essentially unchanged when compared

with the activated spliceosome. This suggests that the sus-

pected rearrangement for the second step of splicing does not

involve this structural element. In contrast, after the first step

of splicing, nucleotides U74 to A76 of U6-ISL are no longer

accessible to hydroxyl radicals generated from Fe-BABE at

Uþ 10 of the intron, whereas C62, C63 and C77 of U6 snRNA

remain accessible. This loss of accessibility could be due to

an interaction of proteins with U6-ISL just before the second

step of splicing, at which time a number of second step-

splicing factors join the spliceosome (Umen and Guthrie,

1995; Schwer and Gross, 1998). Alternatively, it could also

reflect a rearrangement within the spliceosome, consistent

with the idea that the active site is remodelled just before the

second step (Moore and Sharp, 1993; Konarska et al, 2006).

To reconcile the different secondary-structure models of the

spliceosome, it has been proposed that a four-way junction

fold of U2/U6 snRNA is required for the first step, whereas

the three-way junction fold is needed for the second step (see

Discussion in Sun and Manley, 1995; Sashital et al, 2004). A

transition from one type of interaction to another could allow

a repositioning of catalytic nucleotides close to the 50 and

30ss. As nucleotides of the U6-ISL are still in close proximity

to nucleotide Uþ 10 of the intron after step one, a dramatic

repositioning of the U6-ISL with respect to the 50 end of the

intron does not appear to occur at this stage. The observed

change in the U6-ISL cleavage pattern could possibly arise

from a reorientation of the 50ss helix with respect to U6-ISL.

In this event, some nucleotides of U6-ISL would still remain

oriented towards the 50ss helix.

The data presented here demonstrate that hydroxyl-radical

probing using tethered Fe-BABE is a valuable tool for detect-

ing RNA proximity relationships at different steps of the

splicing cycle. Future work will include introducing Fe-

BABE at other positions of the pre-mRNA, and also into the

snRNAs or protein, and searching for RNA–RNA proximities

in spliceosomes captured at different steps of the spliceoso-

mal cycle. Such studies will provide us with additional

constraints for modelling the RNA network of the spliceo-

some, and will provide further insight into the precise timing

of the spliceosome’s rearrangements and the catalytic

mechanism of splicing.

Materials and methods

Pre-mRNA preparation and Fe-BABE modification
Oligoribonucleotides CCUCCGAACG|GUAAGAGCCUA and CCUCC
GAACG|GUAAGAGCC(dU*)A were purchased from RNA-Tec, Bel-
gium (the vertical separator denotes the 50 exon/intron boundary,
and dU* is the modified nucleotide 5-acrylamido-deoxyuridine).
Preparation of site-specifically modified pre-mRNA was performed
as described earlier (Rhode et al, 2003). Briefly, the flanking 50 and
30 fragments were generated from MINX pre-mRNA by DNA
enzyme digestion (Santoro and Joyce, 1997). Then, 240 pmol each
of oligoribonucleotide and 50 fragment, and 120 pmol of g-[32P] 30

fragment, were hybridised to a splint oligodeoxyribonucleotide and
ligated with 8ml T4 DNA ligase (NEB, 2000 U/ml; Moore and Sharp,
1992). This resulted in B20 pmol of ligated pre-mRNA. MINX pre-
mRNA containing a single AG to GG mutation at the 30ss was
prepared using a site-directed mutagenesis kit (Stratagene).
Modification of pre-mRNA with SPDP (N-succinimidyl-3-[2-pyridyl-
dithio]propionate, Pierce) and subsequent DTT cleavage were
performed as described by Cohen and Cech (1997). Fe-BABE was
prepared from aminobenzyl-EDTA (Dojindo, Japan; DeRiemer and
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Meares, 1979). Reaction with the SH was as described (Newcomb
and Noller, 1999). Modified pre-mRNA was separated from Fe-BABE
by a G50 spin column purification and EtOH precipitation of
Fe-BABE-modified pre-mRNA.

Pre-mRNA splicing and complex isolation
Except where otherwise indicated, spliceosomal complexes were
prepared by incubation of 2 pmol of pre-mRNA with 40% nuclear
extract (Dignam et al, 1983), 1.3 mM ATP, 27 mM creatine
phosphate and 2.4 mM MgCl2 in a final volume of 100ml for
different times at 301C. After incubation, heparin was added to a
final concentration of 0.125 mg/ml and the reaction mixtures were
applied to linear 10–30% glycerol gradients (1.5 ml, gradient buffer
containing 100 mM NaCl, 1.5 mM MgCl2, 0.1 mM EDTA and 20 mM
HEPES-KOH, pH 7.9). Centrifugation with a Sorvall S55-S rotor was
performed at 55 000 r.p.m. for 105 min at 41C, and gradients were
fractionated into thirteen 110-ml aliquots.

Affinity purification of activated spliceosomes (complex B*) was
performed as described (Makarov et al, 2002). Briefly, 8.5 pmol Fe-
BABE pre-mRNA was incubated with 40% nuclear extract in a final
volume of 800ml for 14 min under splicing conditions, and the
reaction was stopped by adding heparin to a final concentration of
0.5 mg/ml. Immunoprecipitation of activated spliceosomes was
performed for 2 h at 41C with 150mg anti-SKIP antibody coupled
to protein A-Sepharose. Complexes were eluted with cognate
SKIP peptide. The eluted material (B600 ml) contained B0.9 pmol
B* complex.

Hydroxyl-radical cleavage in isolated complexes
For induction of the hydroxyl-radical reaction, 33 ml of the peak
fractions from the gradient or 44 ml of eluted complex B* were
diluted to 2 ml with buffer containing 50 mM cacodylic-acid-KOH
(pH 7.0), 1.5 mM MgCl2 and 100 mM KCl on ice. A measure of 8 ml
ascorbic acid (500 mM) was added and the generation of hydroxyl
radicals was initiated with 25 ml H2O2 (0.4% v/v). Dilution to a

glycerol concentration well below 0.5% was necessary as glycerol
functions as a scavenger of hydroxyl radicals (Tullius and
Dombrowski, 1986). The integrity of 50S spliceosomal complexes
after dilution was confirmed by glycerol-gradient centrifugation
(not shown). The cleavage reaction was allowed to proceed for
10 min on ice and was then stopped by addition of glycerol to a final
concentration of 2.5% (v/v). Proteins were removed by digestion
with proteinase K and the RNA was recovered. Control reaction
mixtures were digested directly with proteinase K.

Primer extension
Primer extension was performed as described (Hartmuth et al,
1999). For the different RNAs, the following oligonucleotide primers
(from MWG Biotech) were used (complementary nucleotides are in
brackets): MINX intron: GCTTGGGCTGCAGGTAAC (100–83); MINX
exon 2: TCTGGAAAGACCGCGAAG (216–199); U6: ATATGGAA
CGCTTC (103–90); U2: CTCGGATAGAGGACGTATCAG (81–61); U5:
GCAAGGCTCAAAAAATTGGGT (103–83). Radioactively labelled
pre-mRNA was removed after reverse transcription by adding
NaOH to a final concentration of 20 mM and incubating at 601C
for 1 h.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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