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The general quasi-classical treatment for collision-induced vibrational transitions in diatomic

molecules, under near-adiabatic conditions, is used to derive quantum corrections for

probabilities, calculated in the external field approximation originally used by Landau and Teller.

The quantum corrections are expressed through the Landau–Teller classical collision time. The

first-order correction to the classical exponent restores detailed balance for up- and down-

transitions and does not depend on the properties of the bath except for its temperature. The

limits of applicability of the first-order correction are discussed.

1. Introduction

The Landau–Teller (LT) theory of vibrational relaxation of

diatomic molecules in a heat bath1 employs an external field

approximation for the calculation of transition probabilities.

An explicit expression for vibrational state-to-state transition

probabilities was derived assuming an exponential, repulsive

interaction between the colliding particles in collinear config-

uration. As a result, a linear dependence of the logarithm of

the mean transition probability for deactivation of the first

vibration state, hP10i, on T�1/3, the famous LT plot was

predicted,

lnhP10i = const � 3(p2o2ma2/2kT)1/3. (1)

Here the values of two parameters are known (the vibrational

frequency o and the reduced mass of the collision partners m),
while the third parameter, a, from an expression for the

interaction potential in the form U(R) p exp(�R/a), can be

roughly estimated within in the framework of the so-called

asymptotic approach.2 For real collisions in three dimensions

one also has to take into account the contribution of rota-

tional motion to the vibrationally inelastic collision dynamics.

However, for molecules that are not too light (such as N2, CO)

and with small reduced mass of the partners (such as collisions

N2, CO þ He), the properly defined collision time t is much

shorter than the rotational period trot and, for molecules of

low asymmetry, steep repulsion, and shallow potential wells,

one can simulate the collision by a collinear event occurring at

a fixed value of the angle between the collisional and the

molecular axes; subsequently averaging over all angles is

performed (the so-called infinite order sudden approximation,

IOS, such as that demonstrated for CO–He collisions in ref. 3).

One then expects that eqn (1) is applicable, with all influences

of the angular dependence of the interaction absorbed into the

constant term of eqn (1). As long as the condition t/trot { 1 is

satisfied, there remains mainly two effects that can lead to

curvatures of the LT plot: deviations of the interaction

potential from an exponential repulsion form and quantum

corrections to the external field approximation. The former

was repeatedly addressed in the literature (see, e.g. ref. 4–6 and

earlier work cited therein). The latter attracted attention

mainly in connection with the recovery of the quantum

correlation functions of the bath from its classical counterpart

(see review 7 and ref. 8–15). In particular, ref. 14 provides a list

of different quantum factors that correct the classical correla-

tion function of external force and which were derived in the

various approaches. Of course, the quantum corrections for

any particular collision can be easily deduced from an accurate

solution of the scattering equation. However, in this way it is

difficult to get a general picture. Therefore, in the present work

we address this problem again, adopting the LT model of

collinear collisions and resorting to the general formula for

quasi-classical matrix elements in the near-adiabatic limit16

where the main dependence on the characteristic parameters of

the problem comes from the exponential factor in the transi-

tion probability. This allows one to limit the discussion to the

exponential factors of the transition probabilities.

2. The Landau–Teller model

Landau and Teller considered the collinear collision of a

structureless particle A with a harmonic oscillator under the

assumption that the vibrational amplitude of BC is small

compared to the range of the intermolecular forces between

A and BC, and that the collision time is large compared to the

period of the molecular oscillation. Explicit expressions for

probabilities and rate coefficients were obtained for the case

when A and B interact through an exponential repulsive

potential. In a first order perturbation approach, the prob-

ability of a transition Ei - Ef between the states of the

translational energies Ei and Ef is proportional to the square

of the absolute value of the matrix element between states Ei

and Ef. In the so-called common trajectory (CT) approxima-

tion (also called the external field approximation) used by

Landau and Teller, the matrix element is proportional to the

Fourier component of the time-dependent perturbation.
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Landau and Teller outlined general arguments why the CT

transition probability for nearly adiabatic conditions will

exponentially depend on the transition frequency o = |DE|/�h,
i.e. will have the form

PCT(o, E) p exp(�2ot(E)) (2)

Here, E is the ‘‘collision energy’’, and the transition frequency

o, for single-quantum transitions, coincides with the fre-

quency of the oscillator. LT also indicated how the time t(E)
could be calculated for an unperturbed trajectory of energy E.

The exponential dependence of PCT on the frequency o of a

quantum oscillator corresponds to a similar dependence for

the change of the vibrational energy of a classical oscillator. In

the latter case, the near adiabatic condition ot c 1 ensures

that the change in the vibrational energy is small and, there-

fore, an influence of the oscillatory mode on the relative

motion can be neglected. This allows one to identify the

‘‘collision energy’’ E with the initial translational energy Ei.

For a quantum oscillator, the adiabatic condition ot c 1

guarantees a small change in the mean vibrational energy,

though the energy transfer DE = �ho may not be small. Then

the ‘‘collision energy’’ E can be affected by DE, though in an

unknown way. We note in passing that the exponential

dependence of the transition probability on the transferred

energy �ho was later dubbed the ‘‘energy gap law’’.

Accepting the approximationE=Ei as is done by LT, we write

the expression for thermally averaged transition probability as

hPCTðDEÞi /
Z

exp½�2otðEiÞ � Ei=kT �
dEi

kT
ð3Þ

LT remarked that, for ot c 1, the thermal averaging can be

carried out in the steepest descent (SD) approximation. In this

approximation, eqn (3) leads to

hPCTSD(DE)ip exp[�2ot(E*) � E*/kT] (4)

where the SD energy E*is found from the equation

�2o dt
dEi

����
Ei¼E�

� 1

kT
¼ 0 ð5Þ

For an exponential repulsion, one has tðEÞ ¼ pa=
ffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
.

Substitution of this t(E) into eqn (5) and (4), as is well known,

yields the second term at the r.h.s. of eqn (1).

Since hPCTSD(DE)i does not depend on the sign of DE (note

that o = |DE|/�h), the average probabilities of up-(DE > 0)

and down-(DE o 0) transitions are the same, i.e. hPCTSD(DE)i
= hPCTSD(�DE)i. This means that the average transition

probabilities do not satisfy the detailed balance relation

hPupi/hPdowni = exp(�|DE|/kT) (6)

LT corrected the shortcoming of the EFSD approximation by

assuming

hPLT
downi = hPCTSD(DE)i, for DE o 0

hPLT
up i = exp(�DE/kT)hPCTSD(DE)i, for DE > 0 (7)

These relations were used to formulate relaxation equations

for the population of oscillator levels1 which, much later, were

solved for various initial distributions.17

3. Quasi-classical approximation in the

near-adiabatic limit

The way of correcting the CT approximation by eqn (7)

appears questionable and a more consistent procedure can

be formulated if the CT approximation is derived from the

quasi-classical (QC) approximation formulated by Landau16

and described in the textbook18 by Landau and Lifshitz.

According to this method, which is based on the analytical

continuation of the classical action integrals into the classically

forbidden region of the coordinate and requires the exponen-

tially small magnitude of the transition matrix element, the

probability of the transition Ei - Ef reads

PQC(Ei, Ef) p exp {�(2/�h)|Re(S̃Ei
�S̃Ef

)|} (8)

Here, S̃Ei
(or S̃Ef

) is the classical action integral taken from the

turning point for the motion across the unperturbed potential

at the energy Ei (or Ef) into the classically forbidden region of

this potential down to a transition distance determined by the

stationary phase condition for the action difference. Though

an excursion into the classically forbidden region of the

potential looks like a completely non-classical event, it is not

quite so for potentials that are represented by analytical

functions, since the full potential can be recovered from a

small portion of it and, therefore, the potential in the classi-

cally forbidden region is completely defined by the potential in

the classically allowed region. Therefore, one hopes to find a

relation between the classical exponent in eqn (2) and the QC

exponent in eqn (8). Indeed, expression (8) can be recast in the

form19

PQCðEi;Ef Þ / exp �ð2=�hÞ
ZEf

Ei

tðEÞdE

�������
�������

0
B@

1
CA ð9Þ

Since the exponent in eqn (9) is completely determined by the

classical time t(E) we dwell on the calculation of this quantity.

According to LT, the time t(E) is defined through the integral

tðEÞ ¼ Im

ZRs

Rt

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞðE �UðRÞÞ

p
8<
:

9=
;

������
������

¼ �
ZRs

Rt

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=mÞðUðRÞ � EÞ

p ð10Þ

Here U(R) is the unperturbed interaction potential between A

and the centre of mass of BC, Rt is the turning point for the

motion in the field of the potential U(R), and Rs is the distance

R at which the integral can be considered as converged.

The following remarks about eqn (10) have to be made:

(a) The integration range in eqn (10) corresponds to the

classically forbidden region where U(R) > E. Of course, the

Fourier component of the perturbing force is a completely

classical quantity, and it can be calculated without excursion

into the classically forbidden region. In this sense, eqn (10)

represents an alternative way of calculating t, being valid for

any analytic function U(R).

(b) The distance Rs corresponds to quite high values of the

interaction energy, |U(Rs)| c E. As follows from eqn (10),
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t(E) can be interpreted as the time of mutual approach of A

and BC in the field of an inverted potential �U(R), with a

negative energy �E and starting from the distance R = Rt.

The final distance of approach, R= Rs, is immaterial since the

system here spends progressively less time, moving very fast in

the region of the large negative potential �U(R).

(c) Though, originally, the time t(E) was defined for asymp-

totically free relative motion of A and BC, eqn (10) permits a

generalisation to the bound motion in the complex A–BC.

This implies that eqn (9) can be applied not only to free–free

transitions (vibrational-to-translational energy transfer, both

Ei and Ef positive), but also to bound–free transitions (vibra-

tional predissociation, Ei negative and Ef positive) and

bound–bound transitions (intramolecular energy redistribu-

tion, Ei and Ef negative).

Returning to free–free transitions, we can check the accu-

racy of the QC approximation by comparing the QC transition

probability PQC with its accurate quantum counterpart, PQ.

As an example, we take an exponential potential U(R) p

exp(�R/a) for which PQ was calculated analytically by Jack-

son and Mott.20 The energy-dependent part of PQ reads

PQðEi;Ef Þ /
sinhð2papi

�
�hÞ � sinhð2papf

�
�hÞ

ðcoshð2papi
�

�hÞ � coshð2papf
�

�hÞÞ2
ð11Þ

where pi;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEi;f

p
are the initial and final momenta asso-

ciated with their respective energies. On the other hand,

expression (9) with tðEÞ ¼ pa
. ffiffiffiffiffiffiffiffiffiffiffi

2E=m
p

yields

PQC(Ei, Ef) p exp(�|2papi/�h � 2papf/�h|) (12)

It can be easily verified that the quantum expression of eqn

(11) reduces to the QC expression of eqn (12) under the

conditions

2papi/�h c 1, 2papf/�h c 1 (13)

and

|2papi/�h � 2papf/�h| c 1 (14)

The inequalities of eqn (13) are the standard WKB criteria for

QC motion in the field of the potential U(R) p exp(�R/a),
while eqn (14) ensures exponentially small values of the

transition probability. The latter is equivalent to near-adia-

batic conditions for collisions. This example explains the

meaning of ‘‘quasi-classical’’ and ‘‘exponentially small’’ attri-

butes of the Landau probabilities in the expression in eqn (8).

Considering now the average transition probability, we

write it in the form

hPQCðDEÞi /
Z1
0

exp �ð2=�hÞ
ZEiþDE

Ei

tðEÞdE

������
�������

Ei

kT

0
B@

1
CAdEi

kT

ð15Þ

After using the SD approximation, eqn (15) simplifies into

hPQCðDEÞi / exp �ð2=�hÞ
ZE�þDE
E�

tðEÞdE

������
�������

E�

kT

0
@

1
A ð16Þ

where the SD energy E* is determined from the equation

|t(E* þ DE) � t(E*)|� �h/2kT = 0 (17)

The SD energy E* obtained from this equation depends on the

sign of DE, but this dependence is such that the first term in the

exponent of eqn (16) is independent from the sign of DE. The
SD energies for up- and down-transitions, the second term, are

related by E*
up = E*

down þ |DE|. As a result, hPQC
up i and hPQC

downi
now satisfy the detailed balance relation of eqn (6).

If the expression of the QC exponent is written as

1

�h

ZEf

Ei

tðEÞdE

�������
������� ¼ otð �EÞ ð18Þ

one has a connection to the CT approximation of eqn (2).

However, this is not very helpful since the quantity �E depends

on Ei and Ef in an unknown way.

A useful approximation can be obtained for small energy

transfer where the integrand t(E) can be approximated by its

linear expansion

tðEÞ ¼ tðEiÞ þ
dtðEiÞ
dEi

ðE � EiÞ ð19Þ

With this approximation we get

2

�h

ZE�þDE
E�

tðEÞdE

������
������ ¼ 2

DEj j
�h

tðEiÞ

� signðDEÞ ðDEÞ
2

�h

dtðEiÞ
dEi

ð20Þ

Substitution of this expression into eqn (15) yields

hPQCðDEÞi
��
small DEj j /

Z
exp �2otðEiÞ �

Ei

kT
� o DE

dtðEiÞ
dEi

� �
� dEi

kT

ð21Þ

where the last term in the exponent is assumed to be small

compared to the other two terms. Then the SD energy is

determined by the first two terms only, i.e. as given by eqn (5).

In this way, we finally obtain

hPQCSD(DE)i|small|DE| = exp(�DE/2kT)hPCTSD(DE)i (22)

where DE > 0 for up-transitions and DE o 0 for down-

transitions. The correction factor in eqn (18) coincides with

that suggested by Nikitin in 195921 from symmetry considera-

tions, by Schofield in 196022 on the basis of an analytical

continuation of the classical correlation function, and by

Miklavc in 198323 who derived it from the quantum solution

by Jackson and Mott20 for a model with exponential inter-

action. It differs, however, from other quantum correction

factors derived by other authors, such as those listed in Table 1

of ref. 14. The differences are due to different conditions under

which the various corrections are valid and we will not discuss

this in this article. Instead we only consider the conditions of

validity of the correction factor of eqn (22) which are weak

coupling of the oscillator to the bath, near-adiabatic energy

transfer, and values of the ratio |DE|/kT that are not too high.

The implication of the latter condition is discussed in the next

section.
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4. The validity of the first QC correction to the CT

transition probability and the generalized

Landau–Teller relation

The correction factor of eqn (22) does not depend on the

properties of the heat bath except for its temperature. At the

same time, this factor represents the first order quantum

correction to the classical correlation function of the external

force acting on the oscillator. There exist higher-order correc-

tions and their influence on the transition probabilities can be

estimated by elaborating the expansion parameters of the

truncated series of eqn (19). Assuming a relation |dt/dE| E
t/E for a smooth function t(E), we infer that the expansion

parameter is equal to |DE|/E*, while, from the SD approach,

we get E*/kT= ot(E*). Since ot(E*)c 1, we have E*c kT.

We can therefore write the following qualitative expansion of

the integral in eqn (16)

2

�h

ZE�þDE
E�

tðEÞdE

������
������ ¼ 2otðE�Þ 1þO

DE
E�

� �
þO

DE
E�

� �2

þ . . .

 !( )

¼ 2otðE�Þ � DEj j
2kT

þO
DEj j
2kT

� �2
1

2otðE�Þ

 !
þ . . .

ð23Þ

where O(x) means ‘‘of the order of x’’. It follows from eqn (23)

that higher-order corrections produce a small relative change

in the exponent of eqn (9) under the condition |DE|/2kT {
2ot(E*), while a small relative change in the exponent is

ensured under the different condition

(DE/2kT)2 { 2ot(E*) (24)

Considering ot(E*) c 1, the condition of eqn (24) also allows

for the ratio �ho/kT to be larger than unity. This means that

eqn (21) also includes the range of quantum vibrations where

�ho/kT Z 1 is fulfilled. Note, however, that the allowed range

of the ratio �ho/kT is limited from above by the condition of

eqn (24).

The generalized LT relation now can be rewritten as

lnhP10i ¼ const� 3Xðo;TÞ þ �ho
2kT

þO
�ho
2kT

� �2
1

2Xðo;TÞ

 !
ð25Þ

where the function 3X(o, T) = 2ot(E*) þ E*/kT, taken

together with eqn (5), depends on the classical parameters

only. These functions were calculated recently for different

types of the interaction potentials.5,6 For an exponential

repulsive potential, X(o, T) follows as (TLT/T)
1/3 with

TLT = p2o2ma2/2k.
With decreasing T, all terms in eqn (25) (except the constant

term) increase but the higher-order terms increase progres-

sively faster. Ultimately, the expansion in eqn (25) breaks

down, and the general expression of eqn (15) and (16) should

be used instead. However, if the last term in eqn (25) remains

small, i.e. (�ho)2/(2kT)2 { 2X(o, T), the curvature of the

generalized plot of ln{exp(�ho/2kT)hP10i} vs T�1/3 can be

unambiguously attributed to the deviation of the interaction

potential from a purely exponential repulsive form.

In order to clearly see the effects of higher-order quantum

correction in the temperature dependence of hPQC
10 i we con-

sider an interaction of the exponential form.

For this case, the temperature dependence of hPQC
10 i enters

through the reduced temperature y = T/TLT, while quantum

effects are expressed through a temperature-independent para-

meter yvib = �ho/kTLT. Referring to eqn (12), one may rewrite

eqn (15) in the form

PQC
10 ðy; yvibÞ

D E
¼ A

Z1
0

exp
4y1=2

yvib
ð
ffiffi
e
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ yvib=y

p
Þ � e

" #
de

ð26Þ

where the integration variable is e = Ei/kT and A is a

temperature-independent factor. Eqn (26) is written in full

integral form rather than in the SD approximation, since the

latter requires the solution of a transcendental equation (see

eqn (17)) that introduces unnecessary technical complications.

The CCT (corrected CT) and CT (original Landau–Teller

formulation) counterparts of eqn (26) are

PCCT
10 ðy; yvibÞ

� �
¼ Aexpðyvib=2yÞ

Z1
0

expð�2y�1=2e�1=2 � eÞde

! A

ffiffiffiffiffiffi
4p
3

r
y�1=6 expð�3y�1=3 þ yvib=2yÞ

ð27Þ

PCT
10 ðyÞ

� �
¼ A

Z1
0

expð�2y�1=2e�1=2 � eÞde

! A

ffiffiffiffiffiffi
4p
3

r
y�1=6 expð�3y�1=3Þ ð28Þ

where the arrow means ‘‘in the SD approximation’’. The

additional preexponential factors that appear in the SD ap-

proximation in eqn (27) and (28) are only included for con-

sistency with the integral representation, they do not affect the

main temperature dependence of transition probabilities in

any visible way.

Fig. 1 shows the logarithm (base 10) of the derived transi-

tion probabilities vs y�1/3 = (TLT/T)
1/3 (the LT representa-

tion) for a value of yvib = �ho/kTLT = 0.012 which is

appropriate for N2 or CO relaxation in He. The original LT

transition probability, hPCT
10 (y)i, eqn (28), is presented by the

straight line of curve 1, the corrected LT transition probabil-

ity, hPCCT
10 (y, yvib)i, eqn (27), by curve 2 and the QC Landau

probability, hPQC
10 (y, yvib)i, eqn (26), by curve 3. The range of y

is chosen from the condition that the transition probabilities

vary over several orders of magnitude. The first quantum

correction shows itself as a spacing between curves 2 and 1,

and the condition of applicability of the first correction is

formulated as a small spacing between curves 2 and 3. The

importance of the first correction is illustrated by the compar-

ison of hPQC
10 (y, yvib)i, hPCCT

10 (y, yvib)i, and hPCT
10 (y)i. When the

first quantum correction increases the LT transition probabil-

ity hPCT
10 (y)i by one order of magnitude, changing it to

hPCCT
10 (y, yvib)i and bringing it close to hPQC

10 (y, yvib)i (this
happens at about y�1/3 = 8), the higher-order corrections

became visible in the plot. With a decrease in temperature, the
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importance of higher-order corrections rapidly grows. For

instance, for N2 þ He collisions, this behavior does not permit

safe extrapolations of the probability in the form hPEFC
10 (y,

yvib)i from higher temperatures down to room temperature. A

comparison of CT, CCT and QC approximations with accu-

rate quantum calculations and experimental data for specific

systems would require using a realistic atom–molecule inter-

action potential and accounting for the three-dimensional

character of the collision. This is done for the N2–He system

in ref. 24.

An example for a complete failure of the corrected LT

expression is provided by vibrational predissociation, where

vibrational down-transitions in the oscillator BC induce the

cleavage of a weak van der Waals bond A–BC. In this case

PQC(Ei, Ef) refers to the probability of dissociation per single

oscillation of the A–BC bond at the bound-state energy Ei. If

the energy transfer DE by far exceeds the dissociation energy

D, the value of the integral in eqn (9) is dominated by the

repulsive region of interaction which can be roughly taken as

being exponential. Employing again tðEÞ ¼ pa
. ffiffiffiffiffiffiffiffiffiffiffi

2E=m
p

we

then get the approximate relation

2

�h

ZEiþDE

Ei

tðEÞdE

������
Eij joDE

� 2pa
�h

ffiffiffiffiffiffiffiffiffiffiffiffi
2mDE

p
ð29Þ

This estimate relates the predissociation rate with the energy

release through

PðDEÞ / exp � 2pa
�h

ffiffiffiffiffiffiffiffiffiffiffiffi
2mDE

p� �
ð30Þ

and represents the so-called ‘‘momentum gap law’’: the rate

decreases exponentially with an increase of the relative mo-

mentum of the receding fragments.

Yet another example for the application of the Landau

expression in the form of eqn (10) is found in the similarity and

difference of quantum and classical treatments of predissocia-

tion dynamics, see ref. 25.

Conclusion

The article by Landau and Teller from the year 19361 had

enormous impact on the understanding of energy transfer in

molecular collisions, both on the level of state-selected rate

coefficients and of macroscopic energy relaxation kinetics. The

authors realized that their approximate calculations of state-

selected rate coefficients should not disobey detailed balance,

since the latter is responsible for attaining the correct equili-

brium of the relaxing system. Therefore, they forced their

approximate state-selected rate coefficients to comply with the

detailed balance relation. They suspected that by doing this,

they might have affected the values of the rate coefficients, and,

indeed, they did affect the values. In the present treatment it

became possible to correct this shortcoming by rederiving the

LT results from a more general approach formulated by

Landau in 193216 and by recasting the rate coefficients in a

form which allows one to express the Landau quasi-classical

exponent through the LT classical collision time.19
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Fig. 1 LT plots for an exponential interaction potential: logarithms

of mean thermal transition probabilities hP10i vs (TLT/T)
1/3 for an

arbitrarily fixed preexponential factor A = 1. The straight line 1

corresponds to the original LT probability (common trajectory ap-

proximation), line 2 to the corrected LT probability, and curve 3 to the

Landau probability (QC approximation). Curves 2 and 3 are drawn

for �ho/kTLT = 0.012, see text.
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