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The migration of zebrafish primordial germ cell towards the

region where the gonad develops is guided by the chemokine

SDF-1a. Recent studies show that soon after their

specification, the cells undergo a series of morphological

alterations before they become motile and are able to respond

to attractive cues. As migratory cells, primordial germ cells

move towards their target while correcting their path upon

exiting a cyclic phase in which morphological cell polarity is

lost. In the following stages, the cells gather at specific

locations and move as cell clusters towards their final target. In

all of these stages, zebrafish germ cells respond as individual

cells to alterations in the shape of the sdf-1a expression

domain, by directed migration towards their target — the

position where the gonad develops.
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Introduction
In many different organisms, primordial germ cells

(PGCs) are specified early in development in a position

that is distinct from that of the gonad, the location where

they differentiate into gametes [1–3]. Therefore, the cells

have to reach the somatic part of the gonad in a process

that, in addition to its crucial role in the propagation of the

species, serves as a general model for long-range cell

migration.

PGC migration has been studied in diverse vertebrate and

invertebrate species. These investigations highlighted

the important role of somatic cells that act along the

migratory route, offering a permissive environment for

cell migration and directing the cells by providing attrac-

tive or repulsive cues [2,3].

A relatively new model system in which PGC migration is

being studied is the zebrafish [4]. A combination of

forward and reverse genetic tools coupled with the
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extra-uterine development of the translucent embryo

makes the zebrafish an excellent organism for investigat-

ing this process. In this review, we focus on recent

insights into the mechanisms that enable zebrafish PGCs

to arrive at their target with high reliability and precision.

Clues from embryological studies
PGC migration in zebrafish presents a unique and inter-

esting developmental problem because the migrating

cells are specified at four different locations that are

randomly positioned with respect to the developmental

axis of the embryo [5,6]. Despite this unusual starting

point, practically all the PGCs arrive at the site where the

gonad develops within the first day of development. The

robustness of the process was clearly demonstrated by

transplanting PGCs into ectopic positions within the early

embryo, a manipulation that did not prevented proper

migration of the transplanted cells towards their normal

target [7].

The initial analysis of PGC migration in zebrafish

embryos provided important clues regarding the devel-

opmental mechanisms responsible for the directed migra-

tion of the cells. First, throughout their migration, the

cells exhibit active displacement owing to their intrinsic

motility (Figure 1a) [8,9], rather than being passively

pulled along by the movement of neighboring tissues

or cells; this is in contrast with phases of passive move-

ments of either Drosophila and avian PGCs, which move

with the developing posterior midgut and translocate via

the circulatory system, respectively [1,10]. Second, ana-

lyzing PGC migration in mutant embryos in which spe-

cific tissues do not develop properly supported the idea

that attractive cues are responsible for directing the cells

towards their targets [6,8]; consistent with cell guidance

by way of attraction, abnormal development of the target

tissues resulted in abnormal PGC migration, whereas

faulty development of tissues vacated by PGCs proved

to be of no consequence to the process (Figure 1b) [6,8].

Last, rather than aiming directly at their final target, the

cells initially cluster at intermediate targets from which

they move towards the region of the prospective gonad

prospective gonad (Figure 1c) [8,9]. Although the actual

molecules directing the PGCs were yet to be identified,

these observations provided a principle explanation for

the properties of PGC migration in wild type as well as in

mutant embryos: namely, the findings were consistent

with the idea that broad attractive domains attracting

PGCs at the onset of migration alter their own shape

to focus the cells into forming cell clusters. Moving the

clustered cells to their final target could again be a result

of shifting the attractive domain to another position. As
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Figure 1

Zebrafish PGCs migrate actively in response to attractive cues and arrive at intermediate targets on the way to the final target. (a) A schematic

representation of active PGC migration, during which the cells exhibit morphological shape changes and movement relative to their somatic

neighbors. (b) Consistent with guidance by attractive cues, improper differentiation of the site of origin (purple) has no effect, whereas improper

differentiation of the target site (blue), leads to migrational defects. (c) The migration towards the final target is indirect and involves arrival

at an intermediate target (grey). (d) Alterations in the shape and position of attractive domains (yellow) are at the basis of cell clustering and

arrival at the target.
the cells migrate from one position to another by active

migration, the alterations in the shape and position of the

attractive domains must result from changes in the rele-

vant properties of the somatic environment, such as

alterations in the transcription pattern of putative attrac-

tants (Figure 1d).

Molecular aspects of directional migration
The observations described above are in agreement with

the notion that zebrafish PGCs are guided by attractive

cues provided by somatic cells along their migratory
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route. The molecular identity of the receptor for these

cues was revealed in two genetic screens. In these studies,

a crucial role was demonstrated for CXCR4b, a chemo-

kine receptor that is expressed in PGCs [11,12]. PGCs in

which the activity of the receptor is reduced maintain

their highly motile behavior but they do not show direc-

ted migration towards the target, and they therefore arrive

at ectopic locations within the embryo. Of the chemo-

kines SDF-1a (Stromal-derived factor-1alpha) [11] and

SDF-1b [12], the two putative CXCR4 ligands that have

been suggested to guide PGC migration, the RNA
www.sciencedirect.com
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expression pattern of the former is more tightly correlated

with the position of the migrating cells (Figure 2). Indeed,

reducing SDF-1a activity causes more severe and more

penetrant migrational defects than those inflicted by

reduced SDF-1b. In keeping with the idea that the PGCs

are attracted to sites of chemokine expression within the

embryo, somatic cells engineered to express SDF-1a [11]

or SDF-1b [12] in ectopic locations are able to attract

PGCs there.

Following the identification of SDF-1a as the key cue for

zebrafish PGC migration, it was pertinent to investigate

the mechanisms controlling cell polarization and directed

migration in response to changes in the chemokine

expression pattern. The molecular machinery underlying

the cellular response of zebrafish germ cells is unknown.

It is known, however, that Gi proteins are likely to

function downstream of the receptor, because expression

of Pertussis toxin within the PGCs abrogates directional

migration [13]. By contrast, phosphoinositide 3-kinase

(PI3K) and its product phosphatidylinositol (Ptd-Ins)

(3,4,5) P3 (PIP3), which are important for directing polar-

ized pseudopod formation in neutrophils and Dictyostelium
discoideum cells [14�], appear to play no such role in

migrating PGCs in zebrafish [13]. PI3K is nevertheless

important for attaining normal cellular morphology and

cell motility; PGCs expressing a dominant negative form

of PI3K show reduced cell polarity and stability of filo-

podia, as well as slower migration speed [13].

PGC behavior from specification to arrival
at the target
A major advantage in studying PGC migration in zebra-

fish is the ease with which cell behavior can be examined
Figure 2

The RNA expression pattern of sdf-1a (brown) is tightly correlated with

the position of the migrating PGCs (blue) in different stages of embryonic

development. (a) Soon after PGCs mature to become migrating cells,

they move as individual cells. (b) PGCs on the way to an intermediate

target. (c) PGCs migrate toward the final target as single cells in a

cluster. Reproduced with permission from Doitsidou et al. [11].
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in vivo. Labeling the migrating cells with fluorescent

proteins and observing different steps during cell migra-

tion by means of time-lapse movies provides important

insights into the cellular mechanisms facilitating cell

motility and directed migration towards the target.

The generation of transgenic fish carrying a construct that

includes a maternal promoter fused to the green fluor-

escent protein gene, as well as elements directing specific

stabilization and translation of the RNA to the germ cells

enabled monitoring of PGC behavior from the earliest

stages of their development [15�]. Findings of particular

interest yielded by this analysis were the cellular events

following PGC specification, which culminate in the

transformation into highly motile cells that respond effec-

tively to chemotactic cues. This transition is observed in

different processes in development and disease (e.g. in

the development of neural crest cells in vertebrates [16],

or border cells in Drosophila [17,18], and in metastasizing

cancer cells [19]). In zebrafish PGC development, this

process could be divided into three steps that together

span the first 1.5 hours subsequent to PGC specification.

During the initial 30 minutes, PGCs are morphologically

indistinguishable from their somatic neighbors, showing a

simple, round morphology and no active migration. In the

next phase, the PGCs extend multiple protrusions in all

directions, and yet do not actively migrate. It is only

1.5 hours following their specification that the PGCs

appear polarized, extend broad protrusions in the direc-

tion of migration and move relative to somatic cells.

These changes are PGC-autonomous, because cells that

have matured to become migrating cells retain these

properties when transplanted into early embryos. The

significance of these early events for guided migration

was demonstrated by challenging the cells with a gradient

of SDF-1a; in contrast to mature cells that displayed

directed long-range migration towards the source of the

chemokine, cells that have not completed their early

maturation showed no response to SDF-1a [15�].

Although the molecular or cytoskeletal basis for the early

maturation steps of the PGCs are not known, one gene

product whose function was shown to be essential for

PGC motility is the putative RNA-binding protein Dead

end [20]. Interestingly, PGCs depleted of Dead end

perform normally during the first two phases of their

development, demonstrating the passage from round to

protruding cells [15�]. Yet although these cells cease the

protrusion activity, they fail to proceed into the last phase,

because they do not polarize or form broad pseudopodia

and do not actively migrate [15�]. Identifying the RNA

substrates of Dead end and determining their biochem-

ical function would therefore provide meaningful insights

into the molecular requirements for active cell migration.

Once PGCs acquire the ability to migrate, they move as

individual cells until they form two cell clusters on either
Current Opinion in Genetics & Development 2006, 16:355–359
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Figure 3

Modes of behavior during PGC migration. (a) Individually migrating cells periodically stop moving, lose their polarity and correct their migration

path. (b) After arrival at their target, the PGCs positioned at a local peak of SDF-1a (yellow) expression show no polarity and exhibit only limited

movement relative to each other. (c) Migrating as a cluster, PGCs that are positioned where SDF-1a expression is reduced (light yellow) respond

individually by migrating into sites of higher chemokine levels (strong yellow).
side of the body axis (Figure 2). Remarkably, throughout

their migration the PGCs cycle between ‘run’ phases,

during which they are polarized and actively migrate, and

‘tumble’ phases, in which they lose their polarity and

remain on the spot (Figure 3a) [21�]. The loss of cell

polarity during tumbling phases is followed by reacquisi-

tion of cellular polarity and resumption of the migration.

Considering that the majority of the changes in the course

of PGC migration occur after the periodic loss of cell

polarity, it is conceivable that the function of tumbling is

to allow for corrections in the route of migration and, thus,

to facilitate precise arrival at the target.

Upon reaching the clustering site, where stable high-levels

of sdf-1a RNA are detected, the cellsmaintain their position

for several hours. During this stage, the cells extend small

protrusions in all directions and barely move (Figure 3b)

[21�]. This behavior, which is significant for cells arriving at

their target where they participate in building tissues and

organs, presumably results from a uniform peak activation

of the receptor at the cell membrane.

Another pattern of zebrafish PGC behavior was identified

when cells were examined as they migrate as a cell cluster

toward the site of the developing gonad (Figure 2c) [21�].
The conclusion from this analysis was that despite the

close proximity of the migrating cells to one another their

migration is not coordinated. Rather, the movement of
Current Opinion in Genetics & Development 2006, 16:355–359
the cluster is the sum of the independent migration of

individual cells in response to alterations in the distribu-

tion of the chemokine SDF-1a (Figure 3c).

Conclusions
Irrespective of the PGC site of origin, their migration

route or the mechanism by which the cells are specified,

an important aspect of PGC migration in different organ-

isms lies in the functional conservation of the attractant,

the chemokine SDF-1, and its receptor, the 7-transmem-

brane receptor CXCR4. In addition to controlling PGD

migration in zebrafish, SDF-1 is involved in the same

process in mouse and chick embryos [22,23]. Further-

more, this conservation appears to extend to Drosophila, in

which a 7-transmembrane protein was reported to be

involved in PGC migration [24]. However, important

differences between the role of SDF-1a in zebrafish

and that in other organisms should be highlighted.

In contrast to the idea that SDF-1a plays a central role in

PGC migration in zebrafish, findings in other model

organisms depict a much more complicated scenario in

which passive displacement of the cells and guidance by a

number of attractive and repulsive cues other than SDF-1

direct the cells towards their target [2,3]. Other than

HMGCoA (3-hydroxy-3-methylglutaryl coenzyme A)

reductase, the activity of which is crucial for the attraction

of Drosophila PGCs [25] and which was shown to be
www.sciencedirect.com
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required for optimal PGC migration speed in zebrafish

[26], no additional molecule was systematically examined

for its role in zebrafish PGC migration. It would be

particularly interesting to determine whether enzymes

and signaling molecules such as Wunen molecules and

Hedgehog in Drosophila, which generate a repulsive and

attractive environment, respectively [27–30], and the

interferon-induced transmembrane protein, which gen-

erates a repulsive environment for mouse PGCs [31], play

an equivalent role in PGC migration in zebrafish. It is

possible, however, that the special onset of PGC migra-

tion from random positions within the zebrafish embryo

dictates a unique solution that is centered on a single

guidance cue, SDF-1a.
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