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U11 and U12 interact cooperatively with the 50 splice site

and branch site of pre-mRNA as a stable preformed

di-snRNP complex, thereby bridging the 50 and 30 ends

of the intron within the U12-dependent prespliceosome.

To identify proteins contributing to di-snRNP formation

and intron bridging, we investigated protein–protein and

protein–RNA interactions between components of the U11/

U12 snRNP. We demonstrate that the U11/U12-65K protein

possesses dual binding activity, interacting directly with

U12 snRNA via its C-terminal RRM and the U11-associated

59K protein via its N-terminal half. We provide evidence

that, in contrast to the previously published U12 snRNA

secondary structure model, the 30 half of U12 forms an

extended stem-loop with a highly conserved seven-nucleo-

tide loop and that the latter serves as the 65K binding site.

Addition of an oligonucleotide comprising the 65K binding

site to an in vitro splicing reaction inhibited U12-depen-

dent, but not U2-dependent, pre-mRNA splicing. Taken

together, these data suggest that U11/U12-65K and U11-

59K contribute to di-snRNP formation and intron bridging

in the minor prespliceosome.
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Introduction

Two spliceosomes, the multi-subunit complexes that catalyze

pre-mRNA splicing, have been identified in higher eukaryotes

(Burge et al, 1999). The U2-dependent (major) spliceosome is

found in all eukaryotes and excises U2-type introns, which

represent the vast majority of pre-mRNA introns. The U12-

dependent (minor) spliceosome is found in only a subset of

organisms and removes U12-type introns, which constitute

less than 1% of introns in humans (Burge et al, 1998; Levine

and Durbin, 2001). In contrast to U2-type introns, they

contain highly conserved sequences at their 50 splice site

and branch site, but lack a polypyrimidine tract upstream of

the 30 splice site (Burge et al, 1998). U12-type introns coexist

with U2-type introns within the same gene, but are spliced

more slowly, indicating that U12-type splicing is a rate-deter-

mining step in gene expression (Patel et al, 2002). The U12-

dependent spliceosome contains the U11, U12, U5 and U4atac/

U6atac snRNPs, whereas the U2-dependent spliceosome con-

sists of the U1, U2, U5 and U4/U6 snRNPs (reviewed by Patel

and Steitz, 2003). U11, U12 and U4atac/U6atac have been

shown to be functional analogs of U1, U2 and U4/U6, respec-

tively (Hall and Padgett, 1996; Tarn and Steitz, 1996a, b;

Kolossova and Padgett, 1997; Yu and Steitz, 1997).

The assembly pathways of both spliceosomes are very

similar, with major differences occurring only during the

earliest stages (Patel and Steitz, 2003). Major spliceosome

assembly is initiated by interaction of U1 with the 50 splice

site, followed by the stable interaction of U2 with the branch

site, forming the so-called prespliceosome. Subsequent entry

of the U4/U6.U5 tri-snRNP triggers structural rearrangements

that lead to catalytic activation of the spliceosome. Formation

of the U12-type prespliceosome is initiated by association of

the U11 and U12 snRNPs, which, in contrast to U1 and U2,

bind as a highly stable, preformed di-snRNP. U11 and U12

recognize the 50 splice site and branch site, respectively, in a

cooperative manner (Frilander and Steitz, 1999). A catalyti-

cally active U12-type spliceosome is formed after integration

of the U4atac/U6atac.U5 tri-snRNP and subsequent confor-

mational changes (Tarn and Steitz, 1996b; Yu and Steitz,

1997; Frilander and Steitz, 2001). The excision of both types

of introns occurs via two successive transesterification reac-

tions, and an analogous, dynamic network of snRNA–snRNA

and snRNA–pre-mRNA interactions is formed in both splicing

machineries (Patel and Steitz, 2003).

Spliceosome assembly and splicing catalysis require the

activity of numerous proteins, as well as the formation of an

extensive network of RNA/protein and protein/protein inter-

actions. The major spliceosome is well characterized in terms

of its protein composition, with over 150 proteins identified

by mass spectrometry (reviewed by Jurica and Moore, 2003).

Insight into the protein composition of the minor spliceosome

is now slowly emerging. Many proteins appear to be shared

by both spliceosomes, including most U4/U6.U5 tri-snRNP

proteins (Luo et al, 1999; Nottrott et al, 2002; Schneider et al,

2002), the U2-associated complex SF3b (Will et al, 1999,

2004) and SR proteins (Hastings and Krainer, 2001). Recently,

the human U11/U12 di-snRNP particle was shown to contain

not only SF3b and Sm proteins, but also seven novel proteins

(denoted 65K, 59K, 48K, 35K, 31K, 25K and 20K) not found

in U2-type spliceosomes (Will et al, 2004). Four of these

proteins (59K, 48K, 35K and 25K) are U11 associated and thus

potentially facilitate the U11/50 splice site interaction.

The existence of unique U11/U12 proteins indicates

that many interactions contributing to minor prespliceo-

some formation, in particular those mediating 50 splice site
Received: 26 July 2004; accepted: 13 July 2005; published online:
11 August 2005

*Corresponding author. Department of Cellular Biochemistry, MPI of
Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
Tel.: þ 49 551 201 1405; Fax: 49 551 201 1197;
E-mail: reinhard.luehrmann@mpi-bpc.mpg.de

The EMBO Journal (2005) 24, 3057–3069 | & 2005 European Molecular Biology Organization | All Rights Reserved 0261-4189/05

www.embojournal.org

&2005 European Molecular Biology Organization The EMBO Journal VOL 24 | NO 17 | 2005

 

EMBO
 

THE

EMBO
JOURNAL

THE

EMBO
JOURNAL

3057



recognition and intron bridging, differ from those in the

major prespliceosome. To date, little is known about protein–

protein interactions juxtaposing the ends of U12-type introns.

As U11 and U12 bind in the form of a stable di-snRNP to the 50

and 30 ends of U12-type introns, U11/U12-specific proteins have

been proposed to be involved in intron bridging interactions in

the minor prespliceosome. During the earliest step of major

spliceosome assembly, a molecular bridge is formed between

U1 at the 50 splice site and SF1/mBBP and U2AF, which bind to

the branch site and the polypyrimidine tract, respectively

(reviewed by Reed, 1996). SR proteins play a major role in

intron bridging at this stage, binding the U1-70K protein and

U2AF. Upon association of U2 with the branch site, SF1/mBBP

is displaced and a new set of interactions is thought to mediate

intron bridging in the major prespliceosome. The DEAD-box

protein Prp5 appears to play a role in bridging the U1 and U2

snRNPs (Xu et al, 2004). However, the precise nature of the

molecular bridge juxtaposing the reactive groups of U2-type

pre-mRNAs at this stage is not clear.

At present, little is known about the molecular architecture

of the U11/U12 di-snRNP, including which of the U11/U12

proteins contact the U11 and U12 snRNAs. Candidate snRNA

binding proteins include the U11/U12-65K, -35K and -31K

proteins, which contain one or more RNA recognition motifs

(RRMs), a structurally well-characterized domain found in a

large family of RNA binding proteins (Birney et al, 1993). The

RRM contains two highly conserved submotifs, the RNP-1

octamer and RNP-2 hexamer, and has a babbab structure that

folds into a four-stranded antiparallel b-sheet that packs

against the two a-helices (reviewed by Varani and Nagai,

1998). Protein–protein interactions within the U11/U12

snRNP, which potentially mediate di-snRNP formation and/

or intron bridging, also remain to be elucidated. Here we

have investigated the protein and RNA binding properties of

polypeptides of the U11/U12 di-snRNP. These studies provide

the first information regarding intermolecular interactions

within the U11/U12 snRNP and reveal potential players in

di-snRNP formation.

Results

The 65K protein interacts with U12 snRNA via

its C-terminal RRM

The human U11/U12-65K protein contains an N- and

C-terminal RRM and a centrally located proline-rich region

(Figures 1 and 2B). Database searches revealed likely 65K

Figure 1 The U11/U12-65K protein is evolutionarily conserved. Sequence alignment of the H. sapiens U11/U12-65K protein (gi|48427628) with
putative orthologs from M. musculus (gi|31981077), X. laevis (deduced from ESTs gi|26035864 and gi|17496030; note that the 50 end appears to
be incomplete), A. thaliana (gi|15217461) and D. melanogaster (gi|21626517). Residues identical in at least three proteins are highlighted in
black and conserved residues (gray) are grouped as follows: (D, E), (K, R), (A, S, T, G, C), (N, Q), (Y, F, M, H), (I, L, M, V) and (P). RRMs are
indicated by a bar. The conserved sequence QVLHLMN(K/R)MNL is marked by dots.
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orthologs in a variety of organisms known to contain U12-

type introns. An alignment of a subset of these (Figure 1)

revealed that the majority of sequence conservation lies

within the RRMs, with the C-terminal RRM exhibiting higher

homology than its N-terminal counterpart—that is, 64%

(amino acids (aa) 27–102) versus 49% (aa 420–503) when

comparing human with Arabidopsis thaliana. In Drosophila

melanogaster, the N-terminal region has diverged so

significantly that it no longer is recognized as an RRM by

motif search programs. A 100% conserved sequence,

QVLHLMN(K/R)MNL (aa 185–195 in humans), is found

downstream of the N-terminal RRM and is detected only in

putative 65K orthologs in the nonredundant (nr) database of

the National Center for Biotechnology Information (NCBI).

To test whether 65K directly binds U11 and/or U12 snRNA,

we translated 35S-labeled 65K protein in vitro and assayed

its interaction with in vitro-transcribed, m7G-capped U1, U2,

U11 and U12 snRNA. RNA was precipitated with anti-cap

antibodies and co-immunoprecipitation (co-IP) of 65K was

analyzed by SDS–PAGE. Whereas the level of 65K co-preci-

pitated with U1, U2 and U11 did not exceed background

(Figure 2A, cf. lanes 2–4 and 6), 65K was clearly co-precipi-

tated with U12 snRNA (lane 5). We next overexpressed 65K

as a GST fusion and performed GST pulldowns with 32P-

labeled U1, U2, U11 or U12 snRNA. No co-precipitation

was observed with GST alone (Figure 2D and E, lanes 5–8).

In contrast, a significant amount of U12 (B49%) and only

a low level of U1, U2 and U11 (B1–4%) co-precipitated with

GST-65K (Figure 2C, lanes 2–5; Figure 2E, lanes 9–12). Thus,

65K specifically binds the U12 snRNA.

To determine which RRM of 65K binds U12, several dele-

tion mutants were created (Figure 2B) and expressed as GST

fusion proteins. These include mutants containing the

N-terminal RRM plus C-terminal extensions of 48 aa (65-N-

RRM) or 155 aa (65K-N-half), and those possessing the

C-terminal RRM plus N-terminal extensions of 40 aa (65K-C-

RRM) or 209 aa (65K-C-half). Pulldown of U12 snRNA

was observed with GST-65K-C-half and GST-65K-C-RRM

(Figure 2C, lane 9; Figure 2D, lane 12), but not with GST

alone or GST-65K-N-RRM (Figure 2E, lanes 8 and 16), or only

to a low level with GST-65K-N-half (Figure 2E, lane 20).

Enhanced precipitation of U11 snRNA was observed with

Figure 2 65K binds U12 snRNA via its C-terminal RRM. (A) 35S-labeled, in vitro-translated 65K was incubated with in vitro-transcribed, m7G-
capped U1, U2, U11 or U12 snRNA (lanes 2–5, as indicated) or no RNA (lane 6) and co-IPs with anti-cap antibodies were performed as described
in Materials and methods. Lane 1: 20% of input 65K. (B) Schematic of 65K deletion mutants used in GST pulldowns. RRMs and the proline-rich
region (Pro) are shaded in gray and the QVLHLMN(K/R)MNL conserved motif in black. (C–E) GST pulldowns of in vitro-transcribed, 32P-labeled
UsnRNAs (indicated above each lane) by GST-65K wild-type or deletion mutants (as indicated). (C) Lane 1: 30% of a mixture of input snRNAs.
(D, E) Lanes 1–4: 30 or 10% of each input snRNA. RNAs were separated by denaturing PAGE and visualized by autoradiography.
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GST-65K-N-half (Figure 2E, lane 19) but no other deletion

mutant (Figure 2C, lane 8; Figure 2D, lane 11; Figure 2E, lane

15). However, as precipitation of U11 was not observed with

full-length 65K, and 65K is not a component of U11 mono-

particles (Will et al, 2004), U11 binding does not appear to be

a property of the wild-type protein. Upon truncation of 65K to

within 40 aa of the C-terminal RRM (65K-C-RRM), binding

specificity was lost to some extent; both U1 and U2, but

not U11, were also efficiently precipitated (Figure 2D, lanes

9–12). Likewise, in electrophoretic mobility shift assays

(EMSA), GST-65K-C-RRM interacted with U12, U1 and U2,

but not U11, U4 or U5 (not shown). These results indicate

that residues 211–380 contribute to 65K binding specificity.

Indeed, the N- and C-terminal extensions of RRMs often

play important roles in the specificity of RNA recognition

(reviewed by Varani and Nagai, 1998). Taken together, we

conclude that 65K directly binds the U12 snRNA via its

C-terminal RRM.

The C-terminal RRM of 65K and N-terminal RRM

of U1-A /U2-B 00 are highly homologous

The ability of 65K-C-RRM to additionally bind both U1 and

U2 (but not other snRNAs) suggests that 65K may be evolu-

tionarily related to the U1 snRNP A protein (U1-A) and the U2

snRNP B00 protein (U2-B0 0). These proteins are highly related

at the amino-acid sequence level and, similar to 65K, both

contain N- and C-terminal RRMs (Figure 3A). However, in

contrast to 65K, both U1-A and U2-B00 bind their cognate

snRNAs (i.e., U1 stem-loop (SL) II and U2 SLIV, respectively)

via their N-terminal RRMs (Varani and Nagai, 1998 and

Figure 3 The C-terminal RRM of 65K is homologous to the N-terminal RRM of U1-A and U2-B00. (A) Domain structure of the human 65K, U1-A
and U2-B00 proteins. (B) Sequence alignment of the C-terminal RRM of 65K (nt 420–503) and the N-terminal RRMs of U1-A (nt 10–89) and U2-B00

(nt 7–86). Identical amino acids are highlighted in black and conserved residues are grouped as in Figure 1. Secondary structure elements
according to the atomic structures of U1-A and U2-B00 are indicated below.

Figure 4 The 65K protein binds the 30 half of the U12 snRNA. (A) Co-IPs were performed as described in the legend to Figure 2 with 35S-labeled
65K and m7G-capped U11 (lane 2), U12 (lane 3) or U12 deletion mutants 50 half, DSLIV, SLIII or 30 half (lanes 4–7) or no RNA (lane 8).
(B) Structure of wild-type and truncated U12 snRNAs (according to Wassarman and Steitz, 1992). 50 half: nt 1–104; DSLIV: nt 1–130; SLIII:
nt 79–122; 30 half: nt 79–150. Digestion sites generating 50 half and DSLIV are indicated by an arrow and nucleotides (104–130) required
for 65K binding are indicated by a line.

Dual binding activity of the U11/U12-65K protein
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references therein). Intriguingly, aside from 65K orthologs,

the C-terminal RRM of human 65K shares one of the highest

degrees of homology (i.e., 50%) with the N-terminal RRM

of U1-A and U2-B00 from various organisms, when BLAST

searches are performed with the NCBI nr database. The RNP-

1 and RNP-2 submotifs of those RRMs of 65K and U1-A/U2-

B00 known to bind RNA are highly conserved (Figure 3B); only

the last two residues of RNP-1 and the fourth residue of

RNP-2 are not conserved, and all three proteins contain a

glutamine (Q) at the third position of their RNP-1 motif

as opposed to an aromatic residue typically found in the

vast majority of RNP-1 motifs (Birney et al, 1993 and

references therein). Thus, it is conceivable that the C-terminal

RRM of 65K may have diverged from the N-terminal RRM of

U1-A/U2-B00 or vice versa.

65K binds the 3 0 half of the U12 snRNA

The proposed structure of human U12 (Figure 4B) resembles

that of U2 snRNA. Three SLs in its 50 half (designated I, IIa

and IIb) are separated from SLIII and IV by the single-

stranded Sm site. To map the binding site of 65K, we

performed co-IPs with 35S-labeled 65K and in vitro-tran-

scribed m7G-capped deletion mutants of human U12

(Figure 4). Deletion of 19 nucleotides (nt) from the 30 end

(mutant DSLIV), which disrupts SLIV, had no effect on 65K

binding (Figure 4A, cf. lanes 3 and 5). However, truncation to

nt 103 (mutant 50 half), which leads to the loss of both SLIII

and IV, reduced 65K binding to background levels (cf. lanes 4

and 8), suggesting that SLIII is required for 65K interaction.

Surprisingly, a U12 snRNA consisting solely of SLIII did not

support 65K binding (lane 6). In contrast, when both SLIII

and IV were present (30 half), wild-type binding of 65K was

observed (lane 7). Thus, the 30 half of U12 is sufficient for

65K interaction, and nucleotides within positions 104–130 are

required for binding. The latter is unexpected as RRM-con-

taining proteins typically bind single-stranded nucleotides

(Varani and Nagai, 1998) and this region contains predomi-

nantly base-paired nucleotides in the current U12 model.

The 3 0 half of U12 snRNA can adopt an alternative

structure

To determine whether alternative structures of the human

U12 snRNA might exist, putative secondary structures were

generated using the MFOLD prediction program (Zuker,

2003). Indeed, the most energetically favorable U12 structure

generated differed considerably in its 30 half (but not 50 half)

from that proposed by Wassarman and Steitz (1992). That is,

SLIII and IV were replaced by a single extended SL structure

containing a 7-nt loop (Figure 5A). Strikingly, the terminal

hairpin contains nucleotides required for 65K binding. In

contrast, the structure of the human U2 snRNA predicted

by the MFOLD program did not differ significantly from the

published one (not shown).

Previous chemical/enzymatic structure probing of human

U12 snRNA provide limited information about the structure

of its 30 half (Wassarman and Steitz, 1992), but the results

obtained are consistent with both the previously proposed

U12 structure and that generated by MFOLD. To obtain

additional structural information, in vitro-transcribed U12

snRNA was incubated with increasing concentrations of

lead acetate and cleavage sites were identified by primer

extension analyses (Figure 5B). At higher lead concentra-

tions, nt 114–120 and A102 were cleaved, as evidenced by an

increase in reverse transcriptase stops at these positions

(lanes 8–10). Similar results were obtained with endogenous

U12 snRNA purified from HeLa U12 snRNPs (not shown).

As lead(II) ions specifically cleave phosphodiester bonds

of single-stranded nucleotides (Brunel and Romby, 2000),

these results support the existence of the 7-nt loop at posi-

tions 114–120 (Figure 5C). In contrast, in the published U12

structure, four of these nucleotides are base-paired and thus

should not be cleaved. Additional primer extension analyses

also revealed cleavage sites at A89 and A90 (not shown).

Significantly, only one of 5 nt comprising loop III in the

published structure (i.e., A102) (Figure 5D) was cleaved

(Figure 5B, lanes 7–10). Owing to their proximity to the

30 end of U12, only a subset of nucleotides proposed to

comprise loop IV (i.e., nt 130–133) could be analyzed.

Significantly, no cleavage was observed at these positions

(Figure 5B, lanes 7–10). These data provide additional

evidence that the 30 half of human U12 folds into a single

stem with a 7-nt terminal loop.

A single, extended 3 0 SL is an evolutionarily conserved

feature of U12 snRNA

In addition to humans, U12 snRNAs have been identified in a

number of organisms including Mus musculus, Gallus gallus,

Xenopus laevis, A. thaliana and D. melanogaster (Shukla and

Padgett, 1999; Otake et al, 2002). We have identified putative

U12 snRNAs from Pan troglodytes (chimp), Oryza sativa (rice),

Apis mellifera (honeybee), Anopheles gambiae (mosquito),

Drosophila pseudoobscura (fruit fly), Fugu rubripes (pufferfish)

and Ciona intestinalis (sea squirt) by performing BLAST

searches with the human U12 snRNA. Putative structures of

the 30 half of U12 from various organisms were generated by

the MFOLD program; a subset of these is shown in Figure 6A.

Significantly, the 30 halves of all U12 snRNAs identified to date

theoretically adopt a similar conformation, namely a single

SL containing a 7-nt (or 8-nt in case of A. thaliana and

D. pseudoobscura) loop. The length and sequence of the 30

stem, as well as the nature and number of internal loops,

varies. However, 4 nt of the loop (i.e., UACYU ) and the loop-

closing C-G base pair are 100% conserved (Figure 6B). An

alignment of the loop and adjacent stem nucleotides yields the

loop consensus sequence YUACYUY, where Y is a pyrimidine.

Thus, an extended 30 SL with a conserved loop appears to be

a common feature of all U12 snRNAs.

U11/U12-65K binds the 7-nt loop of the extended

3 0 SL of U12

To determine whether 65K binds the terminal loop of the 30

SL of U12, we chemically synthesized nt 109–125 of human

U12, which comprise the 7-nt loop plus a five base pair stem

(Figure 7A; designated U12wt oligo). Indeed, 32P-labeled

U12wt oligo was precipitated more efficiently than a control

oligonucleotide (the complementary sequence of U12wt) by

both GST-65K and GST-65K-C-RRM (but not GST) in GST

pulldowns, indicating that this region of U12 serves as the

65K binding site (Figure 7B). EMSAs with GST-65K-C-RRM

or GST-65K-C-half and 32P-labeled U12wt oligo or full-length

U12 snRNA were subsequently performed. Owing to its

inefficient expression and instability in Escherichia coli, full-

length recombinant 65K protein could not be used in these

studies. The apparent KD of both GST fusion proteins with

Dual binding activity of the U11/U12-65K protein
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Figure 5 The 30 half of U12 snRNA can adopt an alternative structure. (A) Secondary structure of the human U12 snRNA as proposed by
Wassarman and Steitz (1992) (left) or generated by the MFOLD secondary structure prediction program (right). Nucleotides required for 65K
binding are indicated by a line. (B) Lead(II)-induced cleavage of human U12 snRNA. Primer extension was performed after treatment of
in vitro-transcribed U12 snRNA with 0, 1, 5, 10 and 50 mM lead acetate (lanes 6–10) using a primer complementary to nt 139–150. A sequencing
ladder (lanes 2–5) was generated by performing primer extension of U12 snRNA in the presence of dideoxynucleotides. Lane 1: reaction
without ddNTPs. Nucleotide positions are indicated on the right. Summary of cleaved sites in the alternative (C) or previously published (D) 30

half structure of human U12 snRNA. Weak (open arrowheads) and strong (closed arrowheads) cleavage sites are indicated.

Dual binding activity of the U11/U12-65K protein
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full-length U12 (i.e., protein concentration required for 50%

complex formation) was 0.5 mM (Figure 7C, lanes 5–11; not

shown), which is within the range typically observed for

RRM-containing proteins (i.e., 10�11–10�6 M; Varani and

Nagai, 1998). In contrast, the apparent KD observed with

the U12wt oligo was 10mM for GST-65K-C-RRM (Figure 7C,

lanes 1–4) and greater than 30mM for GST-65K-C-half (not

shown), indicating an B20-fold higher affinity of 65K for full-

length U12. Consistent with these results, in competition

studies, a much higher excess of the U12wt oligo (B10-

fold), as compared to the U12 snRNA, was required to

compete out complex formation between 65K-C-RRM and

U12 snRNA (not shown). Removal of GST or extending the

stem of U12wt oligo by two base pairs (to stabilize the

hairpin) had little or no effect on 65K binding affinity (not

shown). These results indicate that nucleotides comprising

the loop and adjacent stem of the extended 30 SL of U12 are

recognized by the 65K protein, but that additional U12

nucleotides contribute to 65K binding affinity.

To determine which nucleotides of the 30 loop and adjacent

stem are required for 65K binding, we mutated one or more

nucleotides of the U12wt oligo (Figure 7A) and performed

EMSAs with GST-65K-C-RRM. Mutation of conserved loop

nucleotides U115, A116 and C117 (i.e., exchanging a pyrimi-

dine with a purine and vice versa; mutants L1, L2 and L3)

abolished 65K–RNA complex formation (Figure 7D, lanes

9–20). Conversion of the conserved C-G loop-closing base

pair to U-A (mutant S1) severely reduced complex formation

(lanes 21–24). Disruption of the stem (mutant S2) nearly

abolished complex formation (lanes 25–28) indicating that,

like U1-A and U2-B00, an SL structure, and not single-stranded

RNA alone, is required for binding. Changing the orientation

of the loop-closing C-G base pair to a G-C base pair (mutant

S4) had only a moderate effect, whereas altering the entire

Figure 6 An extended 30 SL in U12 snRNA is evolutionarily conserved. (A) Predicted secondary structures of the 30 half of U12 from various
organisms (as indicated) were generated by the MFOLD program. (B) Phylogenetic comparison of nucleotides comprising the terminal loop
and adjacent stem of the 30 SL of U12.

Dual binding activity of the U11/U12-65K protein
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sequence of the stem (S3) nearly abolished binding (lanes 29–

36). However, altering all stem nucleotides with the exception

of the C-G loop-closing base pair (mutant S5) had no effect

(lanes 37–40). Thus, an SL structure, as well as the identity of

several of the loop nucleotides and the loop-closing base pair,

plays a critical role in the 65K/30 SL interaction.

An excess of the U12wt oligo inhibits U12-dependent

splicing in vitro

To investigate the role of the 65K–U12 snRNA interaction in

U12-dependent pre-mRNA splicing, splicing was carried out in

HeLa nuclear extract with 32P-labeled U12-type P120 pre-mRNA

in the presence of a molar excess (relative to U12) of the U12wt

or S5 mutant oligonucleotides, both of which efficiently bind

65K (Figure 7D). Addition of these oligonucleotides is expected

to compete for 65K binding and functionally sequester it in the

splicing reaction. L3, which contains a single point mutation

that abolishes 65K binding, was also used to control for

nonspecific effects of oligonucleotide addition. As shown in

Figure 8A, addition of 100 or 150 pmol of U12wt and S5

oligonucleotide led to a reduction in splicing as evidenced by

a drop in the level of mRNA and spliced intron. In contrast, L3

had little effect on splicing even at the highest concentration

tested. Quantitation with a phosphorimager revealed a 50–60%

reduction in the level of mRNA relative to pre-mRNA in the

presence of U12wt and S5 (Figure 8B). Significantly, addition of

the U12wt oligo had no effect on splicing of a U2-type pre-

mRNA (not shown). These studies suggest that the 65K protein

plays an important role in U12-dependent splicing.

The N-terminal half of the U12-65K protein interacts

with the U11-59K protein

To identify potential protein interaction partners of the 65K

protein, we first performed two-hybrid interaction assays in

Figure 7 The 65K protein binds the terminal hairpin of the extended 30 SL of U12. (A) Sequence of the wild-type U12 SL oligonucleotide
(U12wt) and mutants (L1–L3 and S1–S5). Altered nucleotides are highlighted in black. The relative affinity of 65K-C-RRM for each mutant is
indicated by plusses or a minus. (B) 65K and 65K-C-RRM interact with U12wt in GST pulldowns. (C) EMSA of 65K-C-RRM with U12wt oligo
versus full-length U12 snRNA. Increasing concentrations of GST-65K-C-RRM (as indicated above each lane) were incubated with 0.01 or
0.25 pmol of the indicated oligonucleotide (lanes 1–4) or RNA (lanes 5–11), respectively. RNP complex formation was analyzed by native gel
electrophoresis and visualized by autoradiography. Note that similar results were obtained when equimolar amounts (10mM each) of U12wt
oligo and U12 snRNA were used. (D) Effect of U12wt oligo mutation on 65K-C-RRM interaction. 32P-labeled oligos (as indicated above) were
incubated with increasing concentrations of GST-65K-C-RRM (0, 5, 10 or 25mM) and analyzed as in panel C.
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yeast. When 65K was used as bait, it interacted strongly with

59K but not with any of the other U11/U12-specific proteins

tested (not shown). This interaction was also observed in the

reciprocal two-hybrid screen with 59K as bait (Figure 9A),

indicating that both proteins tightly interact with one another.

To further define the interacting domains of 65K and 59K,

deletion mutants were generated. 65K1–257 and 65K257–517

consist of 65K’s N-terminal RRM plus the proline-rich region

(aa 1–257) or its C-terminal RRM plus upstream amino acids

(aa 257–517), respectively (Figure 9D). 59K was divided into

its N-terminal proline-rich region (59K1–135), arginine-rich

region (59K130–337) and C-terminal region rich in glutamic

acid (59K332–481). When 59K was used as bait, it interacted

with full-length 65K and 65K1–257, but not with 65K257–517

(Figure 9A). When the 59K deletion mutants were used as

bait, interactions were only observed between 59K332–481 and

either full-length 65K or 65K1–257. Significantly, no interaction

was observed between 59K332–481 and the U11/U12-specific

35K, 25K or 20K proteins when used as either bait or fused to

the activating domain (not shown). These results indicate

that the N-terminal half of 65K interacts specifically with the

C-terminal 149 aa of the 59K protein.

Next, Far Western overlays were performed with in vitro-

translated, 35S-labeled U11/U12 proteins and nitrocellulose

strips containing U11/U12 proteins. Interestingly, both full-

length 65K and 65K1–257 (Figure 9B, lanes 2 and 3), but not

65K257–517 (not shown), interacted predominantly with 59K.

The 65K–59K interaction appears to be specific, as other

equally abundant proteins (as evidenced by Ponceau stain-

ing; Figure 9B, lane 1) were not efficiently bound by 65K.

Furthermore, in vitro-translated 35K or 20K protein did not

react with 59K in Far Western overlays (not shown). Owing to

the extremely high GC-rich 50 end of the 59K cDNA, it was not

possible to translate full-length 59K in vitro or overexpress

it, thereby preventing overlays or GST pulldowns. However,

in vitro-translated 59K332–481 reacted specifically with 65K

(Figure 9B, lane 4), consistent with the 65K1–257/59K332–481

interaction observed by two-hybrid assays.

Finally, pulldowns were performed with GST fusions con-

taining full-length or truncated 65K, and in vitro-translated,
35S-labeled 59K332–481. Co-precipitated protein was subse-

quently analyzed by SDS–PAGE. Significantly, 59K332–481

was precipitated efficiently with GST-65K and GST-65K-N-

half, but not with GST, GST-65K-N-RRM, GST-65K-C-half or

GST-65K-C-RRM (Figure 9C). These results demonstrate that

the N-terminal half of 65K interacts with the C-terminal

149 aa of 59K and further suggest that residues between

positions 150–257 of 65K are required for this interaction.

Discussion

65K binds the terminal hairpin of the 3 0 SL of U12

We have investigated protein–RNA and protein–protein interac-

tions involving proteins specifically associated with the human

18S U11/U12 snRNP. We show that the U11/U12-65K protein

directly interacts with the U12 snRNA (Figures 2 and 4). These

data provide the first information about proteins that directly

contact snRNA within the U11/U12 snRNP. Co-IP studies with

truncated U12 snRNA revealed that the 65K binding site is

located in the 30 half of U12 (Figure 4). We provide evidence

that, in contrast to the currently accepted structure, the 30 half of

the human U12 snRNA folds into a single, extended SL with a

terminal 7-nt loop. Evidence for the 30 SL structure includes the

following: (i) all known U12 snRNAs from diverse organisms,

including vertebrates, plants and insects, can theoretically be

folded into this structure and it represents the most energetically

favorable in each case; (ii) structure probing studies with

lead(II) ions (Figure 5) were most consistent with the 30 SL

structure; and (iii) the sequence of the terminal loop of the 30 SL

is evolutionarily highly conserved (Figure 6) and a chemically

synthesized RNA oligo comprising the terminal hairpin binds

recombinant 65K both in GST pulldowns and EMSAs (Figure 7).

The latter result not only supports the existence of the

extended 30 SL, but also precisely maps the binding site of

65K on the U12 snRNA to nucleotides comprising the term-

inal hairpin. Mutational analyses demonstrated that the

nature of the loop nucleotides and the loop-closing base

pair, and also the existence of a stem structure are major

determinants of 65K binding (Figure 7). The U1-A and U2-B00

proteins also require a hairpin structure for binding and

recognize not only loop nucleotides, but also the loop-closing

base pair of their respectively bound RNA hairpins in a

sequence-specific manner (Oubridge et al, 1994; Price et al,

1998). In the case of U1-A and U2-B00, the presence of a stem

is thought to aid binding, not only through sequence-specific

interactions, but also by imposing constraints on the con-

formation of the loop nucleotides (Varani and Nagai, 1998).

Significantly, although nucleotides comprising the terminal

loop of the 30 SL of U12 are also partially single stranded in

Figure 8 An excess of U12wt and S5 oligo inhibits P120 pre-mRNA
splicing in vitro. (A) In vitro splicing was performed for 4 h with 32P-
labeled P120 pre-mRNA in the presence of increasing concentra-
tions (as indicated) of U12wt oligo (lanes 4–7), mutant L3 oligo
(lanes 8–11) or mutant S5 oligo (lanes 12–15). Lanes 1–3: P120
splicing in the absence of oligo after 0, 2 and 4 h. RNA was
separated on an 8% polyacrylamide–8 M urea gel and visualized
by autoradiography. The positions of the splicing intermediates and
products are indicated schematically on the left. (B) Quantitation of
splicing efficiency. The amounts of pre-mRNA and mRNA were
determined using a PhosphorImager and the ratio of mRNA to pre-
mRNA was plotted as a function of oligonucleotide concentration.
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the previously published U12 structure (i.e., they are located

between stems III and IV), the requirement of a hairpin

structure for 65K binding argues against the existence of

the latter structure in the U11/U12 snRNP.

The 65K C-terminal RRM deletion mutant binds U1

and U2 snRNA as well as U12

Data presented here demonstrate that the C-terminal RRM of

65K is necessary and sufficient for U12 binding. However, in

contrast to full-length 65K or 65K-C-half (aa 211–517), 65K-C-

RRM (aa 380–517) also interacted with U1 and U2, but not

U11, U4 or U5. Thus, in the absence of residues 211–379, 65K

loses its ability to distinguish between the U1, U2 and U12

snRNAs, but retains some binding specificity in that other

snRNAs are not bound. By analogy, in the absence of the

U2-A0 protein, U2-B00 lacks the ability to distinguish between

U1 and U2, binding both with similar affinity (Bentley

and Keene, 1991). A comparison of the cocrystals of the

Figure 9 The N-terminal half of 65K interacts with the C-terminal 149 aa of the 59K protein. (A) Yeast two-hybrid assays with the 65K and 59K
proteins (and deletion mutants thereof). (B) 65K and 59K interact in Far Western overlays. U11/U12 proteins on nitrocellulose strips were
visualized by staining with Ponceau S (lane 1) or incubated with 35S-labeled, in vitro-translated protein (as indicated above each lane) and
visualized by fluorography (lanes 2–4). U11/U12 proteins are indicated on the left. (C) GST pulldowns with 35S-labeled 59K332–481 and GST
(lane 2), or GST fusions of 65K and deletion mutants thereof (lanes 3–7; as indicated). Co-precipitated protein or 10% of the input (lane 1) was
analyzed by SDS–PAGE and visualized by fluorography. (D) Schematic of wild-type and truncated 65K and 59K proteins used in panels A–C.
Abbreviations are as in Figure 2. Arginine- (Arg) and glutamic acid-rich regions (Glu) are shaded gray.
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N-terminal RRM of U1-A and U2-B00 bound to U1 SLII and U2

SLIV, respectively, indicates that snRNA discrimination by

U1-A and U2-B00 is the result of the formation of a different

network of multiple hydrogen-bonding interactions between

the RNA and protein (Oubridge et al, 1994; Price et al, 1998).

Presumably, the structure of the C-terminal RRM mutant, in

contrast to the full-length protein or the C-terminal half

mutant, is altered in some way such that it is capable of

engaging in a network of interactions compatible not only

with U12 but also U1 and U2 binding.

The U11/U12-65K and U1-A/U2-B 00 proteins appear

to be related

Among human proteins present in the NCBI nr database, the

C-terminal RRM of 65K exhibits the second highest degree of

homology with the N-terminal RRM of U1-A and U2-B00. This

finding, as well as the ability of 65K-C-RRM to recognize U1

and U2, suggests that these proteins may have evolved from a

direct common ancestor or potentially from one another.

Significant homology between the RRM of the U11-35K

protein and that of the U1-70K protein, which also binds U1

snRNA, was noted previously (Will et al, 1999), suggesting

that several U11/U12-specific proteins may be evolutionarily

related to U1 or U2 proteins.

The RRM is an ancient domain and, because of its modular

nature, RRM proteins have been proposed to have evolved

by gene duplication of an ancestral RNA binding protein

and subsequent diversification (Bandziulis et al, 1989). The

N-terminal RRM of 65K does not exhibit notable homology

with its own C-terminal RRM, indicating that the N- and

C-terminal RRMs have not arisen by an intragenic domain

duplication event. Likewise, the N- and C-terminal RRMs of

U1-A or of U2-B00 do not appear to be related by RRM

duplication within the same protein (Birney et al, 1993).

The N-terminal RRM of the 65K protein also does not exhibit

notable homology with the C-terminal RRMs of U1-A or

U2-B00. This, coupled with the fact that the position of the

related RRMs is different in 65K versus U1-A/U2-B00 (i.e.,

C- versus N-terminal), suggests that if in fact the 65K C-

terminal RRM was duplicated giving rise to U1-A/U2-B00

(or vice versa) it must have been inserted into an unrelated

protein already containing a second RRM. Alternatively, after

gene duplication, unrelated RRMs must have been introduced

into the N- or C-terminus of the 65K or U1-A/U2-B00 proteins,

respectively. Although less likely, it cannot be excluded that

the observed homology between the C-terminal RRM of 65K

and the N-terminal RRM of U1-A/U2-B00 is fortuitous in nature.

Three models describing potential evolutionary relation-

ships between the U2- and U12-type spliceosomes have been

proposed (Burge et al, 1998). These include the so-called

fission–fusion and codivergence models, in which both spli-

ceosomes have a homologous origin (i.e., they are derived

from a common ancestor). The apparent relatedness of 65K

and U1-A/U2-B00 is consistent with a homologous origin of

the major and minor spliceosomes. The latter is also sup-

ported by the fact that many spliceosomal proteins and the

U5 snRNA are shared by both spliceosomes. However, the

limited sequence similarities between the U11, U12, U4atac

and U6atac snRNAs and their major snRNA counterparts

suggest that they have a nonhomologous origin and thus

support the so-called parasitic invasion model. In this model,

several genes of a common ancestor of animals and plants,

which had a pre-existing spliceosome, were invaded by a

parasitic group II intron. Fragmentation of this intron gave

rise to new snRNAs that associated with many proteins of the

pre-existing spliceosome, resulting in snRNPs with shared or

similar proteins. In the case of 65K, a pre-existing protein that

recognized the U2 snRNA may have evolved such that it also

recognized the U12 snRNA (or vice versa); at some point in

time, the full-length protein would have lost its ability to

recognize U2 (or U12), thereby preventing the formation of

hybrid U2 and U12 snRNPs. Thus, data presented here also

support the idea that a subset of snRNP proteins from one of

the spliceosomes directly diverged from proteins of the other

pre-existing spliceosome.

U12-65K interacts with the U11-59K protein

Data presented here also provide the first insights into

protein–protein interactions that likely contribute to U11/

U12 snRNP formation. Yeast two-hybrid, Far Western and

co-IP assays demonstrated a direct interaction between the

65K and 59K proteins. The latter, in contrast to 65K, which

binds the U12 snRNA, is associated with 12S U11 snRNPs.

Thus, the 65K–59K interaction appears to bridge 12S U11 and

15S U12 snRNPs, and may play a key role in the biogenesis of

the 18S U11/U12 di-snRNP. Importantly, the region of 65K

that interacts with 59K was mapped to aa 150–257 in its N-

terminal half, which are not involved in U12 binding. Interes-

tingly, this region contains the sequence QVLHLMN(K/

R)MNL, which is 100% conserved and uniquely present in

all putative 65K orthologs identified to date. Truncation of

59K revealed that aa 332–481 at its C-terminus are involved in

65K binding. That this region of 59K is located at the U11/U12

interface was suggested previously by IP studies in which

antibodies against the C-terminus of the protein precipitated

12S U11 but not U11/U12 snRNPs (Will et al, 2004). The U11

snRNP does not appear to remain associated with U12

throughout the course of splicing, but rather is likely desta-

bilized during catalytic activation of the spliceosome. Thus,

U11 and U12 snRNPs appear to be reassembled after each

round of splicing, and interactions mediating di-snRNP for-

mation may repeatedly play a crucial role in splicing. In this

respect, it is also interesting to note that 59K (also denoted

ES18) has been implicated in apoptosis (Park et al, 1999),

suggesting that the disruption of U11/U12 di-snRNP forma-

tion is potentially linked to programmed cell death.

The concomitant interaction of the U11/U12 di-snRNP with

the 50 splice site and branch site of the pre-mRNA during U12-

dependent prespliceosome assembly indicates that U11/U12

proteins contribute to intron bridging at this stage. Although

direct evidence is currently lacking, the U11/U12-specific 65K

and 59K proteins likely play an important role in this process.

In the major spliceosome, SR proteins have been implicated

in intron bridging interactions and recent data suggest that

the DEAD-box protein Prp5 bridges the U1 and U2 snRNPs

(Xu et al, 2004). SR proteins are required for U12-type

splicing and likely facilitate interactions of the U11/U12

snRNP with the pre-mRNA (Hastings and Krainer, 2001),

but they do not appear to function in di-snRNP formation/

stability (i.e., they are not found in purified U11/U12

snRNPs). Likewise, hPrp5 is not part of the human 18S

U11/U12 snRNP and thus does not appear to contribute to

intron bridging interactions in the minor prespliceosome.

Thus, unique protein–protein interactions, including
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65K-59K, likely contribute to the molecular bridge connecting

the ends of an U12-type versus U2-type intron.

A functional role for 65K in U12-dependent splicing

A vital cellular function of the 59K protein was previously

demonstrated by RNAi-mediated knockdowns, which led to

cell death (Will et al, 2004). However, the significant amount

of 59K still present after knockdown (B30%) and the in-

ability to efficiently immunodeplete 59K from HeLa nuclear

extract have hindered studies of its role in di-snRNP forma-

tion. Likewise, owing to inefficient RNAi-mediated knock-

down and immunodepletion of 65K, its role in splicing and/

or di-snRNP formation could not be assayed by these meth-

ods. As an alternative approach, we attempted to functionally

sequester the 65K protein by adding a large molar excess of

the U12wt oligonucleotide comprising the 65K binding site;

similar studies revealed a role for the U4-15.5K RNA binding

protein in U2-type splicing (Nottrott et al, 1999).

Significantly, addition of the U12wt oligo led to a reduction

in the efficiency of U12-type (but not U2-type) splicing

in vitro (Figure 8; not shown). The effect of the U12wt

oligo appeared to be specific, as no reduction in splicing

was observed with a mutant U12 oligonucleotide (L3) that no

longer binds 65K. In the presence of the U12wt oligo, a

significant reduction in U11/U12 di-snRNP formation could

not be detected by IP studies (not shown), suggesting that the

observed reduction in splicing is not due to disruption of

the di-snRNP complex. However, more subtle alterations in

the molecular architecture of the U11/U12 snRNP upon

U12wt oligo addition or a more direct role of the 65K protein

in U12-dependent splicing cannot, at present, be ruled out.

Materials and methods

Database searches
Homologs of the human 65K protein and U12 snRNAs were
identified by BLASTsearches of the nr or EST databases at the NCBI
(http://www.ncbi.nlm.nih.gov/entrez/). Proteins were aligned
using the Clustal method.

In vitro transcription and 5 0-end labeling of RNA
32P-labeled U1, U2, U11 or U12 snRNA was transcribed in vitro with
T7 or SP6 polymerase from plasmids containing the respective
snRNA gene in the presence of 32P-UTP (3000 Ci/mmol). Prepara-
tive amounts of m7G-capped, nonlabeled UsnRNA (for co-IPs) were
prepared under similar conditions, except that m7GpppG was
included in the reaction. RNA oligonucleotides were 50-end labeled
with polynucleotide kinase and [g-32P]ATP (5000 Ci/mmol).

Co-IP studies and GST pulldowns
Co-IPs with anti-cap antibodies were performed essentially as
described by Nottrott et al (1999). GST fusion proteins or GST alone
were expressed in E. coli (BL21 plysS) cells and purified as described
previously (Will et al, 2001). For mobility shift assays, GST-65K-C-half
was subsequently concentrated using a Vivaspin concentrator
(Vivascience) according to the manufacturer’s protocol. GST pull-
downs were performed with the indicated in vitro–transcribed, 32P-
labeled UsnRNA, 32P-end-labeled RNA oligo or 6ml of in vitro-
translated, 35S-labeled 59K332–481 protein essentially as described (Will
et al, 2001). To isolate co-precipitated UsnRNAs, 100ml of 1� PK

buffer (100 mM Tris–HCl (pH 7.5), 12.5 mM EDTA (pH 8.0), 150 mM
NaCl, 1% (w/v) sodium dodecyl sulfate) were added, followed by
phenol extraction and ethanol precipitation. RNA was separated on a
10% polyacrylamide–7 M urea gel. Co-precipitated protein was
analyzed as described above. Pulldown of oligonucleotides was
quantitated by Cherenkov counting in a scintillation counter.

Lead(II)-induced cleavage
U12 snRNA was isolated by phenol extraction from purified
UsnRNPs or generated by in vitro transcription. 50 ng in vitro-
transcribed U12 and 2 mg tRNA were incubated for 5 min at 201C in
20ml of buffer N1 (25 mM HEPES–NaOH (pH 7.5), 5 mM magne-
sium acetate, 100 mM potassium acetate) in the presence of 0, 1, 5,
10 or 50 mM lead(II) acetate according to Brunel and Romby (2000).
Reactions were stopped by adding 5ml of 250 mM EDTA and RNAs
were recovered by ethanol precipitation. Cleavage sites were
detected by primer extension with primers complementary to nt
139–150 of U12 as described by Hartmuth et al (1999).

Electrophoretic mobility shift assays
Recombinant proteins (0–100 pmol, as indicated) were incubated with
0.25 pmol of 32P-end-labeled RNA oligonucleotide or 0.01 pmol of 32P-
labeled, in vitro-transcribed UsnRNA for 45 min at 41C in the presence
of 10mg of E. coli tRNA in a final volume of 10ml of buffer A (20 mM
HEPES–KOH (pH 7.9), 100 mM KCl, 1.5 mM MgCl2, 20mg/ml of E. coli
tRNA, 0.25 mM DTE, 5% glycerol, 10mg/ml BSA). RNA–protein
complexes were separated on a native 6% (80:1) polyacrylamide gel.

Far Western overlays and yeast two-hybrid assays
Coupled transcription and translation of the indicated protein were
performed using the TNT system (Promega) in the presence of
[35S]methionine (1000 Ci/mmol). For Far Westerns, 18S U11/U12
snRNP proteins were isolated by affinity selection with a biotinylated
oligonucleotide complementary to U12 and streptavidin agarose beads
(Will et al, 1999). Proteins were separated on a 13% polyacrylamide–
SDS gel, transferred to nitrocellulose and visualized by staining with
Ponceau S. Far Western overlays were performed as described by
Achsel et al (1998). Yeast two-hybrid analyses were performed with
the MATCHMAKER Two-Hybrid System 3 as described by the
manufacturer (Clontech) (see also Supplementary data).

In vitro splicing
Splicing was performed with in vitro-transcribed, 32P-labeled P120
pre-mRNA essentially as described previously (Will et al, 2001),
except that U2-type splicing was inhibited by adding a 20Ome RNA
oligo complementary to the U6 snRNA (AUGCUAAUCUUCUCU
GUA; end concentration 4.8 mM). For splicing inhibition studies,
increasing concentrations (10–150 pmol) of U12wt, L3 and S5 oligo
were added to a standard 12.5ml splicing reaction. RNA was
recovered by phenol–chloroform extraction and ethanol precipita-
tion, fractionated on an 8% polyacrylamide–8 M urea gel and
visualized by autoradiography. Quantitation of splicing efficiency
was performed with a PhosphorImager (Molecular Dynamics).

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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