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Review Article

Spiral Imaging: A Critical Appraisal

Kai Tobias Block, MSc and Jens Frahm, PhD*

In view of recent applications in cardiovascular and func-
tional brain imaging, this work revisits the basic perfor-
mance characteristics of spiral imaging in direct compari-
son to echo-planar imaging (EPI) and conventional rapid
gradient-echo imaging. Using both computer simulations
and experiments on phantoms and human subjects at 2.9
T, the study emphasizes single-shot applications and ad-
dresses the design of a suitable trajectory, the choice of a
gridding algorithm, and the sensitivity to experimental in-
adequacies. As a general result, the combination of a spiral
trajectory with regridding of the k-space data poses no
principle obstacle for high-quality imaging. On the other
hand, experimental difficulties such as gradient deviations,
resonance offset contributions, and concomitant field ef-
fects cause more pronounced and even less acceptable
image artifacts than usually obtained for EPI. Moreover,
when ignoring parallel imaging strategies that are also ap-
plicable to EPI, improvements of image quality via reduced
acquisition periods are only achievable by interleaved mul-
tishot spirals because partial Fourier sampling and rectan-
gular fields of view (FOVs) cannot be exploited for non-
Cartesian trajectories. Taken together, while spiral imaging
may find its niche applications, most high-speed imaging
needs are more easily served by EPI.
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ALTHOUGH SPIRAL SCANNING TRAJECTORIES have
been known since the early days of rapid scan magnetic
resonance imaging (MRI), spiral imaging never became
a widely accepted and clinically used method. More
recently, however, based on significant hardware im-
provements in the development of flexible gradient sys-
tems, spiral scanning has regained interest with appli-
cations in cardiovascular and functional brain imaging.
Due to its ability to acquire the k-space data of a two-
dimensional image after only a single radio frequency
(RF) excitation, single-shot spiral imaging emerges as a
competing technique to echo-planar imaging (EPI).
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In principle, spiral trajectories offer some inherent
refocusing of motion- and flow-induced phase errors
(1-3) not delivered by conventional phase- and frequen-
cy-encoding gradients, that is Cartesian trajectories
that scan the k-space along straight lines. Further-
more, spiral trajectories allow for an efficient and tem-
porally flexible sampling of k-space as shorter path-
ways are required to cover a desired region and the data
acquisition may start in the center of k-space. These
advantages are counterbalanced by practical difficul-
ties that—at least in the eyes of a typical MRI user—
render spiral imaging a technical challenge that seems
to be better suited for a few expert users. It is therefore
the primary aim of this article to provide a comprehen-
sive review of the basic performance characteristics of
(single-shot) spiral imaging in direct comparison with
EPI. Furthermore, the analysis attempts to sort out
whether spiral imaging suffers problems of a principle
nature other than EPI or whether existing complica-
tions represent mere difficulties that are to be overcome
by improved algorithms, foreseeable computer speed,
and more user-friendly implementations.

In more detail, this work addresses three major areas
that differ from conventional scanning schemes: 1) the
calculation of the gradient waveforms for spatial encod-
ing with respect to limitations given by the sampling
theorem and gradient hardware, 2) the interpolation or
regridding of the k-space data before image reconstruc-
tion by a two-dimensional fast Fourier transform (FFT),
and 3) the nature and potential correction of artifacts in
spiral images. The investigations employed both nu-
merical simulations and experimental assessments at 3
T in phantoms and humans focusing on brain imaging.
The combination of simulated and experimental data
turned out to be essential for the identification of arti-
fact sources and the desired separation of basic and
temporary problems.

All measurements were conducted at 2.9 T (Siemens
Magnetom Trio, Erlangen, Germany) using a transmit/
receive head coil (USA Instruments, Aurora, OH, USA)
and 40 mT m ' gradients with a maximum slew rate of
200 mT m™ ! msec . Written informed consent was ob-
tained from all subjects prior to the examination. Cal-
culations including gradient waveforms, image recon-
struction, and simulations were performed offline with
software modules written in Visual C++ (Version 6.0,
Microsoft Corporation, Redmond, WA, USA) using the
GNU Scientific Library. Unless stated otherwise, all im-
ages correspond to a resolution of 128 X 128 pixels
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Figure 1. Gradient waveforms calculated according to the analytical approximation proposed by Glover (7) and corresponding

spiral trajectory. For details, see text.

covering a 24-cm quadratic field of view (FOV). Simula-
tions were done by evaluating the analytical Fourier
transform of well-known simulation objects as a func-
tion of the given gradient waveforms. Numerical phan-
toms were composed of different ellipses such as the
Shepp-Logan phantom (4), in which case the analytical
Fourier transform is a simple superposition of Bessel
functions.

TRAJECTORY DESIGN
Theory

Although different realizations are possible, most spiral
imaging sequences rely on Archimedean spirals, i.e.,
spiral trajectories with equidistant revolutions. An
Archimedean spiral can be parameterized by

k() =a-0(t)- e (1)
where 6(t) represents a monotonically increasing func-
tion and k() = k() + i - ky(t). In order to fulfill the
sampling theorem for a given FOV, the distance be-
tween neighboring revolutions is chosen as Ak =
1/FOV. The trajectory in k-space is given by the time
integral of the gradient waveform G(t). Therefore, the

required gradients for a given trajectory can be calcu-
lated by

1d
G(t) = ;-Etk(t) (2)

which for a spiral trajectory as given by Eq. [1] yields

a . )
G(t) =y 6(t) - [1+i8(D)]- ™, (3)

The function 6(t) defines the distribution of sample
points along the spiral trajectory. It has to be chosen
with particular care as the gradient waveforms have to
comply with the hardware limitations (gradient ampli-
tude, slew rate), while simultaneously the trajectory

should provide for a most uniform and fast sampling of
k-space. The intuitive choice of a linear function for 6(t)
would result in an unfavorable spiral with constant
angular speed that spends too much time in the central
part of the spiral, i.e., for revolutions with small radii.
On the other hand, a square root dependence according
to 6(t) = vt would lead to an approximately constant
orbit speed for large t. Although this is a desirable
feature, the function causes a singularity at t = 0 from
d6/dt, which renders this solution unusable. As a con-
sequence, the optimization of 6(t) in between the two
aforementioned cases remains a persistent challenge
for the gradient calculation in spiral imaging.
A practical solution proposed by Bornert et al (5) is

t

0= ara ot (4)

where the parameter a may be used to tune the spiral
between constant angular speed and constant orbit
speed. A more accurate solution for the calculation of
the gradient waveforms may be obtained by formulating
the problem as a differential equation with suitable
boundary conditions (6). Unfortunately, however, an
analytical solution to this equation has not been found,
and because the numerical solution requires a high
computational load, it needs to be performed offline. A
simple analytical approximation to the differential
equation has been presented by Glover (7) and shown to
adequately reproduce the exact solution. The approach
first increases the gradient amplitude until its maxi-
mum value (slew-rate-limited case) and then keeps the
amplitude constant (amplitude-limited case). In either
case, the slope of the waveform, which is dominated by
the rotation frequency of the trajectory, has to comply
with the slew-rate limitation of the gradient system.
Figure 1 shows the gradient waveforms calculated with
this algorithm together with the resulting trajectory.
Corresponding multishot trajectories may be ob-
tained by increasing the revolution distance from Ak to
n - Ak and rotating the individual trajectories by ¢ =
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Figure 2. Simulated spiral image (128 X 128 matrix) of a
numerical phantom using the gradient waveforms and trajec-
tory shown in Fig. 1.

21 /n for each of the n excitations. A combination of the
sampled data from all excitations, i.e., from all inter-
leaved spiral trajectories, yields a sample density com-
parable to that of a single-shot scan with extended
acquisition period. Of course, the minimum length of
the acquisition period of a multishot spiral decreases
with the number of excitations at the expense of overall
scan time.

Simulations

The performances in terms of achievable image quality
of the Bornert et al (5) and Glover (7) algorithms for
calculating spiral trajectories were evaluated using nu-
merical simulations. It turns out that both methods
yield satisfactory results by delivering a suitable repro-
duction of the simulation object with almost identical
artifacts. Because the respective images are indeed in-
distinguishable by visual inspection, Fig. 2 demon-
strates for the case of the Glover algorithm that the
residual artifacts in the image edges do not affect the
object itself (although they may cause aliasing if the
object extends the FOV). They most likely result from a
partial violation of the sampling theorem as a reduction
of the revolution distance shifts the effects further away
from the object. This also indicates that pertinent arti-
facts may not be ascribed to regridding problems as
occasionally suggested.

Summary

Because the two aforementioned algorithms for calcu-
lating spiral gradient waveforms differ in the time
needed to sample the k-space, all subsequent investi-
gations were performed with the more efficient solution
by Glover, which best exploits the available gradient
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amplitude and slew rate. Apart from reducing the mea-
surement time for single-shot imaging, a shorter acqui-
sition time due to a faster scanning of k-space reduces
the degree of signal dephasing in the presence of mag-
netic field inhomogeneities. In fact, though theoretically
possible, a further improvement of the existing approx-
imate algorithm is not expected to translate into better
image quality in view of other experimental problems
(see below). The present approaches for calculating spi-
ral gradient trajectories are certainly not the limiting
factor for practical applications of spiral imaging.

It should be noted that, in contrast to spiral imaging,
EPI offers an additional decrease of the acquisition time
by partial Fourier imaging and the use of a non-square
FOV. Due to the coupled waveforms of both encoding
gradients in spiral imaging, partial Fourier techniques
cannot directly be adapted, while a one-dimensional
reduction of k-space does not automatically lead to
faster scanning.

IMAGE RECONSTRUCTION

Despite a tremendous increase of computational speed
during recent years, very long reconstruction times still
preclude a direct discrete Fourier transformation of spi-
ral (or other nonuniformly sampled) k-space data for
routine imaging. On the other hand, the use of an FFT
requires equally spaced data points on a rectangular
grid, which is obviously not fulfilled for spiral trajecto-
ries, as shown in Fig. 3. The only practicable solution is
an interpolation of the acquired data onto a rectangular
grid in a target matrix followed by FFT for image recon-
struction.

The regridding of the original data is a nontrivial
enterprise because any interpolation in the frequency
domain represents a convolution of the data with a
kernel function. Due to the properties of the Fourier
transformation, this convolution corresponds to a mul-
tiplication of the data in the image domain with the
Fourier transform of the kernel. As a consequence, for
example, the simple choice of a linear interpolation in
the frequency domain would lead to an unfortunate
multiplication of the image with a squared sinc func-
tion. A second problem arises from the fact that spiral
trajectories provide an inhomogeneous coverage of k-
space and thus cause a variable density of sampling
points. This property has to be compensated for in or-
der to avoid an overweighting of low spatial frequencies
and corresponding intensity distortions and image
blurring.

The following sections summarize the results for the
major regridding and respective density compensation
techniques. In order to facilitate the comparison of the
achievable image quality, Fig. 4 focuses on only a few
selected results from the extensive simulations of spiral
images, which were obtained for three different recon-
struction methods.

Augmented Matrix Method

The simplest approach to the gridding problem is to
increase the number of grid points in the target matrix
(8). The procedure decreases the mean distance be-
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tween the acquired data points along the spiral trajec-
tory and the desired rectangular grid. Of course, the
higher density of the grid results in a virtual increase of
the FOV, which can be restored by removing the unnec-
essary border regions after FFT. For this method, a
simple solution to the density compensation problem is
to weight each grid point with the number of spiral
trajectory points in its (immediate) neighborhood.
Figure 4 (top row) compares simulated spiral images
that were reconstructed by the augmented matrix
method using a twofold (left) and fivefold (right) increase
of a matrix, which would correspond to a rectangular
acquisition with the same nominal resolution. The im-
ages suffer from patterned artifacts, which decrease in
strength for larger matrices. On the other hand, for the
fivefold matrix size, the spiral image is compromised by
a homogeneous blurring that is best appreciated by the
smearing of intensities that covers the black ellipses of
the numerical phantom. This effect is not a general
feature of the augmented matrix method but reflects a
failure of the simple density compensation for large
matrices when the average number of original data
points assigned to a grid point in the target matrix
approaches 1. Most recently, however, a significantly
improved approach has been proposed by Moriguchi
and Duerk (9). The idea promises to overcome some of
the aforementioned limitations by a combination of the
augmented matrix method with an iterative reconstruc-
tion scheme based on a variant of the projection onto
convex sets (POCS) optimization method (10,11).

Conventional Regridding

So far, the most widely used gridding method has been
introduced by O’Sullivan (12) for computed tomogra-
phy—here referred to as conventional regridding. The
underlying idea is that an optimal interpolation in the
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Figure 3. Arrangement of data points in k-space for a
spiral trajectory (open circles) and a rectangular grid
(solid circles) as obtained for conventional spin-warp
scanning.

frequency domain would be a convolution of the mea-
sured data with a sinc function. Because its Fourier
transform is a boxcar function, the sinc interpolation
would not affect the image after FFT. For practical pur-
poses, it is inevitable to use a truncated and filtered
sinc interpolation kernel that not only avoids arrays of
infinite size, but also speeds up the computation by
reducing the number of floating-point operations.
Based on a comparison of different window functions
with respect to resulting image quality, Jackson et al
(13) suggested a Kaiser-Bessel window, which was also
applied here. It should be noted that a truncated sinc or
any other window function results in intensity distor-
tions in the image. The effect must be dealt with after
reconstruction by a procedure called roll-off correction,
which divides the local image intensity by the Fourier
transform of the kernel. A further reduction of interpo-
lation artifacts may be achieved by adding the aug-
mented matrix method and doubling the number of
data points (also referred to as oversampling).

Prior to convolution of the measured data, it is nec-
essary to perform a suitable density compensation.
Among several possible methods, Meyer et al (14) sug-
gested an analytical solution, which is specifically tai-
lored to spiral trajectories but not applicable to modi-
fied spiral or even arbitrary trajectories. A more general
solution can be realized using Voronoi diagrams (15),
which determine the size of the area surrounding each
trajectory point by a geometrical algorithm and then
apply this measure to weight the local sample points.

As demonstrated by the simulations shown in Fig. 4
(middle row), conventional regridding using a convolu-
tion with a Kaiser-Bessel function allows for a recon-
struction of high-quality spiral images. This particu-
larly applies to reconstructions that complement the
standard approach (left) by a twofold increase of the



Spiral Imaging

Figure 4. Image reconstruction methods.
Simulations of spiral images (numerical
phantom as in Fig. 1) obtained by the aug-
mented matrix method (top), by conventional
regridding (middle), and by the BURS method
(bottom) (96 X 96 matrix). The examples for
the augmented matrix method represent a
twofold (left) and a fivefold (right) increase of \
the matrix size. Conventional regridding was
used without (left) and with (right) twofold
oversampling as the standard approach. The
BURS method was applied with suboptimal
(left) and optimal (right) parameters. For fur-
ther details, see text.

data matrix (right). In more detail, the accuracy of the
reproduced intensity profiles of the numerical phantom
depends not only on the chosen kernel, but also on the
density compensation. Here, no visible differences were
obtained for either the analytical density compensation
(14) or the use of Voronoi diagrams (15). In terms of
practical applicability, the analytical density compen-
sation offers fast and robust processing, whereas the
Voronoi approach allows for flexibility of the trajectory
design at the expense of high computational require-
ments. If only a single set of gradients is needed for
routine applications, this latter problem may be cir-
cumvented by a precalculation and storage of the coef-
ficients for the density correction in a lookup table.

Block Uniform Resampling

The block uniform resampling (BURS) algorithm (16)
represents a class of methods that are based on a back-
ward formulation of the gridding problem. In this case,
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Conv. regridding

regridding—as the forward process—is achieved by a
numerical inversion of the interpolation step essential
to the backward operation: suppose one knows the (de-
sired) data values at the positions of a rectangular grid,
then it is possible to calculate the (measured) values at
the trajectory positions using a sinc interpolation. In
this backward calculation, a density compensation is
not needed because the sampling density of the grid is
homogeneous. The actual interpolation of the backward
operation involves a multiplication of the vector of the
(desired) data values with an interpolation matrix,
which can be derived from the trajectory and grid posi-
tions using the sinc function. The procedure yields a
new vector that contains the (measured) data values at
the trajectory positions. To solve the gridding problem,
the whole process may be reversed: if one inverts the
interpolation matrix determined for the backward cal-
culation, then the (desired) values at the grid positions
may be obtained by multiplying the (measured) data



662

Simulations
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Corrected trajectories

Figure 5. Experimental artifacts in FLASH, EPI, and spiral image acquisitions of a standard quality assurance phantom. Top:
Experimental images at 2.9 T without corrections for the actual trajectory cause artifacts (arrows) such as ghosting for EPI and
blurring for spiral acquisitions. Middle: Simulated images of a numerical phantom. The results were obtained by using the
theoretical trajectory for reconstructing data from a modeled (distorted) trajectory and indicate a major portion of the artifacts
to originate from gradient deviations. Bottom: Experimental images based on corrected (time-shifted) EPI and spiral trajectories

according to the gradient waveforms shown in Fig. 6.

vector of the original trajectory positions with the in-
verse matrix.

Technically, the inversion of the interpolation matrix
is done numerically using singular value decomposition
(17). Because its large size precludes an inversion of the
matrix as a whole, a practicable solution is to perform
the inversion locally within the regional neighborhood
of each grid point. As a consequence, the lower number
of grid and trajectory points in the inversion reduces
the optimality of the numerical solution, which is at the
expense of image quality. For practical implementa-
tions, the size of the neighborhood needs to be carefully
tuned for both grid points and trajectory points. If this
can be accomplished, for example, as shown for the
simulated image in Fig. 4 (bottom right), then also the

BURS method yields a suitable reconstruction of spiral
images with correct intensity profiles. In general, how-
ever, the achievable image quality critically depends on
the chosen parameters. Figure 4 (bottom left) demon-
strates that the related intensity distortions may easily
render a BURS-reconstructed spiral image useless.
Such sensitivities and image artifacts most likely re-
sult from unstable solutions to the ill-posed inverse
problem (18). The corresponding errors are particularly
strong when the number of trajectory points equals the
number of grid points. As a consequence, certain areas
of the trajectory are more affected than others due to
the varying sampling density, so that perturbations in
specific frequency regions result in respective image
distortions. It has been proposed to stabilize the BURS
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Figure 6. Gradient deviations. Top: Theoretical waveform for
the application of two trapezoidal gradients with alternating
sign. Middle: A comparison of the theoretical (dotted) and ex-
perimental positions in k-space reveals deviations best visu-
alized in a corresponding difference plot (bottom). The flat-
tened curve corresponds to the difference after modeling the
gradient behavior with a linear system of second order.

Figure 7. Off-resonance ef-
fects. Simulated images (top)
and corresponding PSFs (bot-
tom) for a FLASH, EPI, and
spiral trajectory in the pres-
ence of a global phase drift.

FLASH
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reconstruction by regularization and estimation meth-
ods (19). However, even after the implementation of
respective algorithms, the resulting image quality re-
tained its pronounced sensitivity to changes of the in-
version parameters. These observations require further
investigations and at present certainly hamper the use
of the BURS reconstruction for spiral imaging.

Summary

With respect to image reconstruction of spiral k-space
acquisitions, conventional regridding with an analytical
density compensation emerges as the most promising
approach, as it offers fast and reliable processing of
high-quality images. The simple augmented matrix
method yields high speed for the regridding process,
but suffers from residual image artifacts, and therefore
may be a choice for experimental purposes only. At
present, the general applicability of the BURS method
seems to be limited because of a lack of robustness.

A number of further improvements to the gridding
step have recently been suggested. For example, the
combination of the augmented matrix method with it-
erative reconstructions may indeed have potential to
enhance the achievable quality of (simulated) spiral im-
ages beyond the level demonstrated here. However, this
work should be secondary to dealing with the experi-
mental difficulties of the measurement process itself,
discussed below.

SENSITIVITY TO ARTIFACTS

Figure 5 (top row) compares experimental FLASH, EPI,
and spiral images of a standard quality assurance
phantom obtained at 2.9 T. All experimental spiral im-
ages were based on gradient waveforms calculated by
the Glover method (7) and image reconstruction by con-
ventional regridding with analytical density compensa-
tion and twofold oversampling.
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4-Spiral

Figure 8. Experimental demonstration of off-resonance artifacts (arrows) in transverse images of the human brain at 2.9 T
(three sections from top to bottom). One-dimensional geometric distortions in EPI (left) as opposed to pronounced two-
dimensional blurring and extended ring-shaped artifacts in single-shot spiral imaging (middle). Right: Reduction of off-reso-
nance artifacts by interleaved multishot spiral acquisitions with four excitations.

In comparison with FLASH imaging, EPI is affected by
the well-known ghosting artifacts and geometric distor-
tions as, for example, indicated by the curvature of the
horizontal rows of circular spaces in the phantom. The
EPI artifacts appear more pronounced than usual be-
cause at this stage—similar to the spiral acquisition—
none of the corrections were applied that are normally
employed to compensate for putative deviations of the
actual trajectory from the theoretical trajectory used for
image reconstruction. In the spiral image with the un-
corrected trajectory, the object presents with intensity
distortions such as a dark outer border. The image also
appears both twisted and blurred, which strongly af-
fects most of the circular spaces. The observed prob-
lems, or more precisely the underlying experimental
sensitivities, are typical characteristics of EPI and spi-
ral trajectories, and to a certain degree limit their prac-

tical utility. The following section attempts to identify
the physical origins, which include imperfections of the
gradients, off-resonance effects, and concomitant
fields.

Gradient Deviations

In order to evaluate the influence of experimental devi-
ations of the gradients from the theoretical waveforms,
the temporal evolutions of the actually generated gra-
dient fields were measured using an approach origi-
nally proposed by Duyn et al (20).

The results shown in Fig. 6 refer to a trapezoidal
switch of a single gradient and indicate that in practice,
deviations from the theoretical gradient field cannot be
avoided. The occurrence of a damped response and
gradient overshoot is best visualized in the difference
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Figure 9. Experimental reduction of off-reso-
nance blurring artifacts in single-shot spiral
images (same phantom as in Fig. 5) by inter-
leaved multishot spiral acquisitions with 2, 4,
and 12 excitations (e.g., note the improved de-
lineation of the circular spaces). All images
were obtained under otherwise identical con-
ditions, including the same spatial resolution.

4-Spiral

plot. Because deviations occur in all three gradient ori-
entations, the corresponding displacements of data
points in k-space affect the image reconstruction when
performed with the theoretical trajectory.

The impact of such deviations onto the image quality
was simulated by assuming a driven linear system of
second order for the actual gradient behavior. As dem-
onstrated by the flattened curve in the difference plot of
Fig. 6, the model offers a first-order approximation of
the actual behavior. Realistic system parameters were
estimated by fitting the simulated trajectory to the mea-
sured trajectory. The results of these simulations,
which were performed by using the theoretical trajec-
tory for reconstructing the data from the modeled (dis-
torted) trajectory, are shown in Fig. 5 (middle row) for a
numerical phantom similar to that employed in the
experiments. A comparison of the resulting artifacts
with those obtained experimentally in Fig. 5 (top row)
identifies the nature of some of the distortions: ghosting
in EPI as well as twisting and intensity distortions in
spiral imaging can be largely attributed to the devia-
tions of the gradients.

An often applied simple correction for the gradient
deviations employs a slight shift of the trajectory in
time. The method mainly compensates for the damped
response behavior of the gradients. Although the corre-
sponding experimental images in Fig. 5 (bottom row)
are certainly improved, EPI still suffers from residual
ghosts and geometric distortions, as evidenced by the
curved rows of circular spaces. Most remarkably, how-
ever, the blurring of the circular spaces in the spiral
image was not improved, and therefore has to be as-
cribed to a different physical process.
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12-Spiral

In EPI, a further improvement may be obtained using
navigator scans together with a phase correction (21).
Because this principle cannot be adapted to spiral im-
aging, it has been suggested to use the measured tra-
jectory for the assignment of k-space positions for im-
age reconstruction. In the present study, however, this
approach failed by causing new artifacts. As this was
especially true for spiral images at high spatial resolu-
tion, the successful use of a measured trajectory seems
to depend on its signal-to-noise ratio and the ability to
correctly monitor even small deviations. These findings
suggest a pronounced sensitivity of the actual trajec-
tory to the complex behavior of the gradient system. In
general, the development of a robust correction method
for experimental gradient deviations remains an open
question for both EPI and spiral imaging.

Off-Resonance Effects

Off-resonance effects refer to signal contributions with
resonance frequencies other than the central water pro-
ton resonance frequency used for RF irradiation (and
signal reception). Such deviations may be caused by
chemically shifted resonances such as lipid protons,
inhomogeneities of the static magnetic field, suscepti-
bility differences at air-tissue interfaces, and eddy cur-
rents. During the imaging process, i.e., between RF
excitation and signal detection, off-resonance signals
result in the accumulation of (local) phase errors and
respective image artifacts.

In order to investigate the quantitative impact of off-
resonance effects, the problem was modeled by intro-
ducing a global phase drift into the simulation process.
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Figure 7 shows the simulated images and the corre-
sponding point-spread function (PSF) for a FLASH, EPI,
and spiral trajectory. While FLASH images remain un-
affected, the phase drift causes a spatial shift in EPI
along the phase-encoding dimension of the image. In
spiral imaging, off-resonance effects cause pronounced
(two-dimensional) blurring, which leads to a significant
deterioration of the achievable image quality. The
marked difference of FLASH and EPI trajectories vs.
spiral trajectories is further documented by the ex-
tended ringing structure of the spiral PSF. This un-
pleasant behavior is also observed under in vivo condi-
tions and represents a major threat to spiral imaging.

Figure 8 compares EPI and spiral acquisitions of the
human brain in three transverse sections that are dif-
ferently contaminated by off-resonance signal contri-
butions from the sagittal sinus and nasal cavities.
Apart from signal losses that are mainly caused by
improperly refocused slice selection gradients, these
well-known susceptibility effects cause locally varying
(one-dimensional) displacements of image fragments in
EPI (Fig. 8, left column) that lead to erroneous geomet-
ric representations along the phase-encoding dimen-
sion: here an artificial elongation of the anterior-poste-
rior brain dimension. In single-shot spiral imaging (Fig.
8, central column), the same local phase errors lead to
significantly larger blurring artifacts, with the ring
structures already seen in Fig. 7.
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Figure 10. Experimental dem-
onstration of off-resonance
blurring artifacts in single-shot
spiral images (same phantom
as in Fig. 5) as a function of re-
construction frequency. From
top left to bottom right, succes-
sive images vary by 25 Hz. Cor-
rect reconstructions of selected
regions (circular spaces) in indi-
vidual images are indicated by
arrows.

There are two basic approaches to reduce off-reso-
nance artifacts, which are similarly applicable to EPI
and spiral trajectories: a shortening of the acquisition
period and the use of postprocessing phase corrections.
As demonstrated in vivo in Fig. 8 (right column) and
more quantitatively for a phantom in Fig. 9, the only
unambiguously successful strategy for spiral imaging
is the use of interleaved multishot trajectories. In fact,
the reduction (4-shot spirals, Figs. 8 and 9) or almost
elimination (12-shot spiral, Fig. 9) of the severe ring-
shaped artifacts in single-shot spiral images with in-
creasing number of excitations again adds evidence to
the off-resonance nature of this blurring problem. Note-
worthy, all images shown in Fig. 9 possess the same
spatial resolution.

Postprocessing phase corrections attempt to improve
the off-resonance sensitivity of single-shot spirals. In
principle, locally correct images may be obtained by
image reconstruction with the proper local resonance
frequency. Figure 10 shows several reconstructions of
the same experimental data set as a function of fre-
quency. As indicated by arrows, individual areas are
accurately reconstructed without blurring if the chosen
resonance frequency matches the respective off-reso-
nance effect. Unfortunately, a reduction of off-reso-
nance artifacts by a multifrequency reconstruction in-
volves a large number of complex arithmetic
operations, which renders the idea impractical for rou-
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Figure 11. Concomitant field effects.
Simulated transverse spiral images
(same numerical phantom as in Fig. 7)
as a function of off-center position. The
concomitant field has been estimated
using Eq. [6] for the conditions of the
2.9-T MRI system used here. k

tine applications. Nevertheless, several approaches
have been proposed to reduce the number of operations
at the expense of accuracy (22-24). Regardless of tech-
nical considerations, a central problem of the multifre-
quency reconstruction is the selection of the right fre-
quency for each image position. Typically, this
information is achieved by field mapping using phase
images with different echo times. However, field maps
also pose problems as the identification of phase values
exceeding 27 relies on phase unwrapping techniques
with nontrivial algorithms (25,26). In addition, the fre-
quency estimation from the field map fails for multiple
phase wraps in areas of marked susceptibility differ-
ences, while putative subject movements may require
frequent updates of the field map. In conclusion, a
standardized and robust correction method for off-res-
onance effects in both single-shot EPI and spiral imag-
ing is still missing, but urgently needed, as a prerequi-
site for reliable applications.

Concomitant Fields

A pure gradient field violates the Maxwell equation V - B
= 0. Hence, in MRI a deviation between the actually
generated field and a pure gradient is always present.
These additional fields are referred to as concomitant
fields. They lead to phase errors that depend on posi-
tion and gradient strength. Similar to the situation for
off-resonance contributions, these phase errors cause
geometric distortions in EPI and blurring in spiral im-
aging. The latter effect is demonstrated in Fig. 11 using
simulations of transverse spiral images in the isocenter
of the magnet as well as 5 and 10 cm off-center. Here,
the ring-shaped artifacts of the circular spaces are
quantitatively less pronounced, but otherwise identical
to the off-resonance blurring depicted in Fig. 7.

In contrast to off-resonance effects, however, the
phase error due to concomitant fields does not depend
on the acquisition time. Therefore, it is not possible to
assess its influence with the use of a field map. An
approximate estimation of the problem may be derived
using the second-order terms of the Taylor expansion of
the magnetic field (27). Hence, the phase error from the
concomitant field
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is given by

$t) = f B(7) dr. (6)

In order to determine the exigency of a correction
mechanism, Eq. [6] serves to calculate the concomitant
field effects for the experimental setup used here. Sim-
ulations of spiral acquisitions in the presence of respec-
tive fields revealed that a correction cannot be avoided.
As shown in Fig. 11, this especially applies to single-
shot spirals at distances to (or with image components
at) about 10 cm from the isocenter. These findings are
in line with results presented by King et al (28). Because
the phase, except for transverse sections, varies within
the image, the basic idea for a correction is to subtract
the phase values estimated from Eq. [6] for every posi-
tion in the image. Similar to the algorithms proposed for
correcting off-resonance effects, suitable methods re-
quire a large number of operations (28), so that any
practical implementation needs to develop a trade-off
between computational performance and speed.

CONCLUSION

The numerical simulations presented here clearly dem-
onstrate that spiral imaging faces no principle prob-
lems with respect to trajectory design and image recon-
struction by density-corrected regridding. Although the
procedures involve more elaborate algorithms and com-
putational efforts than conventional scanning based on
a rectangular sampling of k-space, the achievable im-
age quality with existing methods is fully sufficient and
not the determining factor for practical applications. In
fact, a further possible refinement in these areas is not
expected to lead to a significant improvement of exper-
imentally acquired images. This is because spiral im-
ages are less tolerant to some of the unavoidable instru-
mental or in vivo inadequacies than EPI or even
conventional gradient-echo imaging. In fact, the in vivo
image artifacts caused by off-resonance effects due to
susceptibility differences are often unacceptable, as
they always present as an extended ring-shaped blur-
ring of affected image fragments. Finally, it should be
noted that the tight coupling of the encoding gradients
in spiral imaging precludes both a straightforward use
of partial Fourier sampling and an effective reduction of
the acquisition time by a nonsquare FOV. Thus, im-
provements in image quality that are obtainable by re-



668

ducing the length of the acquisition period are only
possible for a multishot scenario at the expense of the
high-speed advantage or by adapting the principles of
partially parallel imaging. Because the latter approach
is also applicable to EPI, the present results suggest
that spiral imaging may find specific applications, most
likely in areas where its inherent flow-compensating
properties may be exploited, while the general needs for
high-speed imaging are more easily served by EPI.
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