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State-selected rate coefficients for the capture of ground and rotationally excited homonuclear
molecules by ions are calculated, for low temperatures, within the adiabatic channel classical
sACCld approximation, and, for zero temperature, via an approximate calculation of the Bethe limit.
In the intermediate temperature range, the accurate quantal rate coefficients are calculated forj
=0 andj =1 states of hydrogen isotopessH2, HD, and D2d colliding with hydrogen-containing ions,
and simple analytical expressions are suggested to approximate the rate coefficients. For the ground
rotational state of diatoms, the accurate quantal rate coefficients are higher compared to their ACCl
counterparts, while for the first excited rotational state the reverse is true. The physical significance
of quantum effects for low-temperature capture and the applicability of the statistical description of
capture are considered. Particular emphasis is given to the role of Coriolis interaction. The relevance
of the present capture calculations for rates ofortho-para conversion of H2 in collisions with
hydrogen-containing ions at low temperatures is discussed. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1889425g

I. INTRODUCTION

The rates of many barrierless exothermic reactions are
determined by the rates of complexes formation in collisions
of the reagents. The most simple method for calculating the
rates of complex formationsor of captured, at not too high
temperatures, is the adiabatic channelsACd approach.1 It is
based on the assumption of adiabatic relative motion of the
colliding partners across central AC potentials. The latter are
defined as eigenvalues of the matrix of the total potential of
the interacting partners in representation in which the colli-
sion axisR is taken as quantization axis of the intrinsic an-
gular momenta of the partners. Thus, the total projection of
the intrinsic angular momentav is assumed to be an exact
quantum number. If, in addition, the relative motion is
treated classically this AC approach, which will be abbrevi-
ated by ACCl sadiabatic channel classicald becomes espe-
cially simple. It has been used for the calculation of state-
specific rate constants of many practically important

processes.2 The AC approach ignores nonadiabatic effects
which arise from the relative radial and rotational motion of
the partners. The implication of this approximation was dis-
cussed recently.3,4 It was argued that for ion-diatom colli-
sions at very low temperaturesssay, below 1 Kd, the capture
dynamics simplifies in two respects: the AC potentials can be
calculated in the perturbed rotor approximation and the ra-
dial nonadiabatic coupling can be safely neglected. On the
other hand, the relative motion of the partners should be
treated quantum mechanically rather than classically.

In the present paper we report the results of calculations
of capture rate coefficients for rotationally excited state-
selected homonuclear diatomics by ions at temperaturesT
which are substantially below the characteristic rotational
temperature of a diatomic,Trot=B/kB, whereB is the rota-
tional constant of the moleculesin energy unitsd. An interest-
ing feature of these collisions is a long-range anisotropic
charge-quadrupole interaction for rotationally excited mol-
ecules which would cause a divergence of the ACCl rate
coefficients at the limit of zero temperature. This divergence
is an artifact of the ACCl approximation, the range of valid-ad
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ity of which can be established by comparing ACCl rate
coefficients with estimated correct quantum zero-temperature
rate coefficients. The accurate bridging between ACCl rate
coefficients and the correct zero-temperature limit is per-
formed in the present work for collisions of hydrogen isotope
diatomicssH2, HD, D2d in j =0 andj =1 states with diatomic
and polyatomic hydrogen-containing ions. The choice of
these systems was motivated by the fact that such processes
play an important role in atmospheric and interstellar chem-
istry, for instance, in cascading down the rotational ladder of
hydrogen in cold translational environment.5,6 It should also
be noted also that collisions of hydrogen molecules are the
best candidates for the manifestation of specific low-
temperature features of complex formation, and that
hydrogen-containing ions are partners that provide the inter-
esting opportunity to investigate effects originating from the
identity of protonssthe so-called exchange symmetry5,6d and
relating to the intramolecular conversion of nuclear spins
snonconservation of the total spin of protons in the
complex7d.

This paper is arranged in the following way. In Sec. II
we discuss different regimes of low-temperature capture and
we comment on some general aspects of the statistical theory
of capture. In Sec. III we report the results of ACCl capture
calculations for arbitrary rotational quantum numbersj of the
diatom. In Sec. IV we consider the zero-temperature limit of
the quantum capture rate for arbitraryj . In Sec. V we con-
sider the qualitative behavior of capture rate constantskj

across the very low-temperature range, present accurate re-
sults forkj=0 andkj=1 of hydrogen molecules, and also sug-
gest simple analytical expressions for the rate coefficients
that bridge the gap between the zero-temperature and the
classical adiabatic channel limits. Section VI concludes the
paper with a qualitative discussion ofortho-para conversion
of hydrogen molecules in collisions with hydrogen-
containing ions.

II. DIFFERENT REGIMES OF LOW-TEMPERATURE
CAPTURE

The interaction energy between a homonuclear diatom
and an ion at long range is determined by isotropic charge-
induced dipole and anisotropic charge-induced dipole plus
charge-quadrupole terms. The interaction potential depends
on the interfragment distanceR and the angleg between the
molecular axis and the collision axis:8

UsR,gd = −
q2a

2R4 + S−
q2Da

3R4 +
qQ

R3 DP2scosgd. s1d

Here a=sai+2a'd /3 is the mean polarizability,Da=ai

−a' denotes the polarizability anisotropy,Q is the quadru-
pole moment of the molecule,q is the charge of the ion, and
P2 is the Legendre polynomial. The productqQ may be posi-
tive or negativesthe so-called even case forqQ.0 and odd
case for qQ,0d.

Considering the low-temperaturesLTd region, T!Trot

=B/kB, we note two features that simplify the capture dy-
namics:sid the capture proceeds adiabatically with respect to

rotational transitions andsii d the full interaction potential can
be simplified by making use of the perturbed rotorsPRd ap-
proximation.

The propertysid follows from the Massey parameter for
rotational transitionsj=BDR/"n wheren is the collision ve-
locity andDR is the range of the potential. Taking the latter
as the Langevin capture radiusRL=sq2a /2Ed1/4, whereE is
the collision energy, and estimatinga asa< r0

3 with r0 being
the “complex radius,” we write

j =
BDR

"n
,

BRL

"n
, SB

E
D3/4S q2

r0B
D3/4

. s2d

The first factor on the right-hand sidesrhsd of Eq. s2d at T
!Trot obviously is larger than unity. The second factor is
also larger than unity, sincesq2/ r0Bd represents the ratio of
the Coulomb energy at the place of the radius of the complex
to the rotational constant. The conditionj@1 means that
there are no transitions between rotational states of the dia-
tom on the way to complex formation.

Propertysii d follows from the comparison of the interac-
tion energyU at the capture distanceRL with the rotational
constant

UsRLd
B

,
q2a

RL
4B

,
E

B
! 1. s3d

The conditionUsRLd /B!1 means that the expression forU
can be simplified by using the PR approximation. The PR
interaction energy is calculated by using the collision axisR
as the quantization axis for the intrinsic angular momentumj
which is assumed to correspond to a good quantum number.
The projection quantum numberv serves, together withj , in
specifying the adiabatic channel potentialsVv

j sRd and the
matrix of centrifugal energyCv,v8

J,j sRd. The diagonal elements
of the latter are the centrifugal potentialCv,v

J,j sRd, while the
off-diagonal elementsCv,v±1

J,j sRd correspond to the Coriolis
interaction between states with differentv. Within this ap-
proach, the capture is described by the solution of half-
collision quantum scattering equations, which in the total
angular momentum representationJjv can be decomposed
into two blocks with dimensions ofs j +1d and j , differing in
parity. The explicit expressions for the matrix elements,
which enter into the scattering equations and which are gen-
erated by the potential in Eq.s1d and by the relative rotation,
are8

V0
0sRd = ukJjvuUsR,gduJjvlu j=0,v=0 = −

q2a

2R4 ,

s4d
Vv

j sRd = ukJjvuUsR,gduJjvlu j.0

= −
q2a

2R4 +
f js j + 1d − 3v2g
s2j − 1ds2j + 3dS−

q2Da

3R4 +
qQ

R3 D ,

and

Cv,v
J,j sRd = kJjvuÎ 2/2mR2uJjvl =

JsJ + 1d − 2v2 + js j + 1d
2mR2 ,
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Cv,v+1
J,j = kJjvuÎ 2/2mR2uJjv + 1l

=
ÎJsJ + 1d − vsv + 1dÎjs j + 1d − vsv + 1d

mR2 . s5d

Note that Eqs.s4d represent AC potentials in first order of the
PR basis. If necessary, the AC potentials can be corrected by
making use of the general “weak field” approximations8–11

which use the ratio of the anisotropic part of the interaction
to the rotational constant of the molecule as an expansion
parameter. In particular, the second-order correctionDVv

j sRd
to the PR potentials in Eq.s4d reads

DVv
j sRd = a2s j ,vd

1

B
F3

2
S−

q2Da

3R4 +
qQ

R3 DG2

, s6d

where the coefficientsa2s j ,vd, as given by Eq.sA4d in Ref.
8, are

a2s j ,vd = −
fs j + 1d2 − v2gfs j + 2d2 − v2g

2s2j + 1ds2j + 3d3s2j + 5d

+
fs j − 1d2 − v2gs j2 − v2d

2s2j − 3ds2j − 1d3s2j + 1d
. s7d

An interesting feature of the AC potentials is the inter-
play between the attractiveR−4 interaction and the attractive/
repulsiveR−3 interaction. The switching between these two
types of interaction occurs at a certain interaction energy.
From dimensional considerations we define the characteristic
temperature of the low-temperature range as

TLT = Q4/q2a3kB. s8d

The temperatureTLT marks the switching of the interaction
for partial capture channelsj ,v that affect the partial rate
coefficientskj ,v; because of the compensation effects be-
tween differentkj ,v, the switching in the total rate coefficient
kj can occur at substantially lower temperatures. Note also
that the two temperaturesTrot andTLT are not related to each
other since they include different parameterssparameters of
interaction inTLT and the molecular constant inTrotd.

It is generally expected that for not too low collision
energies, when the de Broglie wavelength of relative motion
ÂsEd=" /Î2mE is substantially smaller than the Langevin
capture radiusRLsEd=sq2a /2Ed1/4, the capture cross section
can be calculated in the quasiclassical version of the AC
approximation. The latter, i.e., the ACCl approximation, de-
scribes the relative motion of partners classically and ne-
glects the Coriolis interaction between channels differing in
v. The validity of this approximation was verified earlier by
the comparison with classical trajectory calculations in the
upper-temperature region of the LT range12 where the con-
servation of the intrinsic angular momentum is still a good
approximation. With decreasing collision energies, the ACCl
method is expected to perform well untilÂsEd becomes com-
parable toRLsEd. The relationÂsEd,RLsEd determines the
energy where quantum effects become apparent in the cap-
ture, and it defines characteristic temperatureTVLT sVLT for
very low temperatured,

TVLT =
"4

kBm2q2a
. s9d

We then conclude that in the temperature rangeTVLT

!T!Trot the capture rate coefficient is adequately repro-
duced by the ACCl approximationsSec. IIId, while in the
range T!TVLT the capture rate coefficient is close to its
zero-temperature limitsSec. IVd. In the intermediate range,
centered atT=TVLT, the capture rate coefficient should be
calculated through the solution of the scattering equations
sSec. Vd.

We consider one more aspect of the statistical descrip-
tion of complex formation at very low temperatures. The
current statistical theory of chemical reactions, which oper-
ates with the notion of capture probabilities after Bethe,13

uses an averaging over the collision energy.14 Namely, the
cross section is averaged over an energy spreaddE around
the collision energyE; dE is assumed to be small enough
compared to the collision energy itself, but big enough to
accommodate for many levels of the complexsmean spacing

DĒd. Within this procedure, the individual Breit–Wigner
resonances are regarded asd functions centered at resonance
energies, and individual widths are replaced by mean widths

Ḡ. For thermal processes one can roughly identifydE with

kBT, andDĒ with the inverse density of states at the collision
threshold 1/rc. The necessary condition for an applicability

of standard type statistical theory,dE@DĒ, can be written as
rckBT@1. Clearly this condition is not fulfilled for low tem-
peratures, and the question arises whether the appearance of
quantum effects in complex formationsto be discussed in
Secs. III–Vd is compatible with the restrictive condition
rckBT@1. Consider, for instance, the complex H3

+, which is
assumed to be an intermediate species in theortho-paracon-
version of H2 in collisions with protons. The densities of
resonance states of H3

+ have been estimated in Refs. 15 and
16, and calculated quite accurately forJ=0 in Ref. 17. Ac-
cording to the latter reference, there are 20 states between the
threshold of dissociation of H3

+ into H2s j =0d+H+ and into

H2s j =1d+H+, with a mean spacingDĒJ=0 of about 10 cm−1

between the levels of the same total nuclear spin. Taking as a

rough estimate for a rotating complexDĒJ<DĒJ=0/ s2J+1d,
we write the conditionrckBT@1 askBTs2J+1d /DĒJ=0@1.
The quantum effects in the capture rate coefficient show up
at aboutT=TVLT when the maximal value ofJ is several
units andT is aboutTVLTsH2+H+d<0.04 K. Putting these

values into the ratiokBTs2J+1d /DĒJ=0, we find that the con-
dition rckBT@1 is not fulfilled, implying that the statistical
theory in its current version cannot be used for the descrip-
tion of quantum effects in the capture of H2 by H+. One,
therefore, should resort either to a more detailed statistical
treatment that considers individual Breit–Wigner resonances,
or to quantum dynamical calculations such as done in the
context of electron-molecule collisions.18 This situation
changes, however, when the number of atoms in the complex
increases. As a qualitative guide, we estimaterc within a
simple oscillator model asrc<sD /"v̄dsss!d−1s"v̄d−1, where
v̄ is the mean harmonic frequency of the oscillators,D is the
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dissociation energy of the complex into the reagents, ands
=3N−7 with N being the number of the atoms in a
complex.19 Figure 1 shows the dependence of the mean en-
ergy spacing in the complex in temperature units, character-

istic temperature of the level densityTc=DĒ/kB=1/rckB

versus the number of atomsN for v̄=1000 cm−1 and differ-
ent values ofd=D /"v̄. Values ofN=3, 4, 5, and 6 corre-
spond to collisions of H2 with ions X+=H+, H2

+, H3
+, and

CH3
+, respectively. Note that this estimate yields the correct

order of magnitude foruTcsNduN=3=TcsH3
+d if one takes the

known dissociation energy of H3
+ about 40 000 cm−1. Also

shown in this figure are theTVLTsNd temperatures for the
capture of H2s j =1d by different ionsX+. Quantum effects in
the capture can be described by the statistical approach pro-
vided thatTcsNd,T,TVLTsNd. We see that, for the collision
partners H2

+, H3
+, and CH3

+, the statistical theory can be used
in the region of quantum capture for not too low tempera-
tures fTcsNd,Tg. We note also that the temperatureTc is
extremely sensitive to details of the complex ion model, so
that the above estimate ofTc throughrc should be accepted
with some caveat.

For the reason of reference, in Table I we list the tem-
peraturesTrot, TLT, TVLT, and other parameters for two rep-
resentative systems, H2+X+ and N2+X+ with a positive ion
X+ of mass of 10 amu.

III. ACCl CAPTURE RATE COEFFICIENTS IN THE LT
REGION

For temperatures well aboveTVLT, the capture rate coef-
ficientskj can be calculated within the ACCl approach yield-
ing kj

ACCl. For the statej =0, kj=0
ACCl is just the temperature-

independent Langevin rate constantkL with a presumably
small increment due to a second-order charge-quadrupole
correction to the zero-order term in Eq.s4d. The value of this
correction can be inferred from earlier calculations. For in-
stance, for H2+Ar+ collisions fsee Ref. 8, Fig. 1g the frac-
tional increment is below 5% atT=Trot. For heavier diatoms,
it might be higher due to the smaller rotational constant of
the diatom. Therefore, we write the expression for the
capture rate coefficientkj=0

ACCl as the sum of the
Langevin rate coefficientkL=2pÎq2a /m and an increment
Dkj=0

ACCl, i.e.,

kj=0
ACCl = kL + Dkj=0

ACCl. s10d

The incrementDkj=0
ACCl is due to a second-order attractive

correction to the zero-order channel potential. The former is
of a shorter rangef~R−6, see Eq.s6dg compared to the latter
s~R−4d, and thereforeDkj=0

ACCl is expected to have a positive
temperature dependence. The incrementDkj=0

ACCl can be
calculated by a perturbation approach such as indicated in
Ref. 11.

For j .0, in view of the higher spacing between rota-
tional energy levels, the second-order corrections will be
lower compared to the casej =0. Since the result of the
second-order correction to the AC potentials decreases with
temperature and since it is completely hidden behind the
first-order charge-quadrupole interaction, here we completely
neglect it. Thus, forj .0, kj

ACCl is a weighted sum of AC
partial capture rate constantskj ,v

ACCl, each calculated for an
AC potentialVv

j from Eq. s4d:

kj
ACCl =

1

s2j + 1d o
v=−j

j

kj ,v
ACCl. s11d

For collision energies in the LT regime, some partial capture
cross sections vanish when the collision energy becomes
lower than the height of the potential barrier,Ej ,v

* created by
the interplay of the attractive and repulsive parts of the po-
tential which are proportional toR−4 andR−3, respectively, of
the potential. The maximal potential barrierEj ,max

* for a given
j corresponds either to the channelv=0 seven case,qQ.0d
or to the channelsv= ± j sodd case,qQ,0d. For instance,
for j =1, the barrier heights in the first approximation are

FIG. 1. Characteristic temperature of the level densityTc sfull circlesd and
VLT temperatureTVLT sopen trianglesd vs the number of atomsN in
hydrogen-containing complexes,N=3 sfor H3

+d, N=4 sfor H4
+d, N=5 sfor

H5
+d, andN=6 sfor CH5

+d. The dashed lines connect the points for guiding the
eye. The full vertical lines mark the temperature range, where quantum
effects of capture are adequately described by conventional statistical theory
at different values of the parameterd=D /"v̄.

TABLE I. Characteristic parameters for systems considered in this papersfor a positive ionX+ of mass 10 amud:
interaction parametersa andQ, characteristic temperaturesTrot, TLT, andTVLT, and dimensionless parameters«0

andb.

System asa.u.d Qsa.u.d TrotsKd TLTsKd TVLTsKd «0=TLT /Trot b=mQ2/a"2

H2+X+ 5.44 0.474 85.3 98.8 6.20310−3 1.16 126.2
N2+X+ 11.7 21.09 2.88 278 1.49310−4 96.5 1368
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Ej=1,max
* =

1

10
S3

5
D3 1

q2

ssQd4

sa + 4sDa/15d3 , s12d

where s=f1+3 signsqQdg /4, i.e., s=1 for even case and
s=−1/2 for the odd case. The values of the barrier heights
for collisions of H2+ positive ionseven cased and N2+ posi-
tive ion sodd cased calculated in successive orders are pre-
sented in Table II, in which the third order virtually coincides
with the accurate AC potentials such as presented in Fig. 1 of
Ref. 11. The much lower value of the barrier height for the
latter case is related to the small factors4=1/16that appears
in Eq. s12d for the odd case. We see that the second-order
correction noticeably changes the barrier height for N2–ion
collisions. This table also illustrates the convergence of the
barrier heights and the barrier positions within the perturba-
tion approach.

One expects that forT@TLT, the rate constantkj
ACCl is

dominated by the temperature-independent Langevin limit
kL, while for T!TLT, the rate constantkj

ACCl is determined
by the attractive charge-quadrupole interaction so that
kj

ACCl~T−1/6. For instance, forj =1 and the even case, the
explicit form of the latter relation readsfRef. 8, Eq.s22dg

kj=1
ACCl = U2

3
kj=1,v=1

ACCl

→ 2

3
Gs1/3dÎp

m
SkBT

2
D−1/6U2

5
qQU2/3U

T!TLT

. s13d

Since all ACCl rate coefficients display the same depen-
dence on the reduced masssinversely proportional toÎmd, it
is expedient to introduce the mass-independent reduced rate
coefficient x j

ACClsTd=kj
ACClsTd /kL which applies to all the

collisions studied in this work. Figure 2 shows the first-order
reduced rate coefficientsx j=0

ACCl and x j=1
ACCl swith the partial

contributionsx j=1,v
ACCld across the LT range as a function of the

reduced temperatureT/T* , T* =Ej ,max
* /kB for H2+ion capture.

This figure is similar to Fig. 1 from Ref. 8, save for a differ-
ent scaling of the temperature that emphasizes the opening of
the channel with a barrier and a logarithmic abscissa chosen
to better reproduce the extreme left of the LT range. A rather
unexpected feature in this figure is the quite small deviation
of x j=1

ACCl from unity for temperatures close to and aboveT*

although partial coefficientsx j=1,v
ACCl are quite far from their

asymptotic values. A shallow minimum ofx j=1
ACCl originates

from the interplay of capture in two adiabatic channels. The

two characteristic temperaturesTrot andTVLT are marked in
Fig. 2; the latter depends on the collision partner which here
corresponds to H2+H3

+ collisions.
In the attempt to provide more general results for ion-

diatom capture rate coefficients in terms of a small number
of parameters and for arbitrary signs of the productqQ, we
neglect the anisotropy of polarizability of the diatomDa and
introduce a scaling of the energy and the distance,

E = E0« with E0 = Q4/q2a3

and

R= R0r with R0 = auq/Qu. s14d

The scaled AC potentials in first order contain no parameters
and can be written as

v0
0srd = V0

0sRd/E0 = −
1

2r4 s15d

and

TABLE II. Barrier heightsEj=1,max
* sin kelvind and positionssin atomic unitsd for initially repulsive AC states for collisions of H2s j =1d+positive ionsVv=0

j=1 AC
potentiald and N2s j =1d+positive ion sVv=1

j=1 AC potentiald in successive “weak field” approximations. The first entry in each column corresponds to full
anisotropic interactionscharge quadrupole1charge- induced dipoled, the second entry to charge-quadrupole interaction only.

H2s j =1d+X+, qQ.0 N2s j =1d+X+, qQ,0

System
Barrier height

Ej=1,max
* sKd

Barrier
position sa.u.d

Barrier height
Ej=1,max

* sKd
Barrier

position sa.u.d

First order 1.59 2.14 21.10 19.15 0.444 0.376 33.8 35.8
Second order 1.55 2.06 21.40 19.5 0.286 0.259 41.6 42.6
Third order 1.55 2.06 21.40 19.5 0.280 0.255 42.1 43.0

FIG. 2. Partner-independent total and partial scaled ACCl rate coefficients
for H2+ion capture,x j=1

ACCl=kj=1
ACCl /kL and x j=1,v

ACCl =kj=1,v
ACCl /kL, respectively, vs

reduced temperatureT/T* across the LT rangesT* from Sec. IIId. The
dashed vertical line at the right-hand side of the figure corresponds toT
=Trot and the full vertical line at the left-hand side corresponds toT=TVLT

for H2+H3
+ collisions. ForT.Trot, the perturbed-rotor approximation may

not be valid and forT,TVLT sthe shaded aread the ACCl approximation is
not expected to be adequate. Note that the scaling factor for the temperature
1/T* , is the same for different collision partners.
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vv
j ,±srd = Vv

j ,±sRd/E0 = −
1

2r4 ±
f js j + 1d − 3v2g
s2j − 1ds2j + 3d

1

r3 ,

where the plus and minus signs correspond to the even and
odd cases, respectively. The second-order correction depends
only on one dimensionless parameter«0=E0/B=TLT /Trot

and reads

Dvv
j sr,«0d =

9

4
a2s j ,vd

«0

r6 , s16d

wherea2s j ,vd are given by Eq.s7d. For instance, the explicit
expression forj =0 andv=0 readsDv0

0sr ,«0d=−«0/30r6.
For the potentials of Eq.s15d, the reduced rate coeffi-

cients can be represented as the integralssee the Appendixd

x j ,v
ACCl,±sud =

u−3/2

2Î2p
E

0

`

r3svv
j ,±d8

3f− rsvv
j ,±d9 − 3svv

j ,±d8gQfsvv
j ,±d8g

3exph− frsvv
j ,±d8 + 2vv

j ,±g /2ujdr s17d

and

x j
ACCl,±sud =

1

s2j + 1d o
v=−j

v=j

x j ,v
ACCl,±,

where the integrand functions are:vv
j ,±;vv

j ,±srd, svv
j ,±d8

;dvv
j ,±srd /dr, svv

j ,±d9;d2vv
j ,±srd /dr2, Q is the Heaviside

step function, andu is the reduced temperatureu=T/TLT.
For large values ofj , Eq. s15d can be rewritten as

uvv
j ,±srdu j@1 = v±sr,xd = −

1

2r4 ±
s1 − 3x2d

4r3 , s18d

with x=v / j . Then the total rate coefficient is expressed as

x j@1
ACCl,±sud =

u−3/2

Î2p
E

0

1

dxE
0

`

r3sv±d8f− rsv±d9

− 3sv±d8gQfsv±d8g

3exph− frsv±d8 + 2v±g /2ujdr, s19d

with the functions of the integrandv± ;v±sr ,xd, sv±d8
;dv±sr ,xd /dr, andsv±d9;d2v±sr ,xd /dr2.

Figure 3 compares first-order ACCl capture rates for dif-
ferent rotational quantum numbers in the even caseqQ.0
ssuperscript “1” d. It is seen that, with increase inj , the
x j

ACCl,+ converge to a limiting curve which can be considered
as the fully classical AC limits j @1d of the state-specific
sfixed jd low-temperaturesT!Trotd capture rate constant,
such as obtained when both the relative motion and molecu-
lar rotation are treated classically. Similar results for odd
caseqQ,0 ssuperscript “2” d are shown in Fig. 4.

The given results can also be used for the illustration on
the capture rates of the effects of the polarization anisotropy
and higher-order charge-quadrupole interactions. As an ex-
ample we take collisions of N2s j =0,1d with positive sthe
odd cased and negativeseven cased ions, which is a quite
unfavorable case for the application of the weak field ap-
proximation because of the rather small value ofB. At the
beginning we note that, although the height of the potential

barrierEj ,v
* for j =1 is a sensitive function of the polarization

anisotropyssee Table IId, the latter only insignificantly af-
fects the total rate coefficients. This is related to the fact that
inclusion of the polarization anisotropy affects the partial
rate coefficients in opposite directions. Therefore, we will
disregard it. However, the situation is different for the
second-order correction to the interaction potential, which
affects all partial rates ofj =1 in the same directionfsee Eqs.
s4d and s7d for a2s j ,vdg.

The plots of the capture rate coefficients forj =1, for
both even and odd cases are calculated with the first-order
PR potentials for N2−q+ and N2−q− systems without polar-
ization anisotropy and shown in Fig. 5. Also given are the
capture rate coefficients forj =0 in second order and the
points for the same systems from Table III of Ref. 11 such as
calculated with accurate AC potentials forT=0.5, 1, 2, 4 K.
We see that for,j =0, the second-order capture rate coeffi-
cient x j=0

ACCl,± smoothly passes through the data points from
Ref. 11, averaged between even and odd cases in order to

FIG. 3. Universal scaled first-order ACCl capture rate coefficientsx j
ACCl,+

for homonuclear diatomics in the even casesqQ.0d vs reduced temperature
T/TLT across the LT range in first-order PR approximationswith polarizabil-
ity anisotropy neglectedd. Note that the scaling factor for the temperature
1/TLT is the same for different collision partners.

FIG. 4. The same as in Fig. 3 but in the odd casesqQ,0d.
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eliminate third-order effects. Forj =1, the first-order rate co-
efficient x j=1

ACCl,+ nicely hits the first point from Ref. 11stri-
angled, implying that at this point and to the left of it the
first-order PR approximation performs well. To the right of
this point, the first-order approximation performs progres-
sively worse, such as follows from the comparison of our
graph the data points from Ref. 11. This is expected on the
basis of a comparison of the points atT=1, 2, 4 K while the
rotational temperatureTrotsN2d equals 2.88 K. The odd case,
for j =1, is different such as noticed by the shift of the first-
order plot ofx j=1

ACCl,− relative to the first accurate point atT
=0.5 K. In order to elucidate the origin of this discrepancy,
we also present the plots of the partial rate coefficients
x j=1,v

ACCl,−. We see that the discrepancy is due largely to the
underestimation of the rate coefficient for the capture chan-
nel with the activation barrier. As follows from Table II, the
height of the activation barrier for the odd case diminishes
quite noticeably when one goes to higher-order perturbation
terms. Actually, if one calculates the partial rate coefficient
x j=1,v=±1

ACCl,− in third order, the respective plot passes through the
first point. The same correction only slightly modifies the
plot of x j=1,v=0

ACCl,− . This shows that atT=0.5 K, the high-order
corrections to the AC potentials for N2+q collision are im-
portant; however, it is also clear that with decrease in tem-
perature the first-order PR approximation will become ad-
equate simply because the contribution from thej =1,
v= ±1 channel disappears, like in the case withj =1,v=0
channel for the even case at substantially higher tempera-
tures. Because of the higher rotational temperature
fTrotsH2d=85.3 Kg, this kind of discrepancy will be much

smaller for the capture of H2 which is characterized by a
better applicability of the first-order charge-dipole approxi-
mation.

IV. ZERO-TEMPERATURE LIMIT OF THE CAPTURE
RATE COEFFICIENTS

For temperatures well belowTVLT, the capture rate co-
efficients at T→0 approaches, according to the Bethe–
Wigner law,20 constant values, denoted by limT→0 kjsTd=kj

B

ssuperscript “B” stands for Bethed. Any difference between
ACCl and accurate quantum rates, which arises in this tem-
perature range, is due to the following simplifications inher-
ent in the ACCl treatment: the neglect of quantization of the
relative and total angular momenta, the disregard of overbar-
rier reflection and underbarrier transmission, and the omis-
sion of the Coriolis coupling between AC states forj .0.

For j =0, the value ofkj=0
B can be derived from the solu-

tion of thes-wave zero-energy Schrödinger equation for cap-
ture with a central potentialVv=0

j=0 . To the second order in the
PR basis, which includes the lowest order of the charge-
quadrupole interaction, the potential reads

Vv=0
j=0 sRd = −

aq2

2R4 −
1

30

q2Q2

BR6 . s20d

The zero-energy capture solution for this potential is
known,21 leading to the following expression for the Bethe
rate coefficient:

kj=0
B = 2kLFsÎ«0/5bd. s21d

Here «0=E0/B=Q4/q2a3B is the dimensionless parameter
already introduced earlier,b=Q2m /a"2 is yet another di-
mensionless parameter and the functionFsxd is given by21

Fsxd = S x
Î3

D1/2Gs1/2d
Gs3/2dUGs3/4 − iÎ3/4xd

Gs1/4 − iÎ3/4xd
U

3sinFp

4
− argSGs3/4 − iÎ3/4xd

Gs1/4 − iÎ3/4xd
DG . s22d

In the limit of vanishing charge-quadrupole interaction,
«0/b→0, F tends to unity, and Eq.s21d reduces to the Vogt–
Wannier result22 kj=0

B =2kL discussed also in Refs. 18 and 23.
For instance, for capture of N2 by an ion of mass 10 amu, we
have «0=96.5, b=1368, i.e.,Î«0/5b=0.12, such that the
correction to the Vogt–Wannier result is quite smallsamount-
ing to less then 1%d. For the capture of H2, it is even smaller.

For j .0, the value ofkj
B should be found from the so-

lution of the coupled zero-energy Schrödinger equation in
the total angular momentum representation for a manifold
corresponding to theuJjvl states withJ= j . We have recently
shown, for thej =1 state that this solution can be well ap-
proximated by the solution of uncoupled equations in the
so-called axially nonadiabatic channel basis.4 Within this ap-
proach, the zero-energy capture is described by a single
equation that contains the attractive effective potentialVa

j sRd
which, in turn, is the lowest eigenvalue of the matrix com-
posed of the first-order AC potential and the Coriolis inter-
action between differentv states. Now we introduce yet an-
other approximation that allows one to calculateVa

j sRd

FIG. 5. Comparison of ACCl capture rate coefficients for N2s j =0,1d+X7

collisionssthe even case corresponds to a negative ion and the odd case to a
positive oned with accurate ACCl results from Ref. 11. The dashed vertical
line corresponds toT=TrotsN2d=2.88 K. The heavy solid line corresponds
to first-orderx j=1

ACCl,−, the light solid lines to its partial componentsx j=1,v=0
ACCl,−

and x j=1,v=±1
ACCl,− in first order, the heavy dashed linecorresponds to first-order

x j=1
ACCl,+, and the heavy dots tox j=0

ACCl in second order. The open triangles and
circles give the accurate results in the even and odd cases forj =1 and the
filled circles represent the averaged odd-even case forj =0 from Ref. 11 for
four temperatures,T=0.5, 1, 2, 4 K, respectively. Also shown are accurate
partial rate coefficients for the oddj =1 case atT=0.5 K sopen squaresd.
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analytically in the perturbative approach. The justification for
this approximation is the following. Capture in the limit of
zero energies is dominated by the channel with orbital quan-
tum number,=0. Though, is not an exact quantum number
and has only asymptotic significance, it can be considered as
a good quantum number in the limit of zero collision ener-
gies since capture occurs at very large distances. One can
thus calculate the effective potential in thes channel using
the perturbation approach in the basis of the asymptotic func-
tions in thej ,J representation. The perturbative approxima-
tion to Va

j sRd, i.e., Va,pert
j sRd, which is valid up to the second

order, reads

Va,pert
j sRd = ukJj , uUsR,gduJj,luJ=j=1

,=0
,

− U kJj , uUsR,gduJj,8l2

DE, ,8sRd U
J=j=1
,=0
,8=2

, s23d

where DE02sRd is the difference between the relative rota-
tional energy for,=0 and,8=2 orbital states:

DE02sRd = 6"2/2mR2. s24d

Using the standard formula24

k j , JuP2scosgdu j,8Jl j=J
,=0
,8=2

=
− 1
Î5
Î js j + 1d

s2j − 1ds2j + 3d
,

s25d

we write

Va,pert
j sRd = −

q2a j ,eff

2R4 ,

s26d

a j ,eff = aS1 +
2b

15

js j + 1d
s2j − 1ds2j + 3dD .

We thus see that the anisotropic interaction decreasing asR−3

is modified into an isotropic interaction decreasing asR−4

which results from the gyroscopic nature of the rotational
motion. In other words, we can say that the strong Coriolis
coupling appearing in thejvJ representation modifies the
first-order charge-quadrupole interaction, making it of a
shorter ranges~1/R4 instead of~1/R3d. The net result of
this modification is the replacement ofa by a j ,eff in the ex-
pression forkL, see Eq.s10d, which results in the following
expression for zero-temperature limit:

kj
B < kj ,pert

B = 2kLÎa j ,eff

a

= 2kLÎ1 +
2b

15

js j + 1d
s2j − 1ds2j + 3d

. s27d

We see that the zero-temperature limit of the capture rate
coefficient in the perturbative approachkj ,pert

B does not de-
pend on the sign ofqQ, i.e., for a givenj , it is the same for
even and odd cases.

In the limit of prevailing charge-quadrupole interaction
Eq. s27d yields

kj ,pert
B =

4puqQu
"

Î 2js j + 1d
15s2j − 1ds2j + 3d

. s28d

Though the interaction that leads to Eq.s28d is of Langevin-
typesproportional toR−4d, the functional form of this expres-
sion is the same as expected from an effective isotropic in-
teraction of the form −luqQu /R3, where l is a certain
numerical coefficient. The value ofl can be found from the
comparison of Eq.s28d with the Bethe expression for the rate
coefficient for the potential −luqQu /R3 from Ref. 23 which
yieldsl<1/10p<0.03. We see that this value ofl is much
smaller than the coefficient that corresponds to maximum
attraction forj =1 s1/5 for the even case and 2/5 for the odd
cased or j @1 s1/2 for the even case and 1/4 for the odd
cased, see Eq.s4d. The small value ofl reflects the effect of
the partial averaging of the charge-quadrupole interaction.

V. QUALITATIVE BEHAVIOR OF CAPTURE RATE
CONSTANTS kj ACROSS THE VLT RANGE
AND ACCURATE RESULTS FOR kj=0 AND kj=1

Comparing Eqs.s10d and s13d with Eqs. s21d and s27d
one sees that, with decrease in the temperature, the accurate
rate constant forj =0 exceeds its ACCl counterpart while the
opposite is true forj .0. This means that, within the VLT
range, the accurate capture rates forj =0 andj .0 are closer
to each other than given within the ACCl approach. The
reason for this is the partial averaging of the anisotropic in-
teraction as a result of the Coriolis coupling between AC
potentials, or, in other words, by the rotation of the collision
axis. This explains whykj

B increases withm: the rotation of
the collision axis, which persists even at zero collision en-
ergy because of the coupling of the relative and intrinsic
angular momenta, is slower for heavier partners; this results
in a less efficient averaging of the 1/R3 potential and an
increase of the rate coefficient. Our analysis shows that, in
the VLT regime, one can speak of a quantum amplification of
the ACCl rate coefficient forj =0 and a quantum suppression
of the ACCl rate coefficient forj .0.

The transition from the Bethe to the ACCl limits can be
accomplished by solving the coupled quantum equations that
describe capture. The explicit form of the equations and the
boundary conditions, were discussed in Ref. 3. For different
homonuclear diatom1ion collisions these equations in the
dimensionless form differ, for the first-order PR potentials,
only in the values of the parameterb=mQ2/a"2 and in the
sign of the productqQ.

In what follows, we will consider collisions of H2, HD,
and D2 with hydrogen-containing ionssthe even case,
qQ.0d within the first-order PR approximation. The capture
rate constants forj .1 as functions of a properly scaled tem-
perature, are qualitatively similar to the rate coefficients for
j =1. Therefore, we consider the casesj =0 and j =1. In our
numerical calculations the range of the collision energies was
taken from a region corresponding to a linear dependence of
the capture probability on to the wave vectorsBethe limitd
and the region where the accurate capture rate coefficients
converged to their ACCl counterparts. Within our error lim-
its, this convergence was found to be satisfactory, before the
capture in thev=0 AC channel becomes noticeable. We
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therefore do not consider quantum effects that arise in the
region of classical opening of the AC withv=0.

The most economical representation of accurate numeri-
cal results is given by two functions, the amplification and
suppression factors, which are defined as

AsTd = kj=0sTd/kj=0
ACClsTd,

s29d
SsTd = kj=1sTd/kj=1

ACClsTd,

respectively and which possess the following asymptotic
properties:

AsTd = H 1, T @ TVLT

kj=0
B /kL = 2 T → 0,

s30d

SsTd = H 1, T @ TVLT

kj=1
B /kj=1

ACClsTd, T → 0.

The optimal results forAsTd andSsTd were found to be the
following.

Amplification factor. The suggested expression for the
amplification factor is

AsTd = 3
2 − 1

2tanhf0.925z + 0.18z2 + 0.04z3g,

z = log10S T

TVLT
D + 2.075. s31d

Here, the numerical coefficients are fitting parameters appli-

cable to any collision andTVLT is the only system-specific
parameter which is calculated from the interaction param-
eters, see Eq.s9d. The 1ist ofTVLT for all systems studied
here is presented in Table III. The accurate and ACCl rate
coefficients as well as the quality of the approximation by
the amplification factorAsTd from Eq. s31d are illustrated in
Fig. 6.

Suppression factor. The chosen form of the suppression
factor is

SsTd =
kj=1

B

kj=1
ACClsTdF1 +S kj=1

B

kj=1
ACClsTd

DnG−1/n

. s32d

There are two system-specific parameters,kj=1
B and n. First,

we observe that the values ofkj=1
B found from the zero-

temperature extrapolation of the numerically determined rate
coefficients are quite close to the estimatekj=1,pert

B , see last
column of Table IIIsfor all the collisions,kj=1,pert

B is about 5%
higher thankj=1

B d. Therefore, within the accuracy of about
5%, kj=1

B can be regarded as a system-specific nonfitting pa-
rameter. As forn, it remains an empirical fitting parameter.
The list of kj=1

B , kj=1,pert
B , andn for all system collisions stud-

ied here presented in Table III.
Figure 7 shows accurate and ACCl rate coefficients as

well as the functionsSsTd for H2+H2
+, H2+H3

+, and H2

+CH3
+ collisions over the VLT range up to temperatures

where convergence with the ACCl limit is obtained. A shal-

TABLE III. Langevin capture rate coefficientssin 10−9 cm3 molecule−1 s−1d and characteristic parameters en-
tering into the expressions for amplification and suppression factors, Eqs.s31d and s32d.

No. Collision kL TVLTs10−3 Kd b= mQ2/a"2 n kj=1
B / kL skj=1,pert

B / kL d

1 H2+H2
+ 2.10 17.2 75.80 3.3 4.28s4.49d

2 HD+H2
+ 1.91 12.0 90.95 3.2 4.60s4.84d

3 D2+H2
+ 1.81 9.70 101.0 3.2 4.80s5.06d

4 H2+HD+ 1.91 12.0 90.95 3.2 4.60s4.84d
5 HD+HD+ 1.71 7.65 113.6 3.1 5.06s5.32d
6 D2+HD+ 1.60 5.86 129.8 3.1 5.36s5.63d
7 H2+D2

+ 1.81 9.70 101.0 3.2 4.80s5.06d
8 HD+D2

+ 1.60 5.86 129.8 3.1 5.36s5.63d
9 D2+D2

+ 1.48 4.30 151.5 3.1 5.74s6.03d
10 H2+H3

+ 1.91 12.0 90.95 3.2 4.60s4.84d
11 HD+H3

+ 1.71 7.65 113.6 3.1 5.06s5.32d
12 D2+H3

+ 1.60 5.86 129.8 3.1 5.36s5.63d
13 H2+H2D

+ 1.81 9.70 101.0 3.2 4.80s5.06d
14 HD+H2D

+ 1.60 5.86 129.8 3.1 5.36s5.63d
15 D2+H2D

+ 1.48 4.30 151.5 3.1 5.74s6.03d
16 H2+HD2

+ 1.75 8.43 108.2 3.1 4.96s5.20d
17 HD+HD2

+ 1.53 4.90 142.0 3.1 5.56s5.86d
18 D2+HD2

+ 1.40 3.48 168.3 3.0 6.02s6.32d
19 H2+D3

+ 1.71 7.65 113.6 3.1 5.06s5.32d
20 HD+D3

+ 1.48 4.30 151.5 3.1 5.74s6.03d
21 D2+D3

+ 1.35 3.00 181.8 3.0 6.24s6.55d
22 H2+CH3

+ 1.58 5.53 133.7 3.1 5.43s5.70d
23 HD+CH3

+ 1.33 2.75 189.5 3.0 6.35s6.67d
24 D2+CH3

+ 1.18 1.73 239.3 3.0 7.07s7.42d
25 H2+C2H2

+ 1.54 5.00 140.8 3.1 5.55s5.83d
26 HD+C2H2

+ 1.28 2.38 204.0 3.0 6.56s6.89d
27 D2+C2H2

+ 1.12 1.43 262.8 3.0 7.38s7.75d
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low minimum in kj=0
ACCl at the right-hand part of the figure,

which is mentioned in Sec. III, is not discernable on the
chosen scale of the vertical axis.

VI. CONCLUSION

The rate coefficients for complex formation of homo-
nuclear diatomic molecules in specified rotational states in
collisions with ions are calculated within the ACCl approach
for LT region and by the perturbative approximation at zero
temperaturesZT, the Bethe limitd. In the LT region, the di-

mensionless rate coefficientsx j
ACCl,± for the even and odd

casesssuperscripts6d, calculated in the first-order PR ap-
proximation, are universal functions of the reduced tempera-
ture T/TLT with TLT =Q4/q2a3kB. In the second-order PR
approximation,x j

ACCl,± contain one diatom-specific param-
eter«0=Q4/q2a3B. The second-order PR approximation pro-
vides reliable values of the rate coefficients up to the rota-
tional temperatureTrot=B/kB. The ZT analytical expression
for the capture rate constantx j

B,± contains yet another param-
eterb=mQ2/a"2 which depends on the collision partner. In
the region of VLT, which bridges the gap between the LT
region and the ZT limit, the capture rate coefficients should
be calculated from the solution of the coupled wave equa-
tions, or, within a good approximation, from the solution of
uncoupled wave equations in an axially nonadiabatic basis.
This is exemplified by the capture of hydrogen molecular
isotopes molecules in the ground and the first excited rota-
tional states with some hydrogen- and deuterium-containing
ions ssee Table IIId. Simple analytical expressions of the rate
coefficients are derived which are valid in the whole tem-
perature range below the rotational temperature.

The rate coefficients for hydrogen-ion collisions can be
used for calculating the low-temperatures rate constants of
ortho-para conversion of hydrogen molecules in collisions
with polyatomic hydrogen-containing ions, which proceeds
through the formation of an intermediate complex:

H2s j = 1,i = 1d + X+s j+,hn+j,i+d

→ fH2Xg+ → H2s j8 = 0,i8 = 0d + X+s j8+,hn8+j,i8+d. s33d

Here i is the total nuclear spin of H2 and X+ is the ionic
collision partner. The state of H2 is completely defined by
two quantum numbersj andi, with the latter being redundant
in view of the exclusion principle. The state ofX+ is speci-
fied by a set of quantum numbers, namely, by the total an-
gular momentumj+, a manifold of other internal quantum
numbershn+j and the labelG of one of the irreducible rep-
resentations of the permutation group of identical particles
spanned by the spinsor coordinated wave functions.25 For
protons inX+ sparticles with spin 1/2d, the permutation prop-
erty is completely defined by the total spin of nucleii+,
which explains the appearance of the quantum numbersj+,
hn+j, i+ in Eq. s33d.26 For low temperaturesswith partnersX+

in thermal equilibriumd, the reaction in Eq.s33d is a two-
channel process with respect to transitions in H2, but is a
multichannel process with respect to transitions inX+. The
number of final states inX+, populated as a result of the
energy release in the reactive rotational deactivation of H2,
depends critically on the density of states inX+. In the gen-
eral case, theortho-para conversion rate constantkj=1→ j=0

ortho-para

can be written as

kj=1→ j=0
ortho-para= Cj=1→ j=0

ortho-parakj=1
capture, s34d

where kj=1
capture refers to the capture rate coefficient of H2s j

=1d by a structureless ion and the dimensionless coefficient
Cj=1→ j=0

ortho-paradescribes the decay of the complex which depend
on the structure of the ion. Explicit calculation ofCj=1→ j=0

ortho-para,
which is outside of this study, represents an interesting prob-
lem, addressed for a particular caseX+=H+ in Ref. 27.

FIG. 6. Partner-independent accurate scaled total capture rate coefficients
for H2s j =0d, x j=0=kj=0/kL, vs reduced temperatureT/TVLT across the VLT
range, full line. The dashed line corresponds to the first-order ACCl approxi-
mationx j=0

ACCl while the open circles provide the amplification factorA from
Eq. s31d. Note that the scaling factor for the temperature 1/TVLT is different
for different collision partners.

FIG. 7. Partner-specific accurate scaled total capture rate coefficients for
H2s j =1d, x j=1=kj=1/kL, vs reduced temperatureT/TVLT across the VLT
range. Results for H2+H2

+, H2+H3
+, and H2+CH3

+, collisions are shown by
the full lines; triangles on the ordinate axis mark scaled zero-temperature
limits of the capture rate coefficientsx j=1,pert

B =kj=1,pert
B /kL fsee Eq.s27dg. The

dashed lines correspond to the ACCl approximationx j=1
ACCl while the open

circles correspond to the rate coefficients recovered from the suppression
factor S from Eq. s32d. Note that the scaling factor for the temperature
1/TVLT is different for different collision partners. The vertical arrows indi-
cate the limits below which the statistical description of the capture may not
be valid.
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APPENDIX: AN INTEGRAL EXPRESSION
OF THE CLASSICAL CAPTURE RATE
CONSTANT FOR AN ARBITRARY POTENTIAL

When calculating the capture rate coefficient within the
AC approximation, one has first to calculate the partial rate
coefficients, each for a specific AC potential. The standard
way to do this is to determine the capture cross section for a
given potential first, and then perform thermal averaging
over the collision velocities. For an arbitrary potential, the
first step does not yield an analytical expression for the cap-
ture cross section as a function of velocity and the second
step requires a numerical integrationsaveraging in velocitiesd
of the numerical integrandscross section as a function of the
velocityd. It would be useful to skip the first stage and to
express directly the capture rate constant as an integral from
an expression that contains only the potential. For any given
potential, the integral can be calculated numerically momen-
tarily. The following shows that it is indeed possible to de-
rive a formula of this kind. We begin with the capture con-
ditions

Lm
2

2mRm
2 + Um =

p2

2m
,

sA1d

−
Lm

2

mRm
3 + Um8 = 0,

whereUm=UsRmd and Um8 =dUsRmd /dRm, Lm is the capture
angular momentum, andRm is the coordinate of the barrier
maximum. From Eq.sA1d we get

Lm
2 = mRm

3 Um8 ,

sA2d
p2/m = sRmUm8 + 2Umd.

EquationsA2d is now used to provide a parametric depen-
dence of the capture cross sectionsc=pLm

2 /p2 and the col-
lision energyE on the variableRm:

sc = pLm
2 /p2 = scsRmd,

sA3d
E = p2/2m = EsRmd.

In principle, Eqs.sA3d define the energy dependence of the
capture cross section on the collision energy if the variable
Rm is eliminated. In practice, this is not possible to accom-
plish analytically except for potentials of simple formsssay,
inverse power-law potentialsd. The capture rate coefficient is

kcsTd =E
0

`

sp/mdscspdFsp,Tddp, sA4d

with the Boltzmann distribution function and

Fsp,Tddp= Î2/psmkBTd−3/2exps− p2/2mkBTdp2dp. sA5d

Thus,

kcsTd = Î2psmkBTd−3/2E
0

`

Lm
2 exps− p2/2mkBTdsp/mddp

= Îp/2smkBTd−3/2E
0

`

Lm
2 exps− p2/2mkBTddsp2/md.

sA6d

Passing from the variablep to the variableRm with the help
of Eq. sA2d we obtain

kcsTd = − Îp/2mskBTd−3/2E
0

Rm
*

Rm
3 Um8

3expf− sRmUm8 + 2Umd/2kBTg

3sUm9 Rm + 3Um8 ddRm, sA7d

where Um=UsRmd, Um8 =dUsRmd /dRm, and Um9
=d2UsRmd /dRm

2 . The upper integration limit in Eq.sA7d, Rm
*

corresponds to the distance at which the potentialUsRd at-
tains its maximumfif the potentialUsRd is repulsive at large
distances and attractive at smaller distancesg. In the case of
pure attraction,Rm

* =`. The use of the integration variableRm

is convenient since it allows one to easily monitor the impor-
tant integration range and, therefore, to judge to what extent
the neglect of a short-range part of the potential is meaning-
ful.

Sometimes, it is convenient to replace the upper integra-
tion limit in Eq. sA7d by infinity making use of the Heaviside
step functionQ. Then Eq.sA7d assumes the form

kcsTd = − Îp/2mskBTd−3/2

3 E
0

`

Rm
3 Um8 sUm9 Rm + 3Um8 dQsUm8 d

3expf− sRmUm8 + 2Umd/2kBTgdRm. sA8d

This is the final formula which expresses the capture rate
coefficient directly through the arbitrary interaction potential
without intermediate determination of the capture cross sec-
tion and which is convenient for numerical calculations.
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