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Based on results of the preceding paper, and assuming fast equilibration in phase space to the
temperature of the surrounding media compared to the time scale of a reaction, we formulate a
statistical theory of intramolecular nonadiabatic transitions. A classical mechanics description of
phase space dynamics allows for anab initio treatment of multidimensional reaction coordinates and
easy combination with any standard molecular dynamicssMDd method. The presented approach has
several features that distinguishes it from existing methodologies. First, the applicability limits of
the approach are well defined. Second, the nonadiabatic transitions are treated dynamically, with full
account of detailed balance, including zero-point energy, quantum coherence effects, arbitrarily long
memory, and change of the free energy of the bath. Compared to popular trajectory surface hopping
schemes, our MD-based algorithm is more efficient computationally, and does not use artificialad
hoc constructions like a “fewest switching” algorithm, and rescaling of velocities to conserve total
energy. The enhanced capabilities of the new method are demonstrated considering a model of two
coupled harmonic oscillators. We show that in the rate regime and at moderate friction the approach
precisely reproduces the free-energy-gap law. It also predicts a general trend of the reaction
dynamics in the low friction limit, and is valid beyond the rate regime. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1884516g

I. INTRODUCTION

The separation of electron and nuclear motions in mol-
ecules provided by an adiabatic Born–OppenheimersBOd
approximation1 plays a fundamental role in theoretical stud-
ies of chemical dynamics. The large mass difference between
electrons and nuclei is reflected in different time scales of
motion. In a zero-order approximation, nuclei in a molecule
may be considered as “frozen,” and diagonalization of the
electronic Hamiltonian yields a set of corresponding eigen-
values, which depend parametrically on thesfixedd positions
of nuclei, and are frequently called the adiabatic potential
energy surfacesPESd. The next terms of the expansion with
respect to the ratio of electron to nuclear mass couples the
adiabatic PESs, and these terms are called nonadiabatic cou-
plings.

Many reactions proceeding in the ground electronic state
are accurately described within the adiabatic BO
approximation.2–4 It may, however, be violated when the en-
ergy splitting between adiabatic PESs are comparable to or
smaller than the corresponding nonadiabatic couplings, and,
therefore, the latter cannot be accounted perturbatively. Typi-
cal examples are reactive scattering at high energies,5,6 and
reactions involving electronically excited states.7–9 Fairly of-
ten, the breakdown of the BO approximation occurs in
highly localized regions of a PES, which allows to account
for the nonadiabatic effects introducing a transition probabil-
ity between the adiabatic PESs, when the system crosses the
region of nonadiabaticity.10,11

There exist several basic models,12–19which estimate the

probability of the nonadiabatic transitions for many situa-
tions of interestssee also Ref. 20 for a reviewd. However, the
separate consideration of adiabatic dynamics and nonadia-
batic transitions is of limited use for reactions in condensed
phase. First, in the case of a multidimensional reaction coor-
dinate the extent of the nonadiabaticity region may some-
times be difficult to determine. Such a situation, for instance,
appears if an avoided crossing is highly thermally activated,
while the pathways around it with less efficient nonadiabatic
transitions may, nevertheless, play a dominant role due to
their much more favorable statistical weight. Second, the
concept of a single-passage transition probability requires
that the velocity autocorrelation decays slowly in the region
of nonadiabaticity. If this is not the case, the overall transi-
tion probability cannot be resolved into a sequence of the
single-passage events. In particular, a solvent-induced damp-
ing of motion along the reaction coordinates strongly affects
the velocity autocorrelation, which becomes zero in the lim-
iting case of continuous diffusion. Third, the nonadiabaticity
region itself can be broad, and involve multiple avoided
crossings. Last but not least, quantum interference effects
can directly manifest themselves in the reaction dynamics,
such that the description of nonadiabatic processes in terms
of transition probabilities may not be adequate.

Several alternative theoretical approaches were proposed
to overcome some of these problems. A mean-field
approximation21–24is capable of a fully dynamic treatment of
nonadiabatic transitions, but fails in the regions of large split-
ting between the PESs. On the other hand, a surface
hopping24–27 sSHd scheme, based on a “fewest switching”
algorithm, provides correct asymptotical solutions and at-adElectronic mail: aneufel@gwdg.de
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tempts to resolve the first three problems by letting the tra-
jectory hop between PESs everywhere, in accordance with
an ad hoc procedure. The SH scheme is computationally
efficient, and nowadays the standard approach to study mo-
lecular nonadiabatic reactions, despite of its unknown accu-
racy, applicability limits, and some other intrinsic drawbacks
such as neglect of quantum interference effects28 and prob-
lems with classically forbidden transitions.29

We also mention more general methodologies based on
the semiclassical considerations30,31 and density matrix for-
malisms. The former are currently under intensive develop-
ment, but still rather expensive computationally when ap-
plied to realistic simulations in condensed phase. The density
matrix approaches, in form of Redfield theory32,33 and the
quantum-classical Liouville equation34–37sQCLEd, were also
extensively applied to study nonadiabatic transitions in
model systems.38–47Since Redfield theory treats the reaction
coordinates quantum mechanically, it is mainly useful for
one-dimensional PESs, while the QCLE suffers from the in-
ternal inconsistency,48 especially when applied to nonadia-
batic transitions.49,50

Our goal is to formulate alternative approaches to de-
scribe nonadiabatic transitions in condensed phase, which
should have well defined applicability limits, be capable of
dynamic treatment of the transitions with a full account for
detailed balance, quantum interference, and memory effects,
and with a computation efficiency at least comparable to
those of the SH scheme. Motivated by a continued success
of transition state theory,4,51,52 and its nonadiabatic
extensions,53–56 for modeling intramolecular reactions under
a variety of experimental conditions, we start with a rela-
tively simple situation, assuming fast equilibration in phase
space to the temperature of the surrounding media. In this
case the reaction coordinates can be considered as belonging
to the thermal bath, which will be treated by means of clas-
sical mechanics. The latter assumption is reasonable when
the distance between the quantum energy levels is less than
the mean thermal energy. For a molecule in solution at room
temperature this condition is met for almost all degrees of
freedom, except for the high-frequency stretch vibrations.

In the preceding paper57 we generalized a recently sug-
gested non-Markovian quantum-classical approximation58

for the purposes of reaction dynamics in condensed phase.
The developed method meets the qualifying standards, it can
easily be applied to realistic multidimensional reaction coor-
dinates through the use of anab initio molecular dynamics
sMDd technique, and serves as the basis for the subsequent
consideration.

The outline of the paper is as follows. Basic assumptions
of the model and the corresponding kinetic equations are
presented in Sec. II. An efficient way for the direct solution
of these equations in the time domain, based on the MD
technique, is formulated in Sec. III. For the model study we
employ a Brownian dynamics approach to simulate nuclear
dynamics on the PESs involved, as it is briefly described in
Appendix B. The simple model of two coupled harmonic
oscillators with different curvatures is described in Sec. IV,
and serves as the basis for the comparison of the developed
approach with known analytic results. The capability of de-

scribing various regimes of the nonadiabatic reaction is dem-
onstrated in Sec. V. In the Conclusion we summarize the
results obtained.

II. BASIC ASSUMPTIONS AND KINETIC EQUATIONS

First of all, it is necessary to define zero-order solution
to the problem, or PESs. They are formally specified using a
partition of the reacting subsystems on the groups of states,
so that the transitions between them mean the reaction of
interest. For the distinctness we speak about the transitions
between different electron states, although the nature of the
reacting subsystem may be rather arbitrary. Then, the Hamil-
tonians of the PESs are defined as

F̂n = P̂nsĤ + Ŵ+ F̂0dP̂n, s1d

whereP̂n is the projector on a given electron state,Ĥ andF̂0

are the Hamiltonians of the reacting subsystem and of the

bath, respectively, whileŴ is the Hamiltonian of the cou-
pling between them. As pointed out in the Introduction, we
assume a classical mechanics description of the dynamics
along the reaction coordinates, and fast equilibration to the
temperature of the surroundingT media as compared to the
time scale of the reaction. The last assumption restricts the
class of tractable systems to those, where the motion in the
phase space of the reacting subsystem is localizedsexamples
are intramolecular electron/proton transfer, photoisomeriza-
tion, etc.d. Thus, for each electronic state the corresponding
PES is characterized by the Hamiltonian function dependent
both on the phase space coordinates of the reacting sub-
systemQ and of the bathqb, i.e.,

Fnsqd = HnsQd + Wnsqd + F0nsqbd, s2d

whereq=sQ,qbd, and all Hamiltonian functions are specific
to the given electronic state.

Note that the projected coupling to the solventWnsQ,qbd
does not lead to the transitions between distinct PESs, and is
assumed to provide an efficient equilibration, so that
the distribution in the phase space ofnth PES is
,expf−Fnsqd /kBTg, wherekB is the Boltzmann constant. Ac-
cordingly, the state of the system is fully determined by the
set of probabilitiessnstd to be on the corresponding multidi-
mensional PES, defined by Eq.s2d.

The operators of the couplings between PESs are speci-
fied as

Ŵnk = P̂nŴP̂k, Ŵkn = Ŵnk
† , s3d

where the dagger superscript denotes Hermitian conjugate.
In the absence of quantum-mechanical tunneling, and in the
classical limit they are reduced to the set of couplings

Wnksqd = Wkn
* sqd, s4d

where the asterisk denotes the complex conjugate. The
theory57 allows an intermediate strength of these couplings
under condition
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uWnksqdutb

"
! 1, tb =

"

pkB T
, s5d

where " is the Planck constant andtb is a lifetime of the
quantum correlations due to an energy dispersionsper degree
of freedomd of the canonical bath, see Refs. 57 and 58 for
more details. The partition of the systems2d ands4d is rather
formal, but the assumption about time scale separation of the
equilibration and of the reaction makes the approach to be
more appropriate for the description of nonadiabatic reac-
tions.

Recently59 on the basis of the QCLE approach it was
found that increasing the strength of the coupling the true
adiabatic limit cannot be reached for diffusivesthermally
dampedd motion through the intersection point. This result,
however, has to be considered with care. Apart from other
inconsistencies, the QCLE completely ignores the existence
of the quantum component of the nonequilibrium energy flux
between the PESs. The latter becomes dominant at

uŴnksqdutb/"*1, see also Ref. 60, and the true adiabaticity is
reached in this limit even at diffusive motion. On the other
hand, the small parameters5d of the theory does not coincide
with the familiar Massey parameter, which is used to distin-
guish between adiabatic and nonadiabatic regimes in the ab-
sence of a thermal bath. Thus, Eq.s5d may serve as the
criterion of the nonadiabaticity of thermally damped systems
and solvent-induced transitions.

In the following we set"=kB=1 to write formulas in a
more compact form. Then the potentials, the nonadiabatic
couplings, and the temperature are measured in rad/s. In
these units 1 eV=1.5231015 rad/s and 1 K=kB/"=1.33
31011 rad/s.

The kinetic equations for the model under consideration
are derived from the more general ones, obtained in the pre-
ceding paper. In our case the quantum subsystem for each
reaction channel consists of a single state, while the associ-
ated equilibrium bath is characterized by the Hamiltonian
s2d. Then, extending the results57 to the case of multiple
PESs, we obtain the following kinetic equations for the prob-
abilities snstd to be on the corresponding PES:

d

dt
snstd = − o

k=1

kÞn

N E Imfsxnk
sndsq,td + xnk

skdsq,tddWknsqdgdq,

s6d

whereN is the number of distinct PESs, the couplings be-
tween them were defined earlier, and the auxiliary functions,
which contain information about memory, obey

]xnk
sndsq,td
]t

= gnksq,tdcsndsqd − iVnksqdxnk
sndsq,td

+ Lq
sndxnk

sndsq,td, s7d

where

csndsqd = e−Fnsqd/T/Zn, Zn =E e−Fnsqd/T dq s8d

is the static contour for thenth reaction channelsnormalized
Boltzmann distributiond, and the source term

gnksq,td = iWnksqdssnstd − skstdd

+ SUnksqd + Ynksqd
d

dt
Dfsnstd + skstdg. s9d

Equation forxnk
skdsq,td is obtained from Eq.s7d replacing the

superscript nwith k. The difference betweenxnk
sndsq,td and

xnk
skdsq,td lies in distinct PESssnth or kthd, along which the

dynamics are simulated. The latter is specified by the linear
functional operatorssLq

snd or Lq
skdd, defining the motion in the

phase space of the corresponding PES. Here also

Vnksqd = Fnsqd − Fksqd s10d

is the difference of the Hamiltonian functionss2d of nth and
kth PES, while

Unksqd = i tanhS enk

2T
DWnksqd, s11d

and

Ynksqd =
1

2T

Wnksqd

cosh2S enk

2T
D , s12d

where

enk = − T lnsZn/Zkd s13d

is the change of free energy due to the transition fromnth to
kth PES, expressed in terms of the statistical sums of the
corresponding PESs. Two recipes can be used for the calcu-
lation of Zi, a classical onefapart from a prefactor, which
anyway does not play role in Eq.s13d, the classical partition
function is specified by Eq.s8dg, or a quantum-mechanical
recipe. The latter accounts the zero-point energy effects, but
may be prohibitively expensive for multidimensional PESs.

The initial state of the system is specified by the set of
initial probabilitiessks0d, and by the nonzero initial condi-
tions for the auxiliary functions

xnk
sn,kdsq;t = 0d = Ynksqdcsndsqdssns0d + sks0dd, s14d

which appear due to the formation of specific correlations
between the quantum subsystem and the bath on the time
scaletb, see Refs. 57 and 58 for more details. Finally, inter-
changing the two subscripts of the auxiliary function leads to
the complex conjugate, i.e., as it follows from Eqs.s4d and
s7d–s12d, one has

xkn
sn,kdsq,td = fxnk

sn,kdsq,tdg* , s15d

which allows to avoid unnecessary calculations.
The kinetic equations6d preserves the total probability,

as may be readily proved by taking the sum over all PESs,
which givesdon

N snstd /dt=0. The stationary solution of Eqs.
s6d and s7d is readily found from the conditions

164111-3 Theory of nonadiabatic transitions J. Chem. Phys. 122, 164111 ~2005!

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



iWnksqdssn − skd = − Unksqdssn + skd, s16d

which means the absence of the source term on the right-
hand side of Eq.s7d, and gives

sn/sk = e−enk/T = Zn/Zk. s17d

Thus, the stationary solution satisfies detailed balance with
respect to the change of the free energy in the course of
reaction.

Equations7d on the right-hand side contains the differ-
ence of the bath HamiltoniansVnksqd defined by Eq.s10d.
This term was absent58 with bath dynamics independent of
the state of the quantum subsystem. It plays, however, a key
role for the model being considered, as it localizes the tran-
sitions to the PES crossing regions. If the difference of the
PES Hamiltonians is large, it produces fast oscillations in the
auxiliary functions, which considerably reduce contributions
from these unfavorable areas. Note that we mean the cross-
ing in phase space, rather than in position space. In particu-
lar, when the effective masses for the motion along distinct
PESs are different, the change of the kinetic energy influ-
ences the location of the transition region as well.

We would also emphasize that Eqs.s6d and s7d do not
involve any mean-field approximation, which is known to be
a source of severe problems, especially when applied to
nonadiabatic transitions. Instead of the mean-field treatment,
Eqs.s6d and s7d assert a “mean-evolution” recipe, when the
auxiliary functions are propagated along the given PESs,
thensumming up contributions, but do not evolve in a mean-
field potential.

III. MOLECULAR DYNAMICS APPROACH

A numerical solution of Eqs.s6d ands7d presents consid-
erable difficulty in view of the partial derivatives in Eq.s7d.
This problem can, however, be overcome by introducing a
MD-based algorithm similar to that proposed in Ref. 48. For
ease of presentation we restrict ourselves to just two PESs,
but the generalization of the method is straightforward.

For a two-PESs case one deals with single coupling
Wsqd=W12sqd and two auxiliary functions xs1,2dsq,td
=x12

s1,2dsq,td, which allows one to reduce the number of indi-
ces. In view of the normalization condition

s1std + s2std = 1, s18d

it is convenient to work with the population difference, de-
fined as

astd = 1
2ss1std − s2stdd, s19d

with the inverse relations

s1std = 1
2 + astd, s2std = 1

2 − astd. s20d

Then we replace the phase space dynamics by the MD aver-
ages, and obtain from Eqs.s6d and s19d

dastd
dt

= −
1

Lo
l=1

L

ImsWl
* s1dstdxl

s1dstdd

−
1

Mo
m=1

M

ImsWm
* s2dstdxm

s2dstdd, s21d

whereL andM in practice are large numbers of multidimen-
sional MD trajectories on the first and second PES, respec-
tively, which are assumed to be sufficient to explore the
phase spaces, while the nonadiabatic couplings parametri-
cally depend on time along the given MD trajectory. Here the
superscript labels the PES to which the trajectory belongs,
while the subscript indicates a particular MD trajectory,
taken from the corresponding equilibrium simulation. In
turn, the sets of auxiliary functions satisfy

d

dt
xl

s1dstd = iWl
s1dstdF2astd + tanhS e

2T
DG − iVl

s1dstdxl
s1dstd,

s22d

and

d

dt
xm

s2dstd = iWm
s2dstdF2astd + tanhS e

2T
DG − iVm

s2dstdxm
s2dstd,

s23d

with the “slipped” initial conditions

xl
s1ds0d =

1

2T

Wl
s1ds0d

cosh2S e

2T
D , xm

s2ds0d =
1

2T

Wm
s2ds0d

cosh2S e

2T
D .

s24d

Note that the term containing the time derivative on the
right-hand side of Eq.s9d is absent in Eqs.s22d and s23d in
view of the normalization conditions18d, but appears for the
case of three and more PESs. Here also

e = e12 = − T lnsZ1/Z2d, s25d

and the difference of the bath Hamiltonians

Vsqd = F1sqd − F2sqd s26d

is calculated along the same trajectory either evolving on the
first or on the second PES.

In our MD simulations we used an algorithm of the leap-
frog type, where the trajectory is represented as a series of
switching positions in phase space of multidimensional PES
s2d, and the time between switches is equal to the time step
Dt. The numerical approach to integrate Eqs.s21d–s23d is
described in Appendix A. We emphasize that the MD trajec-
tories can be simulated by any appropriate algorithm, and
that the PESs are inherently multidimensional.

At the end of this section we discuss the numerical effi-
ciency of the developed approach, which we would abbrevi-
ate as SANTsstatistical approach to the nonadiabatic transi-
tionsd, in comparison to the popular surface hopping scheme.
The calculation of the MD trajectories is the most expensive
part in both methods. The principal difference between them
is that instead of single hopping trajectory calculations with
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subsequent averaging of the kinetics in the framework of the
SH scheme, we need sets of equilibrium MD trajectories
along the PESs involvedwithouthops. The sufficient number
of these equilibrium trajectories is difficult to estimatea pri-
ori, but it should be comparable to the number of the SH
trajectories, necessary to obtain a convergent result. The
equilibrium trajectories in our method can be calculated in
advance and stored for subsequent use. Thus, one can con-
clude that both the SH scheme and SANT have comparable
computational cost. However, if a series of calculations with
different values of the nonadiabatic couplings is requested,
which is often the case when fitting experimental data, then
SANT becomes more efficient, since it allows the same set
of the MD trajectories to be used, while the SH scheme
requires a complete recalculation of the hopping trajectories.

Although the SANT can be applied toab initio modeling
of many realistic systems, provided that the PESs of interest
and the nonadiabatic couplings are available,61 we restrict
ourselves to a simple model of two coupled one-dimensional
harmonic oscillators, where a solvent influence is accounted
for via phenomenological Brownian dynamics approach. We
do not issue here the challenge to test the SANT against
more sophisticated benchmark models, which are frequently
used to get an impression about the usefulness of various
hybrid schemes. This is because the underlying theory58,57

was developed as a rigorous expansion on the known small
parameter, and the applicability limits are known explicitly.
Instead of extensive benchmarking, we prefer to concentrate
on distinctive features of the SANT, and the use of a simple
model makes the discussion more transparent.

IV. TWO COUPLED ONE-DIMENSIONAL HARMONIC
OSCILLATORS

To demonstrate the capabilities of SANT, and to check
its accuracy against known analytical solutions, we apply it
to a simple model of two coupled harmonic oscillators, sche-
matically shown in Fig. 1.

Fairly often, nonadiabatic transitions considerably
change the properties of a molecule. The new normal modes
may have different effective masses, and the change of equi-
librium bond lengths affects the frequencies of the normal
modes as well. To account for this fact in our model, we

assume different massessm1,2d and frequenciessv1,2d for the
first and the second PESs, so that their Hamiltonians take the
form

H1sp,xd = «1 +
p2

2m1
+

m1 v1
2 sx − x1d2

2
, s27d

H2sp,xd = «2 +
p2

2m2
+

m2 v2
2 sx − x2d2

2
, s28d

where«1,2 are the vertical displacements whilex1,2 are the
equilibrium positions of the corresponding oscillators. The
coupling to the surrounding media, necessary for fast equili-
bration in phase space, is accounted phenomenologically by
a Brownian dynamics model,62 which treats solvent effects
by means of the friction coefficientsj1,2, related to the dif-
fusion coefficientD via Einstein’s relation

j1,2= T/sm1,2 Dd. s29d

In this case the multidimensional trajectories on the PESss2d
are reduced to the trajectories in the phase space of harmonic
oscillatorss27d ands28d, but with the friction. The details of
the algorithm, used to generate these MD trajectories, are
given in Appendix B.

Before propagation in time, the free-energy difference
s25d has to be specified. It may be estimated from experi-
mental data or calculated by appropriate method.63,64 This is
a nontrivial task in practical applications, but we face no
difficulties for the simple model under consideration, where
the statistical sums can easily be found using the quantum-
mechanical recipe

Z = o
i

e−Ei/T, s30d

where the sum is taken over all eigenstates of the PES, andEi

are the corresponding eigenvalues, or the classical-
mechanical one, when the summation is replaced by the in-
tegration over phase space, i.e.,

Z =
1

2p
E E e−Hsp,xd/Tdp dx. s31d

fNote that the multiplier 1/s2pd in Eq. s31d appears as a
consequence of the prefactor 1/h in the definition of the
classical partition function, and of using the frequency units
s"=1d.g

The use of the quantum-mechanical recipes30d properly
accounts for the zero-point energy in detailed balance. On
the other hand, diagonalization of the PES Hamiltonian be-
comes prohibitively expensive for the multidimensional case,
where the classical-mechanical recipes31d is of practical im-
portance, especially for low-frequency reaction coordinates.
Among other reasons, neglect of the zero-point energy in the
standard classical mechanics approaches to the reaction dy-
namics gave rise to more systematic but at the same time
more computationally expensive treatments. SANT is even
more flexible; it can easily be extended to treat the dynamics
of high-frequency reaction coordinates quantum mechani-
cally.

FIG. 1. Schematic representation of the potential energy surfaces. Equilib-
rium positions are denoted asx1,2, while «1,2 are vertical displacements.
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For the one-dimensional harmonic oscillator with the ei-
genvalues

En = « + vsn + 1
2d, n = 0,1, . . . s32d

the quantum statistical sum is

Zq =
e−s«+v/2d/T

1 − e−v/T .
v!T

T e−«/T

v
, s33d

while the classical partition function takes the form

Zcl =
T e−«/T

v
. s34d

As it should be, the quantum statistical sum and the classical
partition function coincide, when the splittings between the
energy levels become much less than the mean thermal en-
ergy T. For the case of equal curvatures of the PES both
recipes simply givee=D«, where

D« = «1 − «2, s35d

i.e., the change of the free energy is simply the difference of
the vertical displacements. However, in the situation of con-
siderably different PES curvatures, the zero-point energy ef-
fects may play an important role, and the use of the
quantum-mechanical recipes33d is preferable.

V. RESULTS AND DISCUSSION

We start with the case of equal oscillator masses, fre-
quencies, and frictions for both PESs, and assumeT
=300 K, v1=v2=v=0.03 eV,m1=m2=m=72 amusmass of
six carbon atomsd, x2−x1=0.1 Å. This corresponds to a reor-
ganization energy of.0.08 eV, which is typical for the ini-
tial charge separation reaction in photosynthetic bacterial re-
action centers.65 The friction is assumed to be controlled by
the solvent viscosity. For a diffusion coefficientD

=10−6 cm2/s, Eq.s29d gives j̄=j /v=7.6, and for the simu-
lations this parameter has mainly been taken from the range
1–10, although the spread of diffusion coefficients may be
very large, with the environment ranging from supercritical
fluids to biological membranes. Energy biasD« and nonadia-
batic coupling strength, assumed to be coordinate indepen-
dent, have been varied. The MD simulations involved 1000
trajectories for each PES, several such calculations were av-
eraged to improve the accuracy.

In many situations, the kinetics of electron transfer is
well described by the rates of forwardkf and backward re-
actionskb. Assuming the validity of the rate regime, one has

astd = a` + fas0d − a`ge−skf+kbdt, s36d

we also used this expression to compare with the results of
our simulations. For the case of equal parameters of the bath
oscillators, these rates are of the form66,67 s"=kB=1d

kf = W2Î p

l T
expS−

se − ld2

4lT
D, l =

m v2 sx2 − x1d2

2
,

s37d

while kb is related tokf via the detailed balance

kb = kf e−e/T, s38d

and the change of the free energy is equal to the energy bias,
i.e., e=D«.

Figure 2 shows the kinetics of electron transfer at zero
energy bias and relatively weak nonadiabatic couplingW
=3310−3 eV. The initial conditionas0d=0.5 corresponds to
the absence of population of the second state, while the re-
action proceeds towards equilibration of the statessa`=0d. It
is readily seen that analytical expressionss36d–s38d accu-
rately describe this situation, except for the low friction limit.
In the latter case the energy flow within the PES slows down,
and thermal activation becomes the limiting step of the reac-
tion. Note, however, that we assumed canonical equilibrium
for each PES in the course of reaction, which, naturally, is
violated asj→0. None the less, our approach properly re-
flects the general trend of the reaction rate in the low friction
limit, which is accounted for perturbatively.

Then we consider the case of an activationless reaction,
when the energy bias is equal to the reorganization energy,
e=0.078 eV, see Fig. 3. Two different initial conditions were
used,as0d=0.5 andas0d=−0.5. In the first case, the reaction
starts from the state with higher energy, and the population
difference changes its sign in the course of time, while start-

FIG. 2. Kinetics of electron transfer at zero energy bias, weak coupling
sW=3310−3 eVd, and different frictions, indicated in the figure. The ana-
lytic result was calculated by Eqs.s36d–s38d. Slowing down relaxation of

the bath modessj̄→0d causes thermal activation to be the limiting step of
the reaction.

FIG. 3. Kinetics of electron transfer at energy bias equal to the reorganiza-
tion energyse=0.078 eVd, weak couplingsW=3310−3 eVd, and different
frictions, indicated in the figure. Two different initial conditions, corre-
sponding to the start from upperfas0d=0.5g and lowerfas0d=−0.5g states,
were used. The analytic result was calculated by Eqs.s36d–s38d. In the case
of the activationless reaction, decreasing the frictionsj→0d increases the
number of passages through an intersection point per unit time, which ac-
celerates the reaction.
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ing from the lower lying PES we observe small changes in
population difference, since the initial state is already pretty
close to the stationary Boltzmann distribution. Once again,

the numerical simulation atj̄=5 perfectly matches analytical
result, while in the low friction limit the reaction accelerates,
unlike the case considered above. This is due to the activa-
tionless character of the electron transfer at the parameter
values used. Decreasing the friction increases the number of
passages through the intersection point per unit time, and,
therefore, accelerates the reaction. This is a purely dynamical
effect of the friction.

Increasing the energy bias toe=2l=0.155 eV we arrive
at the same activation energy, but the crossing now occurs in
the so-called inverted region. The kinetics for this case is
shown in Fig. 4. The equilibrium population of upper PES is
very small, and the time scale of the reaction is two times
larger than in Fig. 2. The rates of the forward transfer at
e=0 ande=2l are equal to each other, as it follows from the
analytical expressions37d, but the rate of backward transfer
satisfieskb=kf at e=0, while beingkb!kf at e=2l. This
explains the difference in the relaxation time scales, see Eq.
s36d. Again, at low frictions the reaction becomes controlled
by thermal activation, similarly to the case ofe=0.

In the above situations, the kinetics of the reaction was
exponential, while SANT correctly reproduced the free-
energy-gap law and the general trends of the reaction rate in
the low friction limit. Besides, SANT is valid beyond the rate
description of the nonadiabatic transitions, and fully ac-
counts for the quantum coherence effects in the kinetics of
the reaction. To demonstrate this, we considerably reduce the
reorganization energy tol=0.016 eV, and increase the
strength of the nonadiabatic coupling toW=0.02 eV. We

also assumee=0.02 eV andj̄=5. The kinetics in this case
exhibits strong transient oscillations and is shown in Fig. 5.
Two types of the initial conditions for the auxiliary functions
xs1,2d were used. In the first case we neglected specific cross
correlations between the quantum subsystem and the canoni-
cal bath created during the initial time periodst&tbd, which
corresponds to zero initial values ofxs1,2d. The corresponding
kinetics is shown in Fig. 5 by the dashed line. In the second
case proper initial conditionss24d were used, and the kinetics
for this case is plotted in Fig. 5 as the solid line. The values

of uastdu.0.5 indicate negative probabilities, while the use
of proper initial conditions for the auxiliary functions re-
moves this unphysical behavior.

A generalization of the Marcus–Levich–Dogonadze
nonadiabatic rate constantss37d and s38d to the case of dif-
ferent curvatures was suggested in Refs. 68 and 69. This
corresponds to different reorganization energies for the for-
ward and backward electron transfer, a feature also observed
experimentally.65 In this case, unlike the situation of equal
curvatures of the bath oscillators, the change of free energy
due to the reaction is not equal to the energy bias, and there
may be two or no crosspoints. First of all, we consider a
situation when the PESs do cross, so that the transitions can
be considered as localized at crosspoints, and the corre-
sponding analytical results are of relatively simple form.

Figure 6 shows the kinetics of the reaction at different
reorganization energies for the forward and backward trans-
fer, l1=0.078 eV, andl2=0.012 eV, respectively. Other pa-

rameters are as follows:T=300 K, j̄1= j̄2=10, while the
nonadiabatic coupling strengthW=3310−3 eV. Energy bias
is varied and take the following values:D«=0.01 eV
scirclesd and D«=0 ssquaresd. The corresponding analytic
results68,69 are plotted as solid lines.fNote that the definition
of the nonadiabatic coupling strength in our case differs by a
factor of 2, so that the prefactor of 1/4 in the formulas in

FIG. 4. Kinetics of electron transfer at energy biase=2l=0.155 eV, weak
coupling sW=3310−3 eVd, and different frictions indicated in the figure.
The reaction has twice as long a time scale, than fore=0, while decreasing
the friction results in transitions being controlled by thermal activation.

FIG. 5. Kinetics of electron transfer beyond the rate regime. The initial
condition for the population differenceas0d=0.5, while those for auxiliary
functions are either set to zerosdashed lined or taken from Eq.s24d ssolid
lined. The parameters used aree=0.02 eV,l=7.8310−4 eV, W=0.02 eV,

and j̄=5. It is seen that properly accounting for the correlations created
during the early time evolutionst&tbd is indeed important to preserve the
positivity within the applicability limits.

FIG. 6. Kinetics of the nonadiabatic transitions for the case of different
curvatures of PES oscillators. The parameters areT=300 K, l1=0.078 eV,

l2=0.012 eV,j̄1= j̄2=10,W=3310−3 eV, andas0d=0.5. Calculations were
done for two different energy biasesD«=−0.01 eV scirclesd and D«=0
ssquaresd. Analytical results were calculated by formula taken from Ref. 69.

164111-7 Theory of nonadiabatic transitions J. Chem. Phys. 122, 164111 ~2005!

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Refs. 68 and 69 for the rate constants should be dropped.g
Finally, the statistical sums of the baths were calculated by
the classical recipes34d for compatibility purposes, although
accuratesquantumd canonical equilibrium can be incorpo-
rated in our approach by using Eq.s33d. At D«=0, the sta-
tionary value of the population difference is not equal to 0.5,
while for D«=−0.01 eV the transfer proceeds even against
the energy bias. This is because for the given values ofD«
the enthropic part of the reaction free energy dominates.

It is readily seen that SANT accurately reproduces ana-
lytic results for different curvatures of the PES oscillators.
However, the accuracy of analytic formulae, obtained in a
“contact” approximationsassuming the transitions to be lo-
calized at crosspointsd, degrades when increasing energy
bias. Finally, atD«.0.015 eV the PESs only touch each
other, while analytic expressions for the rate constants in the
contact approximation diverge. Although Ref. 68 provides us
with the analytical formulae even for the case of noncrossing
PESs, these expressions are rather cumbersome and were not
used for the comparison. Besides, we would like to empha-
size that the QCLE-predicted68 deviation of the stationary
distribution in the case of noncrossing PESs from those ex-
pected from the statistical thermodynamical consideration
cannot be obtained from our approach. This is because the
relaxation to the correct stationary value is an intrinsic prop-
erty of the kinetic equations used, see Sec. II.

Figure 7 shows the kinetics of the reaction for the same
parameter values as on Fig. 6, but at larger energy bias.
When approaching the valueD«=0.014 77 eV, the two
crossing points move close to each other. The contact ap-
proximation predicts acceleration of the kinetics, but at the
same time it becomes less applicable. Finally, atD«
.0.014 77 eV there are no crosspoints, and the transition
region delocalizes. The kinetics is indeed fastest atD«
=0.014 77 eV, then slows down when further increasing en-
ergy bias, since the energy gap between the PESs becomes
larger.

VI. CONCLUSION

We presented a new statistical approach to nonadiabatic
transitions. It uses a classical mechanics description of the

dynamics along the potential energy surfaces, and requires
fast equilibration of the reaction coordinates to the tempera-
ture of the surrounding media, such that the reaction does not
change significantly the equilibrium distribution in their
phase spaces. The developed methodology has known appli-
cability limits, fully accounts for detailed balance, including
zero-point energy effects, quantum coherence, arbitrarily
long memory, and change of the free energy in the course of
reaction. The strength of the nonadiabatic couplings can be
varied over a wide range, which allows to model the kinetics
of nonadiabatic processes starting from a subpicosecond time
scale. In addition, the approach is compatible with anyab
initio molecular dynamics method to simulate the dynamics
along the reaction coordinates, which can be of multidimen-
sional character, and constitutes a powerful framework for
accurate modeling of the nonadiabatic transitions in ther-
mally damped systems.

SANT has several important advantages over existing
quantum-classical methodologies. As compared to the nona-
diabatic extension of the transition state theory, we removed
the restriction of a one-dimensional reaction coordinate, and
the phenomenological description of the elementary act via
transition probabilities. Besides, our approach is valid be-
yond the rate regime and is capable of describing quantum
interference effects and non-Markovian evolution. In con-
trast to the quantum-classical Liouville equation approach,
SANT does not lead to a mean potential treatment of the
transition phases, which is known to be the source of un-
physical predictions, and properly handles the cross correla-
tions between the quantum subsystem and the thermal bath.

The molecular dynamics implementation of SANT is
also very different from the surface hopping scheme, being
of comparable computational cost. First, the problem cannot
be reduced to the evolution of the quantum subsystem along
single trajectories with subsequent averaging, instead the
bath is always represented by a large set of equilibrium tra-
jectories. This reflects the fact that both quantum and classi-
cal subsystems are treated on a similar probabilistic footing.
Second, the trajectories do not hop between the potential
energy surfaces, as a result a fewest switching algorithm and
rescaling of the velocities to conserve the total energy are
obsolete. Third, the most time consuming molecular dynam-
ics part of the simulation can be done in advance, the same
set of trajectories is usable to perform calculations for differ-
ent strengths of the nonadiabatic couplings.

The enhanced capabilities of SANT were demonstrated,
using a simple model of two coupled harmonic oscillators,
and a Brownian dynamics approach to simulate the motion
along the reaction coordinate. It was shown that SANT pre-
cisely reproduces the free-energy-gap law in the rate regime
and at moderate friction. An example of the kinetics beyond
the rate regime was given, where the proper modification of
the initial conditions to account for the early time evolution
is of primary importance to preserve the positivity within the
applicability limits. However, both in the low and in the high
friction limits the transitions are controlled either by diffu-
sion in energy space or by spatial diffusion, and, therefore,
the reaction coordinates cannot be treated as belonging to the

FIG. 7. Same as for Fig. 6 but at larger energy bias. AtD«=0.014 77 eV
ssolid lined the potentials touch each other, while atD«=0.02 eV sdashed
lined there are no crossing points. The results were calculated numerically by
the suggested approach; in the former case the kinetics is considerably ac-
celeratedsreaction rates in contact approximation diverged, while in the
latter case the kinetics slow down again as the energy gapsin the inverted
regiond between the PESs increases.
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canonical bath. Nonetheless, at small deviations from equi-
librium, SANT properly describes the reaction dynamics at
low friction as well.

There are many other situations, when the reaction coor-
dinate has to be treated separately from the bath degrees of
freedom. Examples are intermolecular electron transfer,
association/dissociation reactions, etc. These cases, as well
as the intramolecular nonadiabatic transitions over the com-
plete range of frictions, require a more delicate approach.
This work is now in progress.
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APPENDIX A: NUMERICAL APPROACH

In the leap-frog MD simulations the phase space coordi-
nates are assumed to be fixed during the time stepDt. Ac-
cordingly, the time dependent functions on the right-hand
sides of Eqs.s21d–s23d take constant values during the time
step Dt, and, therefore, it is sufficient to construct the nu-
merical algorithm for the propagation of the solution on the
length of the single time stepsfrom t=0 to t=Dtd and with
constant coefficients.

First, the following relation holds:

asDtd − as0d =
1

Lo
l=1

L

ImFWl
* s1dxl

s1dsDtd − xl
s1ds0d

iVl
s1d G

+
1

Mo
m=1

M

ImFWm
* s2dxm

s2dsDtd − xm
s2ds0d

iVm
s2d G ,

sA1d

which is proved as follows. Introducing the new auxiliary
functionssin the “interaction representation”d as

x̃l
s1dstd = eiVl

s1dt xl
s1dstd, sA2d

which satisfy

d

dt
x̃l

s1dstd = iWl
s1deiVl

s1dtF2astd + tanhS e

2T
DG , sA3d

we derivesintegrating by partsd

ImFE
0

Dt

Wl
* s1dxl

s1dstddtG = ImFE
0

Dt

Wl
* s1de−itVl

s1dx̃l
s1dstddtG

= − ImFWl
* s1dUe−iVl

s1dt x̃l
s1dstd

iVl
s1d U

0

Dt

+E
0

Dt

Wl
* s1de

−iVl
s1dt

iVl
s1d

d

dt
x̃l

s1dstddtG
= − ImFWl

* s1dxl
s1dsDtd − xl

s1ds0d
iVl

s1d G ,

sA4d

since the integral term in the middle line of Eq.sA4d does
not have an imaginary part, as it follows from Eq.sA3d. fThe
relations for the auxiliary functions along the trajectories on
the second PES is obtained from Eq.sA4d by replacing the
corresponding indices.g To obtain Eq.sA1d, we integrate Eq.
s21d from t=0 to t=Dt swhen coefficients of differential
equation are fixed to constant valuesd, and use Eq.sA4d.

Numerical approach is based on the time step integration
of Eq. sA3d with the following approximation:

2E
0

Dt

eiVl
s1dt astddt .

seiVl
s1d

Dt − 1d
iVl

s1d fasDtd + as0dg, sA5d

which results in a midpoint estimation of the integral at
Vl

s1d=0, and properly accounts for the damping if the differ-
ence of the bath Hamiltonians is large. Then, using the in-
verse relation

xl
s1dsDtd = e−iVl

s1d
Dtx̃l

s1dsDtd, sA6d

we derive

xl
s1dsDtd . e−iVl

s1d
Dt xl

s1ds0d + Wl
s1d s1 − e−iVl

s1d
Dtd

Vl
s1d

3FasDtd + as0d + tanhS e

2T
DG , sA7d

which is used to propagate the auxiliary functions along the
trajectories on the first PES, while the corresponding equa-
tion for the auxiliary functions along the trajectories on the
second PES is obtained from Eq.sA7d by the change of the
indices, and is of the form

xm
s2dsDtd . e−iVm

s2d
Dt xm

s2ds0d + Wm
s2d s1 − e−iVm

s2d
Dtd

Vm
s2d

3FasDtd + as0d + tanhS e

2T
DG . sA8d

Then, substituting Eqs.sA7d andsA8d in Eq. sA1d, we obtain

asDtd .
1

1 + A
Fs1 − Adas0d − A tanhS e

2T
D − BG , sA9d

where the coefficients are

A =
1

Lo
l=1

L F uWl
s1du

Vl
s1d G2

f1 − cossVl
s1dDtdg

+
1

Mo
m=1

M F uWm
s2du

Vm
s2d G2

f1 − cossVm
s2dDtdg, sA10d

and

B =
1

Lo
l=1

L

ImFWl
* s1d s1 − e−iVl

s1d
Dtd

iVl
s1d xl

s1ds0dG
+

1

Mo
m=1

M

ImFWm
* s2d s1 − e−iVm

s2d
Dtd

iVm
s2d xm

s2ds0dG . sA11d

The algorithm works as follows. First we start equilib-
rium simulations of many MD trajectories on both PESs, say
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L trajectories on the first andM trajectories on the second
PESs, respectively. They can also be simulated in advance
and stored for the subsequent use. At the first step the initial
conditionsas0d and s24d are set up, where the nonadiabatic
couplings are calculated from the starting points of the cor-
responding MD simulationsfthe statistical sums should be
calculated before the propagation in time, in order to deter-
mine the value ofe in accordance with Eq.s26dg. Then we
take the coordinates of the phase spaces for the next step and
determine a set of the nonadiabatic couplingsWl

s1d, Wm
s2d and

the differences of the bath HamiltoniansVl
s1d, Vm

s2d along the
corresponding MD trajectories. This allows to determine the
coefficientsA andB, see Eqs.sA10d and sA11d, and to find
the value ofasDtd through the use of Eq.sA9d. The auxiliary
functions are updated using Eqs.sA7d and sA8d. The ob-
tained values ofasDtd andxl

s1dsDtd, xm
s2dsDtd then replace the

corresponding values att=0 to set up for the next time step.
The suggested numerical algorithm has low computation

costsapart from MD simulationsd and works for multidimen-
sional PESs without any modification. The number of the
MD trajectories, necessary to sufficiently explore the phase
spaces of the PESs, depends on the system under consider-
ation, but, in general, should be of order of several hundreds
or thousands. For the practical purpose it is also possible to
perform several calculations for some large number of the
MD trajectories, and improve the result summing up contri-
butions swith the proper statistical weights, see Ref. 48 for
more detailsd.

APPENDIX B: BROWNIAN DYNAMICS SIMULATIONS

Our Brownian dynamics simulation is based on the fol-
lowing integration scheme:

r st + Dtd = r std + Dt c1 vstd + sDtd2 c2 astd + dr G, sB1d

vst + Dtd = c0 vstd + Dtsc1 − c2dastd + Dt c2 ast + Dtd

+ dvG, sB2d

which reduces to the velocity Verlet algorithm in the limit of
low frictions j→0. Here vectorsr , v, anda denote the po-
sition, velocity, and the acceleration of the particle,Dt is the
time step of simulation, while the coefficientsc0–2 are of the
form

c0 = e−Dt j, c1 =
1 − c0

Dt j
, c2 =

1 − c1

Dt j
, sB3d

wherej is the friction. The random variablesdr G and dvG

are sampled from a bivariate Gaussian distributionsfor each
pair of vectorial componentsd with zero mean values, vari-
ancesskB=1d

sr
2 = sDtd2 T

m

1

Dt j
F2 −

1

Dt j
s3 – 4e−Dt j + e−2Dt jdG , sB4d

sv
2 =

T

m
s1 − e−2Dt jd, sB5d

and the correlation coefficient

crv srsv =
T

m j
s1 − e−Dt jd2. sB6d

A freely available RANLIB package was used to gener-
ate pairssg1,g2d of the uniform random variates on the in-
terval s0,1d. Then the pairs of independent random numbers
from the normal distribution with zero mean and unit vari-
ancesz1,z2d are obtained as70

z1 = Î− 2 ln g1cos 2pg2, z2 = Î− 2 ln g1sin 2pg2.

sB7d

Finally, the desired pairssz18 ,z28d of random variates, sampled
from the bivariate Gaussian distribution with the parameters,
given by Eqs.sB4d–sB6d, are

z18 = sr z1, z28 = svscrv z1 + Î1 − crv
2 z2d. sB8d
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