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Statistical theory of nonadiabatic transitions
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Based on results of the preceding paper, and assuming fast equilibration in phase space to the
temperature of the surrounding media compared to the time scale of a reaction, we formulate a
statistical theory of intramolecular nonadiabatic transitions. A classical mechanics description of
phase space dynamics allows foraminitio treatment of multidimensional reaction coordinates and
easy combination with any standard molecular dynarfii3) method. The presented approach has
several features that distinguishes it from existing methodologies. First, the applicability limits of
the approach are well defined. Second, the nonadiabatic transitions are treated dynamically, with full
account of detailed balance, including zero-point energy, quantum coherence effects, arbitrarily long
memory, and change of the free energy of the bath. Compared to popular trajectory surface hopping
schemes, our MD-based algorithm is more efficient computationally, and does not use aatificial

hoc constructions like a “fewest switching” algorithm, and rescaling of velocities to conserve total
energy. The enhanced capabilities of the new method are demonstrated considering a model of two
coupled harmonic oscillators. We show that in the rate regime and at moderate friction the approach
precisely reproduces the free-energy-gap law. It also predicts a general trend of the reaction
dynamics in the low friction limit, and is valid beyond the rate regime2@5 American Institute

of Physics[DOI: 10.1063/1.1884516

I. INTRODUCTION probability of the nonadiabatic transitions for many situa-
tions of interes{see also Ref. 20 for a reviegwHowever, the
The separation of electron and nuclear motions in molseparate consideration of adiabatic dynamics and nonadia-
ecules provided by an adiabatic Born—Oppenheit®)  pagic transitions is of limited use for reactions in condensed
approximation plays a fundamental role in theoretical stud- phase. First, in the case of a multidimensional reaction coor-

ies of chemical dynamics. The Iarg_e mass difference betweeEnnate the extent of the nonadiabaticity region may some-
elegtrons and nuclei is reflectgd n dlfferent.t!me scales o imes be difficult to determine. Such a situation, for instance,
motion. In a z_ero-order i\pproxwpatlon, _nucle| n a.mOIeCU|eappears if an avoided crossing is highly thermally activated,
may be considered as “frozen,” and diagonalization of the ' : L - ! .
. N . . . while the pathways around it with less efficient nonadiabatic
electronic Hamiltonian yields a set of corresponding e|gen-t i thel I dominant role due t
values, which depend parametrically on tfiged) positions ransitions may, neverineless, piay a dominant role due to
of nuclei, and are frequently called the adiabatic potentiafhe" much more favorable stat|st|gz_al weight. _Sgcond, _the
energy surfacéPES. The next terms of the expansion with concept of a_smgle—passag(_a transition probat_nllty requires
respect to the ratio of electron to nuclear mass couples thifiat the velocity autocorrelation decays slowly in the region
adiabatic PESs, and these terms are called nonadiabatic cdf-nonadiabaticity. If this is not the case, the overall transi-
plings. tion probability cannot be resolved into a sequence of the
Many reactions proceeding in the ground electronic stat§ingle-passage events. In particular, a solvent-induced damp-
are accurately described within the adiabatic BOINg of motion along the reaction coordinates strongly affects
approximatiorf‘.“‘ It may, however, be violated when the en- the velocity autocorrelation, which becomes zero in the lim-
ergy splitting between adiabatic PESs are comparable to dfing case of continuous diffusion. Third, the nonadiabaticity
smaller than the corresponding nonadiabatic couplings, andiegion itself can be broad, and involve multiple avoided
therefore, the latter cannot be accounted perturbatively. Typisrossings. Last but not least, quantum interference effects
cal examples are reactive scattering at high enefdfies)d  can directly manifest themselves in the reaction dynamics,
reactions involving electronically excited stafé%Fairly of-  such that the description of nonadiabatic processes in terms
ten, the breakdown of the BO approximation occurs inof transition probabilities may not be adequate.
highly localized regions of a PES, which allows to account  Several alternative theoretical approaches were proposed
for the nonadiabatic effects introducing a transition probabilto overcome some of these problems. A mean-field
ity between the adiabatic PESs, when the system crosses thgproximatiof'>*is capable of a fully dynamic treatment of
region of nonadiabaticity** nonadiabatic transitions, but fails in the regions of large split-
There exist several basic modefs;°which estimate the ~ ting between the PESs. On the other hand, a surface
hopping*~’ (SH) scheme, based on a “fewest switching”
¥Electronic mail: aneufel@gwdg.de algorithm, provides correct asymptotical solutions and at-
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tempts to resolve the first three problems by letting the trascribing various regimes of the nonadiabatic reaction is dem-

jectory hop between PESs everywhere, in accordance witbnstrated in Sec. V. In the Conclusion we summarize the

an ad hoc procedure. The SH scheme is computationallyresults obtained.

efficient, and nowadays the standard approach to study mo-

lecular nonadiabatic reactions, despite of its unknown accu-

racy, applicability limits, and some other intrinsic drawbacks”' BASIC ASSUMPTIONS AND KINETIC EQUATIONS

such as neglect of quantum interference effécand prob-

lems with classically forbidden transitiofi%. First of all, it is necessary to define zero-order solution
We also mention more general methodologies based ot the problem, or PESs. They are formally specified using a

the semiclassical consideratidfid" and density matrix for- partition of the reacting subsystems on the groups of states,

malisms. The former are currently under intensive developso that the transitions between them mean the reaction of

ment, but still rather expensive computationally when ap-nterest. For the distinctness we speak about the transitions

plied to realistic simulations in condensed phase. The densitiyetween different electron states, although the nature of the

matrix approaches, in form of Redfield the#f§” and the reacting subsystem may be rather arbitrary. Then, the Hamil-

quantum-classical Liouville equatiti®’ (QCLE), were also  tonians of the PESs are defined as

extensively applied to study nonadiabatic transitions in

model systems>~*’ Since Redfield theory treats the reaction  F,=P"(H + W+ Fo)P", (1)

coordinates quantum mechanically, it is mainly useful for R R ~

one-dimensional PESs, while the QCLE suffers from the inwhereP" is the projector on a given electron stateandF,

ternal inconsistenc} especially when applied to nonadia- are the Hamiltonians of the reacting subsystem and of the

batic transitiong™° bath, respectively, whil&V is the Hamiltonian of the cou-
Our goal is to formulate alternative approaches to depling between them. As pointed out in the Introduction, we

scribe nonadiabatic transitions in condensed phase, whichssume a classical mechanics description of the dynamics

should have well defined applicability limits, be capable ofalong the reaction coordinates, and fast equilibration to the

dynamic treatment of the transitions with a full account fortemperature of the surroundifigmedia as compared to the

detailed balance, quantum interference, and memory effectme scale of the reaction. The last assumption restricts the

and with a computation efficiency at least comparable talass of tractable systems to those, where the motion in the

those of the SH scheme. Motivated by a continued succegshase space of the reacting subsystem is localizeamples

of transition state theoy?™* and its nonadiabatic are intramolecular electron/proton transfer, photoisomeriza-

extensions;, > for modeling intramolecular reactions under tion, etc). Thus, for each electronic state the corresponding

a variety of experimental conditions, we start with a rela-PES is characterized by the Hamiltonian function dependent

tively simple situation, assuming fast equilibration in phaseboth on the phase space coordinates of the reacting sub-

space to the temperature of the surrounding media. In thisystemQ and of the bathy,, i.e.,

case the reaction coordinates can be considered as belonging

to the thermal bath, which will be treated by means of clas-  Fn(d) = Hn(Q) + Wy(a) + Foq(aly), 2

sical mechanics. The latter assumption is reasonable when

the distance between the quantum energy levels is less thgypereq:(Q,qb), and all Hamiltonian functions are specific

the mean thermal energy. For a molecule in solution at roontmo thl\? ?'Vtin tetlﬁctron!c ?taJe. lina to th | )
temperature this condition is met for almost all degrees otj N etl ad tetErOJtec e-t.coupblntg 0 3.5? Vkiwé(géqb di
freedom, except for the high-frequency stretch vibrations. 0€s not fead fo Ihe transitions between distine S:andis

In the preceding pap@rwe generalized a recently sug- ;ssurg.e?_btci_ proy|dethan Efﬂment equmz;ta;]nor;,ESso . that
gested non-Markovian quantum-classical approximafion Ne I—SFH( l; /IEnT]m h ekp ?ﬁe Bspl)tace tant ":’
for the purposes of reaction dynamics in condensed phase.exd n(d)/Kg 1], WNErekg IS the bBoftzmann constant. Ac-

The developed method meets the qualifying standards, it Ca%ordingly, the state of the system is fully determined by the

easily be applied to realistic multidimensional reaction coor—set Of. prObab'“t'eaT”.(t) to be on the corresponding multidi-
dinates through the use of ab initio molecular dynamics mensional PES, defined by E@')' .
(MD) technique, and serves as the basis for the subsequeﬁéd-g;e operators of the couplings between PESs are speci-
consideration.

The outline of the paper is as follows. Basic assumptions

of the model and the corresponding kinetic equations are

presented in S(_ac. II._An effigient way f_or the direct solutionWhere the dagger superscript denotes Hermitian conjugate.
of these equations in the time domain, based on the MRy, o apsence of quantum-mechanical tunneling, and in the
technique, is formulated in Sec. lll. For the model study We,|assical limit they are reduced to the set of couplings
employ a Brownian dynamics approach to simulate nuclear

dynamics on the PESs involved, as it is briefly described in . (q) =W (a), (4)
Appendix B. The simple model of two coupled harmonic

oscillators with different curvatures is described in Sec. IV,where the asterisk denotes the complex conjugate. The
and serves as the basis for the comparison of the developelaluleor)?7 allows an intermediate strength of these couplings

approach with known analytic results. The capability of de-under condition

Wiie= PPWPK, Wiy = WH, 3
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[Wok(@)| 7, h
—_— <1 =
h L kg T’

(5) Y=z Z = f e @ dg (8)

is the static contour for theth reaction channdhormalized

wheref: is the Planck constant ang is a lifetime of the  ggitzmann distribution and the source term

guantum correlations due to an energy disper§ien degree

of freedom of the canonical bath, see Refs. 57 and 58 for  ¥n(Q,t) = iW,(q) (an(t) — o(t))

more details. The partition of the systd@) and(4) is rather d

formal, but the assumption about time scale separation of the + (Unk(q) + Ynk(q)—)[an(t) + o ()]. (9
equilibration and of the reaction makes the approach to be dt

more appropriate for the description of nonadiabatic reacequation for)((k)(q,t) is obtained from Eq(7) replacing the

tions. Lok : )
superscript nwith k. The difference betweey,, (q,t) and

9 . .
Recentl>§ on the basis of the QCLE approach It was ;kk)(q,t) lies in distinct PESgnth or kth), along which the
f%qng thatl.m.creasmg tge strenr?tz (f)f thdgﬁco_urélr:ng thlf tru ynamics are simulated. The latter is specified by the linear
adiabatic limit cannot be reached for diffusithermally functional operatorSL',g‘) or ﬁg‘)), defining the motion in the

damped motion through the intersection point. This result, hase space of the corresponding PES. Here also
however, has to be considered with care. Apart from otheP '

inconsistencies, the QCLE completely ignores the existence Q,(q) =F,(q) — F(q) (10

of the quantum component of the nonequilibrium energy flux . o ,
between the PESs. The latter becomes dominant 4% the difference of the Hamiltonian functiok®) of nth and

|\7vnk(q)|rb/ﬁz 1, see also Ref. 60, and the true adiabaticity iskth PES, while

reached in this limit even at diffusive motion. On the other ) =

hand, the small paramet5) of the theory does not coincide Und@) =i tan"(E>Wnk(Q). (11
with the familiar Massey parameter, which is used to distin-

guish between adiabatic and nonadiabatic regimes in the alend

sence of a thermal bath. Thus, E@) may serve as the
Wnk(Q)

criterion of the nonadiabaticity of thermally damped systems v, (q) = 1 , (12)
and solvent-induced transitions. coslﬂ?(ﬂ‘>
In the following we seti=kz=1 to write formulas in a 2T
more compact form. Then the potentials, the nonadiabatic
couplings, and the temperature are measured in rad/s. I\Nhere
these units 1 eV=1.5210%rad/s and 1 Kkg/A=1.33 ew=—TIN(Z/Z) (13)

X 10" rad/s.

The kinetic equations for the model under consideratioris the change of free energy due to the transition frsmto
are derived from the more general ones, obtained in the pr&th PES, expressed in terms of the statistical sums of the
ceding paper. In our case the quantum subsystem for ead®rresponding PESs. Two recipes can be used for the calcu-
reaction channel consists of a single state, while the assod@tion of Z;, a classical ongapart from a prefactor, which
ated equilibrium bath is characterized by the Hamiltoniananyway does not play role in E(L3), the classical partition
(2). Then, extending the resulfsto the case of multiple function is specified by Eq(8)], or a quantum-mechanical

PESs, we obtain the following kinetic equations for the prob-recipe. The latter accounts the zero-point energy effects, but
abilities o,(t) to be on the corresponding PES: may be prohibitively expensive for multidimensional PESs.

The initial state of the system is specified by the set of
initial probabilities o (0), and by the nonzero initial condi-
tions for the auxiliary functions

X3t = 0) = Yo @) ™ (@) (04(0) + 7,(0)), (14)

(6) which appear due to the formation of specific correlations
between the quantum subsystem and the bath on the time

hereN is th b ¢ distinct PESs. th i b scaler,, see Refs. 57 and 58 for more details. Finally, inter-
wherelv 1S the number of distine s, (he coupiings e'changing the two subscripts of the auxiliary function leads to
tween them were defined earlier, and the auxiliary functions

the complex conjugate, i.e., as it follows from E¢$) and

N

d

0= =2 | ImLOG@. + xok(@.0) Wi Ida
k=1

k#n

which contain information about memory, obey (7)<(12), one has
XA (v Xia @) =@l (15
n ‘= (n) i n
ot PG DY) = 1@ xnic (@) which allows to avoid unnecessary calculations.
+ 20 ™(qt) Ry The kinetic gquatior(6) preserves the total probability,
g XnkiHh as may be readily proved by taking the sum over all PESs,
which givesdEﬁ o,(t)/dt=0. The stationary solution of Egs.
where (6) and(7) is readily found from the conditions
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IWn(@) (07 = o) = = Uni(@) (070 + 01, (16) da(t) _ EEL W P02 0)

which means the absence of the source term on the right- dt o= | |

hand side of Eq(7), and gives . EEM |m(\Af(2>(t) (2)(0) o1
oo =e W =77, (17) M o m

whereL andM in practice are large numbers of multidimen-
ional MD trajectories on the first and second PES, respec-
vely, which are assumed to be sufficient to explore the
phase spaces, while the nonadiabatic couplings parametri-
cally depend on time along the given MD trajectory. Here the

. : o superscript labels the PES to which the trajectory belongs,
This term was absefitwith bath dynamics independent of while the subscript indicates a particular MD trajectory,

the state of the quantum subs_ystem. I p!ays, h_owever, a ke@éken from the corresponding equilibrium simulation. In
role for the model being considered, as it localizes the tranfurn the sets of auxiliary functions satisfy

sitions to the PES crossing regions. If the difference of the
PES Hamiltonians is large, it produces fast oscillations inthe  d . € )
gt O = WP )] 2a() + tant - | 10700,

Thus, the stationary solution satisfies detailed balance wit
respect to the change of the free energy in the course q
reaction.

Equation(7) on the right-hand side contains the differ-
ence of the bath HamiltoniarQ,(q) defined by Eq.10).

auxiliary functions, which considerably reduce contributions

from these unfavorable areas. Note that we mean the cross-

ing in phase space, rather than in position space. In particu-

lar, when the effective masses for the motion along distincgng

PESs are different, the change of the kinetic energy influ-

ences the location of the transition region as well. 2@ = W@ ) Zin@m,@
We would also emphasize that Ed6) and (7) do not atm 0 =iw, (t){Za(t) +tan)‘< ZTH O O (O,

involve any mean-field approximation, which is known to be (23)

a source of severe problems, especially when applied to

nonadiabatic transitions. Instead of the mean-field treatmenwith the “slipped” initial conditions

Egs.(6) and (7) assert a “mean-evolution” recipe, when the 1

auxiliary functions are propagated along the given PESs (1) —iM 20)= —

w ox (0= » Xm (0)=
thensumming up contributions, but do not evolve in a mean- 2T cosﬁ(i>
field potential.

(22)

(24)

Note that the term containing the time derivative on the
right-hand side of Eq(9) is absent in Eqs(22) and (23) in

A numerical solution of Eq¥6) and(7) presents consid- View of the normalization conditioi8), but appears for the
erable difficulty in view of the partial derivatives in E(f).  ¢ase of three and more PESs. Here also
This problem can, hoyve.ver, be overcome by introducing a .= €1,=— T In(Z,/Z,), (25)
MD-based algorithm similar to that proposed in Ref. 48. For
ease of presentation we restrict ourselves to just two PESand the difference of the bath Hamiltonians
but the generalization of the method is straightforward.

For ga two-PESs case one deals with gsingle coupling Ma) =Fa(@) - F(q) (26)
W(g)=W;,(q) and two auxiliary functions *?(q,t) s calculated along the same trajectory either evolving on the
:X(llz'z)(q,t), which allows one to reduce the number of indi- first or on the second PES.

Ill. MOLECULAR DYNAMICS APPROACH

ces. In view of the normalization condition In our MD simulations we used an algorithm of the leap-
frog type, where the trajectory is represented as a series of
ay(t) + oy(t) = 1, (18)  switching positions in phase space of multidimensional PES

(2), and the time between switches is equal to the time step
it is convenient to work with the population difference, de- At. The numerical approach to integrate E¢@1)—(23) is

fined as described in Appendix A. We emphasize that the MD trajec-
tories can be simulated by any appropriate algorithm, and

al(t) = 3(0q(1) = o,(1)), (19)  that the PESs are inherently multidimensional.
At the end of this section we discuss the numerical effi-
with the inverse relations ciency of the developed approach, which we would abbrevi-
ate as SANT(statistical approach to the nonadiabatic transi-
oy(t) = % +a(t), oy(t)= % - a(t). (20) tions), in comparison to the popular surface hopping scheme.

The calculation of the MD trajectories is the most expensive
Then we replace the phase space dynamics by the MD avepart in both methods. The principal difference between them
ages, and obtain from Eq&) and(19) is that instead of single hopping trajectory calculations with
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assume different masség, ,) and frequenciesw; ,) for the
first and the second PESs, so that their Hamiltonians take the

B form
E 2 2 (x = x;)2
< H1<p.x)=sl+2p— g KoK (27)
= M1 2
g &
§-. p2 ﬂ w2 (X‘X)Z
Ha(p,X) = g+ o— + ——2——2— (28)
2,LL2 2

€y

whereeg, , are the vertical displacements whitg , are the
equilibrium positions of the corresponding oscillators. The
FIG. 1. Schematic representation of the potential energy surfaces. EquilifcOUpling to the surrounding media, necessary for fast equili-
rium positions are denoted &g, while &, , are vertical displacements. bration in phase space, is accounted phenomenologically by
a Brownian dynamics mod&f, which treats solvent effects

subsequent averaging of the kinetics in the framework of th&Y Means of the friction coefficient; 5, related to the dif-

SH scheme, we need sets of equilibrium MD trajectoriedusion coefficientD via Einstein's relation

along the PESS _involva_dithogthqps._'l’_he sufficie_nt num_ber £12=T/(u1, D). (29)

of these equilibrium trajectories is difficult to estimatgri-

ori, but it should be comparable to the number of the SHIn this case the multidimensional trajectories on the P@5s

trajectories, necessary to obtain a convergent result. Thare reduced to the trajectories in the phase space of harmonic

equilibrium trajectories in our method can be calculated inoscillators(27) and(28), but with the friction. The details of

advance and stored for subsequent use. Thus, one can cdhe algorithm, used to generate these MD trajectories, are

clude that both the SH scheme and SANT have comparablgiven in Appendix B.

computational cost. However, if a series of calculations with ~ Before propagation in time, the free-energy difference

different values of the nonadiabatic couplings is requested25) has to be specified. It may be estimated from experi-

which is often the case when fitting experimental data, themmental data or calculated by appropriate metfio This is

SANT becomes more efficient, since it allows the same se& nontrivial task in practical applications, but we face no

of the MD trajectories to be used, while the SH schemdlifficulties for the simple model under consideration, where

requires a complete recalculation of the hopping trajectorieghe statistical sums can easily be found using the quantum-
Although the SANT can be applied &b initio modeling  mechanical recipe

of many realistic systems, provided that the PESs of interest

and the nonadiabatic couplings are availdbleve restrict Z=E edlm, (30)

ourselves to a simple model of two coupled one-dimensional :

harmonic oscillators, where a solvent influence is accounteg|here the sum is taken over all eigenstates of the PESSand
for via phenomenological Brownian dynamics approach. Weye  the corresponding eigenvalues, or the classical-

do not issue here the challenge to test the SANT againghechanical one, when the summation is replaced by the in-
more sophisticated benchmark models, which are freq“e”t%gration over phase space, i.e.

used to get an impression about the usefulness of various
hybrid schemes. This is because the underlying th&dfy 1 B

. . Z=— e HPX/Tqp dx
was developed as a rigorous expansion on the known small o
parameter, and the applicability limits are known explicitly.
Instead of extensive benchmarking, we prefer to concentrafgNote that the multiplier 1(27) in Eq. (31) appears as a
on distinctive features of the SANT, and the use of a simpleconsequence of the prefactorhilin the definition of the

(3D

model makes the discussion more transparent. classical partition function, and of using the frequency units
(ii=1).]
The use of the quantum-mechanical recip@ properly
IV. TWO COUPLED ONE-DIMENSIONAL HARMONIC accounts for the zero-point energy in detailed balance. On
OSCILLATORS the other hand, diagonalization of the PES Hamiltonian be-

comes prohibitively expensive for the multidimensional case,

To demonstrate the capabilities of SANT, and to checkwhere the classical-mechanical reciBd) is of practical im-
its accuracy against known analytical solutions, we apply ifportance, especially for low-frequency reaction coordinates.
to a simple model of two coupled harmonic oscillators, scheAmong other reasons, neglect of the zero-point energy in the
matically shown in Fig. 1. standard classical mechanics approaches to the reaction dy-

Fairly often, nonadiabatic transitions considerablynamics gave rise to more systematic but at the same time
change the properties of a molecule. The new normal modesiore computationally expensive treatments. SANT is even
may have different effective masses, and the change of equinore flexible; it can easily be extended to treat the dynamics
librium bond lengths affects the frequencies of the normabf high-frequency reaction coordinates quantum mechani-
modes as well. To account for this fact in our model, wecally.
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For the one-dimensional harmonic oscillator with the ei- 0.50 p—
genvalues — mlyticc:;
numeri H
— 1 — o =50
&=e+w(n+3), n=0,1,... (32 : o £=0.05
= °
the quantum statistical sum is Ehl Y
<
e—(s+wl2)/T T e—s/T %%0
Zq = 1- e—w/T = ’ (33) %%oo
w<T W %0000, o000
. . .. . 0.0 T ¥
while the classical partition function takes the form 0 5 10
~elT ¢[ps]
Te?®
Zy= o (34) FIG. 2. Kinetics of electron transfer at zero energy bias, weak coupling

(W=3x107 eV), and different frictions, indicated in the figure. The ana-
As it should be, the quantum statistical sum and the classicdtic result was calculated by Eqe36)(38). Slowing down relaxation of
partition function coincide, when the splittings between thethe bath _modesgao) causes thermal activation to be the limiting step of
the reaction.
energy levels become much less than the mean thermal en-
ergy T. For the case of equal curvatures of the PES both
recipes simply gives=Ag, where ko= ki €T, (39
Ao =212y (35 and the change of the free energy is equal to the energy bias,
i.e., the change of the free energy is simply the difference of.e., e=Ae.
the vertical displacements. However, in the situation of con-  Figure 2 shows the kinetics of electron transfer at zero
siderably different PES curvatures, the zero-point energy efenergy bias and relatively weak nonadiabatic coupNig
fects may play an important role, and the use of the=3X 1073 eV. The initial conditiona(0)=0.5 corresponds to
guantum-mechanical recig83) is preferable. the absence of population of the second state, while the re-
action proceeds towards equilibration of the stétes=0). It
is readily seen that analytical expressiai3$)—(38) accu-
V. RESULTS AND DISCUSSION rately describe this situation, except for the low friction limit.
In the latter case the energy flow within the PES slows down,
We start with the case of equal oscillator masses, freand thermal activation becomes the limiting step of the reac-
guencies, and frictions for both PESs, and assume tion. Note, however, that we assumed canonical equilibrium
=300 K, w;=w,=0=0.03 eV, u;=u,=u=72 amu(mass of for each PES in the course of reaction, which, naturally, is
six carbon atoms x,—x;=0.1 A. This corresponds to a reor- Violated as¢— 0. None the less, our approach properly re-
ganization energy 0£=0.08 eV, which is typical for the ini- flects the general trend of the reaction rate in the low friction
tial charge separation reaction in photosynthetic bacterial rgimit, which is accounted for perturbatively.
action center§® The friction is assumed to be controlled by ~ Then we consider the case of an activationless reaction,
the solvent viscosity. For a diffusion coefficienD  when the energy bias is equal to the reorganization energy,
=107 c/s, Eq.(29) givesE:§/w27.6, and for the simu- €=0.078 eV, see Fig. 3. Two different initial conditions were

lations this parameter has mainly been taken from the rangéS€d,«(0)=0.5 anda(0)=-0.5. In the first case, the reaction

1-10, although the spread of diffusion coefficients may beStarts from the state with higher energy, and the population
very large, with the environment ranging from supercritical difference changes its sign in the course of time, while start-

fluids to biological membranes. Energy bias and nonadia-

batic coupling strength, assumed to be coordinate indepen- 05 py
dent, have been varied. The MD simulations involved 1000 — analytical
trajectories for each PES, several such calculations were av- o 5’3‘;’;;““‘1:
eraged to improve the accuracy.
In many situations, the kinetics of electron transfer is
well described by the rates of forwaky and backward re-
actionsk,. Assuming the validity of the rate regime, one has
a(t) = a.. +[a(0) - o Je kD", (36)
we also used this expression to compare with the results of 10
. . ¢[ps]
our simulations. For the case of equal parameters of the bath
H 7
oscillators, these rates are of the £GP (h=kg=1) FIG. 3. Kinetics of electron transfer at energy bias equal to the reorganiza-
2 2 2 tion energy(e=0.078 eV, weak coupling(W=3x 1073 eV), and different
ke = W2 T _ (e-\) _ M (X2 = Xy) frictions, indicated in the figure. Two different initial conditions, corre-
f= AT ex A - 2 ) sponding to the start from uppp#(0)=0.5] and lower{ «(0)=-0.5] states,
were used. The analytic result was calculated by E28—(38). In the case
(37) of the activationless reaction, decreasing the frictién-0) increases the
] ) ) ) number of passages through an intersection point per unit time, which ac-
while ky, is related tok; via the detailed balance celerates the reaction.
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=2\ 0.5

initial conditions
for auxiliary functions:
— modified

--- zero
4
n

aét)
e
Eesntll]

-0.5 v

0 0.5 1.0

FIG. 4. Kinetics of electron transfer at energy bias2\=0.155 eV, weak  FIG. 5. Kinetics of electron transfer beyond the rate regime. The initial
coupling (W=3x 1073 eV), and different frictions indicated in the figure. condition for the population difference(0)=0.5, while those for auxiliary
The reaction has twice as long a time scale, tharefed, while decreasing ~ functions are either set to zetdashed lingor taken fr40m Eq(24) (solid
the friction results in transitions being controlled by thermal activation.  lin€). The parameters used aee0.02 eV,A=7.8x10* eV, W=0.02 eV,
and £=5. It is seen that properly accounting for the correlations created
during the early time evolutioft < 7;,) is indeed important to preserve the
ing from the lower lying PES we observe small changes irPositivity within the applicability limits.
population difference, since the initial state is already pretty

close to the stationary Boltzmann distribution. Once againof |a(t)|>0.5 indicate negative probabilities, while the use

the numerical simulation &=5 perfectly matches analytical of proper initial co.nditions fgr the auxiliary functions re-
result, while in the low friction limit the reaction accelerates, MVes this unphysical behavior. _

unlike the case considered above. This is due to the activa- A _gene_:rallzanon of the Marcus—Lewch—Dogongdze
tionless character of the electron transfer at the paramet nadiabatic rate constar(87) and(38) to the case of dif-

values used. Decreasing the friction increases the number %rﬁgts Cg,:\éztlféejﬁvﬁjnflﬂggfiﬁq al?osjiéfse:rflgr Etir?e Iohrls
passages through the intersection point per unit time, an(f, P ! ganizati gl
ard and backward electron transfer, a feature also observed

therefore, accelerates the reaction. This is a purely d namicz\ff . ; . . .
- purely dy experlmentall)?5 In this case, unlike the situation of equal
effect of the friction.

Increasing the energy bias &2\ =0.155 eV we arrive curvatures of the bath oscillators, the change of free energy

tth m tivation enerav. but the crossing now ; idue to the reaction is not equal to the energy bias, and there
atihe same activation energy, but thé crossing how occurs ay be two or no crosspoints. First of all, we consider a

the so-pallgd inverted region. The klne.tlcs for this Cas€ ISsituation when the PESs do cross, so that the transitions can
shown in Fig. 4. The equilibrium population of upper PES 'She considered as localized at crosspoints, and the corre-

very small, and the time scale of the reaction is two timesg,,nging analytical results are of relatively simple form.
larger than in Fig. 2. The rates of the forward transfer at Figure 6 shows the kinetics of the reaction at different

€=0 ande=2\ are equal to each other, as it follows from the e organization energies for the forward and backward trans-
analytical expressio(37), but the rate of backward transfer g, \;=0.078 eV, anc\,=0.012 eV, respectively. Other pa-

satisfiesk,=k; at e=0, while beingk,<k; at e=2\. This rameters are as followsT=300 K, &,=£=10, while the

explains the difference in the relaxation time scales, see E(ﬁonadiabatic coupling strengti=3x 1072 eV. Energy bias

(36). Again, at low frictions the reaction becomes controlled;s \/aried and take the following vaIueéAs:O 01 eV

by thermal act|vat|9n, §|m|larly to .the.caseef-o. i (circles and Ae=0 (squares The corresponding analytic
In the_ above_ situations, the kinetics of the reaction wagaq(t£869 5re plotted as solid line§Note that the definition

exponential, while SANT correctly reproduced the free-uf the nonadiabatic coupling strength in our case differs by a

energy-gap law and the general trends of the reaction rate fcior of 2, so that the prefactor of 1/4 in the formulas in
the low friction limit. Besides, SANT is valid beyond the rate

description of the nonadiabatic transitions, and fully ac- 05

counts for the quantum coherence effects in the kinetics of — analytical
the reaction. To demonstrate this, we considerably reduce the numerical:
reorganization energy to.=0.016 eV, and increase the o ﬁi:%m &V
strength of the nonadiabatic coupling W=0.02 eV. We §

0.0
also assume=0.02 eV andé=5. The kinetics in this case K;;\*ju«

exhibits strong transient oscillations and is shown in Fig. 5.
Two types of the initial conditions for the auxiliary functions
x+2 were used. In the first case we neglected specific cross -0.5 - - - -
correlations between the quantum subsystem and the canoni- ¢ [ps]
cal bath created during the initial time peri@tds 7,), which
corresponds to zero initial valuesp(fL'Z). The corresponding FIG. 6. Kinetics of thg nonadiabatic transitions for the case of different

L . . . &urvatures of PES oscillators. The parametersTar800 K, \;=0.078 eV,
kinetics is shown in Fig. 5 by the dashed line. In the secon - = 3 .

o .. . . \,=0.012 eV £,=¢,=10,W=3X 10" eV, and«(0)=0.5. Calculations were

case proper initial conditioni®4) were used, and the Kinetics yone for two different energy biasese=-0.01 eV (circles and Ae=0
for this case is plotted in Fig. 5 as the solid line. The valueSsquares Analytical results were calculated by formula taken from Ref. 69.
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0.5 dynamics along the potential energy surfaces, and requires
— e =001477 eV fast equilibration of the reaction coordinates to the tempera-
q --- Ae = 0.02eV . . .
ture of the surrounding media, such that the reaction does not
change significantly the equilibrium distribution in their
o0 .
3

cability limits, fully accounts for detailed balance, including
zero-point energy effects, quantum coherence, arbitrarily
long memory, and change of the free energy in the course of
reaction. The strength of the nonadiabatic couplings can be
¢[ps] varied over a wide range, which allows to model the kinetics
of nonadiabatic processes starting from a subpicosecond time
FIG. 7. Same as for Fig. 6 but at larger energy biasA&t0.014 77 eV

(solid line) the potentials touch each other, while &t=0.02 eV (dashed Scale In addition, the .approach IS compatlble with ) .
line) there are no crossing points. The results were calculated numerically bilitio molecular dynamics method to simulate the dynamics
the suggested approach; in the former case the kinetics is considerably aalong the reaction coordinates, which can be of multidimen-

celerated(reaction rates in contact approximation divergenhile in the sional character, and constitutes a powerful framework for

latter case the kinetics slow down again as the energy(igajne inverted d l.’ f th diabati L. in th

region) between the PESS increases, accurate modeling of the nonadiabatic transitions in ther-
mally damped systems.

Refs. 68 and 69 for the rate constants should be dropped. StANT Ihas_selveratlhw(rj]plortr_:mt aAdvantages g\ierﬂ? xisting
Finally, the statistical sums of the baths were calculated mg_uan um-classical methodologies. As compared 1o the hona-

the classical recipé84) for compatibility purposes, although diabatic 'ex'ten5|on of the-tran5|.t|0n state t'heory, we removed
accurate(quantum canonical equilibrium can be incorpo- the restriction of a one-dimensional reaction coordinate, and

rated in our approach by using E@3). At As=0, the sta- the p.h_enomenolo.gi.cal description of the elemer_ltary gct via
tionary value of the population difference is not equal to 0.5,ransition probabilities. Besides, our approach is valid be-
while for Ae=-0.01 eV the transfer proceeds even againsy©nd the rate regime and is capable of describing quantum
the energy bias. This is because for the given value&eof interference effects and non-Markovian evolution. In con-
the enthropic part of the reaction free energy dominates. trast to the quantum-classical Liouville equation approach,
It is read"y seen that SANT accurate|y reproduces anaSANT does not lead to a mean pOtential treatment of the
lytic results for different curvatures of the PES oscillators.transition phases, which is known to be the source of un-
However, the accuracy of analytic formulae, obtained in aPhysical predictions, and properly handles the cross correla-
“contact” approximationlassuming the transitions to be lo- tions between the quantum subsystem and the thermal bath.
calized at crosspoinks degrades when increasing energy ~ The molecular dynamics implementation of SANT is
bias. Finally, atAe=0.015 eV the PESs only touch each also very different from the surface hopping scheme, being
other, while analytic expressions for the rate constants in thef comparable computational cost. First, the problem cannot
contact approximation diverge. Although Ref. 68 provides ude reduced to the evolution of the quantum subsystem along
with the analytical formulae even for the case of noncrossingingle trajectories with subsequent averaging, instead the
PESSs, these expressions are rather cumbersome and were bath is always represented by a large set of equilibrium tra-
used for the comparison. Besides, we would like to emphajectories. This reflects the fact that both quantum and classi-
size that the QCLE-predictélideviation of the stationary cal subsystems are treated on a similar probabilistic footing.
distribution in the case of noncrossing PESs from those exSecond, the trajectories do not hop between the potential
pected from the statistical thermodynamical COI’]SideI’atiorenergy surfaces, as a result a fewest switching algorithm and
cannot be obtained from our approach. This is because th@scaling of the velocities to conserve the total energy are
relaxation to the correct stationary value is an intrinsic propobsolete. Third, the most time consuming molecular dynam-
erty of the kinetic equations used, see Sec. II. ics part of the simulation can be done in advance, the same
Figure 7 shows the kinetics of the reaction for the sameset of trajectories is usable to perform calculations for differ-
parameter values as on Fig. 6, but at larger energy biagnt strengths of the nonadiabatic couplings.
When approaching the valuas=0.01477 eV, the two The enhanced capabilities of SANT were demonstrated,
crossing points move close to each other. The contact ajsing a simple model of two coupled harmonic oscillators,
proxmapon pred|cts acceleration of _the klnetlps, but at the;ng a Brownian dynamics approach to simulate the motion
same time it becomes less applicable. Finally, ¢  55ng the reaction coordinate. It was shown that SANT pre-
>0.014 77 eV there are no crosspoints, and the transitiogigely reproduces the free-energy-gap law in the rate regime
region delocalizes. The kinetics is indeed fastestAat 54 ot moderate friction. An example of the kinetics beyond
:0.014 77 e.V, then slows down when further increasing eng. o (ate regime was given, where the proper modification of
ergy bias, since the energy gap between the PESs becomm% initial conditions to account for the early time evolution
larger. is of primary importance to preserve the positivity within the
applicability limits. However, both in the low and in the high
friction limits the transitions are controlled either by diffu-
We presented a new statistical approach to nonadiabati&ion in energy space or by spatial diffusion, and, therefore,
transitions. It uses a classical mechanics description of ththe reaction coordinates cannot be treated as belonging to the

& phase spaces. The developed methodology has known appli-

-0.5

VI. CONCLUSION
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canonical bath. Nonetheless, at small deviations from equisince the integral term in the middle line of E@4) does

librium, SANT properly describes the reaction dynamics atot have an imaginary part, as it follows from E43). [The

low friction as well. relations for the auxiliary functions along the trajectories on
There are many other situations, when the reaction coorthe second PES is obtained from E44) by replacing the

dinate has to be treated separately from the bath degrees odrresponding indicesTo obtain Eq.(Al), we integrate Eq.

freedom. Examples are intermolecular electron transfer21) from t=0 to t=At (when coefficients of differential

association/dissociation reactions, etc. These cases, as weljuation are fixed to constant valyeand use Eq(A4).

as the intramolecular nonadiabatic transitions over the com- Numerical approach is based on the time step integration

plete range of frictions, require a more delicate approachof Eq. (A3) with the following approximation:

This work is now in progress.

At (€ ioMar _ 1)
Zf 'Q| a(t)dt = T[a(AI) +a(0)], (A5)
|
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APPENDIX A: NUMERICAL APPROACH
. . .we derive
In the leap-frog MD simulations the phase space coordi-
nates are assumed to be fixed during the time AtepAc- " oWt \/\/1 (1 e—IQ At)
cordingly, the time dependent functions on the right-hand X (At) = e™ H(0) + O 1

sides of Egs(21)—(23) take constant values during the time
step At, and, therefore, it is sufficient to construct the nu- r( € )
X + + —
merical algorithm for the propagation of the solution on the [a(At) a(0) + tan '
length of the single time steffrom t=0 to t=At) and with
constant coefficients.
First, the following relation holds:

(A7)

which is used to propagate the auxiliary functions along the
trajectories on the first PES, while the corresponding equa-
tion for the auxiliary functions along the trajectories on the

L 1) ) i
1 At 0 second PES is obtained from 7) by the change of the
oA - a(0) =13 m{ 1>M} HA7) by g
=1

i0® indices, and is of the form
19 280 - x20) (240 = 3 20y e LS
= 2 Xm X At)=¢ 0) + —_——
tym {W 0 ] 0?

(A1) X [a(At) + a(0) + tani‘(%)} . (A8)
which is proved as follows. Introducing the new auxiliary o _ _
functions(in the “interaction representations Then, substituting Eq$A7) and(A8) in Eg. (A1), we obtain

~ (1) 1

W00 =% V), (A2) a(A) = —— (1—A)a(0)—Atanr(i> -B[, (9
. . 1+A 2T

which satisfy

d_ where the coefficients are

—Z~(1) (1) L0

th (t) =iw7e {2a(t)+tanl‘<2_|_>] (A3) 1 L |V\/l)| N

A== [1-cosQMAt)]
. . . L Q(l) |
we derive(integrating by part)s I=1
w1 Dty Lo [ Wl ]?
f W YxiP(tdt [ =1m vW ey (vt +M2 K [1-cogQFAD)], (A10)
m=
i W(]_) elﬂ t"’(l (t) and
IQ(l) (1 e|Q<l)At)
zlm w8 ) )
At e e—m(l)t d (1 L =1 Q(l)
+f W i@ dt ®at
0 1 1 D
+—E|m V\fnﬁz)T @) |. (A11)
\/\fu)Xl (At) X (0) Mi=1 Q
Q(l) ’

The algorithm works as follows. First we start equilib-
(A4) rium simulations of many MD trajectories on both PESs, say
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L trajectories on the first anil trajectories on the second B At £\2

PESs, respectively. They can also be simulated in advance Crv Ur“v‘lu_g(l_e ). (B6)
and stored for the subsequent use. At the first step the initial

conditions«(0) and (24) are set up, where the nonadiabatic A freely available RANLIB package was used to gener-
couplings are calculated from the starting points of the corate pairs(ys,y,) of the uniform random variates on the in-
responding MD simulationfthe statistical sums should be terval(0,1). Then the pairs of independent random numbers
calculated before the propagation in time, in order to deterfrom the normal distribution with zero mean and unit vari-
mine the value of in accordance with Eq26)]. Then we  ance({s,{,) are obtained 48

take the coordinates of the phase spaces for the next step and
determine a set of the nonadiabatic coupli g, V\/(nf) and

the differences of the bath Hamiltoniafis”, 2 along the (B7)
corresponding MD trajectories. This allows to determine the_, , o )

coefficientsA andB, see Eqs(A10) and (A11), and to find ~ Finally, the desired pair(;, £;) of random variates, sampled
the value ofa(At) through the use of EqA9). The auxiliary from the bivariate Gaussian distribution with the parameters,

functions are updated usi(ng Ec(sA(?? and (A8). The ob-  diven by Eqs(B4)~(B6), are
. 1) 2
tained values ofv(At) and x,”(At), x,, (At) then replace the L=0,t 0=0,(Cy 1+ \/—1 _Crzv ). (B8)

m
corresponding values &t 0 to set up for the next time step.
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