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Theory of solvent influence on reaction dynamics
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A generalization of the recently published quantum-classical approximpfio®. Neufeld, J.

Chem. Phys.,119 2488 (2003] for the purposes of reaction dynamics in condensed phase is
presented. The obtained kinetic equations treat a solvent influence in a nonphenomenological way,
account for the change of the free energy of the surrounding media, allow for different solvent
dynamics in each reaction channel, and constitute a powerful framework for an accurate modeling
of solvent effects, including ultrafast processes. The key features of the approach are its differential
form, which considerably facilitates practical applications, and well defined wide applicability
limits. The developed methodology fully accounts for an arbitrary long memory of the canonical
bath and covers solvent-induced processes from a subpicosecond time s&fl65@merican
Institute of Physic§ DOI: 10.1063/1.188451)5

I. INTRODUCTION herence time the transitions between quantum levels proceed
dynamically, and the description of an elementary process by
A majority of reaction events in chemical and biological means of transition probabilities is not adequate. Second, the
systems occur in condensed phase, which has stimulated e¥fficiency of dephasing depends on many factors, while the
tensive experimental and theoretical Stuaiesthe solvent solvent-induced damp|ng of the reaction Coordinate, driven
influence on the course of reactions. This influence manifestgy the high-frequency modes, is not as effective as the damp-
itself in a number of ways. First, a solvent can chemicallying of the low-frequency ones. Thus, ultrafast reactions in
react with a solute, examples are proton tranSfesubstitu-  ¢ondensed phase, proceeding in {sebpicosecond time
tion reactiond'” etc. Even a chemically inert solvent is able range, require a more accurate approach. Another rapidly
to form considerably stabl5ee complexes with_molecules ofyrowing field of research is the use of supercritical fluids as
interest(hydrogen bonding;>® solvation of ion$®), and is 5 reaction environmerit where the density of the surround-
capable of a substantial modificatfohof the potential en- ing media can be smoothly varied from gas to liquid phase,
ergy surfacegsPESS of dissolved reactants. Second, a rela-iq s gradually changing the mechanism of an elementary
tively strong interaction with solvent molecules commonly reaction from dynamiérarefied gas@do stochasti¢liquids),
leads to fast decoherence of the quantum phase of transing some universal theoretical methodology is highly desir-
tions, thus mightily influencing a mechanism of an elemen-ype to describe properly this interesting transitional region.
tary process. In addition, the surrounding media alter the Existing approaches for amb initio simulation of reac-
character of intermolecular anow-frequency intramo-  tions in condensed phase can be subdivided according to the
lecular motions, changing them from dynamic into stochastiGyeatment of solvent dynamics. A quantum-mechanical de-
processes. scription of the solvent is inherent in rigorous semiclassical
The complexity of the problem resulted in a formulation approache& but it is feasible only for a few simple models.
of theoretical approaches considerably simplified in comparion the other hand, a classical description allows for a real-
son with those used for rarefied gases. In particular, intermqggic modeling of the dynamics of the surrounding media by
lecular reactions in solution are usually considered in th§neans ofab initio molecular dynamics method&and is an
approximation of separating out the relative motion of theggractive alternative when quantum effects in the solvent
reactants and their distant-dependent reaction probabilit;aynamics are unimportant. Reacting subsystem can also be
The latter is supposed to be mobility indzependent and igreated quantum mechanically or classically, but most of the
either calculated by l%ppropriate theot&&” or specified  reactions are intrinsically quantum mechanigatmation or
phenomenologically”** This methodology turns out to be breaking of chemical bonds, nonadiabatic transitions),etc.
very fruitful when ch)onsidering a wide class of diffusion as- thys |eading to the quantum-classical treatment as the most
sisted processe$;*® and allows for a detailed study of the gyjitaple methodology for an adequate description of the re-
influence of reactant motion on the kinetics of both revers—4ctions in condensed phase.
ible and irreversible reactions. _ Despite the fact that the basic idea of the quantum-
There exist certainly several limitations for independentc|assical approach is rather simple, its practical implementa-
consideration of the reactivity and the mobility of dissolvedtjgns are very different and not equivalent to each other. In
molecules. First, at times shorter than a characteristic decqpe most straightforward attempts to combine quantum and
classical mechanics one adds quantum transitions directly to
¥Electronic mail: aneufel@gwdg.de the classical trajectories, in the form of a mean-field
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approximatiof®?*?*(MFA) or a surface hoppirf§?® (SH)  cussed in Sec. VIII. In the Conclusion we summarize the
scheme(or a combinatioff*® of both). These approaches, results and outline the direction of future work.

however, have an essentially empirical flavor and unknown

applicability limits. In a certain sense, MFA and SH are
complementary schemes. The former treats the transitionlé' BASIC ASSUMPTIONS

dynamically, with a full account of quantum interference ef- To generalize the NQCA, we assume that the quantum-
fects, but fails to describe properly a situation of considerdynamical subsystertQDS) consists of groups of quantum
ably distinct channels of the reaction. In contrary, the SHstates which interact with the thermal bath in different ways.
scheme provides correct asymptotical solutions, but neglectshis means that the Hamiltonian of the bath may depend on
the quantum interference effedithe transitions are treated a quantum state of the QDS. Although the number of differ-
as probabilistic jumps between PHSs ent groups may, in principle, be arbitrary, we assume that

A quantum-classical Liouville equatidh>® (QCLE) for  there are only the two groups of states, and denote the asso-
the reduced density matrix of the quantum subsystem seengsated projectors aB andC. Additionally, we require a com-
to combine both the dynamical treatment of quantum transimutativity of the projectors with the QDS Hamiltonian, and,
tions and the correct asymptotical solutions in the reactionherefore, the transitions between the distinct groups of quan-
channels. Various types of dynamics of the classical degreasm states are induced solely by the interaction with the sol-
of freedom can be used within the QCLE, which makes theyent. In particular, when applied to nonadiabatic transitions,
approach an alluring one to study the reaction kinetics frormeither an adiabatic nor a diabatic representation is used.
gas to liquid state densities. Nevertheless, the QCLE als®his is demanded to develop approximations based on a
suffers from an internal inconsistency: it replaces the trueshort coherence time of the QDS-bath interaction, and allows
cross coherence, which drives the energy flow between thi take into account the solvent effects in the widest possible
subsystems, by the direct coherence inside the quantum sulimits.
system, see Sec. I of Ref. 37 for more explanations. Among  For the groups of discretébound states the required
other things, it leads to a mean-figldr more precisely to a projectors are constructed from the corresponding normal-
mean-potential treatment of the transition phases, inherentized eigenstatefj,) and|¢;) as
in QCLE. Exactly this MFA feature of the QCLE is the Np
source of unphysical predictiori&>° when applied to nona- P=> P Pr= |y, (1)
diabatic transitions. k

A non-Markovian quantum-classical approximaffon
(NQCA) is free from the aforementioned defects. It is based N
on a short coherence time of the interaction between the ~ <~ i
guantum subsystem and the canonical bath, has known ap- C-E ¢, C= |¢i><¢i|’ (2)
plicability limits, and properly handles cross coherence be- A A
tween the subsystems. In the present paper we generalize tivere PX and Cl are the projectors on the individual eigen-
NQCA to extend its capabilities towards the treatment ofstates, whileN, and N are the numbers of the states in the
reaction dynamics. The generalization consists of an assumperresponding group. Although a continuous part of the spec-
tion about the dynamics of the surrounding media, dependeritum of the QDS eigenstates can be included in the consid-
on a state of the quantum subsystem, and is required to talaation by an appropriate modification of the projectthey
into account the difference of interactions between the solutwill contain integration over the continuous pase content
and the solvent in the distinct reaction channels, as well agurselves with a derivation assuming a discrete spectrum of
the change of the free energy of the solvent in the course dfigenstates. Nonetheless, one can proceed to the correspond-
reaction. ing limit in the resulting kinetic equations.

The outline of the paper is the following. Basic assump- ~ Then, we split the QDS Hamiltonian as
tions of the approach, small parameter, and partition of the -~ _~ . SR TS S
Hamiltonian of the reacting system are presented in Sec. II. H=Hp+He Hp=HP, H.=HC, &)
The assumptions made allow to separate out the reactiggince it is assumed to commutate with the projectors. In turn,
channels and to obtain the general non-Markovian mastehe Hamiltonian of the bath involves interactions between
equations, see Sec. lll. The corresponding memory kernelsolvent molecules and that part of the QDS-bath coupling,
describing various solvent-induces transitions, are thefvhich does not induce transitions between the eigenstates of
evaluated in a form suitable for the quantum-classical treatthe QDS. It can be written as
ment, as outlined in Sec. IV and Appendix A. The latter is A A A N PP
introduced in Sec. V. The kinetic equations of the quantum- F=Fp+Fe Fp=FP. F.=FC, (4)
classical approximation, which are of differential form, buti.e., the bath dynamics is assumed to be group specific, but is
fully account for the arbitrary long memory of the bath, areindependent on an individual state inside the group. If this is
obtained in Sec. VI. Basic properties of these equationsiot the case, then the number of distinct groups of quantum
(positivity, detailed balance, ejcare discussed in Sec. VII. states should be increased. We also note that these assump-
The advantages of the developed approach in comparisdions provide the commutativity of the bath Hamiltonigh)
with existing quantum-classical treatments are briefly diswith that of the QDS3).
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The rest of the interactions enter the QDS-bath coupling do(t)

Hamiltonian, which can be represented as e (8(t) +IWGo(D) @ +i(H + Fle(t)
W= W, + W, + W + Wy, (5) P
—f K(r)e(t- 7)dr. (10
Here —o
Wy = PWP, W, =CWC, (6)  Here the definition of the density matrix is extended for

describe interactions between the group of quantum statd¥€9ative times using the stepwise Heavistdfinction as

and the bath, which induce transitiomsidethe given group,

but not between distinct groups. In contrast, e(® = ave(), (11)
Wpe= PWC, W= W = CWP, (77 and the kemnel
where the dagger superscript denotes a Hermitian conjugate, ;“C(r) = WQO(T)W, &O(T) = Q(T)e”':lf ei%T_ (12)

describe the solvent-induced transitions between distinct ) _ o _
groups of quantum states. The above partitioning of the  Although the Nakajima—Zwanzig projection for.mahﬁ”n. _
Hamiltonians has a formal character, and can be done for aprovides an elegant way to eliminate the bath variables, it is
arbitrary system of interest. Nevertheless, we impose a reiot convenient for the problem under consideration. Indeed,
striction on the form 01\7Vpc and \]ch, and do not consider there ex!st different types of c.orrelatlor'{sr coheren.ce,
those solvent-induced transitions between distinct groups ¢¥hen using a quantum-mechanical terminologfrose in-
quantum states, which are not accompanied by a correspongide the QDS, the correlations between the bath states, and
ing change of the bath statésolvent-induced radiative the QDS-bath cross correlations. Within the projection for-
transition<*? for example. malism, the latter two are actually moved into the kernel of
The subsequent approximations are based on the smafforreésponding master equation. Developing subsequent ap-
ness of the cross correlations between the QDS and the cRroximations to this kernel, which is defined via an exact
nonical bath, and require the matrix elements of the QDsSOlution to the problem, is not an easy task. On the other

bath coupling to satisf hand, Eq.(10) explicitly contains the QDS-bath cross corre-
R lations, which are subject to perturbative treatment, while the
|V\/ﬁ’(ﬁ| . _h kernel on the right-hand side is of the simple form, given by
—’Tb< l, CL’:#B, | :»ék, Tb—m, (8) Eq(lZ)

) . o The closed memory-type equations for the density ma-
where# is the Planck constant, the first multipli€/%)  trices of the distinct groups of quantum states are obtained in
determines a rate of formation of the cross correlationsg way similar to that described in Ref. 40, and require a weak

. . . . . .4 !
while 7, is their characteristic lifetint€ due to an energy QDS-bath coupling in the sense of the conditigh In a first

uncertainty of the bath degrees of freedom. Here and aftektep, the total density matrig in the integrand on the right-
wards Latin and Greek letters label the QDS and the batihand side of Eq(10) can be replaced by

eigenstates, respectively. Thus, the criteri@) actually
means that the rate of cross-correlations formation is much  o(t- ) = Ep(t - +odt-1), (13
slower than the rate of their decay. In the following Planck
and Boltzmann constants are set to unity, ifes,1 andkg ~ where
=1, thus measuring interaction matrix elements and absolute . . . A
temperaturel in frequency units. oy(t=7) =Pp(t-1P, pot-7)=Cpo(t-7C (14)
The assumptions hold true for many solvent-induced re-
actions of interest and allow to separate out the reactio@re the density matrices projected on the corresponding sub-

channels, as shown in the following section. spaces. The approximatidfa3) neglects the correlations be-
tweeng, and o, which can be of two types, the coherence

Il. GENERAL MASTER EQUATION AND SEPARATION inside the QDS and the cross coherence between the QDS

OF REACTION CHANNELS and the bath. We postulate that the former type of coherence

is absent at the initial instant of time, and, in accordance with
the assumptions made, see text after &g. such direct co-
(QDS+bath herence between distinct groups of quantum states will not
’ appear afterwards as well. As regards the cross correlation
do(t) A A A between the QDS and the bath, it is small under condition
T at)eo+i(H+F+We(), (9 (), and, in general, is of second order in the QDS-bath cou-
o R pling strength. On the other hand, the exact kernel in Eq.
where g, is the initial density matrix}, F, andV are the  (10) is strictly proportional to the second power of the QDS-
commutator derived Liouville operatofsuperoperatojsof  bath interaction, and, therefore, the use of ELB) in the
the QDS, bath, and the QDS-bath interactions, respectivelyntegrand on the right-hand side of E40) retains the effect
into a fully equivalent integro-differential equation of the of the cross correlation betweeEb and g, to their lower
form order.

Following Ref. 40, we transform the Liouville-von Neu-
mann equation for the density matmxt) of the total system

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



164110-4 A. A. Neufeld J. Chem. Phys. 122, 164110 (2005)

Similarly, the criterion(8) allows to replace, andg, in dog(t) - .
the integrand on the right-hand side of Ef0) by the direct . 8(t)oeo+ Lo(t) —i[He, oc(t)]
products of the density matrices of the QDS and the bath,
ie.,

- f " Wt~ dr

ept—=7) =0 (t=17 X p,,  0c(t—7) =0ot-7) X pe, S
et =D = A=) X @l = alt= ) X +f Ma(n)ap(t = ndr

(15)
where —f My(Dad(t - Ddr, (19
Opolt=7) =Ty Qp(t=17) (16y  Wherel[...,...] denotes commutatos, , are the initial con-
ditions, {,, (1) are the time-extended source terms due to the
are the projected density matrices of the QDS, while initial correlations, and the projected Hamiltoniatgs. were
defined earlier, see E@3). The explicit expressions for the
memory kernels will be given in the following section. Their
1 - : . ' A
Ppc=S— A Zpe= Try(eFrdT) (17) p:':lrtlcular feature is thawp(r) degends solely onw,,
p.C M(7) depends solely oW, while M;_,(7) contain only

W, and W, see Eqs(6) and (7). Mathematically, this is

are the equilibrium density matrices of the correspondin rovided by the commutativity of the free propagad
bath, and Ty denotes the trace over the bath variables. Th“ggefined in yEq.(12) with the grojectors. Ag thF:e ?fﬁftﬁ:[he

we assume that the transitions do not significantly change the .

equilibrium state of the bathes in the reaction channels®'05% products OfAtEe forrpvp...YVE, etc.l are met only in

Again, the effect of the cross correlations between the QDgOMbination withPe(t-7)C, or Ce(t-7)P. The contribu-

and the bath is retained to their lower order, despite the uséons of the latters are small and already proportional to the

of the factorized density matricés5). second power of the QDS-bath coupling, thus making the
Note that the approximatior{¢3) and(15) do not mean above cross products to be of higher order of smallness. In

that the neglected off-diagonal elements between the QD§1at way the reaction channels are separated out. Nonethe-

and the bath are small, they are only assumed to be out dgss, a specific interference between them enters the theory

phase. Situation is well illustrated by analogy with the dis-Via memory-type dynamics.

crete Fourier transform of exponentially decaying function, ~ T0 end this section, we note that the Hamiltonian renor-

when the individual terms of expansion represent themselve®alization of the form

an infinitely oscillating(nondecaying functions with possi-

bly large amplitudes. Nevertheless, after some time, their

sum gives a negligibly small value due to the precise phasand

cancellation of the constituents. - ~ A A - -
Finally, condition(8) provides separation of the reaction ~ He— He+ T We pe, - We — We =Ty We pc (21)

channels. Indeed, operating on Eg0) from both sides by s required® for a fast decay of the time-extended source

the corresponding projector, taking the trace over the batlf'ermsz (t) on the time scale ofy,. In the following we
variables, and restricting oneself to the lower order in the pe

. ; . ssume that the renormalization was already done.
QDS-bath cross correlations, we obtain for the prOJectecii y
density matrice$16) the following set of the non-Markovian
kinetic equations:

Hp— Hp+ Ty W, pp, - Wy — W, = Try Wy pyp, (20

IV. REACTION KERNELS

The memory kernels in Eq§l8) and(19) describe vari-
ous processes due to the interaction with the solvent. In par-

o ticular, /\A/lpyc(r) involve the energy redistribution/relaxation
—f Moyt - ndr inside the given group of quantum states, whilé; (7)
- (reaction kernels describe the solvent-induced transitions

do, ya H, 0
_dpt(_t) = 8t)apo + £p(t) —i[Hp, ap(t)]

o between the distinct groups. Since the former account for the
- f My(Doy(t - 7)dr processes in the uncoupled reaction channels, their structures
= can be taken from Ref. 40, where all variablgsamilto-
© o nians, density matrices, etshould be treated as group spe-
+f M(1)o(t = 7)dr, (18)  cific and labeled by the corresponding subsctjpor c).
- In the following we concentrate on the structure of reac-
tion kernels. For the sake of convenience we introduce the
and following Liouville operators of the correlation functions:
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~ 1 ( o Towards this end we introduce “symmetrized” correla-
Xl(T)‘Tp(t_T):Z_pTrb e Pog(t - 7) tion functions, which are obtained from Eqf22)—(25)
. . just by formal replacement ofe'Fc’T\/\lhcp(r)/Zc and
W, @MW (e T) (22 W (e FITIZ. wi
pc cp ' \/\/L‘p(q-)e o1/ Z,, with
o 1 P ) 1{ eFoT . ) aFoT
Xy(ot—1) = Z—Trb(e"HpT\Npc To(t=1) Vi) = E(Z—C\N'Sp(f) *Wel0 =7 ). (29
C
w @Her @ FITA ( ) 23 The connection between Eq&®2)—(25) and the corre-
(D)), (23 . ; : > e ; _
sponding symmetrized correlation functions is established in
Appendix A. It decouples the statistical and the dynamical
5(3(7); (t- 7 :iTrb(\f\/‘ (T)e—ﬁp/Te—iﬁpT; (t-7 properties of the bath, and allows to take account of the
P b P P guantum component of the energy flux between the QDS and
< T) the heat reservoir before proceeding to the classical limit for
XWpc €7¢7), (24 the bath degrees of freedom. The omission of this step leads

to an incorrect treatment of the quantum correlations be-
tween the QDS and the classical bath, and, as a consequence,
to the violation of the detailed balance.

Then, at timed> 7, we derive the following set of the

N 1 - P
Xy(Doyt-17)= 2Trb(e-Fc’Tvv'gp(T)e-'prpc

C

Xo(t- T)eiHCT), (25 kinetic equations, see Appendix A:
where do(t) A A _
A ) _dpt_: At)opg —i[Hp, op(D)] - f_pr(T)Up(t— 7)dr
Wiy(7) = €W, € 7" (26) . A A
-iHL 7 (+ — aHemiv/h
is the QDS-bath coupling in the Heisenberg representation * J_w H(T)Trb(e Pypclt = TNV (1) + H'C')dT'
with respect to the bath variables. Then, the explicit expres-
sions for M,_,(7) take the form (30
~ o R o and
MygAogt- 0= 60X Dot-n+He), (27 0 )
(o) e~ ~ —
d—ct = d(t) oo~ i[H, 0c(t)] - f M (1o (t-ndr
Mo st -1 =60l Doet-1 +He),  (29) )
where H.c. denotes hermitian conjugate. ‘f 0(7-)Trb(iVQp(r)e‘inTVpc(t - Do+ H.e)dr,
However, the presented form of the reaction kernels is -
not convenient when applied to reaction dynamics in con- (31
densed phase. First, a realistic modeling of the solvent i§vhere

accessible only within a classical mechanics treatment,
whereas _the bath varl_ables enter the correlation func_t|o pc(t):_i(wpc;c(t)_;p OW, c)
(22—(25) in a way, which does not allow for the classical
limit (due to time-ordered averages of bath operat@sc-
ond, the decay of some correlations between the reacting

da(t)

+ Upe 7e(t) + 7p(H)Upe + m( + i[ﬁc,am])

system and the canonical bath is essentially of quantum- do(t
mechanical nature, and is not correctly described by classical (ﬁrﬁ + i[ﬁpv;p(t)]>?pc (32)
mechanics, so that the nonequilibrium energy flow between dt

the subsystems has both “classu_:al” and *quantum® COMPO3hd we have assumed factorized initial conditions, which
nents, see Ref. 44 for more details. . ) . —

The above problems can systematically be resolved b{!IMinate the time-extended source tefths.e., £,(0=0.
appropriate transformation of the reaction kernels. Technit'€"®
cally, it is necessary to pick out a generalized memory kernel | o
describing the decay of the quantum correlations due to the Upc:f
energy uncertainty of the bath degrees of freedom. This pro-
cedure is more transparent for the bilinear QDS-bath couz g
plings, see also Ref. 40. Although this assumption was used
to simplify intermediate derivations only, it may, neverthe-
less, lead to some douBtsabout the validity of the obtained
kinetic equations for the arbitrafponfactorized form of the
coupling. To remove this question, we give derivation for thewhere the generalized memory kerrfg{7) describing the
general case. decay of quantum correlations is defined by E&21), and

fy(Deriepe” e Mo, e, (33)

—00

\A(pC: - f 7 fo(7)e pe” e““p7\7\lpC eferdr, (34)
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=-TIN(ZYyZ)=-T(n Z,~In Z 35 . classical,
€pc n(Zy/Z,) (InZ,-1InZ,) (39 Woo — Wolgp,00). 37)
is the change of the free energy of the bath in the course of fimit

the reaction. A where the operator on the right has matrix elements only in
The derived fromW,,; operators(33) and (34), see also the QDS subspace. However, the classical limit for the heat
Egs. (A27) and (A28), are responsible for the detailed bal- reservoir implies that the processes of quantum nature do not

ance (U, and for the positivity of the density matrices Play significant role in its dynamics. Therefore, we assume

within the applicability limits of the approactislippage” Fha_t the QDS-ba_th interaction does not lead to the tunneling

operatorY,). The value ofe,, which enters the detailed NSide the bath, i.e.,

balance condition together with the QDS transition frequen- 3, W S —a.) = W. _

cies, is formally expressed in terms of the statistical sums of pelGp:Ge) = WpclGp) X0y = Ge) = Woc(Ge) LGp ~ Qo)

the bathsZ, .. From the practical point of view, the change of (39

the free energy is frequently available from experimentalynq one can simply write

data, and can also be extracted frorab initio classical

simulations*®*’ A specific approach to the determination of W) (39)

this quantity will be outlined on practical applications of the P himit PO

method. . o
Nevertheless, the bath in EqQ0)—32) is still treated Wheredis the set of the phase space coordinéitsierq, or

quantum mechanically, and the system-bath couplings havie): . ) . .

full dimensionality in the subspaces of the QDS and of the Then, it is readily seen that E¢36) contains averaging

bath, which embarrasses practical use of the method. FupVer different baths, being in the equilibrium and character-

thermore, realistic simulations of solvent dynamics are pro!2€d Py the corresponding bath Hamiltonian. It is, therefore,

vided by molecular dynamics methods, based on classicdpdical to replace the quantum averages by the sum of the
mechanics. The desired transition to the classical mechanic namlcal averages over the sets of eqwll_brlum classical tra-
treatment of the bath is described in the following section. Jéctories, belonging to different baths, which gives

Trel D) = f f Wod @@, 7) ... Wep(q')dg dg,  (40)

V. QUANTUM-CLASSICAL APPROXIMATION
where

Up to now, the two approximations were employed. The 20,97 = (E(p)(q,qr;,r)w(p)(q/)
first one restricts the strength of the system-bath couplings to
the valueg8), which has allowed to separate out the reaction +¢9a,q';D99q")/2, (41)
channels and to obtain the closed kinetic equations for th%nd the generalized two-dimensional densities obey
density matrices of the QDS. The second approximation is
based on the short lifetime of quantum correlations and was  d Lo o .
used to integrate out of the quantum component of the non-  5,¢ "9(a.9';7) = AnNdd-a) - i@ eP(a,q"; )
equilibrium energy flux between the QDS and the thermal (PO PO (g g’ -
bath. The latter becomes dominant if the conditiBnis not +Lg " ¢P(q,q"57). (42)
fulfilled (see Ref. 44 for more detajlsand, therefore, the
classical mechanics treatment of the bath seems to be prob-
lematic in this limit.

A quantum-classical approximation is introduced as
usual by replacing the correlation functions with the appro- ) o o )
priate classical analogs. Although a search of such analogs i§ the normalized equilibrium Boltzmann distributi¢static
always based more on intuition, than on rigorous derivationcontou) for the corresponding reaction channel, and
we g.ive some arguments exp!aining our choice. Firstz the Q,d@) =Fy(q) - F(a), (44)
reaction kernel in Eq(30) contains the retarded correlation
function of the form[the correlation function in Eq(31)  WhereF,(q) are the Hamiltonian functions of the baths, and

yPoq) =Tz, 2= J e @Tdg, (43

differs by the ordering of the couplinys £P9 are the linear functional operators describing evolution
. in their phase spaces.
A _6(7) ~ e e The assumed analo#0) of the quantum correlation
Jrel7) = 5 T Wec. - €c ) Wep function (36) differs from those used in previous wofRs’
. in two aspects. First, it is complex due to the second term on
i —Fp/T)e_IFpT} (36) the right-hand side of Eq42) , which is proportional to 1/
cp Z, ' in nonreduced units and, therefore, describes a quantum ef-

fect of the bath. The origin of this term is explained by the
where the dots denote some operators of the QDS. Strictljact that the energy gap for the transition consists both of the
speaking, in the classical limit the QDS-bath coupliWg.  energy splitting between the QDS eigenstates and of the
depends on the phase space coordinates of both baths, i.echange of the bath energy provided by the differef#zb of
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the bath Hamiltonian functions in the different reaction chanhere the expressions fd}jpc(q) and \A(pc(Q) are obtained

nels. Second, the correlation functidd0) is an equally
weighted sum of the averages over the distinct baths. Of
into Egs.

(41)—(44), we arrive at the conventional definition of the

course, substituting=,(q)=F.(q) and Lgp):ﬁ(c)

classical correlation function.

from Egs.(33) and(34), or from Eqgs.(A27) and (A28) by

ormal replacement onc with Wpc(q).
The other auxiliary matrices satiéﬂ/

Imp(@Y) _ _ i[Hp, 75(0,0] + (0,0 P(0)

It is important to note that a mean-potential bath dynam- ot

ics for the transition matrix element, inherent in QCLE,
would require in Eq(36) an averaging over equilibrium bath

+ L (a0, (50)

state~e Fp*Fd’2T This is obviously not the case, and, there-where

fore, the corresponding feature of the QCLE is an artefact.
The necessity to solve memory-type kinetic equations
considerably complicates practical applications of the devel-
oped quantum-classical approach, and, therefore, we trans-
form them into a fully equivalent system of differential equa-

involve any additional Here[...,...], denotes anticommutator, and
approximations, and is described in the following section.

tions. This step does not

VI. DIFFERENTIAL FORM OF THE QUANTUM-
CLASSICAL APPROXIMATION

By introducing several auxiliary matrices, the memory- Yo(a) = ‘f
type equation$30) and(31), where the quantum correlation

function was replaced by the quantum-classical an&éd@y

Yo(@1) = = i[W(q), 0] + [Up(a), (1) ]

R L] Bt

Up(a) = f fy(n)e e oW () e, (52)

[

(e i Hni () eMerdr, (53)

—00

while replacing indexp with c in Egs.(50—(53) one gets the

can be reduced to the following set of differential equationsequation forz,(q, t).

written using the conventiondahongeneralizedfunctions:

d ~ ~
Oc'jEt(t) =- i[Hp'UP(t)] i f [Wp(Q)u ﬂp(q,t)]dq

+ f (xpc@DIW,p(g) + H.c.)dag, (45)

and

d - A
Oc'i_ct(t) == i[Hm a'c(t)] =i f [Wc(q): ﬂc(qit)]dq
_f (iwcp(q)ch(qat) + H-C-)dq, (46)

where the auxiliary matrix

Xoc @) = 3(X2(a,t) + X2, )) (47)

In the above equationf%/p(q), \7VC(q), andec(q) are the
guantum operators of the QDS, parametrically dependent on
the phase space coordinates of the baths. They have the di-
mensionality ofN, X Ny, N¢ X N¢, andNy, X N, respectively,
and the dimensionality of the auxiliary functiong,(q,t),
7:(q,1), andx,(q,t) coincide with the dimensionality of the
corresponding QDS-bath coupling. However, we warn
against direct use of such quantum-classical form of the
QDS-bath interaction in the framework of Schrddinger or
Liouville equations, as this leads to the internal
inconsistencﬁ.7 In contrast, before passing to the quantum-
classical approximation, we have constrained several impor-
tant features such as the proper treatment of the QDS-bath
cross coherence, the detailed balance, etc., thus avoiding
possible problems. The equivalence of E5) and (46)
and Egs.(30) and(31) in the case of the quantum-classical
definition of the correlation function given by EO0) is

is an equally weighted sum of two other ones, which diﬁerproved following a general scheme used in Ref. 40.

only by the associated bath dynamics, indicated by the su-

perscript, i.e.,

xRt -
:7'[ - I(Xgé)(q’t)Hc - Hp)(gzl)(q’t)) + 7pc(q-t)

X yP(q) ~ iQp DX (@) + LPx R (G, t), (48)

while the equation fop(écc)(q,t) is obtained from Eq(48) by
replacing superscriptg” with “c.” Here also

Yoelat) = =i (W ore(t) = (W) + U@l

d ~ ~
+ <—‘;Pt(—t) + i[Hp,ap(t)]>ch(q), (49)

The initial conditions for the density matrices,
0p(0) = 00, 7(0) = 0, (54)

specify the starting distributions in the reaction channels,
while the nonzero initial values for the auxiliary matrices,

XEO%C)(Q: 0) = (?pc(q)o'co + UpOQpc(q)) ’p(p'c)(Q) ) (55)
and

70(0,0) = [Y,(@), o0 ) P,

76(9,0) = [Ye(@), oo+ #9() (56)

account for the specific QDS-bath correlations created during
the time scale ofy, which is important to preserve the posi-
tivity of the density matrices within the applicability limits of
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the approach, see Ref. 40 for more detdiEjuations(49)
and(51) contain the time derivatives on the right-hand sides,

which give the corresponding initial values for the auxiliary h d i tants. determi
functions, when the generalized functions of time are reYVnerea, andag are some non-negative constants, determin-

placed by the nongeneralized ores ing the probability of being in the corresponding reaction
An important feature of the obtained kinetic equations ischannel(they involye_ the statistical sums over the quantum
that the explicit construction of the Liouville operators is states as well Equilibrium between the reaction channels

avoided, and the propagation in time requires only matriX €qUIres, see Appendix B,

multiplications. For the Redfield theory the required decom-

position of the relaxation tensor was suggested in Ref. 48, aplacze'fpc”, (60)

which greatly reduces computational cost, and, consequently,

extends the class of tractable systems towards multileva,l,herefpc is the change of free energy of the reacti@s).

ones. On the other hand, our method has considerably Wid@quation(GO) along with the normalization conditiot67)

applicability limits than that of the Redfield theory, and to- allow to determine the coefficients,. provided that the

gether with a slightly modified molecular dynamics ap- solvent-induced reaction lasts for a sufficiently long time

proach, used in Ref. 37 to solve partial differential equations(this may not be the case if reactants can be infinitely sepa-

may offer a similar computation performance. rated by translational diffusion, for exampl&hus, Eqs(59)
and (60) satisfy the equilibrium conditions, and account for

the change of free energy of the surrounding media in the
VII. BASIC PROPERTIES OF KINETIC EQUATIONS course of reaction.

op=ay e HoT, o= ag g HdT, (59)

The kinetic equationg45) and (46), obtained in the
quantum-classical approximation describe the solvent-
induced transitions in the QDS consisting of two distinct VIll. DISCUSSION
groups of quantum states. These equations are valid at times . .
t> 7, fully account for arbitrarily long memory of the sol- The .Qeve'lo.ped mgthod has ywde and well established
vent degrees of freedom, and preserve the basic properties %Pphcablhty limits, a time resolution of tens of femtosep—
the density matrices. First, the Hermiticity of the densityonds’ allowoslsmoderate _strength of the QDS-bath couplings
matriceso, ¢ is intact, as it can be seen by taking the Her—(lJp to 5X 10" rad/s aff=300 K), and provides a powerful

mitian conjugate of Eqs(45) and (46). Second, the sum of framework for accurate modeling the solvent influence on

the traces ofr, and o is conserved and equal to the unity, the_ course of the reaction. Qn the other hand, ther_e is a
ie variety of other quantum-classical approaches to reaction dy-

namics in condensed phase, and the development of an alter-
Trpop+ Treoc =1, (57)  native method is justified only if it has considerable advan-
tages over the existing on&s.The required comparison
would be simple if all other approaches also had explicitly
declared applicability limits in terms of characteristic param-
eters. In that case it would be sufficient to compare the ap-
Trp(xpc(q,t)iwcp(q) + H.c.) = Trc(i\fvcp(q)xpc(q,t) + H.c.), plicability limits to reveal differences between the methods.
(59) Thus, it is relatively easy to compare our novel approach
with the standard weak coupling limit and with Redfield
where Ty, . denotes the trace over the quantum states of théheory. A principal advantage is that our method has femto-
corresponding group, which follows from the cyclic permu- second time resolution and is capable of describing near-
tation under the trace operation. It is seen that the termeesonance transitions in a deeply non-Markovian regime,
describing the transitions between distinct groups of quanwhich is a characteristic feature of many ultrafast reactions.
tum states cancel each other, while the traces of the other The NQCA is also different from thdgeneralized
constituents are zero, as shown in Ref. 40. Third, the positangevin equation approach, which essentially relies upon
tivity of the density matrices is maintained within the appli- the bilinear coupling to the bath. In our case, bilinear cou-
cability limits (8), which is provided by the proper account pling is not a prerequisite, and, therefore, our methodology is
for the finite duration of the characteristic timg As a re- valid beyond this restriction. Besides, the derived kinetic
sult, both the initial conditions and the relaxation operatorsequations incorporate the canonical equilibrium directly, and
are modified, and the role of such a modification for thethe fluctuation dissipation theorem, which provides a link
conservation of the positivity in the course of the time evo-between the fluctuations and the linear response, is not used
lution was well demonstrate{.Nonetheless, the mathemati- at all.
cal proof of the positivity can hardly be done in the general It is difficult, however, to directly compare NQCA with
case, and we validate our conclusion numerically for severabther quantum-classical treatments. The comparison with hy-
particular cases elsewhere. brid schemes calls for extensive benchmarking, which goes
Additionally, Egs.(45) and (46) satisfy detailed balance beyond the scope of this paper. We only note here that the
both inside each reaction channel and between them. Indeeshethod is free of the intrinsic drawbacks inherent in hybrid
the stationary solutions of Eq&5) and(46) are of the form  approaches.

which is proved by taking the time derivative of E§7) and
substituting the corresponding expressions from E45)
and(46). Then we use the identity
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IX. CONCLUSION the bath potentials, but the auxiliary matridesemory), cal-
culated for the true bath dynamics in each reaction channel.
We presented the generalization of the recently sug- In the present paper the novel non-Markovian approach
gested non-Markovian quantum-classical approximé‘fion to the reaction dynamics in condensed phase was formulated
for the purposes of reaction dynamics in condensed phas@& the most general way, while its application to particular
Toward this end we assumed that the quantum subsysteproblems of interest requires additional efforts. We start with
consists of two groups of quantum states, which interact witla simple case of nonadiabatic transitions between two local-
the surrounding media in different ways. This is typical forized modes, when the equilibration in their phase spaces is
charge transfer reactions, recombination and dissociatioruch faster than the characteristic time scale of the reaction
etc., and takes several important factors, such as the chanfee the accompanying paperhen, the reaction coordinates
of the free energy of the solvent in the course of reactionmay be considered as belonging to the canonical bath, while
and the peculiar bath dynamics in each reaction channel. TH8€ model is a direct counterpart of the nonadiabatic RRKM
obtained kinetic equations can easily be modified to accourtPProach, and is of practical interest. In addition, this simple
for a larger number of distinct groups of quantum states, angnodel allows for a detailed check of the new ingredients
constitute the basis for an accurate modeling of reaction dylchange of free energy of the surrounding media in the
namics in condensed phase, including ultrafast processe<ourse of reaction and the quantum-mechanical contribution

and with a nonphenomenological treatment of the eIementar?f the bath dynamigsof the generalized treatment. In the
reaction. ollowing we plan to apply the presented methodology to

An essential feature of the kinetic equations is their dif_solvent—induced nonadiabatic transitions for the more general
case, and to recombination reactions in the condensed phase,

cations. Nevertheless, the approach fully accounts for an afs t.he new ap.p.roach is perfectly suited to descnbg solvent-
bitrarily long memory of the bath degrees of freedom, andaSSIS.tecj tra'nsmons' between the states.of scatt(?rlng of 'the
properly takes into account the evolution during the initial reacting pair and its bound states. This work is now in
time period(~#/kgT, when the differential description is not Progress.

valid) via an appropriate modification of the initial condi-

tions and of the relaxation operators. This is particularly im-

portant to preserve the positivity of the density matricesACKNOWLEDGMENTS

within the applicability limits of the approach. Another dis-

tinctive feature of the method is the direct incorporation of . . N .
. A . L . . ._helpful discussions and to Professor Jurgen Troe for his con-
the canonical equilibrium into the kinetic equations, which . .
tinuous support. This work was partially supported by the
also account for the change of the free energy of the sur- :
. . Deutsche ForschungsgemeinscH&8FG).

rounding media.

The developed approach deals exclusively with the sol-
vent impact on the reaction dynamics. In some cases, when
the reaction of interest cannot proceed without the surroundAPPENDIX A: TRANSFORMATION OF REACTION

ing media(solvent-induced nonadiabatic transitions, recom-KERNELS
bination, etc), solvent effects play the decisive role. In other The connection between the reaction kernels Egs.

situations the interaction with the bath molecules exerts 5(122)_(25) and their symmetrized counterparts, see £9)

complementary influence, but is capable of considerably,,j the text above it, is established using the two-sided Fou-
changing the reaction kinetics and the mechanism of the el;

] ) ier transform
ementary reaction. In our formulation we assume that the
solution to the problem is known for the isolated quantum
subsystem, thus working with its eigenstates. In particular,
when applied to nonadiabatic transitions, neither adiabatic
nor diabatic representations are used. This is required for theherea(t) is an arbitrary function, defined on the entire time
use of the declared small parameter, and allows to take intaXis.

ferential form, which considerably facilitates practical appli-

The author is grateful to Professor Jérg Schroeder for

Aw) = fw a(t)e™'“'dt, (A1)

account solvent effects in the widest possible limits. Addi-  First of all, we represent the operator exponents as
tional approximations to the dynamics of quantum subsystem R Ny R Ne

can be included in the methodology presented, provided that = gtHpr = > etiE';Tf:k, gtifer = gtEeCi (A2)
the subsidiary small parameters exist for the system under k j

consideration. ) oo ) - 2
State-specific dynamics of the bath is frequently usedVhere the projectors on the individual eigenst&ésind C

within the framework of the quantum-classical Liouville Were defined in Eqgstl) and (2), EI; and E¢ are the corre-
equation. The crucial point of this approach is a meansponding eigenvalues &f, andH, and fix the QDS transi-
potential treatment of the transition phase, which is a sourc#on frequency

of unphysical behavior in some situations. In contrast, our w=E<—El (A3)
approach asserts a different recipe, which we would call a ! L

mean-evolution one. In other words, averaging concerns nah the correlation function§22)—(25) to get

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



164110-10  A. A. Neufeld

1 “
7 =22 Ployt-1)

HEmt-=2 %

XWEECIWEse & Te !t rad™, (A4)

HT-1=5 3 Pt -7
Ca,B

X éj\fvfge‘gf”e“(’”ki”aﬁ”, (A5)
and

Mot ) = =S WPkt -

(1o T)—Zp . Wep op(t=17)

X\;Vggéje—Eg/Te—i(wkj+vaB)r, (AB)

M(Dot-n==

=S WPt~ 7
Ca,fB

W Cla AT gri(gtap) T (A7)

Here the superscripta and 8 label the eigenstates of the

bath Hamiltonians=, and F, respectively,y and Ef are
their corresponding eigenvalues, while
Vap=En—EL. (A8)

The correlation function&22)—(25) are simply obtained from
Egs. (A4)—(A7) summing up indices, i.e.,

T1_d(7) :§ X (7). (A9)
3)

Similarly, we fix the QDS transition frequency in the sym-
metrized correlation functions, which gives

%j (Dop(t—7)= > ﬁ)k;p(t - T)\i\/gf éijge‘i(wki+Vaﬁ)T,
ap
(A10)
T(Dat-1 = PWea(t - nCIVe @i ap)”,
ap
(A11)
and
T (Dot = 2 VEPa(t - DWebCleritres7,
ap
(A12)
T (ot -1 = > VEPWLe(t - ) Cle it van)7,
B
(A13)
wherchp:VEp(O) was defined in Eq(29).

Taking the Fourier transform of EqeA4) and (A10) we
obtain

J. Chem. Phys. 122, 164110 (2005)

S 1 AL N BANA B e
A 0)Tp(0) = -2 PGyl @)WogCWeg' e 'T

Pap
X 8w+ wyj+ vyp), (Al14)
and
A Leo n o e
T ) Fp(w) = 525 P<(w) WEEC) 2 WEp

+ ng‘

)5(&) + W+ Vyp). (A15)

Then we use the identity

-8
Ao+ wy+ Vaﬁ)z_ = N+ wy+ v,p)
C
~E4T
X e e_(W+wkj)/Te_EpclT
Z ’

p
(A16)

where €, is the change of the free energy in the course of
reaction(35) to express the first term in the brackets on the
right-hand side of Eq(A15) through the second one, and,
comparing the resulting expression with Ety4) , we obtain

@) () = F() (1= Tow+ o + €0)Fo(w),
(A17)

where

fp(w) =i tanl‘(z—_l_>. (A18)

The other relations are proved in the same way, which gives

)5 ) = 794 0) (1= T+ g + 60T,
(A19)

21,4((0)(1 + ﬁb(w + oyt fpc))?fc(w)-

(A20)

W (0)5o(w) =

The expressionfA19) and(A20) were obtained by identical
transformations, no additional approximations were em-
ployed. Again, Eqs(A19) and (A20) separate out the dy-
namical and the statistical properties of the heat reservoir,
see also Ref. 40. The former enter via the symmetrized cor-

relation functionsX’;_,, which allow for the classical limit
and contain all information about the dynamics of the bath.
In turn, the statistical properties of the bath enter via univer-
sal (dynamics independenfunction of the temperature, see
Eq. (A18).

As it was found in Ref. 40, the generalized ker(%18)
describes the decay of quantum correlations and is in the
time domain a sharply decaying function with the character-
istic time 7,, Eq. (8),
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1 1

fp() =——

—_—. A21
WTbSinr(t/Tb) ( )

Using the shortness af, (it is just 8 fs at room temperature
one can integrate out of the quantum correlations contribu-
tion. The resulting kinetic equations are valid at times

> 71, and properly account for the detailed balance.
First, we use the identity

?b(w + wyj + €po) ﬁ)k‘}p(w) = J e‘i“’tf fo(r)e (@t epdT

XPo(t- Ndrdt, (A22)

J. Chem. Phys. 122, 164110 (2005)

and (A20), and taking the inverse Fourier transform, we de-
rive

= M (Dot + (- 1)

= PAypb(t - n)ClivEse (@t rapT, (A30)
a.p
and
(ot~ ) - (et~ 7
(A31)

-3 VB - e,
aB

and expand the density matrix, (via the expansion of the wherey,(t—7) is given by Eq(32). Taking account for Egs.
density matrix in the interaction representation, see Ref. 46A9) and(A2) we obtain Eqs(30) and (31).

for more details as

_ o~ .~ do. R
opl(t - T)Tibe'HPT< op(t) —i[Hp op()] 7= —o(-jpt(—t)r> e Hp7,

(A23)

APPENDIX B: STATIONARY SOLUTION OF KINETIC
EQUATIONS

The stationary limit of the kinetic equatiorg5) and
(46) requires7,(q,t)=7.(q,t)=0, andy,(q,t)=0, see Egs.

Then, substituting the expansigh23) in the right-hand side  (50) and(48). The first condition is satisfied by Eq&9), as
of Eq. (A22), and replacing operator exponents by the relat was already shown in Ref. 40, while the second one leads

tion (A2) we obtain
N

?b(w + wyj + €pc) Ie’kTTp(w) = IA3'<(A1€k)((1>n i € Tp(w)
n=1
+ ho(@n) + i 0T(@) +i[Hp, Tp(@) NP, (A24)
where
Flb(w) =- J” fy(De“dr= ZLT;’ (A25)
"°° cosf?(ﬂ>

2T
and it follows from this that
~fb(w + i+ €p0) ﬁk'&p(w)\ivpc C
= PN(@y(@)Upe + {i 0Fp() +i[Hp, 7)Y C.
(A26)

Here

~ s+ ~.
Upe=i> tanl‘(%Jz—TeE) P4, C, (A27)
ki

(A28)

which can also be written as Eg®83) and (34). Similarly,
we obtain

Tf’b((.l) + wkj + Gpc) l,:\’k\ANpc’a'C(w)éj

= PY(U, (@) + Ypdi 0T(@) +i[He, T(0) DT
(A29)

Finally, substituting Eqs(A26) and (A29) into Egs.(A19)

to the following relation to prove:

N, N

4+ P ~.

SHS [1 . tan(%ﬁ%) } &SN, (@)
ko j

Np Ne
4+ ~ A A
ko

(B1)

where we explicitly substituted E¢430), and used the iden-
tities

e Hy TPk = e EYTPK CleHdT = ClgBUT, (B2)

The relation(B1) holds for any term in the sum, i.e., at fixed
indicesk, j, if the condition(60) is true.

See, e.g., articles ifEncyclopedia of Chemical Physics and Physical
Chemistry, Parts A and (dited by J. H. Moore and N. D. Spendé&sP,
Bristol, 2007.

2Electron and Proton Transfer in Chemistry and Biolp&gudies in Physi-
cal and Theoretical Chemistry, edited by A. Muller, Vol. 78, H. Ratajczak,
W. Junge, and E. Dieman(klsevier, Amsterdam, 1992

3proton Transfer in Hydrogen-Bonded Systeited by T. BountigPle-
num, New York, 1998

43. March, Advanced Organic Chemistry. Reactions, Mechanisms, and
Structure 4th ed.(Wiley, New York, 1992.

°C. ReichardtSolvent Effects in Organic Chemistfyerlag Chemie, New
York, 1979.

%The Hydrogen Bond: Recent Developments in Theory and Experiments
edited by P. Schuster, G. Zundel, and C. Sand@xfgrth-Holland, Am-
sterdam, 1976 \Vols. 1-3.

B. E. Conway,lonic Hydration in Chemistry and Biophysic&lsevier,
Amsterdam, 19811

8y, Marcus, lon Solvation(Wiley, Chichester, 1985

SW. N. Olmstead and J. I. Brauman, J. Am. Chem. S@@, 4219(1977).

193, Efrima and M. Bixon, Chem. Phys. Let25, 34 (1974).

113, Jortner and M. Bixon, J. Chem. Phy88, 167 (1988.

2p. M. Kuznetsov,Charge Transfer in Physics, Chemistry, and Biology
(Gordon and Breach, New York, 1995

3\, Smoluchowski, Z. Phys. Chem., Stoechiom. Verwandtsch&&1129
(1919.

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



164110-12  A. A. Neufeld

K. M. Hong and J. Noolandi, J. Chem. Phy&8, 5163(1978.

15A. 1. Burshtein, Adv. Chem. Physl14, 419 (2000.

A, A. Kipriyanov, A. B. Doktorov, and A. |. Burshtein, Chem. Phy#6,
149(1983; 76, 163(1983.

73, A. Rice,Diffusion-Limited ReactionéElsevier, Amsterdam, 1985

183, Keizer, Chem. Re\Washington, D.Q. 87, 167 (1987.

19E. Kotomin and V. KuzovkovModern Aspects of Diffusion-Controlled
ReactiongElsevier, Amsterdam, 1996

203, sung and S. Lee, J. Chem. Phy41, 10159(1999; 112, 2128(2000.

Zgee, e.g., review articles published in Chem. Réashington, D.Q. 99,
353(1999.

22N, Makri, Annu. Rev. Phys. Chens0, 167(1999, and references therein.

2\, P. Allen and D. J. TildesleyComputer Simulation of LiquidkClaren-
don, Oxford, 1995

%p_A. M. Dirac, Proc. Cambridge Philos. So26, 376 (1930.

%G, D. Billing, J. Chem. Phys99, 5849(1993.

283, C. Tully and R. K. Preston, J. Chem. Ph{s, 562 (1971).

2\, H. Miller and T. F. George, J. Chem. Phy56, 5637 (1972.

J. Chem. Phys. 122, 164110 (2005)

32\, Boucher and J. Traschen, Phys. Rev3) 3522(1988.

33A. Anderson, Phys. Rev. Let74, 621(1995.

340. V. Prezhdo and V. V. Kisil, Phys. Rev. A6, 162 (1997.

%R. Kapral and G. Cicotti, J. Chem. Phy%10, 8919(1999.

%M. Santer, U. Manthe, and G. Stock, J. Chem. P4, 2001 (2001).

%A, A. Neufeld, D. Schwarzer, J. Schroeder, and J. Troe, J. Chem. Phys.
119 2502(2003.

%p, A. Frantsuzov, Chem. Phys. Le®67, 427 (1997.

3P, A. Frantsuzov, J. Chem. Phys11, 2075(1999.

%A, A. Neufeld, J. Chem. Physl19 2488(2003.

418, F. Minaev, J. Mol. Struct.: THEOCHEM.83 207 (1989.

4%p, Suppan and N. Ghoneingolvatochromism(The Royal Society of
Chemistry, Cambridge, 1997

33, Nakajima, Prog. Theor. Phy£0, 948 (1958; R. Zwanzig, J. Chem.
Phys. 33, 1338(1960.

4“A. A. Neufeld, J. Chem. Physl21, 2542(2004).

**This question was raised by the referee.

2 Webster, J. Schnitker, M. S. Friedrich, R. A. Friesner, and P. J. Rossky‘fer- P. Straatsma and J. A. McCammon, Annu. Rev. Phys. Chn407
(1

Phys. Rev. Lett.66, 3172(1991).
2p_J. Kunz, J. Chem. Phy$€5, 141 (1997).
%00. V. Prezhdo and P. J. Rossky, J. Chem. PHya7, 825 (1997).
31, V. Alexandrov, Z. Naturforsch. A36A, 902 (1981).

992.
4N\, F. van Gunsteren, X. Daura, and A. E. Mark, Helv. Chim. A8%,
3113(2002.
“8W. T. Pollard and R. A. Friesner, J. Chem. Phy€0, 5054(1994).

Downloaded 23 Mar 2009 to 134.76.223.8. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



