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A generalization of the recently published quantum-classical approximationfA. A. Neufeld, J.
Chem. Phys.,119, 2488 s2003dg for the purposes of reaction dynamics in condensed phase is
presented. The obtained kinetic equations treat a solvent influence in a nonphenomenological way,
account for the change of the free energy of the surrounding media, allow for different solvent
dynamics in each reaction channel, and constitute a powerful framework for an accurate modeling
of solvent effects, including ultrafast processes. The key features of the approach are its differential
form, which considerably facilitates practical applications, and well defined wide applicability
limits. The developed methodology fully accounts for an arbitrary long memory of the canonical
bath and covers solvent-induced processes from a subpicosecond time scale. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1884515g

I. INTRODUCTION

A majority of reaction events in chemical and biological
systems occur in condensed phase, which has stimulated ex-
tensive experimental and theoretical studies1 of the solvent
influence on the course of reactions. This influence manifests
itself in a number of ways. First, a solvent can chemically
react with a solute, examples are proton transfer,2,3 substitu-
tion reactions,4,5 etc. Even a chemically inert solvent is able
to form considerably stable complexes with molecules of
interestshydrogen bonding,3,5,6 solvation of ions7,8d, and is
capable of a substantial modification9,5 of the potential en-
ergy surfacessPESsd of dissolved reactants. Second, a rela-
tively strong interaction with solvent molecules commonly
leads to fast decoherence of the quantum phase of transi-
tions, thus mightily influencing a mechanism of an elemen-
tary process. In addition, the surrounding media alter the
character of intermolecular andslow-frequencyd intramo-
lecular motions, changing them from dynamic into stochastic
processes.

The complexity of the problem resulted in a formulation
of theoretical approaches considerably simplified in compari-
son with those used for rarefied gases. In particular, intermo-
lecular reactions in solution are usually considered in the
approximation of separating out the relative motion of the
reactants and their distant-dependent reaction probability.
The latter is supposed to be mobility independent and is
either calculated by appropriate theories10–12 or specified
phenomenologically.13–15 This methodology turns out to be
very fruitful when considering a wide class of diffusion as-
sisted processes,15–20 and allows for a detailed study of the
influence of reactant motion on the kinetics of both revers-
ible and irreversible reactions.

There exist certainly several limitations for independent
consideration of the reactivity and the mobility of dissolved
molecules. First, at times shorter than a characteristic deco-

herence time the transitions between quantum levels proceed
dynamically, and the description of an elementary process by
means of transition probabilities is not adequate. Second, the
efficiency of dephasing depends on many factors, while the
solvent-induced damping of the reaction coordinate, driven
by the high-frequency modes, is not as effective as the damp-
ing of the low-frequency ones. Thus, ultrafast reactions in
condensed phase, proceeding in thessubdpicosecond time
range, require a more accurate approach. Another rapidly
growing field of research is the use of supercritical fluids as
a reaction environment,21 where the density of the surround-
ing media can be smoothly varied from gas to liquid phase,
thus gradually changing the mechanism of an elementary
reaction from dynamicsrarefied gasesd to stochasticsliquidsd,
and some universal theoretical methodology is highly desir-
able to describe properly this interesting transitional region.

Existing approaches for anab initio simulation of reac-
tions in condensed phase can be subdivided according to the
treatment of solvent dynamics. A quantum-mechanical de-
scription of the solvent is inherent in rigorous semiclassical
approaches,22 but it is feasible only for a few simple models.
On the other hand, a classical description allows for a real-
istic modeling of the dynamics of the surrounding media by
means ofab initio molecular dynamics methods,23 and is an
attractive alternative when quantum effects in the solvent
dynamics are unimportant. Reacting subsystem can also be
treated quantum mechanically or classically, but most of the
reactions are intrinsically quantum mechanicalsformation or
breaking of chemical bonds, nonadiabatic transitions, etc.d,
thus leading to the quantum-classical treatment as the most
suitable methodology for an adequate description of the re-
actions in condensed phase.

Despite the fact that the basic idea of the quantum-
classical approach is rather simple, its practical implementa-
tions are very different and not equivalent to each other. In
the most straightforward attempts to combine quantum and
classical mechanics one adds quantum transitions directly to
the classical trajectories, in the form of a mean-fieldadElectronic mail: aneufel@gwdg.de
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approximation22,24,25 sMFAd or a surface hopping26–28 sSHd
schemesor a combination29,30 of bothd. These approaches,
however, have an essentially empirical flavor and unknown
applicability limits. In a certain sense, MFA and SH are
complementary schemes. The former treats the transitions
dynamically, with a full account of quantum interference ef-
fects, but fails to describe properly a situation of consider-
ably distinct channels of the reaction. In contrary, the SH
scheme provides correct asymptotical solutions, but neglects
the quantum interference effectssthe transitions are treated
as probabilistic jumps between PESsd.

A quantum-classical Liouville equation31–36 sQCLEd for
the reduced density matrix of the quantum subsystem seems
to combine both the dynamical treatment of quantum transi-
tions and the correct asymptotical solutions in the reaction
channels. Various types of dynamics of the classical degrees
of freedom can be used within the QCLE, which makes the
approach an alluring one to study the reaction kinetics from
gas to liquid state densities. Nevertheless, the QCLE also
suffers from an internal inconsistency: it replaces the true
cross coherence, which drives the energy flow between the
subsystems, by the direct coherence inside the quantum sub-
system, see Sec. III of Ref. 37 for more explanations. Among
other things, it leads to a mean-fieldsor more precisely to a
mean-potentiald treatment of the transition phases, inherent
in QCLE. Exactly this MFA feature of the QCLE is the
source of unphysical predictions,38,39 when applied to nona-
diabatic transitions.

A non-Markovian quantum-classical approximation40

sNQCAd is free from the aforementioned defects. It is based
on a short coherence time of the interaction between the
quantum subsystem and the canonical bath, has known ap-
plicability limits, and properly handles cross coherence be-
tween the subsystems. In the present paper we generalize the
NQCA to extend its capabilities towards the treatment of
reaction dynamics. The generalization consists of an assump-
tion about the dynamics of the surrounding media, dependent
on a state of the quantum subsystem, and is required to take
into account the difference of interactions between the solute
and the solvent in the distinct reaction channels, as well as
the change of the free energy of the solvent in the course of
reaction.

The outline of the paper is the following. Basic assump-
tions of the approach, small parameter, and partition of the
Hamiltonian of the reacting system are presented in Sec. II.
The assumptions made allow to separate out the reaction
channels and to obtain the general non-Markovian master
equations, see Sec. III. The corresponding memory kernels,
describing various solvent-induces transitions, are then
evaluated in a form suitable for the quantum-classical treat-
ment, as outlined in Sec. IV and Appendix A. The latter is
introduced in Sec. V. The kinetic equations of the quantum-
classical approximation, which are of differential form, but
fully account for the arbitrary long memory of the bath, are
obtained in Sec. VI. Basic properties of these equations
spositivity, detailed balance, etc.d are discussed in Sec. VII.
The advantages of the developed approach in comparison
with existing quantum-classical treatments are briefly dis-

cussed in Sec. VIII. In the Conclusion we summarize the
results and outline the direction of future work.

II. BASIC ASSUMPTIONS

To generalize the NQCA, we assume that the quantum-
dynamical subsystemsQDSd consists of groups of quantum
states which interact with the thermal bath in different ways.
This means that the Hamiltonian of the bath may depend on
a quantum state of the QDS. Although the number of differ-
ent groups may, in principle, be arbitrary, we assume that
there are only the two groups of states, and denote the asso-

ciated projectors asP̂ andĈ. Additionally, we require a com-
mutativity of the projectors with the QDS Hamiltonian, and,
therefore, the transitions between the distinct groups of quan-
tum states are induced solely by the interaction with the sol-
vent. In particular, when applied to nonadiabatic transitions,
neither an adiabatic nor a diabatic representation is used.
This is demanded to develop approximations based on a
short coherence time of the QDS-bath interaction, and allows
to take into account the solvent effects in the widest possible
limits.

For the groups of discretesboundd states the required
projectors are constructed from the corresponding normal-
ized eigenstatesuckl and uf jl as

P̂ = o
k

Np

P̂k, P̂k = ucklkcku, s1d

and

Ĉ = o
j

Nc

Ĉj, Ĉj = uf jlkf ju, s2d

where P̂k and Ĉj are the projectors on the individual eigen-
states, whileNp andNc are the numbers of the states in the
corresponding group. Although a continuous part of the spec-
trum of the QDS eigenstates can be included in the consid-
eration by an appropriate modification of the projectorssthey
will contain integration over the continuous partd, we content
ourselves with a derivation assuming a discrete spectrum of
eigenstates. Nonetheless, one can proceed to the correspond-
ing limit in the resulting kinetic equations.

Then, we split the QDS Hamiltonian as

Ĥ = Ĥp + Ĥc, Ĥp = ĤP̂, Ĥc = ĤĈ, s3d

since it is assumed to commutate with the projectors. In turn,
the Hamiltonian of the bath involves interactions between
solvent molecules and that part of the QDS-bath coupling,
which does not induce transitions between the eigenstates of
the QDS. It can be written as

F̂ = F̂p + F̂c, F̂p = F̂P̂, F̂c = F̂Ĉ, s4d

i.e., the bath dynamics is assumed to be group specific, but is
independent on an individual state inside the group. If this is
not the case, then the number of distinct groups of quantum
states should be increased. We also note that these assump-
tions provide the commutativity of the bath Hamiltonians4d
with that of the QDSs3d.
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The rest of the interactions enter the QDS-bath coupling
Hamiltonian, which can be represented as

Ŵ= Ŵp + Ŵc + Ŵpc + Ŵcp. s5d

Here

Ŵp = P̂ŴP̂, Ŵc = ĈŴĈ, s6d

describe interactions between the group of quantum states
and the bath, which induce transitionsinsidethe given group,
but not between distinct groups. In contrast,

Ŵpc = P̂ŴĈ, Ŵcp = Ŵpc
† = ĈŴP̂, s7d

where the dagger superscript denotes a Hermitian conjugate,
describe the solvent-induced transitions between distinct
groups of quantum states. The above partitioning of the
Hamiltonians has a formal character, and can be done for an
arbitrary system of interest. Nevertheless, we impose a re-

striction on the form ofŴpc and Ŵcp, and do not consider
those solvent-induced transitions between distinct groups of
quantum states, which are not accompanied by a correspond-
ing change of the bath statessolvent-induced radiative
transitions,41,42 for exampled.

The subsequent approximations are based on the small-
ness of the cross correlations between the QDS and the ca-
nonical bath, and require the matrix elements of the QDS-
bath coupling to satisfy40

uŴik
abu

"
tb ! 1, a Þ b, i Þ k, tb =

"

p kB T
, s8d

where " is the Planck constant, the first multipliersW/"d
determines a rate of formation of the cross correlations,
while tb is their characteristic lifetime40 due to an energy
uncertainty of the bath degrees of freedom. Here and after-
wards Latin and Greek letters label the QDS and the bath
eigenstates, respectively. Thus, the criterions8d actually
means that the rate of cross-correlations formation is much
slower than the rate of their decay. In the following Planck
and Boltzmann constants are set to unity, i.e.,"=1 andkB

=1, thus measuring interaction matrix elements and absolute
temperatureT in frequency units.

The assumptions hold true for many solvent-induced re-
actions of interest and allow to separate out the reaction
channels, as shown in the following section.

III. GENERAL MASTER EQUATION AND SEPARATION
OF REACTION CHANNELS

Following Ref. 40, we transform the Liouville–von Neu-
mann equation for the density matrix%̄std of the total system
sQDS1bathd,

d%̄std
dt

= dstd%0 + isĤ + F̂ + Ŵd%̄std, s9d

where%0 is the initial density matrix,Ĥ, F̂, andŴ are the
commutator derived Liouville operatorsssuperoperatorsd of
the QDS, bath, and the QDS-bath interactions, respectively,
into a fully equivalent integro-differential equation of the
form

d%̄std
dt

= sdstd + iŴĜ0stdd%0 + isĤ + F̂d%̄std

−E
−`

`

K̂std%̄st − tddt. s10d

Here the definition of the density matrix is extended for
negative times using the stepwise Heavisideu function as

%̄std = ustd%std, s11d

and the kernel

K̂std = ŴĜ0stdŴ, Ĝ0std = ustdeiĤt eiF̂t. s12d

Although the Nakajima–Zwanzig projection formalism43

provides an elegant way to eliminate the bath variables, it is
not convenient for the problem under consideration. Indeed,
there exist different types of correlationssor coherence,
when using a quantum-mechanical terminologyd, those in-
side the QDS, the correlations between the bath states, and
the QDS-bath cross correlations. Within the projection for-
malism, the latter two are actually moved into the kernel of
corresponding master equation. Developing subsequent ap-
proximations to this kernel, which is defined via an exact
solution to the problem, is not an easy task. On the other
hand, Eq.s10d explicitly contains the QDS-bath cross corre-
lations, which are subject to perturbative treatment, while the
kernel on the right-hand side is of the simple form, given by
Eq. s12d.

The closed memory-type equations for the density ma-
trices of the distinct groups of quantum states are obtained in
a way similar to that described in Ref. 40, and require a weak
QDS-bath coupling in the sense of the conditions8d. In a first
step, the total density matrix%̄ in the integrand on the right-
hand side of Eq.s10d can be replaced by

%̄st − td . %̄pst − td + %̄cst − td, s13d

where

%̄pst − td = P̂%̄st − tdP̂, %̄cst − td = Ĉ%̄st − tdĈ s14d

are the density matrices projected on the corresponding sub-
spaces. The approximations13d neglects the correlations be-
tween%̄p and %̄c, which can be of two types, the coherence
inside the QDS and the cross coherence between the QDS
and the bath. We postulate that the former type of coherence
is absent at the initial instant of time, and, in accordance with
the assumptions made, see text after Eq.s7d, such direct co-
herence between distinct groups of quantum states will not
appear afterwards as well. As regards the cross correlation
between the QDS and the bath, it is small under condition
s8d, and, in general, is of second order in the QDS-bath cou-
pling strength. On the other hand, the exact kernel in Eq.
s10d is strictly proportional to the second power of the QDS-
bath interaction, and, therefore, the use of Eq.s13d in the
integrand on the right-hand side of Eq.s10d retains the effect
of the cross correlation between%̄p and %̄c to their lower
order.
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Similarly, the criterions8d allows to replace%̄p and%̄c in
the integrand on the right-hand side of Eq.s10d by the direct
products of the density matrices of the QDS and the bath,
i.e.,

%̄pst − td . s̄pst − td 3 rp, %̄cst − td . s̄cst − td 3 rc,

s15d

where

s̄p,cst − td = Trb %̄p,cst − td s16d

are the projected density matrices of the QDS, while

rp,c =
1

Zp,c
e−F̂p,c/T, Zp,c = Trbse−F̂p,c/Td s17d

are the equilibrium density matrices of the corresponding
bath, and Trb denotes the trace over the bath variables. Thus,
we assume that the transitions do not significantly change the
equilibrium state of the bathes in the reaction channels.
Again, the effect of the cross correlations between the QDS
and the bath is retained to their lower order, despite the use
of the factorized density matricess15d.

Note that the approximationss13d ands15d do not mean
that the neglected off-diagonal elements between the QDS
and the bath are small, they are only assumed to be out of
phase. Situation is well illustrated by analogy with the dis-
crete Fourier transform of exponentially decaying function,
when the individual terms of expansion represent themselves
an infinitely oscillatingsnondecayingd functions with possi-
bly large amplitudes. Nevertheless, after some time, their
sum gives a negligibly small value due to the precise phase
cancellation of the constituents.

Finally, conditions8d provides separation of the reaction
channels. Indeed, operating on Eq.s10d from both sides by
the corresponding projector, taking the trace over the bath
variables, and restricting oneself to the lower order in the
QDS-bath cross correlations, we obtain for the projected
density matricess16d the following set of the non-Markovian
kinetic equations:

ds̄pstd
dt

= dstdsp0 + z̄pstd − ifĤp,s̄pstdg

−E
−`

`

M̂pstds̄pst − tddt

−E
−`

`

M̂1stds̄pst − tddt

+E
−`

`

M̂2stds̄cst − tddt, s18d

and

ds̄cstd
dt

= dstdsc0 + z̄cstd − ifĤc,s̄cstdg

−E
−`

`

M̂cstds̄cst − tddt

+E
−`

`

M̂3stds̄pst − tddt

−E
−`

`

M̂4stds̄cst − tddt, s19d

wheref. . . , . . .g denotes commutator,sp,c0 are the initial con-

ditions, z̄p,cstd are the time-extended source terms due to the

initial correlations, and the projected HamiltoniansĤp,c were
defined earlier, see Eq.s3d. The explicit expressions for the
memory kernels will be given in the following section. Their

particular feature is thatM̂pstd depends solely onŴp,

M̂cstd depends solely onŴc, while M̂1–4std contain only

Ŵpc and Ŵcp, see Eqs.s6d and s7d. Mathematically, this is

provided by the commutativity of the free propagatorĜ0std,
defined in Eq.s12d, with the projectors. As the result, the

cross products of the formŴp. . .Ŵpc, etc., are met only in

combination with P̂%̄st−tdĈ, or Ĉ%̄st−tdP̂. The contribu-
tions of the latters are small and already proportional to the
second power of the QDS-bath coupling, thus making the
above cross products to be of higher order of smallness. In
that way the reaction channels are separated out. Nonethe-
less, a specific interference between them enters the theory
via memory-type dynamics.

To end this section, we note that the Hamiltonian renor-
malization of the form

Ĥp → Ĥp + Trb Ŵp rp, Ŵp → Ŵp − Trb Ŵp rp, s20d

and

Ĥc → Ĥc + Trb Ŵc rc, Ŵc → Ŵc − Trb Ŵc rc s21d

is required40 for a fast decay of the time-extended source

terms z̄p,cstd on the time scale oftb. In the following we
assume that the renormalization was already done.

IV. REACTION KERNELS

The memory kernels in Eqs.s18d ands19d describe vari-
ous processes due to the interaction with the solvent. In par-

ticular, M̂p,cstd involve the energy redistribution/relaxation

inside the given group of quantum states, whileM̂1–4std
sreaction kernelsd describe the solvent-induced transitions
between the distinct groups. Since the former account for the
processes in the uncoupled reaction channels, their structures
can be taken from Ref. 40, where all variablessHamilto-
nians, density matrices, etc.d should be treated as group spe-
cific and labeled by the corresponding subscriptsp or cd.

In the following we concentrate on the structure of reac-
tion kernels. For the sake of convenience we introduce the
following Liouville operators of the correlation functions:
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X̂1stds̄pst − td =
1

Zp
Trbse−iĤpts̄pst − td

3Ŵpc eiĤctŴcp
h stde−F̂p/Td , s22d

X̂2stds̄cst − td =
1

Zc
Trbse−iĤptŴpc s̄cst − td

3eiĤct e−F̂c/TŴcp
h stdd , s23d

X̂3stds̄pst − td =
1

Zp
TrbsŴcp

h stde−F̂p/Te−iĤpts̄pst − td

3Ŵpc eiĤctd , s24d

X̂4stds̄cst − td =
1

Zc
Trbse−F̂c/TŴcp

h stde−iĤptŴpc

3s̄cst − tdeiĤctd , s25d

where

Ŵcp
h std = eiF̂ctŴcp e−iF̂pt s26d

is the QDS-bath coupling in the Heisenberg representation
with respect to the bath variables. Then, the explicit expres-

sions forM̂1–4std take the form

M̂1,3stds̄pst − td = ustdsX̂1,3stds̄pst − td + H.c.d , s27d

M̂2,4stds̄cst − td = ustdsX̂2,4stds̄cst − td + H.c.d , s28d

where H.c. denotes hermitian conjugate.
However, the presented form of the reaction kernels is

not convenient when applied to reaction dynamics in con-
densed phase. First, a realistic modeling of the solvent is
accessible only within a classical mechanics treatment,
whereas the bath variables enter the correlation functions
s22d–s25d in a way, which does not allow for the classical
limit sdue to time-ordered averages of bath operatorsd. Sec-
ond, the decay of some correlations between the reacting
system and the canonical bath is essentially of quantum-
mechanical nature, and is not correctly described by classical
mechanics, so that the nonequilibrium energy flow between
the subsystems has both “classical” and “quantum” compo-
nents, see Ref. 44 for more details.

The above problems can systematically be resolved by
appropriate transformation of the reaction kernels. Techni-
cally, it is necessary to pick out a generalized memory kernel
describing the decay of the quantum correlations due to the
energy uncertainty of the bath degrees of freedom. This pro-
cedure is more transparent for the bilinear QDS-bath cou-
plings, see also Ref. 40. Although this assumption was used
to simplify intermediate derivations only, it may, neverthe-
less, lead to some doubts45 about the validity of the obtained
kinetic equations for the arbitrarysnonfactorizedd form of the
coupling. To remove this question, we give derivation for the
general case.

Towards this end we introduce “symmetrized” correla-
tion functions, which are obtained from Eqs.s22d–s25d
just by formal replacement ofe−F̂c/TŴcp

h std /Zc and

Ŵcp
h stde−F̂p/T/Zp with

V̂cp
h std =

1

2
Se−F̂c/T

Zc
Ŵcp

h std + Ŵcp
h std

e−F̂p/T

Zp
D . s29d

The connection between Eqs.s22d–s25d and the corre-
sponding symmetrized correlation functions is established in
Appendix A. It decouples the statistical and the dynamical
properties of the bath, and allows to take account of the
quantum component of the energy flux between the QDS and
the heat reservoir before proceeding to the classical limit for
the bath degrees of freedom. The omission of this step leads
to an incorrect treatment of the quantum correlations be-
tween the QDS and the classical bath, and, as a consequence,
to the violation of the detailed balance.

Then, at timest@tb we derive the following set of the
kinetic equations, see Appendix A:

ds̄pstd
dt

= dstdsp0 − ifĤp,s̄pstdg −E
−`

`

M̂pstds̄pst − tddt

+E
−`

`

ustdTrbse−iĤptḡpcst − tdeiĤctiV̂cp
h std + H.c.ddt,

s30d

and

ds̄cstd
dt

= dstdsc0 − ifĤc,s̄cstdg −E
−`

`

M̂cstds̄cst − tddt

−E
−`

`

ustdTrbsiV̂cp
h stde−iĤptḡpcst − tdeiĤct + H.c.ddt,

s31d

where

ḡpcstd = − isŴpcs̄cstd − s̄pstdŴpcd

+ Ûpc s̄cstd + s̄pstdÛpc + ŶpcSds̄cstd
dt

+ ifĤc,s̄cstdgD
+ Sds̄pstd

dt
+ ifĤp,s̄pstdgDŶpc s32d

and we have assumed factorized initial conditions, which

eliminate the time-extended source terms,40 i.e., z̄p,cstd=0.
Here

Ûpc =E
−`

`

fbstde−iepct e−iĤptŴpc eiĤctdt, s33d

and

Ŷpc = −E
−`

`

t fbstde−iepct e−iĤptŴpc eiĤctdt, s34d

where the generalized memory kernelfbstd describing the
decay of quantum correlations is defined by Eq.sA21d, and
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epc = − T lnsZp/Zcd = − Tsln Zp − ln Zcd s35d

is the change of the free energy of the bath in the course of
the reaction.

The derived fromŴpc operatorss33d and s34d, see also
Eqs. sA27d and sA28d, are responsible for the detailed bal-

ance sÛpcd, and for the positivity of the density matrices
within the applicability limits of the approachs“slippage”

operatorŶpcd. The value ofepc, which enters the detailed
balance condition together with the QDS transition frequen-
cies, is formally expressed in terms of the statistical sums of
the bathsZp,c. From the practical point of view, the change of
the free energy is frequently available from experimental
data, and can also be extracted fromab initio
simulations.46,47A specific approach to the determination of
this quantity will be outlined on practical applications of the
method.

Nevertheless, the bath in Eqs.s30d–s32d is still treated
quantum mechanically, and the system-bath couplings have
full dimensionality in the subspaces of the QDS and of the
bath, which embarrasses practical use of the method. Fur-
thermore, realistic simulations of solvent dynamics are pro-
vided by molecular dynamics methods, based on classical
mechanics. The desired transition to the classical mechanics
treatment of the bath is described in the following section.

V. QUANTUM-CLASSICAL APPROXIMATION

Up to now, the two approximations were employed. The
first one restricts the strength of the system-bath couplings to
the valuess8d, which has allowed to separate out the reaction
channels and to obtain the closed kinetic equations for the
density matrices of the QDS. The second approximation is
based on the short lifetime of quantum correlations and was
used to integrate out of the quantum component of the non-
equilibrium energy flux between the QDS and the thermal
bath. The latter becomes dominant if the conditions8d is not
fulfilled ssee Ref. 44 for more detailsd and, therefore, the
classical mechanics treatment of the bath seems to be prob-
lematic in this limit.

A quantum-classical approximation is introduced as
usual by replacing the correlation functions with the appro-
priate classical analogs. Although a search of such analogs is
always based more on intuition, than on rigorous derivation,
we give some arguments explaining our choice. First, the
reaction kernel in Eq.s30d contains the retarded correlation
function of the formfthe correlation function in Eq.s31d
differs by the ordering of the couplingsg

Ĵretstd =
ustd

2
TrbHŴpc . . .eiF̂ctSe−F̂c/T

Zc
Ŵcp

+ Ŵcp
e−F̂p/T

Zp
De−iF̂ptJ , s36d

where the dots denote some operators of the QDS. Strictly

speaking, in the classical limit the QDS-bath couplingŴpc

depends on the phase space coordinates of both baths, i.e.,

Ŵpc →
limit

classical

Ŵpcsqp,qcd, s37d

where the operator on the right has matrix elements only in
the QDS subspace. However, the classical limit for the heat
reservoir implies that the processes of quantum nature do not
play significant role in its dynamics. Therefore, we assume
that the QDS-bath interaction does not lead to the tunneling
inside the bath, i.e.,

Ŵpcsqp,qcd = Ŵpcsqpddsqp − qcd = Ŵpcsqcddsqp − qcd,

s38d

and one can simply write

Ŵpc →
limit

classical

Ŵpcsqd, s39d

whereq is the set of the phase space coordinatesseitherqp or
qcd.

Then, it is readily seen that Eq.s36d contains averaging
over different baths, being in the equilibrium and character-
ized by the corresponding bath Hamiltonian. It is, therefore,
logical to replace the quantum averages by the sum of the
dynamical averages over the sets of equilibrium classical tra-
jectories, belonging to different baths, which gives

Ĵretstd =E E Ŵpcsqdw̄sq,q8;td . . .Ŵcpsq8ddq dq8, s40d

where

w̄sq,q8;td = sw̄spdsq,q8;tdcspdsq8d

+ w̄scdsq,q8;tdcscdsq8dd/2, s41d

and the generalized two-dimensional densities obey

]

]t
w̄sp,cdsq,q8;td = dstddsq − q8d − iVpcsqdw̄sp,cdsq,q8;td

+ Lq
sp,cd w̄sp,cdsq,q8;td. s42d

Here

csp,cdsqd = e−Fp,csqd/T/Zp,c, Zp,c =E e−Fp,csqd/Tdq, s43d

is the normalized equilibrium Boltzmann distributionsstatic
contourd for the corresponding reaction channel, and

Vpcsqd = Fpsqd − Fcsqd, s44d

whereFp,csqd are the Hamiltonian functions of the baths, and
Lq

sp,cd are the linear functional operators describing evolution
in their phase spaces.

The assumed analogs40d of the quantum correlation
function s36d differs from those used in previous works40,37

in two aspects. First, it is complex due to the second term on
the right-hand side of Eq.s42d , which is proportional to 1/"
in nonreduced units and, therefore, describes a quantum ef-
fect of the bath. The origin of this term is explained by the
fact that the energy gap for the transition consists both of the
energy splitting between the QDS eigenstates and of the
change of the bath energy provided by the differences44d of
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the bath Hamiltonian functions in the different reaction chan-
nels. Second, the correlation functions40d is an equally
weighted sum of the averages over the distinct baths. Of
course, substitutingFpsqd=Fcsqd and Lq

spd=Lq
scd into Eqs.

s41d–s44d, we arrive at the conventional definition of the
classical correlation function.

It is important to note that a mean-potential bath dynam-
ics for the transition matrix element, inherent in QCLE,
would require in Eq.s36d an averaging over equilibrium bath

state,e−sF̂p+F̂cd/2T. This is obviously not the case, and, there-
fore, the corresponding feature of the QCLE is an artefact.

The necessity to solve memory-type kinetic equations
considerably complicates practical applications of the devel-
oped quantum-classical approach, and, therefore, we trans-
form them into a fully equivalent system of differential equa-
tions. This step does not involve any additional
approximations, and is described in the following section.

VI. DIFFERENTIAL FORM OF THE QUANTUM-
CLASSICAL APPROXIMATION

By introducing several auxiliary matrices, the memory-
type equationss30d ands31d, where the quantum correlation
function was replaced by the quantum-classical analogs40d,
can be reduced to the following set of differential equations,
written using the conventionalsnongeneralizedd functions:

dspstd
dt

= − ifĤp,spstdg − i E fŴpsqd,hpsq,tdgdq

+E sxpcsq,tdiŴcpsqd + H.c.ddq, s45d

and

dscstd
dt

= − ifĤc,scstdg − i E fŴcsqd,hcsq,tdgdq

−E siŴcpsqdxpcsq,td + H.c.ddq, s46d

where the auxiliary matrix

xpcsq,td = 1
2sxpc

spdsq,td + xpc
scdsq,tdd s47d

is an equally weighted sum of two other ones, which differ
only by the associated bath dynamics, indicated by the su-
perscript, i.e.,

]xpc
spdsq,td
]t

= isxpc
spdsq,tdĤc − Ĥpxpc

spdsq,tdd + gpcsq,td

3cspdsqd − iVpcsqdxpc
spdsq,td + Lq

spdxpc
spdsq,td, s48d

while the equation forxpc
scdsq,td is obtained from Eq.s48d by

replacing superscript “p” with “ c.” Here also

gpcsq,td = − isŴpcsqdscstd − spstdŴpcsqdd + Ûpcsqdscstd

+ spstdÛpcsqd+ ŶpcsqdSdscstd
dt

+ ifĤc,scstdgD
+ Sdspstd

dt
+ ifĤp,spstdgDŶpcsqd, s49d

where the expressions forÛpcsqd and Ŷpcsqd are obtained
from Eqs.s33d and s34d, or from Eqs.sA27d and sA28d by

formal replacement ofŴpc with Ŵpcsqd.
The other auxiliary matrices satisfy40

]hpsq,td
]t

= − ifĤp,hpsq,tdg + gpsq,tdcspdsqd

+ Lq
spdhpsq,td, s50d

where

gpsq,td = − ifŴpsqd,spstdg + fÛpsqd,spstdg+

+ FŶpsqd,
dspstd

dt
+ ifĤp,spstdgG

+
. s51d

Here f. . . , . . .g+ denotes anticommutator, and

Ûpsqd =E
−`

`

fbstde−iepcte−iĤptŴpsqdeiĤctdt, s52d

Ŷpsqd = −E
−`

`

tfbstde−iepcte−iĤptŴpsqdeiĤctdt, s53d

while replacing indexp with c in Eqs.s50d–s53d one gets the
equation forhcsq,td.

In the above equationsŴpsqd, Ŵcsqd, andŴpcsqd are the
quantum operators of the QDS, parametrically dependent on
the phase space coordinates of the baths. They have the di-
mensionality ofNp3Np, Nc3Nc, andNp3Nc, respectively,
and the dimensionality of the auxiliary functionshpsq,td,
hcsq,td, andxpcsq,td coincide with the dimensionality of the
corresponding QDS-bath coupling. However, we warn
against direct use of such quantum-classical form of the
QDS-bath interaction in the framework of Schrödinger or
Liouville equations, as this leads to the internal
inconsistency.37 In contrast, before passing to the quantum-
classical approximation, we have constrained several impor-
tant features such as the proper treatment of the QDS-bath
cross coherence, the detailed balance, etc., thus avoiding
possible problems. The equivalence of Eqs.s45d and s46d
and Eqs.s30d and s31d in the case of the quantum-classical
definition of the correlation function given by Eq.s40d is
proved following a general scheme used in Ref. 40.

The initial conditions for the density matrices,

sps0d = sp0, scs0d = sc0, s54d

specify the starting distributions in the reaction channels,
while the nonzero initial values for the auxiliary matrices,

xpc
sp,cdsq,0d = sŶpcsqdsc0 + sp0Ŷpcsqddcsp,cdsqd, s55d

and

hpsq,0d = fŶpsqd,sp0g+cspdsqd,

hcsq,0d = fŶcsqd,sc0g+cscdsqd s56d

account for the specific QDS-bath correlations created during
the time scale oftb, which is important to preserve the posi-
tivity of the density matrices within the applicability limits of
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the approach, see Ref. 40 for more details.fEquationss49d
ands51d contain the time derivatives on the right-hand sides,
which give the corresponding initial values for the auxiliary
functions, when the generalized functions of time are re-
placed by the nongeneralized ones.g

An important feature of the obtained kinetic equations is
that the explicit construction of the Liouville operators is
avoided, and the propagation in time requires only matrix
multiplications. For the Redfield theory the required decom-
position of the relaxation tensor was suggested in Ref. 48,
which greatly reduces computational cost, and, consequently,
extends the class of tractable systems towards multilevel
ones. On the other hand, our method has considerably wider
applicability limits than that of the Redfield theory, and to-
gether with a slightly modified molecular dynamics ap-
proach, used in Ref. 37 to solve partial differential equations,
may offer a similar computation performance.

VII. BASIC PROPERTIES OF KINETIC EQUATIONS

The kinetic equationss45d and s46d, obtained in the
quantum-classical approximation describe the solvent-
induced transitions in the QDS consisting of two distinct
groups of quantum states. These equations are valid at times
t@tb, fully account for arbitrarily long memory of the sol-
vent degrees of freedom, and preserve the basic properties of
the density matrices. First, the Hermiticity of the density
matricessp,c is intact, as it can be seen by taking the Her-
mitian conjugate of Eqs.s45d and s46d. Second, the sum of
the traces ofsp andsc is conserved and equal to the unity,
i.e.,

Trpsp + Trcsc = 1, s57d

which is proved by taking the time derivative of Eq.s57d and
substituting the corresponding expressions from Eqs.s45d
and s46d. Then we use the identity

Trpsxpcsq,tdiŴcpsqd + H.c.d = TrcsiŴcpsqdxpcsq,td + H.c.d ,

s58d

where Trp,c denotes the trace over the quantum states of the
corresponding group, which follows from the cyclic permu-
tation under the trace operation. It is seen that the terms
describing the transitions between distinct groups of quan-
tum states cancel each other, while the traces of the other
constituents are zero, as shown in Ref. 40. Third, the posi-
tivity of the density matrices is maintained within the appli-
cability limits s8d, which is provided by the proper account
for the finite duration of the characteristic timetb. As a re-
sult, both the initial conditions and the relaxation operators
are modified, and the role of such a modification for the
conservation of the positivity in the course of the time evo-
lution was well demonstrated.40 Nonetheless, the mathemati-
cal proof of the positivity can hardly be done in the general
case, and we validate our conclusion numerically for several
particular cases elsewhere.

Additionally, Eqs.s45d and s46d satisfy detailed balance
both inside each reaction channel and between them. Indeed,
the stationary solutions of Eqs.s45d ands46d are of the form

sp = ap e−Ĥp/T, sc = ac e−Ĥc/T, s59d

whereap andac are some non-negative constants, determin-
ing the probability of being in the corresponding reaction
channelsthey involve the statistical sums over the quantum
states as welld. Equilibrium between the reaction channels
requires, see Appendix B,

ap/ac = e−epc/T, s60d

whereepc is the change of free energy of the reactions35d.
Equation s60d along with the normalization conditions57d
allow to determine the coefficientsap,c provided that the
solvent-induced reaction lasts for a sufficiently long time
sthis may not be the case if reactants can be infinitely sepa-
rated by translational diffusion, for exampled. Thus, Eqs.s59d
and s60d satisfy the equilibrium conditions, and account for
the change of free energy of the surrounding media in the
course of reaction.

VIII. DISCUSSION

The developed method has wide and well established
applicability limits, a time resolution of tens of femtosec-
onds, allows moderate strength of the QDS-bath couplings
sup to 531013 rad/s atT=300 Kd, and provides a powerful
framework for accurate modeling the solvent influence on
the course of the reaction. On the other hand, there is a
variety of other quantum-classical approaches to reaction dy-
namics in condensed phase, and the development of an alter-
native method is justified only if it has considerable advan-
tages over the existing ones.45 The required comparison
would be simple if all other approaches also had explicitly
declared applicability limits in terms of characteristic param-
eters. In that case it would be sufficient to compare the ap-
plicability limits to reveal differences between the methods.

Thus, it is relatively easy to compare our novel approach
with the standard weak coupling limit and with Redfield
theory. A principal advantage is that our method has femto-
second time resolution and is capable of describing near-
resonance transitions in a deeply non-Markovian regime,
which is a characteristic feature of many ultrafast reactions.

The NQCA is also different from thesgeneralizedd
Langevin equation approach, which essentially relies upon
the bilinear coupling to the bath. In our case, bilinear cou-
pling is not a prerequisite, and, therefore, our methodology is
valid beyond this restriction. Besides, the derived kinetic
equations incorporate the canonical equilibrium directly, and
the fluctuation dissipation theorem, which provides a link
between the fluctuations and the linear response, is not used
at all.

It is difficult, however, to directly compare NQCA with
other quantum-classical treatments. The comparison with hy-
brid schemes calls for extensive benchmarking, which goes
beyond the scope of this paper. We only note here that the
method is free of the intrinsic drawbacks inherent in hybrid
approaches.
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IX. CONCLUSION

We presented the generalization of the recently sug-
gested non-Markovian quantum-classical approximation40

for the purposes of reaction dynamics in condensed phase.
Toward this end we assumed that the quantum subsystem
consists of two groups of quantum states, which interact with
the surrounding media in different ways. This is typical for
charge transfer reactions, recombination and dissociation,
etc., and takes several important factors, such as the change
of the free energy of the solvent in the course of reaction,
and the peculiar bath dynamics in each reaction channel. The
obtained kinetic equations can easily be modified to account
for a larger number of distinct groups of quantum states, and
constitute the basis for an accurate modeling of reaction dy-
namics in condensed phase, including ultrafast processes,
and with a nonphenomenological treatment of the elementary
reaction.

An essential feature of the kinetic equations is their dif-
ferential form, which considerably facilitates practical appli-
cations. Nevertheless, the approach fully accounts for an ar-
bitrarily long memory of the bath degrees of freedom, and
properly takes into account the evolution during the initial
time periods," /kBT, when the differential description is not
validd via an appropriate modification of the initial condi-
tions and of the relaxation operators. This is particularly im-
portant to preserve the positivity of the density matrices
within the applicability limits of the approach. Another dis-
tinctive feature of the method is the direct incorporation of
the canonical equilibrium into the kinetic equations, which
also account for the change of the free energy of the sur-
rounding media.

The developed approach deals exclusively with the sol-
vent impact on the reaction dynamics. In some cases, when
the reaction of interest cannot proceed without the surround-
ing mediassolvent-induced nonadiabatic transitions, recom-
bination, etc.d, solvent effects play the decisive role. In other
situations the interaction with the bath molecules exerts a
complementary influence, but is capable of considerably
changing the reaction kinetics and the mechanism of the el-
ementary reaction. In our formulation we assume that the
solution to the problem is known for the isolated quantum
subsystem, thus working with its eigenstates. In particular,
when applied to nonadiabatic transitions, neither adiabatic
nor diabatic representations are used. This is required for the
use of the declared small parameter, and allows to take into
account solvent effects in the widest possible limits. Addi-
tional approximations to the dynamics of quantum subsystem
can be included in the methodology presented, provided that
the subsidiary small parameters exist for the system under
consideration.

State-specific dynamics of the bath is frequently used
within the framework of the quantum-classical Liouville
equation. The crucial point of this approach is a mean-
potential treatment of the transition phase, which is a source
of unphysical behavior in some situations. In contrast, our
approach asserts a different recipe, which we would call a
mean-evolution one. In other words, averaging concerns not

the bath potentials, but the auxiliary matricessmemoryd, cal-
culated for the true bath dynamics in each reaction channel.

In the present paper the novel non-Markovian approach
to the reaction dynamics in condensed phase was formulated
in the most general way, while its application to particular
problems of interest requires additional efforts. We start with
a simple case of nonadiabatic transitions between two local-
ized modes, when the equilibration in their phase spaces is
much faster than the characteristic time scale of the reaction
ssee the accompanying paperd. Then, the reaction coordinates
may be considered as belonging to the canonical bath, while
the model is a direct counterpart of the nonadiabatic RRKM
approach, and is of practical interest. In addition, this simple
model allows for a detailed check of the new ingredients
schange of free energy of the surrounding media in the
course of reaction and the quantum-mechanical contribution
of the bath dynamicsd of the generalized treatment. In the
following we plan to apply the presented methodology to
solvent-induced nonadiabatic transitions for the more general
case, and to recombination reactions in the condensed phase,
as the new approach is perfectly suited to describe solvent-
assisted transitions between the states of scattering of the
reacting pair and its bound states. This work is now in
progress.
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APPENDIX A: TRANSFORMATION OF REACTION
KERNELS

The connection between the reaction kernels Eqs.
s22d–s25d and their symmetrized counterparts, see Eq.s29d
and the text above it, is established using the two-sided Fou-
rier transform

ãsvd =E
−`

`

astde−ivtdt, sA1d

whereastd is an arbitrary function, defined on the entire time
axis.

First of all, we represent the operator exponents as

e±iĤpt ; o
k

Np

e±iEp
ktP̂k, e±iĤct ; o

j

Nc

e±iEc
j tĈj , sA2d

where the projectors on the individual eigenstatesP̂k andĈj

were defined in Eqs.s1d and s2d, Ep
k and Ec

j are the corre-

sponding eigenvalues ofĤp andĤc, and fix the QDS transi-
tion frequency

vkj ; Ep
k − Ec

j sA3d

in the correlation functionss22d–s25d to get
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X̂1
kjstds̄pst − td =

1

Zp
o
a,b

P̂ks̄pst − td

3Ŵpc
abĈjŴcp

bae−Ep
a/Te−isvkj+nabdt, sA4d

X̂2
kjstds̄cst − td =

1

Zc
o
a,b

P̂kŴpc
abs̄cst − td

3ĈjŴcp
bae−Ec

b/Te−isvkj+nabdt, sA5d

and

X̂3
kjstds̄pst − td =

1

Zp
o
a,b

Ŵcp
baP̂ks̄pst − td

3Ŵpc
abĈje−Ep

a/Te−isvkj+nabdt, sA6d

X̂4
kjstds̄cst − td =

1

Zc
o
a,b

Ŵcp
baP̂kŴpc

abs̄cst − td

3Ĉje−Ec
b/Te−isvkj+nabdt. sA7d

Here the superscriptsa and b label the eigenstates of the

bath HamiltoniansF̂p and F̂c, respectively,Ep
a and Ec

b are
their corresponding eigenvalues, while

nab ; Ep
a − Ec

b. sA8d

The correlation functionss22d–s25d are simply obtained from
Eqs.sA4d–sA7d summing up indices, i.e.,

Ĵ1–4std = o
k,j

X̂1–4
kj std. sA9d

Similarly, we fix the QDS transition frequency in the sym-
metrized correlation functions, which gives

Ĵ1
kjstds̄pst − td = o

a,b
P̂ks̄pst − tdŴpc

abĈjV̂cp
bae−isvkj+nabdt,

sA10d

Ĵ2
kjstds̄cst − td = o

a,b
P̂kŴpc

abs̄cst − tdĈjV̂cp
bae−isvkj+nabdt,

sA11d

and

Ĵ3
kjstds̄pst − td = o

a,b
V̂cp

baP̂ks̄pst − tdŴpc
abĈje−isvkj+nabdt,

sA12d

Ĵ4
kjstds̄cst − td = o

a,b
V̂cp

baP̂kŴpc
abs̄cst − tdĈje−isvkj+nabdt,

sA13d

whereV̂cp=V̂cp
h s0d was defined in Eq.s29d.

Taking the Fourier transform of Eqs.sA4d andsA10d we
obtain

X̃ˆ 1
kjsvds̃psvd =

1

Zp
o
a,b

P̂ks̃psvdŴpc
abĈjŴcp

ba e−Ep
a/T

3dsv + vkj + nabd, sA14d

and

J̃ˆ 1
kjsvds̃psvd =

1

2o
a,b

P̂ks̃psvdŴpc
abĈjSe−Ec

b/T

Zc
Ŵcp

ba

+ Ŵcp
bae−Ep

a/T

Zp
Ddsv + vkj + nabd. sA15d

Then we use the identity

dsv + vkj + nabd
e−Ec

b/T

Zc
; dsv + vkj + nabd

3
e−Ep

a/T

Zp
e−sv+vkjd/Te−epc/T,

sA16d

whereepc is the change of the free energy in the course of
reactions35d to express the first term in the brackets on the
right-hand side of Eq.sA15d through the second one, and,
comparing the resulting expression with Eq.s14d , we obtain

X̃ˆ 1
kjsvds̃psvd = J̃ˆ 1

kjsvds1 − i f̃ bsv + vkj + epcdds̃psvd,

sA17d

where

f̃ bsvd = i tanhS v

2T
D . sA18d

The other relations are proved in the same way, which gives

X̃ˆ 1,3
kj svds̃psvd = J̃ˆ 1,3

kj svds1 − i f̃ bsv + vkj + epcdds̃psvd,

sA19d

X̃ˆ 2,4
kj svds̃csvd = J̃ˆ 2,4

kj svds1 + i f̃ bsv + vkj + epcdds̃csvd.

sA20d

The expressionssA19d andsA20d were obtained by identical
transformations, no additional approximations were em-
ployed. Again, Eqs.sA19d and sA20d separate out the dy-
namical and the statistical properties of the heat reservoir,
see also Ref. 40. The former enter via the symmetrized cor-

relation functionsX̂1–4, which allow for the classical limit
and contain all information about the dynamics of the bath.
In turn, the statistical properties of the bath enter via univer-
sal sdynamics independentd function of the temperature, see
Eq. sA18d.

As it was found in Ref. 40, the generalized kernelsA18d
describes the decay of quantum correlations and is in the
time domain a sharply decaying function with the character-
istic time tb, Eq. s8d,
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fbstd = −
1

ptb

1

sinhst/tbd
. sA21d

Using the shortness oftb sit is just 8 fs at room temperatured,
one can integrate out of the quantum correlations contribu-
tion. The resulting kinetic equations are valid at timest
@tb and properly account for the detailed balance.

First, we use the identity

f̃ bsv + vkj + epcdP̂ks̃psvd ; E
−`

`

e−ivtE
−`

`

fbstde−isvkj+epcdt

3P̂ks̄pst − tddt dt, sA22d

and expand the density matrixs̄p svia the expansion of the
density matrix in the interaction representation, see Ref. 40
for more detailsd as

s̄pst − td .
t,tb

eiĤptSs̄pstd − ifĤp,s̄pstdgt −
ds̄pstd

dt
tDe−iĤpt.

sA23d

Then, substituting the expansionsA23d in the right-hand side
of Eq. sA22d, and replacing operator exponents by the rela-
tion sA2d we obtain

f̃ bsv + vkj + epcdP̂ks̃psvd . o
n=1

Np

P̂k
„ f̃ bsvnj + epcds̃psvd

+ h̃bsvnj + epcdhivs̃psvd + ifĤp,s̃psvdgj…P̂n, sA24d

where

h̃bsvd = −E
−`

`

tfbstde−ivtdt =
1

2T

1

cosh2S v

2T
D , sA25d

and it follows from this that

f̃ bsv + vkj + epcdP̂ks̃psvdŴpc Ĉj

. P̂k
„s̃psvdÛpc + hivs̃psvd + ifĤp,s̃psvdgjŶpc…Ĉ

j .

sA26d

Here

Ûpc = io
k,j

tanhSvkj + epc

2T
DP̂kŴpc Ĉj , sA27d

Ŷpc =
1

2To
k,j

P̂kŴpc Ĉj

cosh2Svkj + epc

2T
D , sA28d

which can also be written as Eqs.s33d and s34d. Similarly,
we obtain

f̃ bsv + vkj + epcdP̂kŴpcs̃csvdĈj

. P̂k
„Ûpcs̃csvd + Ŷpchivs̃csvd + ifĤc,s̃csvdgj…Ĉj .

sA29d

Finally, substituting Eqs.sA26d and sA29d into Eqs.sA19d

and sA20d, and taking the inverse Fourier transform, we de-
rive

− X̃ˆ 1
kjstds̄pst − td + X̃ˆ 2

kjstds̄cst − td

= o
a,b

P̂kḡpc
abst − tdĈjiV̂cp

bae−isvkj+nabdt, sA30d

and

X̃ˆ 3
kjstds̄pst − td − X̃ˆ 4

kjstds̄cst − td

= − o
a,b

iV̂cp
baP̂kḡpc

abst − tdĈje−isvkj+nabdt, sA31d

whereḡpcst−td is given by Eq.s32d. Taking account for Eqs.
sA9d and sA2d we obtain Eqs.s30d and s31d.

APPENDIX B: STATIONARY SOLUTION OF KINETIC
EQUATIONS

The stationary limit of the kinetic equationss45d and
s46d requireshpsq,td=hcsq,td=0, andgpcsq,td=0, see Eqs.
s50d ands48d. The first condition is satisfied by Eqs.s59d, as
it was already shown in Ref. 40, while the second one leads
to the following relation to prove:

apo
k

Np

o
j

Nc F1 + tanhSvkj + epc

2T
DGe−Ep

k/TP̂kŴpcsqdĈj

=aco
k

Np

o
j

Nc F1 − tanhSvkj + epc

2T
DGP̂kŴpcsqdĈje−Ec

j /T,

sB1d

where we explicitly substituted Eq.s30d, and used the iden-
tities

e−Ĥp/TP̂k ; e−Ep
k/TP̂k, Ĉje−Ĥc/T ; Ĉje−Ec

j /T. sB2d

The relationsB1d holds for any term in the sum, i.e., at fixed
indicesk, j , if the conditions60d is true.
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