
ANALYTICAL
BIOCHEMISTRY

Analytical Biochemistry 347 (2005) 152–155

www.elsevier.com/locate/yabio
Notes & Tips

High-density Xuorescently labeled rolling-circle amplicons for 
DNA diagnostics

Irina V. Smolina a, Dmitry I. Cherny b,1, Raymond M. Nietupski c, Thomas Beals c, 
James H. Smith c, David J. Lane c, Natalia E. Broude a,¤, Vadim V. Demidov a,¤

a Center for Advanced Biotechnology, Boston University, Boston, MA 02215, USA
b Max Planck Institute for Biophysical Chemistry, D-37077 Gottingen, Germany

c Hamilton Thorne Biosciences Inc., Beverly, MA 01915, USA

Received 15 March 2005
Available online 21 June 2005
Fluorescent labeling of nucleic acids with high density
is very important for a wide area of DNA- and RNA-
based diagnostics [1–5], but it still remains a challenge.
Indeed, chemical synthesis of oligonucleotides with mul-
tiple Xuorophores is an elaborate and expensive proce-
dure [6–8]. Branched probes tagged with numerous
Xuorophores can alleviate this problem [2,9], but special
complex assemblies are required in that case. Enzymatic
synthesis of high-density labeled polynucleotides from
Xuorescently modiWed monomers by DNA polymerases
is another alternative. However, despite some progress in
this area, there are certain diYculties in enzymatically
generating long Xuorescent products using procedures
based on primer extension [3,4,10–13].

Rolling-circle ampliWcation (RCA),2 which is isother-
mal DNA polymerase-driven cyclic replication of small
circular DNA probes, is often used as an eYcient
method to detect various analytes [14–16]. It was
assumed that the RCA mechanism is diVerent from that
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3 The shape of an RCA-active circular DNA probe is quite distinct from the

abrupt tense boundaries [14,17]. This constrained conWguration of replicating D
the stiVness of DNA duplexes formed as a result of primer annealing and exte
tially straight up to 150 to 200 bp [18–21]. Therefore, we hypothesized that th
conformation at the site of DNA replication (see Fig.2A), might facilitate inc

4 We are aware that a number of research groups have tried to use Xuores
their attempts. Yet, the lack of any published data on this topic prompted us
forward and potentially useful diagnostic approach.

5 In some cases, high-density labeling results in long but nonXuorescent reac
of primer-extension reactions using linear DNA tem-
plates.3 Based on that, we suggested that DNA polymer-
ase during RCA might better tolerate Xuorescently
labeled deoxynucleotide triphosphates (dNTPs) and
decided to investigate whether RCA can be employed
for direct generation of densely labeled ampliWcation
products capable of intense Xuorescence.4

We chose �29 DNA polymerase considering its well-
known robust RCA activity [23–25] and the hydrophilic dye
Cy3 with which high-density labeling could be achieved with-
out serious Xuorescence quenching [8,26].5 All experiments
were performed with Cy3-dCTP and Cy3-dUTP, which
substituted dCTP and dTTP, respectively, and with 88-nt
DNA minicircle carrying Salmonella sequence marker [27].

Gel-electrophoretic analysis of RCA products
obtained in solution with complete substitution of two
pyrimidine dNTPs with Cy3-tagged Xuorescent analogs
showed that the eYciency of synthesis was reduced as
compared to that with non-modiWed dNTPs Nevertheless,
emidov).
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 normal DNA replicative form in that it is overall very strained and features
NA minicircles is caused by their small size (typically 6100 nt [15]) and by

nsion along circular probes. The DNA duplexes are known to remain essen-
is exceptional DNA structure, namely the “fold-back,” sharp-edged DNA

orporation of Xuorescently modiWed nucleotides by DNA polymerase.
cently modiWed dNTPs for direct labeling of RCA amplicons but gave up
 to perform our study to overcome disappointment in this rather straight-

tion products due to self-quenching of closely located Xuorophores [22].
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the length of RCA amplicons reached 1 to 2 kb (10–20
repeats) as compared with size standards (data not
shown). Keeping in mind that multiply labeled DNA
exhibits altered physicochemical properties, including
anomalous gel-electrophoretic mobility [10,12], we
decided to directly measure the length of RCA products
using electron microscopy (EM). EM visualization of
Cy3-labeled RCA products (Fig. 1A) showed that the
length of randomly chosen amplicons ranged from 400 bp
to 3 kb (Fig. 1B), with the average size of 1.2 kb being in
agreement with initial gel-electrophoretic estimations.

Thus, these results mean that every RCA amplicon
carries several hundred Xuorophores, and the question is
whether Xuorescent signal is strong enough to be
detected using Xuorescence imaging instruments. To
answer this question, we chose the surface-immobilized
RCA format, shown schematically in Fig. 2A, that uses
biotin–streptavidin interactions for primer immobiliza-
tion. Based on the published data [23,29,30], we expected
that RCA eYciency in heterogeneous systems would be
close to that in a homogeneous solution.

Using conventional Xuorescent microscopy, we
detected RCA amplicons as the luminous dot-like objects,
the number of which correlated with the amount of prim-
ers immobilized onto a surface but was substantially less
than expected (Fig. 2B). We reasoned that when using
Xuorescent microscopy, we probably see only the brightest
amplicons while the less intense and blurred signals are
lost for analysis. To improve sensitivity and make assay
applicable for automation, we employed the Xuorescence
imaging scanner, allowing the measurement of total Xuo-
rescence of RCA amplicons per speciWed area (Fig. 2C).
Using this approach, we detected as few as 102 amplicons/
mm2 (Fig. 2D), corresponding to the detection limit of
approximately thousand analyte molecules.

Thus, our study shows that direct incorporation of Xuo-
rescently labeled dNTPs during RCA allows synthesis of
densely labeled RCA amplicons, which can be detected with
high sensitivity using Xuorescent scanning instruments.
Although Xuorescently modiWed dNTPs decrease consider-
ably the degree of RCA ampliWcation, high-density labeling
compensates for that and the assay still allows detecting
down to 103 molecules of the analyte. With normal dNTPs,
a much higher, usually more than 103-fold, ampliWcation
can be achieved [24]. However, with postreplicative proce-
dures it is diYcult to reach high-density labeling. Indeed,
our studies of RCA reactions with normal dNTPs and pos-
treplicative labeling of amplicons using dual-labeled hybrid-
ization probes demonstrated somewhat better, but
comparable, sensitivity (Fig. 2D). When considering advan-
tages of the proposed approach, we should note that the
surface-immobilized format with direct high-density Xuo-
rescent labeling is well suited to high-throughput parallel
analysis on diagnostic arrays.6 If single-molecule sensitivity

6 In fact, no extra probes or extra steps are required. On the contrary,
traditional hybridization approaches require rather expensive “decora-
tor” probes, hybridization/washing steps, and amplicon-collapsing pro-
teins for greater brightness [23,31]. Note that in our case RCA amplicons
are single-stranded and thus are highly compact by themselves, as com-
pared with partly double-stranded (stretched) probe-hybridized ampli-
cons; therefore, there is no need to enhance their brightness. Another
positive feature of our approach is that we measure total signal with the
Xuorescence-integrating device (scanner), which is amenable to automa-
tion and is less subjective than measuring single bright objects [23,31].
Fig. 1. EM visualization of Cy3-labeled RCA amplicons. (A) Images of exemplary RCA amplicons generated in solution with 100% Cy3-dCTP and
Cy3-dUTP substitutions for corresponding dNTPs. (B) Histogram of lengths distribution for 53 RCA amplicons. A 5�-phosphorylated 88-nt circu-
larized probe carrying Salmonella genome sequences at its termini, 5�pGCGCCTTTCCAGACGCTTACCAAGAGCAACTACACG AATTCTC
GATTAGGTTACTGCGATTAGCACAAGC GCTGTCACCCTGTATCGC, was circularized by ligation with Taq DNA ligase in the presence of
biotin–5�N20GGAAAGGCGCGCGATACAGG (splint), also employed as a primer in RCA. Complex of the DNA minicircle and primer (109–1012

mol of the complex in 50 �l) was incubated at 37 °C overnight with 1 U of �29 DNA polymerase and 20 �M dNTPs in the buVer containing 20 mM
Tris–HCl (pH 7.5), 10 mM MgCl2, 25 mM NaCl, and 5 mM dithiothreitol. dTTP and dCTP were completely substituted by their Cy3-Xuorescent
analogs. Gel-filtration puriWed RCA amplicons were annealed with the 88-nt complementary oligonucleotide for better visualization by EM. Sam-
ples for electron microscopy were prepared as described in Ref. [28].
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is not an issue, direct RCA labeling and automated scan-
ning of the arrays could be an assay of choice.

In summary, we have reported that RCA with �29
DNA polymerase and Cy3-labeled dNTPs is a simple
tool for generation of high-density Xuorescently labeled
amplicons. When biotinylated RCA primer is immobi-
lized on streptavidin-covered glass slides, the assay
employing Xuorescent scanners can be used for direct
and sensitive quantitation of corresponding analytes
without any hybridization probes.
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