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Correlated motions can be accurately extracted from molecular
dynamics (MD) simulations that are compatible with the measured
NMR spectroscopic data (NOE and order parameters) for two different
proteins (Cov: covariance matrix). B. de Groot and co-workers discuss
the results of MD simulations on a fragment of protein G in their
Communication on the following pages.
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Molecular Dynamics Simulations

Molecular Dynamics Simulations of Protein G
Challenge NMR-Derived Correlated Backbone
Motions**

Oliver F. Lange, Helmut Grubm�ller, and
Bert L. de Groot*

Protein function is fundamentally linked to underlying
structural and molecular dynamics.[1] Many biological func-
tions such as enzymatic activity and ligand binding are
controlled or even realized through conformational
motions,[2] which are typically collective in nature, as is the
case with allosteric effects and domain motions.[3] Conforma-
tional motions determine energetics, kinetics, and the strength
of thermodynamic driving forces through conformational
entropy.[4–6]

NMR relaxation studies provide a powerful and estab-
lished method to gain experimental access to fast protein
dynamics in atomic detail.[7–9] Model-free analysis of NMR
relaxation times, in particular, yields generalized order
parameters for individual bond vectors[10] which allows the
extraction of information about flexibility and timescales of
the motions of individual backbone sites[11] and side chains.[12]

Until recently, however, NMR relaxation experiments could
only probe the flexibility of individual bond vectors, whereas
correlated motions could not be probed. A recently proposed
method by Mayer et al.[13] promises to overcome this limi-
tation by measuring the covariation of backbone motion by
NMR relaxation studies. Specifically, the authors “propose a
general approach to the detection of correlated changes in
internal protein motions, which are expected to reflect the
underlying influence of correlated dynamics”.[13] In this
approach, NMR relaxation data for a small domain of
protein G were obtained for 10 mutants at the same sequence
position. The resulting perturbations were reported to cause
changes in the measured order parameters, which were
recorded for each individual residue. For many residue
pairs, these changes are significantly correlated (Figure 1a),
which led the authors to suggest that the observed covariances
reflect underlying correlated atomic motions.[13] Whether and
how the measured covariations actually reflect correlated
atomic motion cannot be resolved by experiment alone, which
prevents the direct atomistic interpretation of these types of
measurements. To address this issue, we present sub-micro-
second molecular dynamics (MD) simulations which,

together with the NMR experimental data, provide a
comprehensive picture of the correlated atomic dynamics of
the protein G domain.

We carried out two MD simulations of the B1 domain of
protein G, with lengths of 100 and 200 ns, referred to as MD1
and MD2, respectively. Correlations of atomic motions were
quantified by correlation matrices calculated from the MD
simulations. Figure 1c shows correlation matrices obtained
from MD1 (above the diagonal) and MD2 (below the
diagonal). The similarity of the two matrices shows that the
computed correlations are largely well-converged. Full con-
vergence is not reached for residues 37–42, which constitute
the loop that connects the a helix with the b3 strand. Closer
inspection revealed long timescale contributions to the loop
dynamics. However, the relevant sub-microsecond timescale
probed by NMR relaxation experiments[14] is well-sampled in
our simulations.

The matrix is dominated by strong correlations between
neighboring residues, and appears as a band along the
diagonal. The broad region of high correlation between
residues 22 and 38 is caused by the 1–4 contacts of the central
a helix. The two bands of high correlation perpendicular to
the diagonal result from the contacts between different
strands of the four-stranded b sheet. Strong correlations and
anticorrelations are also found between residues 10–15 of the
first hairpin loop and the rest of the molecule. They are
caused by a kinking-out motion of the turn between strands
b1 and b2 together with part of the b sheet. This motion,
hinged around residues 8 and 15, is the main contribution to
the principal collective motion (Figure 2), as revealed by
principal component analysis.[15,16]

To test for a direct connection between the covariation of
NMR order parameters and the computed correlated atomic
motion observed in the simulation, we compared the com-
puted correlation matrices (Figure 1c) with the S2- and the te-
based covariation matrices derived by Mayer et al.[13] (Fig-
ure 1a). Overall, the level of correspondence is low. The only
feature shared with the MD simulations is the band of
anticorrelated motion between residues 10–14, which is
present in the experimental results derived from covariations
in te order parameters, but which is not observed in the S2-
derived correlations. Apart from this detail, the overall lack of
similarity is striking. The nature of this discrepancy deserves
closer inspection.

An important question is whether the MD simulations
describe atomic motions with sufficient accuracy. Potential
artifacts include force-field inaccuracies and convergence
problems. Therefore, we compared the root mean squared
fluctuations (RMSF) of the two MD trajectories (MD1 and
MD2) with the RMSF of a structural ensemble of the
B1 domain of protein G obtained from NMR spectroscopic
NOE data[17] (PDB entry 3gb1, Experimental Section). The
RMSF profiles obtained form the MD simulation agree well
with the NOE ensemble (Figure 3). Moreover, the correlation
matrices obtained from the simulations (Figure 1 c) are in
good agreement with that obtained from the NOE ensemble
(Figure 1b). These agreements between the simulation- and
NOE-derived results are quantified by correlation coeffi-
cients of 0.77 and 0.81 for MD1 and MD2, respectively. In
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contrast, the correlation coefficients between all of these
matrices and the covariance matrix computed from order
parameters (Figure 1a) are much smaller: 0.06 and 0.04 for
the two MD matrices, and 0.05 for the NOE matrices. The

good agreement between MD and the NOE ensemble in
terms of the atomic fluctuations and particularly their
correlations makes it unlikely that the discrepancy with the
covariance matrix obtained from order parameters is caused

Figure 1. Correlation matrices from NMR experiments and MD calculations. a) Correlation matrices taken with permission from Mayer et al.;[13]

data for S2 covariations are shown above the diagonal, whereas those for te covariations are shown below the diagonal (the black boxes are irrele-
vant for the present discussion). b) Correlation matrix computed from an NMR–NOE structural ensemble. c) Correlation matrices computed from
MD simulations. The correlations computed from MD1 are shown above the diagonal; correlations derived from MD2 are below the diagonal.
d) Generalized correlations computed from MD2 (above the diagonal); correlations computed for N�H vector motions (below the diagonal). The
simulated B1 domain of protein G is depicted in the center.
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by simulation artifacts. That this agreement is not just
anecdotal is indicated by a correlation coefficient of 0.82 for
the NOE and MD covariance matrix obtained for a different
protein, ubiquitin (Supporting Information), and by a corre-
lation coefficient of 0.8 obtained with a different NMR data
set for protein G (PDB entry 1gb1).

Because order parameters form the basis for the cova-
riances determined by Mayer et al. , it is necessary to check if
the motions probed by order parameters are accurately
described by the MD simulations as well. To this end, we
compared the experimentally obtained order parameters[18]

for protein G with those computed from the MD trajectories
(Figure 4a). Within the error bars, the simulations agree with
each other as well as with the measured order parameters.
The inset of Figure 4 shows that most differences between the
observed and computed order parameters are below 0.1 with

few outliers below 0.2. Overall, the agreement is good and is
in line with earlier observations.[19–22]

We therefore conclude that the simulations provide a
comprehensive and accurate picture of the correlated atomic
motion within the protein G domain that is consistent with
the available experimental data. The remaining unexplained
discrepancy with the covariances derived from NMR exper-
imental order parameters suggests that these two quantities
are, in fact, not directly related. Comparison of all elements of
the MD correlation matrix with the respective covariations of
NMR order parameters as a scatter plot (Figure 5 a) confirms
this finding. Furthermore, the absence of any detectable
structure in this plot suggests the absence of any relation to
this measure of linearly correlated atomic motion.

At this point, it is important to note that the correlation
coefficients as used in the matrices shown in Figures 1b and
1c, although widely used, detect only part of all possible
correlated atomic motions. For instance, two atoms oscillating
with a p/2 phase shift will give rise to a vanishing correlation
matrix element hsin(wt)sin(wt+p/2)i= 0, and thus, this highly
correlated motion would not be detected. This simple
example shows that the results discussed so far do not rule
out the possibility that the measured covariations of NMR
order parameters relate to such “hidden” correlated motions.
To detect those as well, we employed a second, more general
correlation measure derived from information theory.

To this end, we consider the information Si contained
within the motion of each individual atom i as well as the joint
information Si,j contained within the (possibly correlated)
motion of each pair of atoms i and j. As any type of
correlation, hidden or not, will decrease Si,j with respect to
Si + Sj, the excess Ci,j = Si + Sj�Si,j serves as a generalized and
very sensitive measure to detect all correlations within atomic
motions. We note that an equivalent formulation of the same
method would rest on the fact that only for statistically
independent data sets X and Y, their joint probability is given
by P(X,Y) = P(X) P(Y). For the calculation of the informa-
tion contents from MD trajectories, see the Supporting
Information and Ref. [34].

Figure 2. Main collective motion of the B1 domain of protein G as
revealed by the principal component analysis described in the text.

Figure 3. RMSF of backbone atoms observed in the NMR ensemble
(gray line), and RMSF computed from the two different MD trajecto-
ries (MD1, c ; MD2, a): the positions of the major RMSF peaks
agree well with the experimental data. The fluctuations of the largest
motion (residues 8–15) and of the a helix are slightly overestimated by
the MD simulations but overall, the flexibility of the remaining regions
of the molecule is well-reproduced.

Figure 4. Comparison of the generalized order parameters (S2)
between the MD simulations and the NMR data set.[18] Computed
order parameters (in color) with error bars are compared with experi-
mentally observed order parameters (black). Inset: histogram of the
order parameter differences between the MD data sets and the
experimental results.
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Figure 1d (above the diagonal) shows the obtained
generalized correlation matrix. Although the overall structure
appears similar, minor but significant differences to the linear
Pearson correlation matrix (Figure 1c) are observed, which
result from the “hidden” correlations now detected by the
information theoretical approach. Quantitative comparison
of the Pearson matrix elements with the generalized elements
(Figure 5b) confirms that the two measures are related (with
a correlation coefficient of 0.65). In contrast, no such relation
is observed to the covariances derived from the NMR order
parameters (Figure 5 c; correlation coefficient 0.07), which
suggests that no significant information on correlated atomic
motion in Cartesian space is contained within these NMR
spectroscopic data.

It might be argued that a more direct comparison between
MD and NMR data would rest on an analysis of the
correlation in the orientational fluctuations of N�H bond
vectors, which are probed by the NMR order parameters,
rather than on the Cartesian coordinates. However, these
fluctuations are already included within the generalized
correlation measure described above and hence, similar
results are expected. Figure 1d (below the diagonal) shows
that this is indeed the case as quantified by the low correlation
coefficient of 0.05 between N�H vector fluctuations in MD
and the covariances derived from the NMR order parameters.

In summary, we have demonstrated that for two different
proteins, correlated motions can be accurately extracted from
MD simulations that are compatible with the measured NMR
data (NOE and order parameters). However, the correlated
atomic motions described by our sub-microsecond MD
simulations of the B1 domain of protein G are unrelated to
covariations derived from order parameters, even though
different measures of correlated motion have been applied.
The obtained agreement with independent NMR spectro-
scopic NOE data and with N�H order parameters provides
strong evidence that the simulations accurately describe the
atomic motions and their correlations at the experimentally
relevant timescale. This is further supported by the good
qualitative agreement with the results of recently published
residual dipolar coupling experiments.[23] Taken together, the
results render it unlikely that the observed covariances in

measured order parameters reflect the underlying influence
of the correlated atomic dynamics for the wild-type protein.
Instead, we speculate that the measured covariances are
caused by correlated structural changes that result from the
introduced point mutations, which in turn, affect the atomic
mobilities. In this framework, the experiments would probe
remarkably correlated structural plasticities rather than
correlated atomic motions. Further simulations of all 10
mutants studied will therefore be required to test this
hypothesis and to structurally characterize the properties of
this proposed nonlocal plasticity.

Experimental Section
MD simulations were started from the crystal structure of the
B1 domain of streptococcal protein G[24] (PDB entry 1PGB). Simu-
lations were carried out with the OPLS all-atom force field.[25] The
protein was solvated in 4651 TIP4P water molecules. Four sodium
ions were added to the simulation system to compensate for the net
negative charge of the protein. The total system size comprised 19463
atoms. The simulation was carried out in a cubic box with a minimal
distance between solute and box edge of 0.8 nm. Periodic boundary
conditions were used. All MD simulations were carried out with the
Gromacs simulation suite.[26] LINCS and Settle[27, 28] were applied to
constrain covalent bond lengths, allowing an integration step of 2 fs.
Electrostatic interactions were calculated with the particle-mesh
Ewald method.[29] The temperature was kept constant by separately
coupling (t = 0.1 ps) the peptide and solvent to an external temper-
ature bath.[30] The pressure was kept constant by weak isotropic
coupling (t = 1.0 ps) to a pressure bath.[30] Simulations were run for
100 ns (MD1) and 200 ns (MD2).

An NMR–NOE structure ensemble of 30 structures was gen-
erated with the standard simulated annealing protocol in CNS,[31]

applying the NOE distance bounds as available from the PDB
entry 3GB1.[32] In short, individual structures were generated by slow
cooling from high-temperature simulations starting from an extended
structure and different sets of starting velocities. Each annealing cycle
consisted of 15 ps of torsion-angle MD at high temperature (50000 K)
followed by an annealing phase (15 ps) to zero temperature with
torsion-angle MD and an annealing phase (15 ps) with Cartesian
dynamics from 2000 to 0 K. Finally, each structure was energy-
minimized by 10 cycles of 200 steepest-decent steps. Default param-
eters for the scaling of the individual energy terms were used,
including the NOE energy term.

Figure 5. Scatter plots of covariation and correlation matrix elements in which two of the correlation matrices shown in Figure 1 are compared;
each point represents the two different correlations obtained with the respective methods for the same residue pair. a) Correlations obtained from
MD simulation c, as depicted in Figure 1c, are plotted against the covariations of order parameters c0, shown in Figure 1a. b) Generalized correla-
tions cS (Figure 1d) obtained from the MD simulation are plotted against c0 (Figure 1c), the correlations obtained from MD simulation in the
established way. c) Generalized correlations cS (Figure 1d) computed from simulation MD2 plotted against measured covariations of order
parameters c0 (Figure 1a).
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To analyze the data in the molecular coordinate frame, all
structures were fitted to the backbone of the crystal structure. RMSF

for each ensemble were calculated as RMSFi =
ffiffiffiffiffiffiffiffi

hr2
i i

q

, in which ri is
the distance of the ith Ca atom from its average position, and the h i
denote the average over the whole trajectory with snapshots recorded
every picosecond. The correlation matrices were computed as Ci,j =
hxi·xji/(hx2

i i hx2
j i)1/2, in which xi and xj are difference vectors between

the ith and jth Ca atom, respectively, and their average positions in the
molecule-fixed frame. To enhance visibility of small differences, the
correlations were weighted by the sigmoidal function W(x) = 2/[1 +

exp(�lx)]�1, with l = 5.5 before plotting. The enhancement coef-
ficient l was set as strong as possible under the constraint that only
statistically significant fluctuations become apparent.

Order parameters S2 were defined as the asymptotic value of
internal correlation functions.[10] The internal correlation function
Cint(t) of the N�H bond vector motion is given by Cint(t) =
hP2(cosc(t))i, where c(t) is the angle between the internuclear vectors
r(t) and r(0), and r is measured in the molecule-fixed frame. P2(x) =

(3x2�1)/2 denotes the second Legendre polynomial. Fluctuations in
the internuclear separation were not included, because the length of
all covalent bonds were fixed by LINCS[27] throughout the simulation.
It has been shown previously that the effect of such constraints on
order parameters calculated from simulations is negligible.[33]

To estimate statistical errors in the obtained order parameters,
the MD trajectories were divided into N fragments of length 1 ns
each. For each fragment s, internal correlation functions Cs,i

int(t) were
computed for each bond vector i with snapshots taken every
picosecond. Parameters cs,i were computed as the average from 480
to 500 ps of the internal correlation function Cs,i

int(t). The order
parameter of bond vector k was computed as the mean of cs,i over all

the fragments, that is S2
i = (

P

N

s
ci

s)/N, with the error bars given by:

DS2
i ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The results do not change significantly if the fragmentation length
is changed from 1 ns to longer time intervals (data not shown).

To obtain the generalized correlation measure Ci,j = Si + Sj�Si,j

between the Ca atoms i and j, we computed for all atom pairs (i,j) the
information Si of the motion of atom i in its d = 3 dimensional
configurational space as well as the information Si,j of the combined
motion of atoms i and j in their d = 6 dimensional configurational
space. Herein, only a sketch of the approach is given; for details, see
the Supporting Information and Ref. [34].

Our approach is based on a combination of kernel density
estimation and nearest-neighbor estimation. For every snapshot k of
the trajectory, an effective neighbor distance ss is determined by

requiring T=
P

N

t
e(xt�xs)

2/(2s2
s) for a given and fixed T= 20. In this case,

N denotes the number of snapshots, and values of x represent vectors
in the d dimensional configurational space considered. This isotropic
averaging over local snapshots typically suffers from highly aniso-
tropic configurational space densities, that is, drastically differing
widths of the configurational snapshot ensemble in different direc-
tions. Particularly problematic and inaccurate were those directions
for which the widths are smaller than ss. We therefore treated those ls

narrow directions separately by a Gaussian-derived estimate SG =

1/2
P

ls

h¼1
logls

h, which is particularly suitable for those small-amplitude

degrees of freedom of width ls
h¼1...ls

, respectively. Taken together, the
information was computed by:

S ¼ log N
N
� 1

N

X

N

s¼1

ðlogaðd�lsÞ�ðd�lsÞlog ss�SGÞ ð2Þ

in which a(ds) denotes a proportionality factor dependent on the local
dimension ds = d�ls, which relates the nearest-neighbor statistics ss to
the information measure S. We used 10 000 snapshots taken every
20 ps from trajectory MD2 for this analysis.

The correlations in the motion of N�H bond vectors were
computed by applying the generalized correlation measure to pairs of
the normalized internuclear vectors rather than to pairs of atomic
positions.
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