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Thermal dissociation and the reverse association reactions of molecular ions can be represented within
the same framework as unimolecular reactions of neutral molecules. However, because of different intra- and
intermolecular interaction potentials, some differences between ionic and neutral systems should also be
expected. Starting from these generalities, the present article analyzes the temperature and pressure dependences
of dissociation/association rates of ion–molecule reaction systems. The reaction N2

1 þ N2 (þ M) 3 N4
1 (þ M)

is considered in particular and falloff curves for this reaction are constructed over the temperature range 5–600 K.
Falloff corrections are applied to earlier experiments which allows for a representation of the rate coefficients
in terms of a limiting low-pressure rate coefficient kass,0/[N2] cm

6 molecule�2 s�1 ¼ 6.8 � 10�29(300 K/T)2.23 �
5.6 � 10�31(300 K/T)3.12, a limiting high-pressure rate coefficient kass,N/cm3 molecule�1 s�1 ¼ 8.33 � 10�10

[1 þ 0.069(300 K/T)0.33] and a center broadening factor of the falloff curve Fc ¼ 0.53 � 0.05 nearly independent
of the temperature. Other examples such as the reactions NH4

1 þ NH3 3 N2H7
1, C7H7

1 þ CH3 3 C8H10
1,

and C7H7
1 þ C2H5 3 C9H12

1 are illustrated for comparison.

1 Introduction

Radical–radical association and the reverse thermal dissocia-
tion reactions of neutral species play an important role, e.g. in
combustion and in atmospheric chemical kinetics. The tem-
perature and pressure dependences of their rates are well
represented within the framework of unimolecular rate theory
and they are documented extensively and in compact form in
data evaluations such as refs. 1–4. The corresponding informa-
tion on ion–molecule reactions, in spite of the importance for
various applications, is much less complete and waits for more
systematic research. In part this is due to experimental limita-
tions, both in the accessible temperature and pressure ranges.
The situation, however, is improving e.g. by the use of the
CRESU technique towards lower temperatures (see e.g. refs.
5–7), the SIFT and flowing afterglow techniques towards
higher temperatures (see e.g. refs. 8–10), and by the use of
the turbulent ion flow tube (TIFT, see e.g. refs. 9–12) or
REMPI-LIF studies in static and flow systems (see e.g. refs.
13 and 14) towards higher gas pressures. With these techni-
ques, one can now envisage measurements over broader ranges
of conditions such that compact representations of the rate
coefficients k(T,p) as a function of temperature T and pressure
p will become available as well.

Obviously k(T,p) should be represented in the same way for
ionic as for neutral reactions. Separate formats of data repre-
sentation, analyses, and terminologies within the fields of ionic
and neutral reactions, such as they have often been employed
in the past, appear undesirable and should be avoided. Falloff
curves characterizing the pressure dependence of k(T,p), e.g.,
should be treated by RRKM theory such as demonstrated for

proton-bound dimers of amines by Olmstead, Lev-On, Golden
and Brauman,15 or by the more advanced versions of unim-
olecular rate theory available today, see below. Specific rate
constants k(E,J) for the fragmentation of neutrals and ions
should be expressed in the same way such as illustrated in
unimolecular reaction monographies (see e.g. refs. 16 and 17).
Nevertheless, the interesting question remains in which details
of the treatment the neutral and ionic systems differ. The intra-
and intermolecular interaction potentials, which are relevant
for the reaction, often are of different character which may (or
may not) lead to characteristic differences in the rate coeffi-
cients k(T,p). This is one of the aspects of the present article.
Another issue is the applicability of phase space theory

(PST) which has been used in various investigations particu-
larly of ionic systems (see e.g. refs. 18–20). It has become clear
that specific rate constants k(E,J ) and the corresponding high-
pressure rate constants k(T,p - N) of ion–molecule dissocia-
tion/association reactions often can not be described by PST,
see e.g. the recent refs. 12, 21, 22 and earlier work. On the other
hand, product translational distributions17 in the fragmenta-
tion of molecular ions often are well represented by PST: this
apparent contradiction needs to be explained. A further ques-
tion is the effectivity of intermolecular energy transfer in ion–
molecule dissociation/association reactions.11,12 The following
analysis of a few model systems tries to shed some light on
these issues.
We choose the reaction system N2 þ N2

1 (þ M) 3 N4
1

(þM) as a representative example because ample experimental
information on this system is available13,23–33 and earlier
modellings of the rate constant have been published (see e.g
refs. 13, 32 and 34). We demonstrate how a quick and simple
analysis of the experiments can be made which allows for an
orientation about the falloff curve of the reaction and the
location of the experiments along this curve. Based on the
resulting corrections, tentative limiting low- and high-pressure
rate coefficients are obtained. The further analysis compares

w Dedicated to Prof. Michael Buback at the occasion of his 60th
birthday.
z Presented at the Bunsen Discussion on Chemical Processes of Ions,
Marburg, 15–17 September 2004.
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these experimental values with tentative theoretical modelling
results. The combination of the two parts of the analysis on the
one hand leads to improved constructions of experimental
falloff curves, low- and high-pressure rate coefficients, and
compact data representations. On the other hand, the theore-
tical analysis is used as a diagnostics for uncertain details of the
treatment. We are far from having an accurate theory in hands
which predicts rates on the basis of theoretical input alone. In
this situation, the combination of experiment and theory can
lead to an improved understanding. The present analysis of the
N4

1-system well demonstrates the state of the art. For illustra-
tion, the results of the N4

1-system are also compared with data
for the NH4

1 þ NH3 3 N2H7
1, C7H7

1 þ CH3 3 C8H10
1,

and C7H7
1 þ C2H5 3 C9H12

1 reactions.

2 Experimental results

The pressure dependence of the reaction

N2
1 þ N2 (þ M) - N4

1 (þ M) (1)

has been investigated only rarely. Mostly the reaction was
assumed to be in the termolecular limiting low-pressure range,
although some suspicions about deviations from this limit were
expressed, e.g. in refs. 31 and 34. Only the REMPI-LIF work
by Frost and Sharpe13 more systematically studied the pressure
dependence from 1 to 13 Torr in the bath gas M ¼ N2, and
from 10 to 490 Torr in the bath gas He. Fig. 1 shows the results
which cover a certain part of the falloff curve with a transition
from third to second reaction order. Tentative falloff curves are
drawn as full lines such as described below. The temperature
dependence has been studied extensively over the broad range
4–530 K, see refs. 23–33. Fig. 2 shows a plot of log kass/[N2] vs.
logT where kass is the pseudo-second order rate coefficient and
experiments in the bath gas M ¼ N2 are included as full
symbols. It has only occasionally been questioned whether
the data from Fig. 2 really correspond to the third-order
limiting low-pressure rate coefficient of reaction (1) and some
deviations from the general trend in ref. 34 were tentatively
attributed to falloff effects. However, without data such as
shown in Fig. 1 and/or at least a simplified modelling such as
demonstrated in the following, corrections for falloff were
difficult if not impossible to quantify and falloff effects were
difficult to distinguish from experimental artefacts. With the
help of our construction of falloff curves, selected experiments
at T o 100 K in Fig. 2 have been falloff-corrected which led to
the shown open symbols, see below. The presence of artefacts
in some experiments became also particularly clear when data
in the bath gases N2 and He over wider temperature ranges

were compared, see Fig. 3. The full lines correspond to our
preferred rate coefficients for N2 (upper curve) and He (lower
curve). The pronounced differences between various studies
obviously wait for an explanation.
The situation initially appeared even less clear for the

reaction

NH4
1 þ NH3 (þ M) - N2H7

1 (þ M) (2)

for which representations of log kass/[M] vs. logT in various
bath gases showed quite different and – at first sight –
unexplainable slopes while plots of log kass vs. logT showed
marked deviations from ion–molecule ‘‘collision rate coeffi-
cients’’, see Figs. 4 and 5 from ref. 7. A rationalization of
experimental results like those shown in Figs. 1–5 can only
come from the complete modelling of the temperature and
pressure dependences of kass(T,[M]) or kass(T,p) in the frame-
work of unimolecular rate theory. E.g. Fig. 6 shows the results
for reaction (2) with M ¼ He from Figs. 4 and 5 in a falloff
representation of log kass vs. log[M] with the parameter T. One
realizes that the experimental conditions have corresponded to
different locations between the limiting low- and high-pressure
ranges. Obviously, one can not provide an analysis of the
experimental data before at least a semiquantitative modelling
of the falloff curves has been made. Similar to the evaluation of

Fig. 1 Pressure dependence at 296 K of the pseudo-second order rate
coefficients kass of the reaction N2

1þN2 (þM)-N4
1 (þM) with the

bath gases M ¼He (J) and N2 (K). Experimental points from ref. 13;
modelled falloff curves with eqns. (3), (11) and (14)–(17).

Fig. 2 Temperature dependence of kass/[N2] for the reaction N2
1 þ

N2 (þ N2) - N4
1 þ (N2). Experimental points from ref. 32 (K), ref.

30 (m), ref. 27 (.), ref. 31 (’), ref. 33 (E) and ref. 13 (}); modelled
curve with eqn. (15) from this work; open symbols ¼ selected falloff-
corrected points of kass,0/[N2] with correction from this work, see text.

Fig. 3 Temperature dependence of kass/[M] for the reaction N2
1 þN2

(þ M) - N4
1 (þ M). Open experimental points for M ¼ He, filled

experimental points for M ¼ N2, from ref. 13 (} and J), ref. 33 (E
and B), ref. 31 (’ and &), ref. 27 (.), ref. 29 (,), ref. 25 (n).
Modelled curves with eqns. (14) and (15) from this work.
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the N2H7
1-system from ref. 7, we shall illustrate the procedure

for the N4
1-system (1) in the following.

3 Representation of rate coefficients k(T,p)

Like for neutral reaction systems, we express the pseudo-first
order rate coefficients for dissociation or the pseudo-second
order rate coefficients for association in doubly-reduced form

k

k1
¼ k0=k1

1þ k0=k1

� �
Fðk0=k1Þ ð3Þ

where the limiting low-pressure values k0 of the rate coefficients
k are proportional to the bath-gas concentration [M] and the
limiting high-pressure values kN are independent of [M]. The
broadening factors F(k0/kN) use the [M]-proportional ratio
k0/kN as the reduced pressure scale and they characterize the
deviation of the actual falloff curve from the Lindemann–
Hinshelwood curve (i.e. the curve with F ¼ 1) by the center
broadening factor Fcent ¼ F(k0/kN ¼ 1) and by suitable shape
functions.

It is convenient to factorize the low-pressure rate coefficient
kdiss,0 (for dissociation), which in statistical unimolecular rate
theory is given by

kdiss;0 ¼ bc Z ½M�
X1
J¼0
ð2J þ 1Þ

Z1

E0ðJÞ

f ðE;JÞdE; ð4Þ

with the centrifugal barriers E0(J) and the equilibrium popula-
tions f(E,J), into an expression35,36

kdiss,0¼ bcZ[M]{rvib.h(E0)kT/Qvib}exp(�E0/kT)FEFanhFrot (5)

(for the meaning of the various factors in kdiss,0, see ref. 36 and
the calculations described below). Eqns. (4) and (5) are the
results of solving a master equation for intermolecular energy
transfer between the bath gas M and the reactant. The proper-
ties of this energy transfer, which is rate determining and
therefore deserves particular attention, are characterized by
the collision efficiency bc and the collision number Z and they
can be related to average step sizes hDEi for energy transfer
and overall cross sections.35 It appears inappropriate to call the
calculation of the ‘‘trivial’’, statistical thermodynamical, factor
f(E,J) a ‘‘phase space theory’’ such as has become common in
the ion–molecule community. This practice turns away em-
phasis from the properties of bcZ, i.e. from the rate determin-
ing process. Instead, the term ‘‘phase space theory’’ should
remain reserved to properties of the dissociative process such
as specific rate constants k(E,J), kN, or product energy dis-
tributions; we suggest37 that it should even be restricted to
reactions on isotropic potential energy surfaces only such as
this is also the policy of the present approach.
It is also convenient to express the high-pressure rate coeffi-

cients for dissociation (kdiss) and for association (kass) in
the form37

kdiss;1 ¼
X1
J¼0
ð2J þ 1Þ

Z1

E0ðJÞ

k ðE;JÞ f ðE;JÞdE ð6Þ

or

kass;1 ¼ fel
kT

h

� �
h2

2pmkT

� �3=2

QcentfrigidðTÞ ð7Þ

where frigid(T ) ¼ 1 in our nomenclature corresponds to ‘‘phase
space theory’’ (PST) and fel denotes the fraction of encounters
leading into the electronic ground state of the adduct (for the
meaning of the various factors in kass,N, see ref. 37 and the
calculations described below). The centrifugal partition func-
tion Qcent is given by

Qcent ¼
X1
J¼0
ð2J þ 1Þ exp½ � E0ðJÞ=kT � ð8Þ

where E0(J) accounts for selected properties of the potential
energy surface of the reaction.

Fig. 4 Temperature dependence of kass/[M] for the reaction NH4
1 þ

NH3 (þ M) - N2H7
1 (þ M). Experimental points for M ¼ He (O)

from ref. 7 and ref. 56 (at 300 K), for M ¼ N2 (K) from ref. 7 and for
M ¼ O2 and NO (E) from refs. 57–60.

Fig. 5 As Fig. 4, full line: ion-induced þ permanent dipole capture
rate coefficients, from ref. 7.

Fig. 6 Falloff representation of data from Figs. 4 and 5 with falloff
curves from ref. 7 (numbers in the figure ¼ T/K).
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kdiss and kass are linked by the equilibrium constant Kc

through

kass

kdiss
¼ Kc ¼

½A�
½B� ½C�

� �
eq

¼ Qvib;rot;elðAÞexpðE0=kTÞ
Qvib;rot;elðBÞ Qvib;rot;elðCÞ

h2

2pmkT

� �3=2

ð9Þ

and

fel ¼ Qel(A)/[Qel(B)Qel(C)].

The shape of the broadening factors F(k0/kN) will be illu-
strated below. It should be repeated that, at various levels of
simplification, the expressions commonly used in the ion
community and notably elaborated by Bates, Herbst, Bowers
and others (see e.g. refs. 38–43) are equivalent to eqns. (3)–(9)
from standard statistical unimolecular rate theory of neutral
reactions, and a common language appears more than timely
today.

4 Simplified falloff curves and falloff corrections

The detailed theoretical determination of the factors entering
eqns. (3)–(9) in general meets with a lot of uncertainties and
unknown molecular properties. For this reason an iterative
combination of experimental and theoretical information ap-
pears necessary. We demonstrate this approach in the follow-
ing. We start with a very simple estimate of falloff corrections
to be applied to the experiments presented in Figs. 1 and 2.

To a first approximation we assume that the experimental
data given in Fig. 2 have been obtained near to the low-
pressure third-order limit of reaction (1). We then also assume
that the high-pressure second-order limiting value of kass is of
the order of the Langevin ion-induced isotropic dipole capture
rate constant

kass;1 � kL ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
aq2=m

q
ð10Þ

With the polarizability a ¼ 1.77 � 10�24 cm3 of N2 this leads to
kass,N E 8.33 � 10�10 cm3 molecule�1 s�1. To a first approxi-
mation, the centers of the falloff curves then are located at
those values of [N2] were kass,0 ¼ kass,N. With kass,0/[N2] from
Fig. 2 and kass,N from eqn. (10) one obtains [N2]cent E4� 1015,
8 � 1016, 8 � 1017, 5 � 1018, 1.4 � 1019 and 4 � 1019 molecule
cm�3 at T ¼ 4, 20, 70, 200, 300 and 500 K, respectively. Falloff
corrections, within this first approximation, then are estimated
through the approximate relationship36

FðxÞ � F
1= ½1þðlog x=NÞ2�
cent ð11Þ

with x ¼ kass,0/kass,N and N E 0.75–1.27 logFcent. While the
rigorous calculation of Fcent is fairly involved, see below, a
quick estimate follows from the modelling of ref. 44 where
Fcent, for ‘‘normal cases’’, are tabulated as a function of the
number of transitional modes of the adduct. For the
N4

1-system with four transitional modes, one has Fcent E
0.5 independent of the temperature. Provided that the values of
[N2] applied in the experiments are given, falloff corrections
with eqns. (3) and (11) then immediately can be estimated.

Applying the described procedure to the near-third order
experiments of Fig. 2, one obtains a second approximation for
the experimental kass,0. Repeating the procedure practically
does not further change the values. We have selected repre-
sentative experimental points (full symbols) from Fig. 2 and
indicated the corresponding falloff-corrected results by open
symbols in Fig. 2. In several publications unfortunately the
experimentally used [M] were not given. However, there were
enough data which could be falloff-corrected. The shift of
[N2]cent towards smaller values with decreasing temperature
makes low-temperature experiments particularly susceptible to
these corrections. The free-jet experiments from ref. 32 between

4 and 20 K, which have employed bath-gas concentrations of
N2 between abut 5 � 1014 and 1.5 � 1015 molecule cm�3, and
the CRESU experiments from ref. 30, therefore, have been of
particular interest. As shown in Fig. 2, considerable falloff
corrections to these experiments are suggested by the described
simplified procedure. Nevertheless, these corrections are only
tentative at this stage and require a validation by a more
thorough theoretical modelling such as presented in the follow-
ing. The apparent agreement between ‘‘phase space calcula-
tions’’ of kass,0 and the measured kass, which was found in ref.
32, on the basis of the present analysis has to be considered as
accidental and misleading.

5 Low-pressure rate coefficients for N2
1 þ N2

(þ M) - N4
1
(þ M)

In this section we compare the derived low-pressure rate
coefficients kass,0 of reaction (1) from Figs. 1 and 2 with
calculations based on eqns. (5) and (9). These calculations
are not as straight-forward as one would like. Information on
the essential collisional energy transfer parameters Z and bc are
scarce. It appears reasonable to identify Z with the N4

1–M
capture rate coefficients.45–48 These are the Langevin rate
coefficient Z ¼ kL ¼ 5.56 � 10�10 cm3 molecule�1 s�1 for N4

1–
He collisions and the ion-induced dipole þ quadrupole capture
rate coefficient48 for N4

1–N2 collisions Z ¼ 7.20 � 10�10 cm3

molecule�1 s�1 [1 þ 0.069(300 K/T)0.33], see Appendix. Colli-
sion efficiencies through bc/(1 � bc

1/2) ¼ �hDEi/FEkT are
linked to average energies hDEi transferred per collision.35,36

For a start, we tentatively identify hDEi/hc with the values
�180 and �250 cm�1 for M ¼He and N2, respectively, such as
derived from chemical activation experiments11,12 with excited
C8H10

1 and C9H10
1. These values later on are fine-tuned by

comparison with the experiments.
The ‘‘more trivial’’ statistical factors in eqn. (5) (being

consistent with those in Kc from eqn. (9)) are calculated with
vibrational frequencies, rotational constants, and the bond
energy E0, such as summarized in the Appendix. The centrifu-
gal barriers E0(J) employed in the calculation36 of the rota-
tional factors Frot in eqn. (5) (and in the centrifugal partition
function Qcent in eqn. (8)) have to be determined from the
minimum energy path (MEP) potential and, thus, require
information on the potential energy surface of the reaction.
The ab initio calculations from ref. 49 provide some informa-
tion on this issue. In the valence range, the graphical repre-
sentation of the N4

1 potential from ref. 49, for (r � re)r3.8 Å,
leads to a MEP potential of the linear N4

1 species of
Morse type

V(r) ¼ De{1 � exp[�be(R � Re)]}
2 (12)

with the parameters De/hc ¼ 9330 cm�1, Re ¼ 2.00 Å and be ¼
3.31 Å�1; R here denotes the N–N distance of the two central
N atoms. Outside the valence range, the ion-anisotropic in-
duced dipole þ quadrupole potential

Vðr;WÞ ¼ � q2a
2r4
þ qQ

r3
� q2Da

2r4

� �
3cos2W� 1

2

� �
ð13Þ

is approached (r ¼ center-of-mass distance between N2
1 and

N2, a ¼ 1.77 � 10�24 cm3, Da ¼ 0.7 � 10�24 cm3, Q ¼ �1.5 �
10�26 esu cm2 from ref. 50). Unfortunately, the ab initio
calculations of ref. 49 have not been extended up to the range
of R-values where the transition between the valence and
electrostatic potential occurs. We have, therefore, calculated
E0(J) for a potential which switches abruptly at the crossing of
the MEP potentials of eqns. (12) and (13) (the difference
between bond lengths R and c.o.m. distances r has to be taken
into account). Fig. 7 shows the MEP potentials for eqns. (12)
and (13) together with the positions and heights of the
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centrifugal barriers E0(J). Following the way from E0(J) to Frot

such as described in ref. 36, one obtains Frot such as given in the
Appendix. Obviously, with the chosen potential model the
long-range potential matters most over a wide temperature
range and the valence potential becomes important only at
very high T. The same applies to centrifugal partition functions
Qcent, see below.

A further point of uncertainty is the anharmonicity correc-
tion factor Fanh. Using fundamental instead of harmonic
frequencies such as done here, a substantial part of the
anharmonicity correction is already included but there is
additional anharmonicity. Our experience from ‘‘normal’’
triatomic molecules indicates that an additional factor of about
Fanh E 1.66 is needed.51–53 However, this factor is somewhat
uncertain and requires more work in the future.

The evaluation of eqns. (5) and (9) is straight-forward. It
leads to results which remain most uncertain in the factor
bcZFanhFrot. A fine-tuning by comparison with the most reli-
able experiment, at least at one temperature, can not be
avoided. If a calculation of kass,0 would agree with the experi-
ments without fine-tuning, today this still has to be considered
as accidental. In our present work we rely most on the results at
296 K from ref. 13 with M ¼ He and N2 (after minor changes
due to the falloff extrapolation, see below) and we fine-tune the
hDEi-values. For M ¼ He, agreement with kass,0(296 K) is
found if bc E 0.39 and�hDEi/hc¼ 240 cm�1 is chosen (instead
of the initial guess of 180 cm�1, see above). The markedly
larger value of kass,0(296 K) for M ¼ N2 would require to
increase �hDE i/hc from 250 to values above 1000 cm�1 where
bc approaches unity and where bc becomes insensitive to the
value of hDE i. However, it should be emphasized that the fitted
bc- and hDE i-values also include errors from other factors such
as ZFanhFrot such that no safe conclusions on hDE i can be
drawn for M ¼N2. Nevertheless, the unusually large difference
between the experimental values of kass,0 in He and N2, see Fig.
3, points towards unusually efficient energy transfer in N4

1-N2

collisions, perhaps due to complex-forming collisions between
N4

1 and N2. While an apparent ratio bc (He)/bc (N2) E 0.49 is
derived from the experiments of ref. 13, the apparent ratio
bc (He)/bc (N2) E 0.14 from ref. 31 in our analysis would lead
to an apparent value of bc (N2) E 2.8 which would be difficult
to understand in terms of uncertainties of other factors. We,
therefore, consider the value of the ratio bc (He)/bc (N2) from
ref. 31 as unrealistic and probably due to an unexplained
experimental artefact.

Since hDEi in the analysis of experiments for neutral systems
often has been found to be temperature independent (see e.g.

ref. 54), we here assume the same and test the predicted
temperature dependence of kass,0. Our results over the range
5–600 K can be represented by

kass,0/[He] cm6 molecule�2 s�1 E 2.42 � 10�29

(300 K/T)2.60 � 1.79 � 10�30(300 K/T )3.15 (14)

kass,0/[N2] cm
6 molecule�2 s�1 E 6.80 � 10�29

(300 K/T)2.23 � 5.60 � 10�31(300 K/T )3.12 (15)

where the second terms only matter at low temperatures. The
two-term form of Eqns. (14) and (15) was chosen in order to
reproduce small deviations of the calculated kass,0/[M] from
simple T�n expressions. Eqns. (14) and (15) are included in
Figs. 2 and 3. The agreement with the falloff-corrected experi-
mental values looks very good. However, one should keep in
mind that a number of uncertain assumptions have been made
such as the values of the anharmonicity correction, hDEi, the
potential leading to Frot and the collision frequency Z being
taken as the ion–dipole þ quadrupole capture rate constant. In
addition, falloff corrections so far came from the simplified
method of section 4. The latter procedure requires a more
detailed control such as given in the following, but it does not
lead to noticeable changes of the derived values of kass,0.

6 High-pressure rate coefficients for

N2
1 þ N2 - N4

1

We now consider kass,N for reaction (1). So far only the
measurements from ref. 13 have accessed a certain part of
the falloff curve, see Fig. 1. However, no reliable extrapolations
to the high-pressure limit could be made on the basis of these
experiments alone. Instead, kass,N in ref. 13 was fixed by an
estimate from AQO theory.55 Abandoning AQO theory, we
now use the more correct SACM/CT treatment from ref. 48,
such as described in the Appendix, assuming that the ion-
induced dipole þ quadrupole potential governs Qcent*. For
higher temperatures (T - 600 K), minor modifications from
the valence potential arise which, however, can not be quanti-
fied as long as the transition between valence and electrostatic
potential in Fig. 7 is not better characterized (see also the
analogous investigation of the contribution from valence
forces in the N2H7

1 system described in ref. 7). For this reason,
we represent kass,N by the ion-induced dipole þ quadrupole
potential only. For this potential, the SACM/CT calculations
from ref. 48 (for adiabatic dynamics such as realized here) give

kass,N/cm3 molecule�1 s�1 ¼ 8.33 � 10�10

[1 þ 0.069(300 K/T )0.33] (16)

where the first term corresponds to the ion-induced dipole
(Langevin) and the second to the ion-quadrupole capture rate
constant. Using a value of kass,N(296 K) ¼ 8.3 � 10�10 cm3

molecule�1 s�1 instead of 9.0 � 10�10 cm3 molecule�1 s�1 from
eqn. (16), the experimental falloff curve in ref. 13 was also well
reproduced employing a broadening factor Fcent E 0.5. How-
ever, the question remained whether this estimated value and
the employed shape of the modelled falloff curve (similar to the
method from section 4), were adequate. This question will be
further examined in the following section.
Before moving on to the full falloff curves we come back to

the question of the validity of phase pace theory in calculating
kass,N. In Fig. 8 we compare kass,N from the SACM/CT
calculations for the ion-induced dipole þ quadrupole potential
with the corresponding results for an ion-induced dipole þ
locked quadrupole potential which is isotropic and hence
corresponds to PST. The two rate coefficients are different
such that PST does not apply. The difference, i.e. the rigidity
factor frigid in eqn. (7), with decreasing temperature approaches
the value 0.534 (for the even case qQ 4 0, see ref. 48). With

Fig. 7 Minimum energy path potential V(R) and centrifugal energies
E0(J ) for the N4

1-system (VSR(R) ¼ Morse potential from ab initio
calculations of ref. 49, VLR(R) ¼ ion-anisotropic induced dipole þ
quadrupole potential, K ¼ positions and heights Eo(J) of centrifugal
barriers, R ¼ length of the central R–R bond in N4

1).
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increasing temperature, the increasing influence of the isotropic
ion-induced dipole short-range potential leads to an increase of
frigid. This may be an artefact of our model since finally the
anisotropic valence potential will take over. In any case,
however, kass,N is far from the value given by PST. Keeping
the rigidity factor for the long-range ion-quadrupole and the
short-range valence potential the same, i.e. equal to 0.534, the
short range-valence/long range-electrostatic switching poten-
tial probably leads to an optimum prediction of kass,N. This is
probably a better estimate of kass,N than given by the ion-
induced dipole þ quadrupole potential alone. However, in the
absence of a better ab initio potential in the switching range it
appears premature to change kass,N. Obviously this uncer-
tainty is of no practical relevance for the range of conditions
accessible so far, but it will matter when more high temperature/
high-pressure data become available.

Similar remarks apply to the N2H7
1-system for which the

ion-induced dipole þ permanent dipole potential was used in
the calculations of kass,N from Figs. 5 and 6. Again, due to the
anisotropy of the long-range ion-permanent dipole potential
kass,N is markedly below the values for the isotropic ion-locked
dipole potential used in PST. Also in this case an anisotropic
short-range valence potential will cause a further drop of kass,N
with increasing T below the values shown in Figs. 5 and 6, see
the estimates in ref. 7.

Phase space theory is even more inadequate in cases with
weaker isotropic long range potentials and being governed by a
markedly anisotropic short range valence potential. We use the
C7H7

1 þ CH3 3 C8H10
1 systems and C7H7

1 þ C2H5 3
C9H12

1 as examples. In these cases thermal dissociation rate
coefficients kdiss,N in the high-pressure limit have been mea-
sured11,12 and related to experimental specific rate constants
k(E,J). SACM/CT calculations have been made21 employing
simple switching models between anisotropic short-range va-
lence and isotropic long-range ion-induced dipole components,
one parameter of which was calibrated through the experi-
mental k(E,J). One observes that both, the specific and the
thermally averaged rate coefficients are far below the PST
results, being further away at higher energies and higher
temperatures. Figs. 9 and 10 demonstrate the behaviour by a
plot of kass,N (converted with Kc from kdiss,N) as a function of
temperature. The MEP of the potential causes kass,N

PST to
slightly increase with temperature as compared to the Langevin
rate constant. This increase is also an indication of the increas-
ing importance of the valence potential. The rigidity factors
frigid are small, of the order of 10�2 to 10�3 near 600 K,
indicating the dominance of the valence potential under these
conditions. Only at very low temperatures the electrostatic

range of the potential with kass,N ) kL is predicted to become
relevant. In this case the values of the effective Massey para-
meters ¼ 0.5 and 0.15, for the C8H10

1 and C9H12
1 systems

respectively, indicate markedly nonadiabatic dynamics in the
transitional modes such that here only SACM/CT and even
not conventional variational transition state theory can be used
to determine rate coefficients.
The identification of nonadiabatic dynamics may also pro-

vide the answer to the apparent paradox mentioned above: rate
constants for fragmentation often are far from PST results
while product energy distributions often are close to PST
predictions. It may well be that the final energy distributions
of the dissociation products are being established by nonadia-
batic dynamics as well as Coriolis coupling long after the rate-
determing dynamical bottlenecks of the reaction have been
passed.

7 Reduced falloff curves

Having discussed the detailed estimation of limiting low- and
high-pressure rate coefficients kass,0 and kass,N, we now proceed
to the determination of the falloff curves. Calculating full
falloff curves is the most difficult part of the treatment and
there is no complete treatment available as yet. However, once
kass,0 and kass,N are characterized sufficiently well, doubly
reduced falloff curves connecting these rate coefficients are less
sensitive to details of the problem. The falloff curves for the

Fig. 8 Limiting high-pressure rate coefficients kass,N for the reaction
N2

1 þ N2 - N4
1 (a: Langevin rate coefficient, b: modelling with ion-

induced dipole þ quadrupole potential, c: as b, but with locked
quadrupole ¼ PST, d: modelling with ion-quadrupole potential, e: as
d, but with locked quadrupole ¼ PST).

Fig. 9 Limiting high-pressure rate coefficients kass,N for the reaction
C7H7

1 þ CH3 - C8H10
1 (top: PST, lower line: modelling with

anisotropic valence/ion-induced dipole potential from ref. 21, K:
experimental points from ref. 22).

Fig. 10 Limiting high-pressure rate coefficients kass,N for the reaction
C7H7

1 þ C2H5 - C9H12
1 (top: PST, lower line: modelling with

anisotropic valence/ion-induced dipole potential from ref. 21, K:
experimental point from ref. 12).
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N2H7
1 system shown in Fig. 5 have been determined in this

way.7 It was shown that PST, accounting for E- and J-
dependences of specific rate constants, gives already satisfac-
tory results for the reduced falloff curves, being in contrast to
rigid activated complex RRKM theory. The E- and J-depen-
dences of the rigidity factors frigid(E,J) did not much change the
reduced falloff curves from PST. In the following, for the
N2

1 þ N2 - N4
1 reaction, we used either the SACM/CT

results from ref. 56 or simple PST and we followed the method
described in ref. 7.

At first, in Fig. 11 we show the calculated broadening factors
F(k0/kN) of the N2

1 þN2 -N4
1 reaction as a function of the

temperature (including weak collision effects). Second, in Figs.
12 and 13 we provide complete sets of falloff curves for the N4

1

system which are constructed by means of the calculated
broadening factors, eqns. (3), (14) and (16). These curves are
completely analogous to Fig. 6 for the N2H7

1 system. (The
curves do not look completely smooth which is not an error of
the calculation but a real effect. The shallow dips of the curves
are located close to the centers of the falloff curves where F(k0/
kN) has broad minima.) One realizes pronounced shifts of the
falloff curves with changing temperatures. At lower tempera-
tures, much lower pressures have to be employed to approach
the lower pressure limit of kass than at higher temperatures.
The results well agree with the conclusions from section 4 such
that the falloff corrections shown in Fig. 2 essentially remain
unchanged. Many investigations, contrary to the assumptions
of the authors, have not been performed in the low-pressure

termolecular limit and falloff corrections would have been
required before true experimental values of kass,0 could be
given. It should be emphasized that this conclusion is quite
independent of the remaining uncertainties of the treatment.
The construction of falloff curves from ref. 13, which was based
on a simpler approach than used here, turned out to nearly
coincide with the present more detailed calculations (only a
minor difference in the extrapolated kass,0 was observed).
Having done the full falloff calculations, see Figs. 11–13, one

may also test the approximate analytical representations of
F(k0/kN) from eqn. (11). A comparison of eqn. (11) with Fig.
11 gives reasonable agreement once Fcent is known. Improve-
ments are obtained by replacing eqn. (11) by

FðxÞ � F
f1þ½ðlog xþ0:2Þ=ðN�DNÞ�2g �1
cent ð17Þ

with Fcent E 0.53, N E 1.3, DN E 0.1, þ DN for logx o �0.2,
�DN for log x 4 �0.2. However, this more complicated
expression instead of eqn. (11) appears only necessary when
more precise data over wider pressure ranges would be
available.

8 Conclusions

We have illustrated the possibilities and uncertainties of to-
day’s modelling of the temperature and pressure dependence of
rate coefficients k(T,p) for ion–molecule dissociation/associa-
tion reactions. Our analysis clearly demonstrates the common
and different properties of ionic and neutral reaction systems.
The reaction N2

1 þ N2 (þ M) - N4
1 (þ M) has served as a

model system for which the determination of kass,0, kass,N and
reduced falloff curves were illustrated. A representation with
kass,0 from eqns. (14) and (15), kass,N from eqn. (16), and
broadening factors of the falloff curve from eqns. (11) or (17),
provides a compact format for representing the rate coeffi-
cients. This is the same format as routinely employed for
neutral radical–radical reactions and it appears advisable that
ion–molecule reactions are represented in the same way as
neutral radical–radical reactions.

Appendix

Ion-quadrupole capture rate coefficients

Following ref. 48, the effective mass M of the collision system
M ¼ (mB/�h2)(Qq/2kT)2/3 is calculated and found to be much
larger than unity such that expressions for adiabatic collisions
can be used. These are formulated with the parameters y ¼ aq2/3

(2kT)1/3Q�4/3, z ¼ 1.352 þ lny and lnk ¼ 0.2344 þ [0.08617z/
sinh z þ z2/16]1/2. kcap then follows via kcap/kL ¼ k/(p2y)1/4

Fig. 11 Broadening factors F(x) for the reaction N2
1 þ N2 (þ N2) -

N4
1 þ N2 (x ¼ kass,0/kass,N; T/K ¼ 5 (—), 50 (--), 300 (� � �), 600 (-�-);

modelling from this work, see text).

Fig. 12 Modelled rate coefficients kass(T, [He]) for the reaction N2
1 þ

N2 (þ He) - N4
1 (þ He) from this work, see text.

Fig. 13 Modelled rate coefficients kass(T, [N2]) for the reaction N2
1 þ

N2 (þ N2) - N4
1 (þ N2) from this work, see text.
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and kL ¼ 2p(aq2/m)1/2. We use a ¼ 1.77 � 10�24 cm3 and Q ¼
�1.5 � 10�26 esu cm2 for N2.

Molecular parameters
49

Frequencies of N4
1: ni/cm�1 ¼ 2275, 2239, 390, 134 (2) and 91

(2). Rotational constant of N4
1: B/cm�1 ¼ 0.112. Bond energy

of N4
1: E0/hc ¼ 8908 cm�1, De/hc ¼ 9330 cm�1.

Rotational factors Frot(T)

Frot in the absence of centrifugal barriers: Frot ¼ Frot max ¼ 467,
117, 46.7, 23.4, 7.78 and 3.89 for T ¼ 5, 20, 50, 100, 300 and
600 K, respectively. Frot for the switching potential from eqns.
(12) and (13): Frot ¼ 52.9, 21.9, 12.1, 7.72, 3.74 and 2.37. Frot

for the long-range potential of eqn. (13): Frot ¼ 53.8, 22.4, 12.4,
7.88, 3.81 and 2.4. Frot for the short-range potential of eqn.
(12): Frot ¼ 4.0, 3.5, 3.1, 2.8, 2.2 and 1.8. All Frot are given for
the same series of T as Frot max.
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